

Proceedings of the

Joint Workshop on

Interfaces and Human Decision Making
for Recommender Systems

September 19, 2015

In conjunction with the
9th ACM Conference on Recommender Systems
Vienna, Austria

Edited by

John O’Donovan, Alexander Felfernig, Nava Tintarev,
Peter Brusilovsky, Giovanni Semeraro, Pasquale Lops

Copyright © 2015 for the individual papers by the papers' authors. Copying permitted for private and

academic purposes. This volume is published and copyrighted by its editors.

Preface

As an interactive intelligent system, recommender systems are developed to give
recommendations that match users’ preferences. Since the emergence of recommender
systems, a large majority of research focuses on objective accuracy criteria and less
attention has been paid to how users interact with the system and the efficacy of
interface designs from users’ perspectives. The field has reached a point where it is ready
to look beyond algorithms, into users’ interactions, decision making processes, and
overall experience. This workshop will focus on the aspect of integrating different
theories of human decision making into the construction of recommender systems. It will
focus particularly on the impact of interfaces on decision support and overall satisfaction,
and on ways to compare and evaluate novel techniques and applications in this area.

The aim of the workshop is to bring together researchers and practitioners around the
topics of designing and evaluating novel intelligent interfaces for recommender systems
in order to: (1) share research and techniques, including new design technologies and
evaluation methodologies (2) identify next key challenges in the area, and (3) identify
emerging topics.

This workshop aims at establishing an interdisciplinary community with a focus on the
interface design issues for recommender systems and promoting the collaboration
opportunities between researchers and practitioners.

The workshop consists of a mix of ten presentations of papers in which results of ongoing
research as reported in these proceedings are presented and one invited talk by Anthony
Jameson presenting “Recommender Systems Seen Through the Lens of Choice
Architecture”. The workshop is closed by a final discussion session.

John O’Donovan, Alexander Felfernig, Nava Tintarev, Peter Brusilovsky,
Giovanni Semeraro and Pasquale Lops

August 2015

Organizing Committee

Workshop Co-Chairs

John O’Donovan, University of California, Santa Barbara, USA
Alexander Felfernig, Graz University of Technology, Austria
Nava Tintarev, University of Aberdeen, UK
Peter Brusilovsky, University of Pittsburgh, USA
Giovanni Semeraro, University of Bari "Aldo Moro", Italy

Pasquale Lops, University of Bari "Aldo Moro", Italy

Program Committee

Robin Burke, DePaul University, USA
Jaegul Choo, College of Informatics, Korea University, South Korea
Marco De Gemmis, Dipartimento di Informatica – University of Bari, Italy
Jill Freyne, CSIRO, Australia
Gerhard Friedrich, Alpen-Adria-Universitaet Klagenfurt, Austria
Sergiu Gordea, AIT Austria
Dietmar Jannach, TU Dortmund, Germany
Bart Knijnenburg, University of California, Irvine, USA
Henry Lieberman, MIT, USA
Gerald Ninaus, TU Graz, Austria
Denis Parra, Pontificia Universidad Catolica de Chile, Chile
Christin Seifert, Uni Passau, Germany
Christoph Trattner, Know Center, Austria and NTNU, Norway
Jesse Vig, University of Minnesota, USA
Martijn Willemsen, Eindhoven University of Technology, Netherlands
Markus Zanker, Alpen-Adria-Universität Klagenfurt, Austria

Table of Contents

Invited presentation

Recommender Systems Seen Through the Lens of Choice Architecture
Anthony Jameson 1

Accepted papers

Parsimonious and Adaptive Contextual Information Acquisition in Recommender
Systems
Matthias Braunhofer, Ignacio Fernández-Tobías, Francesco Ricci 2

Fostering Knowledge Exchange Using Group Recommendations
Alexander Felfernig, Martin Stettinger, Gerhard Leitner 9

Explaining contextual recommendations: Interaction design study and prototype
implementation
Joanna Misztal, Bipin Indurkhya 13

Inspection Mechanisms for Community-based Content Discovery in Microblogs
Nava Tintarev, Byungkyu Kang, Tobias Höllerer, John O’Donovan 21

uRank: Exploring Document Recommendations through an Interactive User-Driven
Approach
Cecilia di Sciascio, Vedran Sabol, Eduardo Veas 29

FutureView: Enhancing Exploratory Image Search
Sayantan Hore, Dorota Glowacka, Ilkka Kosunen, Kumaripaba Athukorala, Giulio Jacucci
 37

An Adaptive Electronic Menu System for Restaurants
Paulo Henrique Azevedo Filho, Wolfgang Wörndl 41

User Controlled News Recommendations
Jon Espen Ingvaldsen, Jon Atle Gulla, Özlem Özgöbek 45

Interaction Design in a Mobile Food Recommender System
Mehdi Elahi, Mouzhi Ge, Francesco Ricci, Ignacio Fernández-Tobías, Shlomo Berkovski,
Massimo David 49

Recommender Systems for the People — Enhancing Personalization in Web
Augmentation
Martin Wischenbart, Sergio Firmenich, Gustavo Rossi, Manuel Wimmer 53

Recommender Systems Seen Through
the Lens of Choice Architecture

Anthony Jameson

German Research Center for
Artificial Intelligence (DFKI)

jameson@dfki.de

Abstract

“How do people make choices?” “How can we help them make better choices?” It’s helpful

to have compact, coherent answers to these questions if we want to build recommender

systems that support choice processes. This talk begins with a brief summary of the

ASPECT and ARCADE models (introduced in “Choice Architecture for Human-Computer

Interaction”), which answer these questions. It then uses this framework to shed new light

on a sample of subtle questions such as: “How can explanations of recommendations help

people make better choices?” and “How can recommender systems help people choose via

trial and error?” The talk is a concrete and selective presentation of key ideas from the

chapter “Human Decision Making and Recommender Systems” in the second edition of the

“Recommender Systems Handbook”.

1

Parsimonious and Adaptive Contextual Information
Acquisition in Recommender Systems

Matthias Braunhofer
Faculty of Computer Science

Free University of
Bozen-Bolzano

Bozen-Bolzano, Italy
mbraunhofer@unibz.it

Ignacio
Fernández-Tobías

Escuela Politécnica Superior
Universidad Autónoma de

Madrid
Madrid, Spain

ignacio.fernandezt@uam.es

Francesco Ricci
Faculty of Computer Science

Free University of
Bozen-Bolzano

Bozen-Bolzano, Italy
fricci@unibz.it

ABSTRACT
Context-Aware Recommender System (CARS) models are
trained on datasets of context-dependent user preferences
(ratings and context information). Since the number of
context-dependent preferences increases exponentially with
the number of contextual factors, and certain contextual in-
formation is still hard to acquire automatically (e.g., the
user’s mood or for whom the user is buying the searched
item) it is fundamental to identify and acquire those factors
that truly influence the user preferences and the ratings. In
particular, this ensures that (i) the user effort in specifying
contextual information is kept to a minimum, and (ii) the
system’s performance is not negatively impacted by irrele-
vant contextual information. In this paper, we propose a
novel method which, unlike existing ones, directly estimates
the impact of context on rating predictions and adaptively
identifies the contextual factors that are deemed to be useful
to be elicited from the users. Our experimental evaluation
shows that it compares favourably to various state-of-the-art
context selection methods.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—information filtering

Keywords
Context-Aware Recommender Systems; Contextual Infor-
mation; Feature Selection

1. INTRODUCTION
Context-Aware Recommender Systems (CARSs) gener-

ate more relevant recommendations than traditional Rec-
ommender Systems (RSs) by adapting them to the specific
contextual situation of the user (e.g., time, weather, loca-
tion) [1]. The development of an effective CARS faces many

.

challenges [2]. First, it is necessary to identify the con-
textual factors that could potentially influence individual’s
preferences (ratings) and the decision-making process, and
hence are worth to be collected, either automatically (e.g.,
the time, or the location), or by querying the user. The
second challenge is to develop a predictive model that is
capable of predicting the users’ ratings for items under var-
ious contextual situations. Finally, the design of a proper
human-computer interaction layer on top of the predictive
model is the third and last but not least challenge for build-
ing a CARS.

In this paper we are focusing on the first challenge. In
this respect, previous approaches have mainly applied fea-
ture selection techniques to identify which contextual factors
should be used in the rating prediction phase. The downside
of this approach is that it may force users to add to ratings
contextual information that later on, when the prediction
model is built, may be found not to be useful for improv-
ing the system performance. Because of that, here we pro-
pose a new method for identifying which contextual factors
should be acquired from the user upon rating an item, so
that the user will not enter the value of many contextual
factors (parsimonious), and the accuracy of the subsequent
recommendations is improved the most.

As a concrete motivation, consider the places of interest
(POIs) CARS that is illustrated in Figure 1 and Figure 2
[5]. That system is called STS (South Tyrol Suggests) and
it uses 14 contextual factors (e.g., weather, mood, distance,
time available). Users may specify any of them when en-
tering a rating for a POI (and also when the user requests
context-aware recommendations). These are, however, not
all equally important for different user-item pairs, in the
sense that they contribute differently to the improvement
of the system’s rating prediction and recommendation ac-
curacy. In fact, we must avoid any possible waste of time
and effort of the user while entering this information and
also keep away from the potential degradation of the system
performance that could be caused by the usage of irrele-
vant information. For example, the user’s mood may be
extremely important to predict the ratings only of certain
users, and weather may be an essential factor for one class
of items, while negligible for others.

Unlike current state-of-the-art strategies, which measure
the relevance of contextual factors on a global basis, our
strategy dynamically and adaptively selects the contextual
factors to be elicited from the user when she enters a rat-

2

ing for an item. This is achieved by using the CARS rating
prediction model itself, and asking the user to specify, when
she is rating an item, those contextual factors that if consid-
ered in the model would produce a rating prediction for that
item that is most different from the prediction computed by
a context-free model. We consider this as a heuristics: if this
contextual information has an impact on rating prediction
it should be acquired and used in the model.

Several CARS algorithms can be used to implement the
above mentioned solution; here we employ a new variant of
Context-Aware Matrix Factorization (CAMF) [3] that lever-
ages latent correlations and patterns between users, items
as well as contextual conditions, thus making it well-suited
for selective context acquisition, but also for prediction and
recommendation as well. We have compared our proposed
method with several state-of-the-art context selection strate-
gies in an offline experiment on two contextually-tagged rat-
ing datasets. The results show that the proposed parsimo-
nious and personalized acquisition of relevant contextual fac-
tors is efficient and effective, and allows to elicit ratings aug-
mented with contextual factor values that best improve the
recommendation performance in terms of accuracy, precision
and recall.

We note that parsimoniously acquiring from the user rele-
vant contextual information can be considered as an Active
Learning problem [8]. But, while in previous work [6, 4] we
focused on the active identification of the items to present to
the user to rate, in this article we focus on the subsequent de-
cision of identifying which contextual factors the user should
enter, i.e., under which conditions the user experienced the
item.

The rest of the paper is structured as follows. In Sec-
tion 2, we review the related work. Section 3 introduces
our main application scenario. Section 4 presents in detail
the proposed context acquisition method. Then, we describe
the experimental evaluation in Section 5, and detail the ob-
tained results in Section 6. Finally, conclusions are drawn
and future work directions are described in Section 7.

2. RELATED WORK
Finding the most relevant features for building a predic-

tion model has been extensively studied in machine learning.
Feature selection is aimed at improving the performance of
learning algorithms and gaining insight into the unknown
generative process of the data [9]. There are three main
approaches to feature selection: wrappers, filters and em-
bedded methods. While wrapper methods optimize the se-
lection within the prediction model, filter methods employ
statistical characteristics of the training data to select fea-
tures independently of any prediction model, and thus are
substantially faster to compute. Popular examples of filter
methods used in machine learning include mutual informa-
tion, t statistic in Student test, χ2 test for independence, F
statistic in ANOVA and minimum Redundancy Maximum
Relevance (mRMR) [14], which uses the mutual information
of a feature and a class as well as the mutual information
of features to infer features’ relevance and redundancy, re-
spectively. Differently from the two previous methods, em-
bedded methods use internal parameters of some prediction
model to perform feature selection (e.g., the weight vector
in support vector machines).

Focussing now on CARSs, previous research has explored
methods: a) for identifying a priori the factors that should

be considered by the system, or b) for selecting, a posteri-
ori, after the ratings and context data was acquired, those
factors that are most influential for computing rating pre-
dictions. The first task was tackled by exploiting domain
knowledge of the RS’s designer or market expert [2], whereas
the second one was addressed by using feature selection al-
gorithms.

In order to tackle the second task, Odić et al. [13] provide
several statistical measures for relevant-context detection
(i.e., unalikeability, entropy, variance, χ2 test and Freeman-
Halton test), and show that there exists a significant differ-
ence in the prediction of ratings when using relevant and
irrelevant context. Another example can be found in [16],
where a Las Vegas Filter (LVF) algorithm [12] is employed:
it repeatedly generates random subsets of contextual factors,
evaluates them based on an inconsistency criterion and fi-
nally returns the subset with the best evaluation measure.
Finally, Zheng et al. [17] presented a set of approaches based
on multi-label classification for the task of recommending
the most suitable contexts in which a user should consume
a specific item.

Rather than post filtering (after the rating data was ac-
quired) the contextual factors in the rating prediction phase,
we are interested in detecting which contextual factors should
be acquired upfront from the user in the first place. Hence,
when a specific user rates a particular item, our goal is to
parsimoniously request and possibly elicit only the contex-
tual factors that improve the most the system performance.
These factors can differ for each user-item pair. Moreover,
instead of relying on statistical measures, which has been
the major trend so far, our work uses a CARS rating pre-
diction model itself to estimate the usefulness of contextual
factors. Our approach is similar to some Active Learning
[8] solutions of the cold-start problem that also use the rat-
ing prediction model to identify which items are better to
propose to the users to rate. An example of such an Active
Learning method can be found in [10]; it asks users to rate
the items whose ratings, if known, contribute most to reduce
the system prediction error on a set of held-out test ratings.
Another similar approach is the influence-based method pre-
sented in [15], which selects those items whose ratings are
estimated to have the highest influence on the rating predic-
tions of other items.

3. APPLICATION SCENARIO
Our application scenario is a mobile CARS called STS

(South Tyrol Suggests) [5] that is available on Google Play
Store and recommends POIs to visit in the South Tyrol re-
gion of Italy. STS can generate POI recommendations (Fig-
ure 1, left) adapted to the user’s and items’ current con-
textual situation by exploiting 14 contextual factors whose
conditions (values) are partially acquired automatically by
the system (e.g., weather at the POI, season, daytime) and
partially entered manually by the user through an appro-
priate screen (e.g., user’s budget, companion, feeling), as
shown in Figure 2 (right). More information about the used
contextual factors and their possible values, which are called
contextual conditions, can be obtained from Table 1. The
user’s preference model is learned using a set of in-context
ratings that the system actively collects from the users and
that describe the users’ evaluations for the POIs together
with the contextual situations in which the users visited the
POIs (see Figure 2). However, in our application scenario,

3

given the relatively large number of contextual factors we
faced the problem of choosing the contextual factors to ask
to the end user upon rating a POI. This is an important
and practical problem: asking the value of all the contex-
tual factors is not effective, as it would take too much time
and effort for the user to specify them. Moreover, asking the
wrong subset of contextual factors may result in the degra-
dation of the prediction model performance and in poor rec-
ommendations.

In order to cope with this problem we propose here a novel
method that is able to dynamically and adaptively identify
the most important contextual factors to be elicited from
a specific user upon rating a particular POI. This method
serves the purpose of minimizing the amount of information
that the users have to input manually, while at the same
time allowing the system to still obtain all the relevant infor-
mation needed to maintain a high level of rating prediction
performance. Referring to Figure 2, by means of our pro-
posed method, we can identify for instance the three most
relevant contextual factors for ”Restaurant Pizzeria Amadè”
and then present the user with three screens that step-by-
step elicit the contextual conditions for these factors. Oth-
erwise, the user would be required to go through 14 screens,
one for each available contextual factor.

Figure 1: Context-aware suggestions in STS

4. SELECTIVE CONTEXT ACQUISITION
Before presenting the proposed selective context acquisi-

tion method, we introduce the CARS predictive model that
we have adopted in this study. It is a new variant of the
context-aware predictive model CAMF [3] that treats con-
textual conditions similarly to either item or user attributes
and uses a distinct latent factor vector corresponding to each
user- and item-associated attribute. More specifically, a con-
textual condition is treated as a user attribute if it corre-
sponds to a dynamic characteristic of a user, e.g., the mood,
budget or companion of the user, whereas it is considered
as an item attribute if it describes a dynamic characteris-
tic of the item, e.g., the weather and temperature at the
POI. The model is scalable and flexible, and is able to cap-

Figure 2: Rating interface of STS

Table 1: Contextual factors used in STS
Contextual
factors

Associated contextual conditions

Weather Clear sky, sunny, cloudy, rainy, thunder-
storm, snowing

Season Spring, summer, autumn, winter
Budget Budget traveler, high spender, none of

them
Daytime Morning, noon, afternoon, evening, night
Companion Alone, with friends/colleagues, with fam-

ily, with girlfriend/boyfriend, with chil-
dren

Feeling Happy, sad, excited, bored, relaxed, tired,
hungry, in love, loved, free

Weekday Working day, weekend
Travel goal Visiting friends, business, religion,

health care, social event, education,
scenic/landscape, hedonistic/fun, activ-
ity/sport

Transport No transportation means, a bicycle, a mo-
torcycle, a car, public transport

Knowledge
of the travel
area

New to area, returning visitor, citizen of
the area

Crowdedness Crowded, some people, almost empty
Duration of
stay

Some hours, one day, more than one day

Temperature Burning, hot, warm, cool, cold, freezing
Distance Far away (over 3 km), nearby (within 3

km)

ture latent correlations and patterns between a potentially
wide range of knowledge sources (e.g., users, items, contex-
tual conditions, demographics, item categories), making it
ideal to derive the usefulness of contextual factors in rating
prediction. Given a user u with user attributes A(u), an
item i with item attributes A(i) and a contextual situation
consisting of the conjunction of individual contextual con-
ditions c1, ..., ck that can be decomposed into the subset of
user-related contextual conditions C(u) and the subset of
item-related contextual conditions C(i), it predicts a rating
using the following rule:

4

r̂uic1,...,ck = (qi+
∑

a∈A(i)∪C(i)

xa)>(pu+
∑

b∈A(u)∪C(u)

yb)+r̄i+bu

(1)
where qi is the latent factor vector associated to item i,

pu is the latent factor vector associated to user u, xa is
the latent factor vector associated to an attribute of the
item i, that may either describe a conventional attribute
(e.g., genre, item category) or a contextual attribute (e.g.,
weather, temperature), yb is the latent factor vector asso-
ciated to an (contextual or not) attribute of the user u.
Finally, r̄i is the average rating for item i, and bu is the
bias associated to the user u, which indicates the observed
deviation of user u’s ratings from the global average.

CARSs can generate recommendations only after having
gathered ratings from the users that are augmented with
information about the contextual conditions (values of the
contextual factors) observed at the time the item was expe-
rienced and rated. It is, however, not always easy to identify
which contextual information should be requested and ac-
quired from the users upon rating an item, given the numer-
ous conditions that might or might not be relevant to pre-
dict new ratings (in various contextual situations). This is
where parsimonious and adaptive context acquisition comes
in. Parsimonious and adaptive context acquisition aims at
predicting, for a given user-item pair, the most useful con-
textual factors, i.e., those that when elicited together with
the rating from the user improve more the quality of future
recommendations, both for that user and for other users of
the system.

As we mentioned in the related work section, there exist
many algorithms that even though principally designed for
context / feature selection (i.e., selection of the most useful
contextual factors / features to be used for prediction) can
be used also for the purpose of parsimonious context acqui-
sition (i.e., selection of the contextual factors to be elicited
from the user upon rating an item). In this paper, we pro-
pose a new strategy, which we call Largest Deviation. Differ-
ently from several state-of-the-art context / feature selection
strategies, it personalizes the selection of the contextual fac-
tors to ask to the user when rating an item by computing a
personalized relevance score for a contextual factor Cj and
user-item pair (u, i). To achieve this, for each user u and
item i pair (whose rating is acquired) we first measure the
“impact” of each contextual condition cj ∈ Cj , denoted as
ŵuicj , by calculating the absolute deviation between the rat-
ing prediction when the condition holds (i.e., r̂uicj) and the
predicted context-free rating (i.e., r̂ui):

ŵuicj = fcj |r̂uicj − r̂ui|, (2)

where fcj denotes the normalized frequency of the contex-
tual condition cj , and is calculated as the fraction of ratings
in the entire dataset that are tagged with contextual condi-

tion cj (i.e.,
|Rcj

|
|R|). The normalized frequency adjusts the

raw absolute deviation by taking into account that the con-
textual conditions with largest frequency are more reliable.
For example, suppose that you want to estimate the impact
of Sunny weather on the user-item pair (Alice, Skiing). Let
us assume that the rating prediction for Alice of Skiing is 5
under Sunny weather (i.e., r̂Alice Skiing Sunny = 5), and that
the corresponding context-free rating prediction is 3.5 (i.e.,

r̂Alice Skiing = 3.5). Furthermore, assume that 20% of the
ratings in the rating dataset are tagged with Sunny weather.
Then, the impact of Sunny weather on the user-item pair
(Alice, Skiing), i.e., ŵAlice Skiing Sunny, is 0.3 (0.2 · |5−3.5|).

Finally, these individual scores for the contextual condi-
tions are aggregated into a single relevance score for the con-
textual factor Cj by simply computing the arithmetic mean
of the scores of the various conditions/values for that contex-
tual factor. We conjectured that the contextual factors with
largest estimated deviation are more useful to optimize the
system performance. Note that this is quite similar to the
influence-based Active Learning strategy proposed in [15],
which estimates the influence of an item’s rating on the rat-
ing predictions of other items, and selects the items with the
largest influence for rating acquisition.

5. EXPERIMENTAL EVALUATION

5.1 Datasets
In order to evaluate the proposed selective context acqui-

sition method, we have considered two contextually-tagged
rating datasets with different characteristics. Table 2 pro-
vides some descriptive statistics of both datasets.

• The CoMoDa movie-rating dataset was collected by
Odić et al. [13]. It consists of ratings acquired in
contextual situations that are described by the con-
junction of multiple conditions coming from 12 differ-
ent factors, for instance, time, daytype, season and
mood. In addition to the ratings data, this dataset
also includes well-defined user attributes (i.e., age, gen-
der, city, country) and movie attributes (i.e., director,
country, language, year, budget, genres, actors).

• The TripAdvisor dataset is a dataset that we crawled
from the TripAdvisor1 website, which is one of the
largest travel sites in the world. It contains ratings for
POIs in the South Tyrol region of Italy that are tagged
with contextual situations described by the conjunc-
tion of contextual conditions coming from three con-
textual factors, namely, type (e.g., couple, family or
business trip), month (e.g., January, February) and
year (e.g., 2015, 2014) of the trip. Additionally, also
the TripAdvisor dataset has well-defined user (e.g.,
user location, member type) and POI attributes (e.g.,
item type, amenities, item locality).

We note that other rating datasets, which are commonly
used in CARS research, are not suitable for our analysis since
they contain ratings augmented only with the knowledge
of a subset of all the contextual factors. For instance, in
STS, the POIs RS that we mentioned in Section 3, when
a user rates a POI she commonly specifies only the value
of two or three of the fourteen contextual factors that the
system manages (see Table 1). The lack of knowledge of
all the contextual factors for each rating is a problem in
our case, because, as we will describe in Section 5.2, we
wanted to simulate a rating acquisition process where, for
a given item, the system requests the user to rate it and to
enter the values of the contextual factors identified by the
proposed method. Therefore, every contextual factor must
be available in the dataset in order to be acquired during
the simulated interactions.
1http://www.tripadvisor.com/

5

Table 2: Datasets’ characteristics
Dataset CoMoDa TripAdvisor
Domain Movies POIs
Rating scale 1-5 1-5
Ratings 2,098 4,147
Users 112 3,916
Items 1,189 569
Contextual factors 12 3
Contextual conditions 49 31
User attributes 4 2
Item features 7 12

5.2 Evaluation Procedure
In the evaluation we have simulated system/user inter-

actions where the users rate items specifying only the val-
ues of contextual factors (contextual conditions) that have
been identified by a context selection strategy. To achieve
this, we adapted a procedure which was employed to eval-
uate Active Learning strategies for RSs [7]. This procedure
first randomly partitions all the available ratings into three
subsets in the ratio 25:50:25%, respectively: (i) training set
that contains the ratings that are used to train the con-
text acquisition strategies; (ii) candidate set containing the
ratings that can be potentially transferred into the train-
ing set with the contextual conditions matched by the con-
text acquisition strategies; and finally (iii) testing set which
contains the part of the ratings that is withheld from the
system in order to calculate various performance metrics,
i.e., user-averaged MAE (U-MAE), Precision@10 and Re-
call@10. Then, for each user-item pair (u, i) in the candi-
date set, the N most relevant contextual factors according
to a context usefulness strategy are computed, with N (in
different experiments) varying from 1 to the total number
of contextual factors in the rating dataset, and the corre-
sponding rating ruic in the candidate set is transferred to
the training set as ruic′ with c′ ⊆ c containing the associ-
ated contextual conditions for these contextual factors. For
instance, if the top two contextual factors for the user-item
pair (Alice, Skiing) are Season and Weather, and Alice’s
rating is rAlice SkiingWinter,Sunny,Warm,Morning = 5, then
rAlice SkiingWinter,Sunny = 5 is added to the training set.
Since in the considered rating datasets all the contextual
factors were specified for each rating, we could always ac-
quire the contextual conditions for the top contextual fac-
tors. Finally, the evaluation metrics were measured on the
testing set, after training the rating prediction model on the
new extended training set.

The above process was repeated 20 times with different
random seeds and the results were averaged over the splits
to yield more robust estimates (i.e., repeated random sub-
sampling validation [11]).

5.3 Baseline Methods for Evaluation
We have compared the performance of our proposed Largest

Deviation method with the following three state-of-the-art
context / feature selection strategies, in addition to Random
which we used as a baseline (see Table 3 for a summary of
all the tested methods):

• Mutual Information: the usage of mutual information
for context selection was proposed in [2]. Given a user-
item pair (u, i), it computes the relevance score for

contextual factor Cj as the normalized mutual infor-
mation between the ratings for items belonging to i’s
category and Cj ; the higher the mutual information,
the better the contextual factor can explain the user
ratings for items of a particular category. We note that
this strategy depends on the item category but is not
personalized, i.e., the same contextual factors are re-
quested to any user upon rating an item belonging to
a particular category.

• Freeman-Halton Test : proposed as context selection
strategy in [13], it calculates the relevance of a con-
textual factor Cj using the Freeman-Halton test. The
Freeman-Halton test is the Fisher’s exact test extended
to contingency tables larger than 2×2, which is a com-
mon alternative to the χ2 test in case the Cochran’s
rule about small expected frequencies is not satisfied.
The null hypothesis of the test is that the contextual
factor Cj and the ratings are independent. If the null
hypothesis can be rejected, one can conclude that the
contextual factor Cj and the ratings are dependent and
thus that the contextual factor Cj is relevant. This test
is performed on the full dataset and therefore the se-
lected factors do not depend on the user or the item
to be rated.

• Minimum Redundancy Maximum Relevance (mRMR):
mRMR [14] is a widely used feature selection algo-
rithm, which, to the best of our knowledge, has not yet
been used for the purpose of context selection. It ranks
each contextual factor Cj according to its relevance to
the rating variable and redundancy to other contex-
tual factors, where both relevance and redundancy are
measured based on mutual information. Analogous to
the Freeman-Halton test, it is calculated on the full
dataset and the selected factors are used for all user-
item rating combinations.

• Random: the score for a contextual factor Cj is simply
a random float in the interval [0, 1). Hence, the top
N contextual factors for a user-item pair are simply
randomly chosen. This is a baseline strategy used for
comparison.

Table 3: Overview of tested strategies for selective
context acquisition

Strategy User
Personalization

Item
Dependence

Largest Deviation 3 3
Mutual Information 7 3
Freeman-Halton Test 7 7
mRMR 7 7
Random 7 7

6. EVALUATION RESULTS
Figure 3 and Figure 4 show the U-MAE, Precision@10

and Recall@10 results of the CARS algorithm obtained by
applying the various context acquisition strategies on the
CoMoDa and TripAdvisor dataset, respectively. In the fig-
ures, the x-axis represents the number of acquired contextual

6

Figure 3: Accuracy, precision and recall results for
the CoMoDa dataset

factors, and statistically significant improvements (paired t-
test, p < 0.05) of the proposed Largest Deviation strategy
over the other considered strategies are indicated by aster-
isks on top of the bars. On the CoMoDa dataset, by us-
ing up to three contextual factors, Largest Deviation strat-
egy can achieve a significantly better performance in terms
of U-MAE, Precision@10 and Recall@10 when compared
with the other strategies, i.e., Mutual Information, Freeman-
Halton Test and mRMR. With four contextual factors se-
lected, however, there is a notable increase in the U-MAE
of Largest Deviation, which also causes Precision@10 and
Recall@10 to drop. We note that in the graph the num-
ber of selected contextual factors goes only up to 4 (out of
12) in order to focus the presentation on the selection of a
small subset of factors. In fact, the performance differences
between the strategies vanish when more than 4 contextual
factors are acquired. We also note that all these 12 con-
textual factors were supposed to be relevant in the movie
recommendation domain [13]. Hence our results clearly in-
dicate that a parsimonious context acquisition strategy is
highly beneficial.

Experimental results also indicate that the Random strat-
egy has a relatively good performance. Our explanation is

Figure 4: Accuracy, precision and recall results for
the TripAdvisor dataset

that in this strategy, every contextual factor has the same
chance of being selected. As a side effect, this allows to bet-
ter explore the effect of individual contextual conditions on
users and/or items. However, the Random strategy cannot
be practically used since it can often request meaningless
contextual factors to the user, e.g., the budget for a POI
that can be visited for free. Hence, the random strategy is
not directly applicable in a realistic scenario and can only
be used in combination with other strategies. This is in
line with the findings of Elahi et al. [7], who suggested to
consider “partially randomized” strategies that add a small
portion of randomly selected items to those identified by
another baseline strategy.

Looking at the results for the TripAdvisor dataset, one
can note that minor differences (especially in Precision@10
and Recall@10) between the considered context acquisition
strategies are present. This is due to the fact that in this
dataset in total only three contextual factors are available,
thus providing only little potential for parsimonious and
adaptive contextual factor selection. Nevertheless, it can
be seen that Largest Deviation achieves even here a very
good accuracy for the tested number of selected contextual
factors (1 - 3).

7

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a new method for parsi-

monious context acquisition, i.e., for identifying, for a given
user-item pair the contextual factors that when acquired to-
gether with the rating from the user let the system to gener-
ate better predictions. This is an important and challenging
problem for CARSs, since usually many contextual factors
(e.g., location, weather, time of day, mood) may be available,
but only a small subset may be useful and should be asked
to the user to avoid an unnecessary waste of time and effort
as well as to avoid any degradation of the recommendation
model performance.

We have formulated the experimental hypothesis that the
proposed parsimonious and personalized selective context
acquisition strategy is able to elicit ratings with contex-
tual information that improve more the recommendation
performance in terms of accuracy, precision and recall, and
also compares favourably with state-of-the-art (context se-
lection) alternatives. In an offline experiment on two rating
datasets we were able to confirm these hypotheses.

Selective context acquisition is still a new and under-
researched topic, and there are some research questions that
deserve future work. Firstly, what is the effect on system
performance of employing an Active Learning method for
adaptively selecting both the item to rate and the contex-
tual information to add. In this paper we have addressed
only partially the problem, by identifying the contextual fac-
tors that should be acquired, when a user is rating an item.
Secondly, it is interesting to understand how the proposed
selective context acquisition method can be extended to gen-
erate requests for contextual data that takes into account the
possible correlation between contextual factors. Thirdly, it
would be interesting to update the evaluation procedure so
that it can be used also on datasets of contextually-tagged
ratings for which only a subset of the contextual factors is
known; as it occurs in the rating dataset collected by our
STS app. Finally, we plan to integrate the developed con-
text acquisition method into our STS app so that we can
perform a live user study and assess the impact and the
benefit of the proposed dynamic and personalized parsimo-
nious acquisition of contextual factors.

8. REFERENCES
[1] G. Adomavicius, B. Mobasher, F. Ricci, and

A. Tuzhilin. Context-aware recommender systems. AI
Magazine, 32(3):67–80, 2011.

[2] L. Baltrunas, B. Ludwig, S. Peer, and F. Ricci.
Context relevance assessment and exploitation in
mobile recommender systems. Personal and
Ubiquitous Computing, 16(5):507–526, 2012.

[3] L. Baltrunas, B. Ludwig, and F. Ricci. Matrix
factorization techniques for context aware
recommendation. In Proceedings of the Fifth ACM
Conference on Recommender Systems, pages 301–304.
ACM, 2011.

[4] M. Braunhofer, M. Elahi, M. Ge, and F. Ricci.
Context dependent preference acquisition with
personality-based active learning in mobile

recommender systems. In Learning and Collaboration
Technologies. Technology-Rich Environments for
Learning and Collaboration, pages 105–116. Springer,
2014.

[5] M. Braunhofer, M. Elahi, and F. Ricci. Usability
assessment of a context-aware and personality-based
mobile recommender system. In E-Commerce and
Web Technologies, pages 77–88. Springer, 2014.

[6] M. Elahi, M. Braunhofer, F. Ricci, and M. Tkalcic.
Personality-based active learning for collaborative
filtering recommender systems. In AI* IA 2013:
Advances in Artificial Intelligence, pages 360–371.
Springer, 2013.

[7] M. Elahi, F. Ricci, and N. Rubens. Active learning
strategies for rating elicitation in collaborative
filtering: a system-wide perspective. ACM
Transactions on Intelligent Systems and Technology
(TIST), 5(1):13, 2013.

[8] M. Elahi, F. Ricci, and N. Rubens. Active learning in
collaborative filtering recommender systems. In
E-Commerce and Web Technologies, pages 113–124.
Springer, 2014.

[9] I. Guyon and A. Elisseeff. An introduction to variable
and feature selection. Journal of Machine Learning
Research, 3:1157–1182, 2003.

[10] R. Karimi, A. Nanopoulos, and L. Schmidt-Thieme. A
supervised active learning framework for recommender
systems based on decision trees. User Modeling and
User-Adapted Interaction, 25(1):39–64, 2015.

[11] R. Kohavi et al. A study of cross-validation and
bootstrap for accuracy estimation and model selection.
In Ijcai, volume 14, pages 1137–1145, 1995.

[12] H. Liu, R. Setiono, et al. A probabilistic approach to
feature selection-a filter solution. In ICML, volume 96,
pages 319–327. Citeseer, 1996.

[13] A. Odić, M. Tkalčič, J. F. Tasič, and A. Košir.
Predicting and detecting the relevant contextual
information in a movie-recommender system.
Interacting with Computers, 25(1):74–90, 2013.

[14] H. Peng, F. Long, and C. Ding. Feature selection
based on mutual information criteria of
max-dependency, max-relevance, and min-redundancy.
Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 27(8):1226–1238, 2005.

[15] N. Rubens and M. Sugiyama. Influence-based
collaborative active learning. In Proceedings of the
2007 ACM Conference on Recommender Systems,
pages 145–148. ACM, 2007.

[16] B. Vargas-Govea, G. González-Serna, and
R. Ponce-Medellın. Effects of relevant contextual
features in the performance of a restaurant
recommender system. ACM RecSys, 11, 2011.

[17] Y. Zheng, B. Mobasher, and R. Burke. Context
recommendation using multi-label classification. In
Proceedings of the 13th IEEE/WIC/ACM
International Conference on Web Intelligence, pages
288–295. IEEE/WIC/ACM, 2014.

8

Fostering Knowledge Exchange Using
Group Recommendations

Alexander Felfernig
Institute for Software

Technology
Inffeldgasse 16b

A-8010 Graz, Austria
felfernig@ist.tugraz.at

Martin Stettinger
Institute for Software

Technology
Inffeldgasse 16b

A-8010 Graz, Austria
stettinger@ist.tugraz.at

Gerhard Leitner
Institute for Informatics

Systems
Universitätsstraße 65-67

A-9020 Klagenfurt, Austria
gerhard.leitner@aau.at

ABSTRACT
The more domain knowledge individual participants of a
group decision process share with each other, the higher the
probability of high-quality decision outcomes. In this paper
we report the results of an initial empirical study conducted
on the basis of a group decision support environment. In
this study, groups were confronted with recommendations
with a varying degree of diversity. The higher the diversity
of recommendations provided to groups, the higher was the
degree of knowledge exchange.

Keywords
Group Recommenders, Decision Support, Hidden Profiles.

Categories and Subject Descriptors
H.5.3. [Group and Organization Interfaces]:
Computer-supported cooperative work.

1. INTRODUCTION
In contrast to single user recommenders [7], group rec-

ommenders determine relevant items for whole groups [6,
10]. For example, Jameson [5] introduces a prototype ap-
plication that supports groups of users in the identification
of a holiday destination. Masthoff [9] introduces concepts
for sequencing television items for groups of users on the
basis of different models from social choice theory (see also
[10]). O’Connor et al. [16] introduce a collaborative filter-
ing based movie recommender system that determines rec-
ommendations for groups of users. Ninaus et al. [15] show
the application of group recommendation technologies in re-
quirements engineering scenarios where stakeholders are in
charge of cooperatively developing, evaluating, and prioritiz-
ing requirements. Finally, McCarthy et al. [12] introduce a
critiquing-based recommender that supports groups of users

ACM Recommender Systems 2015, Workshop on Interfaces and Human De-
cision Making for Recommender Systems (IntRS’15), Vienna, Austria.
Copyright held by the authors.

in a skiing holiday package selection process. Choicla1 is
a group decision support environment which includes group
recommendation technologies – this system was used as a
basis for the user study presented in this paper.

Psychological aspects of group decision making play an
increasingly important role in the development of (group)
recommendation technologies [8]. Especially decision bi-
ases which denote suboptimal shortcuts in decision mak-
ing can lead to low-quality decision outcomes. Masthoff and
Gatt [11] discuss approaches to the prediction of user (group
member) satisfaction with recommendations – in this con-
text, conformity and emotional contagion are mentioned as
major influence factors. Felfernig et al. [4, 20] analyze the
impact of conformity in the context of group decision mak-
ing and report an increasing diversity of the preferences of
group members the later individual preferences are disclosed
to the whole group. Chen and Pu [2] show how emotional
feedback from group members can be integrated in group
(music) recommendation. An outcome of their study is that
emotional feedback can enhance mutual awareness of user
preferences in the group. For a short overview of decision
biases in recommender systems we refer to Felfernig [3, 21].

The frequency of knowledge exchange within a group can
have a major impact on the quality of the decision outcome
[14]. The more decision-relevant knowledge is exchanged
between individual group members, the higher is the prob-
ability of discovering the hidden profile which can be char-
acterized as the relevant knowledge to take a good (if opti-
mality criteria exist, also an optimal) decision [22]. A conse-
quence for group decision environments is that decision sup-
port has to include mechanisms that pro-actively encourage
knowledge exchange. One reason for increased knowledge ex-
change between group members is group diversity (in terms
of dimensions such as demographic and educational back-
ground), i.e., the higher the degree of diversity the higher
the probability of higher quality decision outcomes (mea-
sured, e.g., in terms of the degree of susceptibility to the
framing effect [23]). Schulz-Hardt et al. [17] discuss the role
of dissent in group decision making: the higher the dissent
in initial phases of a group decision process, the higher the
probability that the group manages to share the decision-
relevant information (discover the hidden profile).

The major focus of our empirical study was to analyze
the impact of recommendation diversity on the frequency
of knowledge exchange between group members. A major
reason for increasing the diversity of recommendations is the

1www.choicla.com.

9

pasquale.lops
Rectangle

Figure 1: CHOICLA group decision support environment: in the description of the alternatives (alternative
exam modes) TQ denotes theoretical assignment and PE denotes a practical assignment.

fact that otherwise recommendations are too similar to each
other and thus provide only a limited coverage of the whole
item space [13, 18]. There is always a trade-off between
similarity and diversity since too diverse recommendations
can lead to situations were relevant items are omitted, i.e.,
are not recommended although relevant for the user.

In this paper we do not focus on the prediction quality of
recommendation algorithms but analyze in which way rec-
ommendations can be used to increase knowledge exchange
between the members of a group. In the context of group
decision making it is often more important to increase the
performance of the group rather than predicting decisions
that will be taken by the group. In this paper we analyze
three different basic group recommendation heuristics (min,
avg, and max group distance) with regard to their impact
on the communication behavior inside a group. The basis
for our analysis is an empirical study that was conducted in
a computer science course at our university. The results of
our analysis show that recommendation diversity can trigger
additional (decision-relevant) communications.

The remainder of this paper is organized as follows. In
Section 2 we describe the design of our user study and dis-
cuss related results. In Section 3 we discuss open issues for
future work. With Section 4 we conclude the paper.

2. USER STUDY
The task of each group (of undergraduate students) in

the empirical study (N=256 participants, 12% female, 88%
male) was to select their preferred exam mode for their Soft-
ware Engineering course, for example, 1 theoretical assign-
ment on Object-Relational Mapping (ORM), 1 theoretical as-
signment on Sequence Diagrams, and two practical assign-
ments on State Charts (see Figure 1). The participants were
informed about the fact that there is no guarantee that the
articulated preferences will be taken into account in upcom-
ing exams. Each participant was a member of exactly one
group (team) that had to implement a software within the
scope of the course. Alternative exam modes (different top-
ics and different shares of theoretical and practical assign-

ments) were modeled in Choicla (see Figure 1).
Each group had the task to use the Choicla group deci-

sion support environment to cooperatively identify a ranking
for the different assignment types. Each group member had
to define his/her own ranking (see Figure 1) and was not able
to see the preferences of the other group members. Partic-
ipants of the study were encouraged to take a look at the
group recommendations (tab group preferences) which was
done by 91.41% of the participants at least once. Different
group decision heuristics were used in our study and each
group was assigned to a Choicla version that implemented
exactly one of these heuristics.2 Related group recommen-
dations d differ in terms of their diversity compared to the
individual user ratings (rating scale: 1-5 stars) of an alter-
native s determined by eval(u, s) (see Formula 1).

diversity(d) =

∑
u∈Users |eval(u, s)− d|

#Users
(1)

The (low diversity) minimum group distance heuristic
(GDmin) returns a rating d that represents the minimum
distance to the ratings of group members (see Formula 2).

GDmin (s) = arg min
d∈{1...5}

(∑
u∈Users

|eval (u, s)− d|

)
(2)

The (highly diverse) maximum group distance heuristic
(GDmax) returns a rating d that reflects the maximum dis-
tance to current ratings of group members (see Formula 3).

GDmax (s) = arg max
d∈{1...5}

(∑
u∈Users

|eval (u, s)− d|

)
(3)

Finally, average group distance represents a value between
maximum and minimum group distance (see Formula 4).
2Note that Choicla includes a set of group heuristics from
social choice theory [10], GDmax and GDavg have been in-
cluded for the purpose of the empirical study.

10

GDavg (s) =
GDmin (s) + GDmax (s)

2
(4)

An overview of the assignment of groups to the different
decision heuristics is depicted in Table 1.

heuristic #groups #participants

min 17 92
avg 12 69
max 16 95

total 45 256

Table 1: Group distribution in the empirical study.

Hypotheses. The basic assumption of hypothesis H1 is
that group decision heuristics with a higher diversity lead to
an increased knowledge exchange between group members.
The reason for this is that recommendations can act as an
anchor [1] and also have the potential to induce the feeling of
dissent in the group which needs to be resolved by the group
members. An increased amount of knowledge exchange can
help to discover the hidden profile of a group decision [14,
22], i.e., the amount of decision-relevant knowledge is in-
creased. Furthermore, we assume that a higher frequency
of knowledge exchange is correlated with higher time efforts
per group.

Examples of knowledge exchanged within the scope of our
empirical study are the following (see Table 2).3

Content-related. A student only took a look at exercises
related to Object-Relational Mapping (ORM) and asks for
further information regarding the topic. Another student of
the same group points out that there are only a few slides
with very simple and understandable rules which are also
very useful in industrial contexts.

Preference-related. A student emphasizes that he/she
prefers to include appointments on UML Class Diagrams
compared to appointments related to the Unified Process.

Recommendation-related. A student does not like the
group recommendation since it does not take into account
his/her preferences. Furthermore, he/she articulates an ur-
gent need to further discuss assignment topics that are ac-
ceptable for the group as a whole. For recommendation-
related comments we also evaluated the valence, i.e., how
positive/negative a recommendation was perceived.

The assumption of hypothesis H2 is that a higher de-
gree of knowledge exchange increases the flexibility of group
members to change their initial preferences. Due to the
fact that more decision-relevant knowledge is exchanged
between group members, the amount of global decision-
relevant knowledge is increased which improves the individ-
ual capabilities of taking into account additional decision
alternatives. Increased knowledge exchange between group
members helps to overcome a discussion bias (group discus-
sions tend to be dominated by information group members
already knew before the discussion [19]).

Hypothesis H1 can be confirmed, i.e., the amount of deci-
sion relevant knowledge exchanged between group members
increases with the diversity degree of the used group recom-
mendation heuristic. The higher the diversity, the higher

3The categorization into the types content-related,
preference-related, and recommendation-related was
performed manually.

the number of decision-relevant comments given within the
scope of the decision process (see Table 2). Furthermore,
also the overall time investments increase with the diversity
of the decision heuristic (see Table 3).

heuristic content
prefer-
ences

recom-
mendation

min 22 0 27 (+4.2)
avg 31 26 35 (+0.9)
max 79 91 108 (-4.4)

Table 2: Content-, preference-, and recommen-
dation-related comments (valence [-5 .. +5]).

heuristic
avg.

endtime−starttime
(h)

avg. efforts (min)

min 71.06 (13.05) 210.71 (20.19)
avg 85.64 (26.58) 234.56 (17.67)
max 101.18 (19.48) 278.46 (16.74)

Table 3: Time (and std.dev.) invested per group for
decision task completion (i.e., rating of alternatives).

We can also confirm hypothesis H2. A higher degree of
knowledge exchange between group members also provides
flexibility regarding the final group decision. Table 4 pro-
vides an overview of the degree of opinion adaptation of
groups depending on the supported decision heuristics.

heuristic
avg. change

of rating

min 0.67
avg 1.32
max 2.46

Table 4: Changes of initial ratings depending on the
supported decision heuristic.

Summarizing, the higher the diversity of the used decision
heuristic, the higher the frequency of knowledge exchange
between group members. Consequently, recommendations
in the context of group decision support can also be exploited
to adapt a user’s group decision behavior which can lead to
higher quality decision outcomes. Diverse recommendations
can help to detect hidden profiles [17, 19] which represent an
amount of global decision-relevant knowledge needed to take
good (or even optimal) decisions. Online group decision sup-
port environments have to be aware of this fact and should
also take into account diversity in group recommendations.

3. FUTURE WORK
Major issues for future work are the following. Our study

is limited in the sense of having investigated a set of basic
heuristics (diversity measures) (min, avg, and max group
distance). In our future research we will investigate further
decision heuristics (see, e.g., [10]) with regard to their capa-
bility to increase the frequency of knowledge exchange and
to increase decision quality. We will also focus on a more
fine-grained analysis of potential optimal degrees of diversity
that help to maximize knowledge exchange while decreasing
the perceived quality of recommendations as little as possi-
ble. The average diversity (Formula 1) of recommendations

11

determined by the three different heuristics is depicted in
Table 5. We want to emphasize that the satisfaction with
group recommendations significantly decreases if the degree
of diversity is too high – Table 6 summarizes user feedback
regarding the perceived satisfaction with the group recom-
mendations.

heuristic min avg max

diversity 0.84 1.38 2.23

Table 5: Diversity of group recommendations.

heuris-
tic

very
satis-
fied

satis-
fied

aver-
age

unsat-
isfied

very
unsatis-

fied

min 67 12 9 2 2
avg 17 14 12 14 12
max 2 1 15 25 52

Table 6: Satisfaction with group recommendations.

4. CONCLUSIONS
In this paper we presented the results of an initial em-

pirical study that focused on possibilities of increasing the
amount of knowledge exchange in group decision scenar-
ios. In this context, we showed that the diversity of recom-
mendations can have a significant impact on the frequency
of knowledge exchange – the higher the diversity of group
recommendations, the higher the corresponding number of
comments included in the group decision process. The re-
sults presented in this paper are a first step towards the
application of recommendation technologies to foster knowl-
edge exchange in group decision making.

5. REFERENCES
[1] Adomavicius, G., Bockstedt, J., Curley, S., and Zhang,

J. Recommender systems, consumer preferences, and
anchoring effects. In Decisions@RecSys11 Workshop
(Chicago, IL, USA, 2011), 35–42.

[2] Chen, Y., and Pu, P. Cofeel: Emotional social
interface in group recommender systems. In RecSys’12
Workshop on Interfaces for Recommender Systems
(Dublin, Ireland, 2012), 48–55.

[3] Felfernig, A. Biases in decision making. In
International Workshop on Decision Making and
Recommender Systems 2014, vol. 1278 of CEUR
Proceedings (2014), 32–37.

[4] Felfernig, A., Zehentner, C., Ninaus, G., Grabner, H.,
Maaleij, W., Pagano, D., Weninger, L., and Reinfrank,
F. Group decision support for requirements
negotiation. In Advances in User Modeling, vol. 7138
of LNCS, Springer (2012), 105–116.

[5] Jameson, A. More than the sum of its members:
Challenges for group recommender systems. In Intl.
Working Conf. on Adv. Visual Interf. (2004), 48–54.

[6] Jameson, A., and Smyth, B. Recommendation to
Groups. In The Adaptive Web: Methods and Strategies
of Web Personalization, P. Brusilovsky, A. Kobsa, and
W. Neijdl, Eds. Springer, 2007, ch. 20, 596–627.

[7] Jannach, D., Zanker, M., Felfernig, A., and Friedrich,
G. Recommender Systems: An Introduction.
Cambridge University Press, 2010.

[8] Mandl, M., Felfernig, A., Teppan, E., and Schubert,
M. Consumer Decision Making in Knowledge-based
Recommendation. Journal of Intelligent Information
Systems (JIIS) 37, 1 (2010), 1–22.

[9] Masthoff, J. Group modeling: Selecting a sequence of
television items to suit a group of viewers. UMUAI 14,
1 (2004), 37–85.

[10] Masthoff, J. Group Recommender Systems:
Combining Individual Models. Recommender Systems
Handbook (2011), 677–702.

[11] Masthoff, J., and Gatt, A. In Pursuit of Satisfaction
and the Prevention of Embarrassment: Affective State
in Group Recommender Systems. User Modeling and
User-Adapted Interaction 16, 3–4 (2006), 281–319.

[12] McCarthy, K., Salamo, M., Coyle, L., McGinty, L.,
Smyth, B., and Nixon, P. Group Recommender
Systems: A Critiquing based Approach. In IUI’06,
ACM (2006), 267–269.

[13] McGinty, L., and Smyth, B. On the Role of Diversity
in Conversational Recommender Systems. In 5th Intl.
Conf. on Case-based Reasoning (2003), 276–290.

[14] Mojzisch, A., and Schulz-Hardt, S. Knowing Other’s
Preferences Degrades the Quality of Group Decisions.
Jrnl. of Pers. & Social Psy. 98, 5 (2010), 794–808.

[15] Ninaus, G., Felfernig, A., Stettinger, M., Reiterer, S.,
Leitner, G., Weninger, L., and Schanil, W. Intelligent
techniques for software requirements engineering. In
Europ. Conf. on AI, Prestigious Applications of
Intelligent Systems (PAIS) (2014), 1161–1166.

[16] O’Connor, M., Cosley, D., Konstan, J., and Riedl, J.
PolyLens: A Recommender System for Groups of
Users. In Europ. Conf. on Computer-Supported
Cooperative Work, ACM (2001), 199–218.

[17] Schulz-Hardt, S., Brodbeck, F., Mojzisch, A.,
Kerschreiter, R., and Frey, D. Group Decision Making
in Hidden Profile Situations: Dissent as a Facilitator
of Decision Quality. Journal of Personality & Social
Psychology 91, 6 (2006), 1080–1093.

[18] Smyth, B., and McClave, P. Similarity vs. diversity. In
4th Intl. Conf. on Case-based Reasoning (ICCBR’01),
Springer (London, UK, 2001), 347–361.

[19] Stasser, G., and Titus, W. Pooling of Unshared
Information in Group Decision Making: Biased
Information Sharing During Discussion. Jrnl. of Pers.
and Social Psy. 48, 6 (1985), 1467–1478.

[20] Stettinger, M., Felfernig, A., Leitner, G., and Reiterer,
S. Counteracting Anchoring Effects in Group Decision
Making. In UMAP 2015, vol. 9146 of LNCS (Dublin,
Ireland, 2015), 118–130.

[21] Stettinger, M., Felfernig, A., Leitner, G., Reiterer, S.,
and Jeran, M. Counteracting Serial Position Effects in
the CHOICLA Group Decision Support Environment.
In ACM IUI2015 (Atlanta, GA, USA, 2015), 148–157.

[22] Wittenbaum, G., Hollingshead, A., and Botero, I.
From Cooperative to Motivated Information Sharing
in Groups: Moving Beyond the Hidden Profile
Paradigm. Comm. Monographs 71, 3 (2004), 286–310.

[23] Yaniv, I. Group Diversity and Decision Quality:
Amplification and Attenuation of the Framing Effect.
International Journal of Forecasting 27 (2011), 41–49.

12

Explaining contextual recommendations: Interaction
design study and prototype implementation

Joanna Misztal
Jagiellonian University

Cracow, Poland
joanna.misztal@uj.edu.pl

Bipin Indurkhya
Jagiellonian University

Cracow, Poland
bipin.indurkhya@uj.edu.pl

ABSTRACT
We describe an architecture for generating context-aware
recommendations along with detailed textual explanations
to support the user in the decision-making process. CARE
(Context-Aware Recommender with Explanation) incorpo-
rates a hierarchical structure, in which independent mod-
ules embodying different aspects of the context cooperate
together to generate recommendations for the user with ac-
companying rationales. We follow the Interaction Design
principles to develop personas, goals and user scenarios,
based on which a prototype system is developed. We present
here two examples of its performance when processing movie-
ratings data set with contextual information. We argue that
our architecture is extensible in that more modules can be
added as needed, and the approach can be applied to other
domains as well.

Keywords
context-aware recommender system, recommendations ex-
planations, interaction design

1. INTRODUCTION
An increasing number of available resources, and easy on-

line access to diverse goods has resulted in data overload,
making it difficult for many users to decide what items to
select, which often slows down their decision-making pro-
cess. A growing number of choices is leading to an emerging
interest in the development of decision-support systems to
help users in finding the most interesting or suitable items
for their personal needs. Most of the research in this domain
is focused on improving the accuracy and precision of rec-
ommendations. However, it is equally important to provide
the user with some rationale for why a particular item is be-
ing recommended to them. Moreover, in some domains such
as legal decision-making or moral and ethical reasoning, the
justifications for recommendations are very crucial. Hence,
the main focus of our work is to design a system that can
explain why the user should select particular items.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Joint Workshop on Interfaces and Human Decision Making for Recom-
mender Systems, RecSys 2015, Vienna, Austria
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

As observed in [3], the user’s preferences may be influ-
enced by factors as diverse as time of the day, day of the
week, the season or the weather at the moment, and so on.
In our system, we incorporate different independent modules
such that each module implements a particular approach to
generating a recommendation based on a single contextual
feature. This architecture allows generating a number of
diverse recommendations, as each piece of contextual infor-
mation is analyzed separately and the most approporiate
items are recommended by choosing from among the vari-
ous recommendations generated by different modules.

As the main focus of our research is to improve user’s
experience and understanding during the interaction with
the system, we designed a Context-Aware Recommender
with Explanation (CARE) system, following the Interaction
Design paradigm [10]. Personas, user goals and scenarios
are developed after interviewing potential recommendation-
system users and a domain expert, based on which the pro-
totype of the system is designed.

We motivate here our approach in the context of the cur-
rent state of the art, summarize the interaction design pro-
cess, and present examples of persona and scenarios. Then
we describe the system architecture and present some results
generated by our prototype implementation.

2. BACKGROUND
As defined in [20], the main goal of a recommender system

is to support the user in a decision-making process by sug-
gesting items that they might find interesting. Since infor-
mation overload is a growing problem for Web users, because
of an exponential increase in the amount of web content that
is being generated, development of such tools has become a
thriving research area in recent years. Consequently, several
techniques have been developed for predicting users’ prefer-
ences.

2.1 Content-based recommender systems
Content-based recommenders try to find items similar to

what the user previously liked [17]. These work by identify-
ing key features of the items highly rated by the user in the
past, and by building a user-preference model from those
characteristics [5].

A significant problem in many recommendation techniques
is the cold-start problem, which occurs when a new user or a
new item is presented to the system and there is not enough
data to perform a reliable prediction - the user has not rated
enough products to define his or her preferences, or an item
has not been rated by a sufficient number of users.

13

pasquale.lops
Rectangle

Content-based recommenders deal well with situations when
a new item is added to the system. It also maintains inde-
pendence among the users as a particular user’s ratings are
sufficient to perform the recommendation process for that
user. For our research, a major advantage of content-based
recommenders is their transparency — the features that trig-
gered the recommendation results may be listed along with
the output.

However, content-based recommenders suffer from over-
specialization: i.e. they recommend items similar to those
seen in the past, preventing a serendipity of recommenda-
tions. Also, when a new user, who does not have a previous
history with the system and so lacks any ratings, enters the
system, the cold-start problem may occur.

Content-based analysis operates on vectors representing
features of each object. Two basic techniques for filtering
similar items are similarity calculation (such as cosine sim-
ilarity) and distance measurement (such as Euclidean dis-
tance).

2.2 Collaborative filtering recommender sys-
tems

In collaborative filtering (CF), a user’s preferences are pre-
dicted based on modelling other users behaviors [24, 16].
The basic idea behind this approach is that the rating of a
user for a new item should be close to the ratings of users
who have similar tastes.

This approach suffers from the data-sparsity and new-
item problems. Another disadvantage is that collaborative-
filtering recommenders mostly work as black-box systems,
therefore they lack transparency and cannot explain why
certain items are being recommended. However, this ap-
proach is proving to be an effective technique for making
recommendations and is widely used in commercial appli-
cations. It has an advantage of being able to recommend
items with unknown content. CF also supports serendip-
ity in recommendations, for recommended items may differ
significantly from the previous ones.

Common approaches to CF for recommendations use neigh-
bourhood-based or model-based methods. Neighbourhood-
based methods try to find the most similar items (item-based
approaches) or most similar users (user-based approaches)
when predicting the rating of an item for a particular user.
Basic technique may incorporate correlation measures (such
as Pearson’s similarity) when comparing the vector of rat-
ings for users or items [14]. Model-based methods work
by finding the latent features that characterize the user’s
ratings, and build a predictive model of their preferences.
Such methods may employ Matrix Factorization algorithms,
Bayesian models, Support Vector Machines or other such
techniques.

2.3 Context-aware recommender systems
As observed in [3], a person’s preferences may be influ-

enced by factors as diverse as time of the day, day of the
week, the season, the weather at the moment, and so on.
Context-aware recommender systems (CARS) try to model
user’s preferences considering changing contexts that may
affect user’s moods and tastes [4]. Contextual data may be
collected explicitly by asking the user some questions, or im-
plicitly from the environment (information such as time, day
of week, season or location). Some information may also be
statistically inferred from the other data (such as the com-

panion or mood). In CARS, the input data from the stan-
dard recommendation approach in the form < user, item, rating >
is extended by an additional parameter of context. Some
standard approaches to recommendations have been adapted
to model the additional dimension of context. In [15], the au-
thors present a Tensor Factorization model-based technique
using N-dimensional tensor of User-Item-Context instead of
the 2D User-Item matrix.

Standard approaches for CARS implementation incorpo-
rate contextual pre-filtering (items filtered by context before
recommendation), post-filtering (context applied to recom-
mendation results) and contextual modeling (context as a
part of ratings prediction). Common approaches based on
standard pre-filtering techniques represent item and user-
splitting algorithms [28, 6]. In these methods, items (or
users) in different contexts are treated as separate objects
for the recommendation algorithm. Context-aware systems
are known to increase the accuracy of recommendations [4].
However, they face the data sparsity problem, as the num-
ber of ratings is restricted to given context. As discussed in
[7], the most efficient approach to context-splitting is single
split, where objects are split considering a single contextual
feature.

2.4 Other approaches
Some recommenders are implemented as knowledge-based

systems [8], where the recommendation algorithm is per-
formed by a set of constraints representing the knowledge
about the domain. Such systems may be applicable to the
domains for which historical data is not available, or when
the user does not perform the action often enough, so there
is little data to make a prediction (e.g. buying a car).

Another approach is to use demographic information about
the users to predict their tastes based on their social group.
Such recommendations may depend on user’s age, gender,
nationality, and so on.

2.5 Hybrid solutions
Each of the techniques mentioned above has some advan-

tages as well as some drawbacks, and each may be effective
for a certain domain or a certain type of problem [13, 9].
In order to build a more general recommender system, or
to improve the quality of recommendations, hybrid systems
combine diverse recommendation algorithms. There are dif-
ferent ways to combine outputs of various recommendation
strategies, which are classified by Burke [9] as follows:

Weighted: the scores from several recommenders are weighted
into one result.

Switching: the most appropriate technique is selected de-
pending on the input data.

Mixed: outputs from diverse algorithms are presented si-
multaneously.

Feature combination: features of different algorithms are
combined into a new feature.

Cascade: the recommendation is performed hierarchically
and the outputs are refined by the subsequent recommenders.

Feature augmentation: output from one system is the in-
put to the following one.

Meta-level: the model created by one system is used by
another.

2.6 Multi-agent approaches
Hybrid recommender systems are often implemented based

14

on diverse multi-agent system (MAS) architectures. Dis-
tributed approaches to recommendations have been previ-
ously studied in [27], where a collaborative recommendation
algorithm is implemented using cloud computing. Sabater,
Singh and Vidal [22] proposed a protocol in which a group
of selfish agents can decide how to share their recommen-
dations with the others. In [26], the authors introduce rec-
ommender agents to enable the user’s interaction with the
system and to combine the outputs of the recommendation
algorithms with other techniques such as other users book-
marks and tags.

Another example of MAS architecture that may be used
for implementing a recommender system is the blackboard
architecture. This architecture may be visualized by the
metaphor [11] of a group of independent experts with di-
verse knowledge who are sharing a common workspace (the
blackboard). They work on the solution together and each
of them adds some contribution to the blackboard, whenever
possible, until the problem is solved.

The blackboard model provides an efficient platform for
problems that require many diverse sources of knowledge.
It allows a range of different experts represented as diverse
computational agents, and provides an integration frame-
work for them. It seems a promising platform for recom-
mendation tasks, and has already been incorporated in [12,
21].

3. OVERVIEW OF CARE SYSTEM

3.1 Architecture
CARE (Context-Aware Recommender with Explanation)

is built as a hybrid architecture that adapts a mixed ap-
proach to recommendations, and incorporates some features
of the multi-agent blackboard architecture. We implemented
each module as an independent subsystem that uses some
particular approach to generating a recommendation by in-
corporating a particular contextual feature. As some of
those factors may be non-deterministic, we present the fi-
nal result as an array of alternate choices and allow the user
to choose from the recommendations generated by analyzing
diverse contextual factors. Hence the diversity of final rec-
ommendation outputs is ensured by presenting the analysis
from multiple points of view. This approach also incorpo-
rates serendipity, and gives the users a choice of possible
actions. The users actions can be noted and used for order-
ing future recommendations.

Our solution also embodies some aspects of the feature
augmentation approach — we perform the recommendations
hierarchically on different levels of abstraction. We intro-
duce some inter-level recommenders that are responsible for
defining the features of items that are most liked by the
users in a given context. Their outputs are used to filter the
data with identified characteristics, which is then sent as an
input to the higher layer of recommendations.

3.2 Evaluation
Most of the solutions for automatic recommendations are

focused on development of techniques improving the over-
all performance and accuracy of ratings prediction. Ac-
cordingly, most popular evaluation approaches incorporate
precision metrics for the estimations. However, there are
other factors that impact the effectiveness of recommenda-
tions and influence the user experience.

A major limitation of the existing recommendation sys-
tems is overspecialization and a lack of diversity in recom-
mender outputs [29, 19]. As described in [23], during the
challenge on Context-Aware Movie Recommendation (CAMRa
2010), competing systems were evaluated according to di-
verse factors divided into two groups. The first set of cri-
teria consisted of precision metrics while the other set con-
tained the following Subjective Evaluation Criteria: Con-
text, Contextualization of recommendations, Extensibility,
Serendipity, Creativity, Scalability, Sparsity, Domain depen-
dence, and Adoptability

In our research, we aim to address some of these subjec-
tive criteria to improve user experience, and also develop
an architecture that is easily adaptable to other domains.
We use contextual filtering to model user preferences. Our
architecture enables one to implement flexible and generic
recommender systems that can easily be extended with new
independent modules in a hierarchical structure. Our ap-
proach promotes diversity and serendipity among the rec-
ommendation outputs as each module processes information
from a different point of view.

3.3 Explaining recommendations
We mentioned above that aspects such as user satisfac-

tion play an important role in the evaluation of a recom-
mender system. As noted by [25], a limitation of many rec-
ommenders is that they work as black-box systems and do
not provide the users with any reasons for providing a partic-
ular recommendation. Some of the commercial systems are
striving to overcome this limitation by producing a rationale
accompanying each recommendation. A number of diverse
styles have emerged to provide this rationale [25]: Case-
Based (... because you highly rated Item A..., used in Netflix
[2]), Collaborative (Customers who bought this Item were
also interested in... used by Amazon), Content-Based (We
are playing this music because it has a slow tempo by Pan-
dora [1]). In [26], the authors use information visualization
techniques to improve interaction with their recommender
system. Such system transparency not only increases the
user satisfaction, but also helps the users in making easier
and faster decision in selecting an item.

In CARE, each module is provided with an explanation-
generating function, which produces a description of the fea-
tures that determined the recommendation. The style of this
message is dependent on the module’s implementation. The
final explanation may combine different styles of messages
produced independently by separate modules. We incorpo-
rate modules that process information on different levels of
abstraction, hence the final description contains rationales
at multiple granularity levels. Our goal is to generate a
rationale explaining to the user why she or he should find
certain items interesting (contextual reason, e.g. because it
is rainy and what features make this particular item a rel-
evant choice (e.g. because you like rock music when it is
rainy).

4. GOAL-DIRECTED DESIGN
In designing the CARE system, we follow the principles of

Interaction Design [10], according to which the design of a
system is developed iteratively through continuous interac-
tion with the user. In the subsequent sections, we summarize
the conclusions from the interviews with three users and a
movie-domain expert.

15

4.1 Domain expert’s opinion
Following the Interaction Design paradigm, we consulted a

film analysis academic to find out what factors may influence
the popularity of a movie among the users.

The expert noted that the genre is not the only feature
that the users consider when deciding which movie to watch.
Other factors which may determine their preferences are nar-
rative description, its tempo, atmosphere and tension.

Moreover, the users often want to watch the same kind of
movies that they have already watched. Thus, they select
well-known names, plots or recognizable brands. Such a
brand may be defined by the director, movie star or award
such as Oscar or some Film Festival.

Considering all these factors, our system design should
embody modules that analyze relevant movie features such
as genre, cast, director, awards won as well as information
about the atmosphere of the movie. The prototype imple-
mentation incorporates the genre filtering modules, and we
plan to extend it with modules that will analyze other fac-
tors as well.

Another major factor that influences a user’s choice is the
current trend or fashion. There are some must-see movies
that many users desire to watch. Moreover, some people
rely on the public opinion more than on their own impres-
sions. In our design, the public opinion is modelled by a
collaborative filtering recommendation algorithm.

4.2 Defining User Goals
We interviewed three potential users to determine their

expectations from a recommender system. The volunteers
were technical faculty graduates who are familiar with using
recommender systems to find items of their interest. Each
of them was interviewed separately, in their natural environ-
ment. They were asked to describe their experiences in one
of the three domains of recommendations: books, movies
and music. First, each person was asked to describe his or
her general preferences in the given area and if they could
identify some factors that may influence it. Then they were
asked to describe some particular situations in which they
use recommendations, considering the context details. The
final question was about the expected recommendation out-
put in these situations. We are planning to extend this re-
search by incorporating interviews with a broader group of
users with more diverse backgrounds.

It was observed that every person has some general tastes,
but particular preferences change according to the time and
the mood. Thus, the system should consider some contex-
tual information in generating the recommendations. How-
ever, some of these factors, such as the user’s mood, who
they are with, and so on, may be difficult to predict. Hence
the approach we chose is to give the user a choice of possible
actions considering different contextual or affective states so
that the user can decide what she or he needs at the moment.

Finally, we found that the users like to know why any
particular item is recommended to them. Hence the sys-
tem should aggregate information from different levels of
abstraction, and present it to the user in an intuitively un-
derstandable way. We plan to present a rationale for each
recommendation as an accompanying text message.

4.3 User scenarios
Persona: Mark
Goals: getting movies recommendations; finding uncom-

mon yet interesting movies when alone; finding lights come-
dies to watch with his girlfriend

Scenario 1
It is a cold winter Friday and Mark and his girlfriend want

to spend the evening with a light movie and a glass of wine.
Mark opens CARE and a message pops out:

Hi Mark! Finally, it’s the weekend! It’s freezing, isn’t
it? Are you dreaming of little holidays? What about Woody
Allen’s ”Vicky Cristina Barcelona” to warm you up a little?
I know you like this director. Or maybe you had a tough
week and feel like watching something to cheer you up with
a bit of dark humor, like ”Grand Budapest Hotel”?

Scenario 2
On Monday, Mark’s girlfriend is off for a ladies night with

her friends so finally he can choose a movie on his own.
CARE greets him:

Hi Mark! Maybe something positive for the new week?
How about ”Intouchables”? Or maybe you’re fed up with the
city life in Krakow and want to watch the story of a man in
the heart of nature, like ”Into the wild”? You like non-fiction
movies!

5. SYSTEM ARCHITECTURE OF CARE
General architecture of the CARE system is presented in

Figure 1. Modules in our prototype system work on different
levels of abstraction.

First group of modules perform contextual features filter-
ing based on the input with current context, user informa-
tion and ratings history with context. The goal of this pro-
cessing phase is to determine the most relevant item features
for a given context. Each component on this level analyzes
the information about a single contextual information. To
address the problem of sparsity, we also incorporate a mod-
ule that considers all users’ ratings without any contextual
filtering. The output of each filter is a list of items charac-
terized by the identified features. This architecture is exten-
sible with different types of filters that analyze other aspects
of recommendations (such as demographic data). In this pa-
per we focus only on the contextual information processing.

In the next stage of recommendation process, we incorpo-
rate recommender algorithms that select items that should
be most liked by the user, considering each of the item
groups received from the former stage as a separate rec-
ommendation problem. The modules on this stage may rep-
resent diverse recommendation techniques and algorithms,
however our prototype implementation includes collabora-
tive filtering algorithms. The result of recommendation is
the best choice of items for each set of items.

Each component generates a short description of its re-
sults and the reason of recommendation. The messages are
finally composed by the explanation templates module and
presented to the user along with the recommended items.

The hierarchical structure of the system and the inter-level
filtering of item features enables a more thorough explana-
tion of the process in generated outputs. Hence the output
does not only provide the user with the information Item A
was recommended because it is summer, but also emphasizes
the feature that was crucial for this choice (Item A was rec-
ommended because you seem to like this type of items during
summer.).

The system is being developed using Django, a Web frame-
work for Python. The system interface will be provided as
a web application, however at present the system output is

16

Figure 1: General architecture of the CARE system.

in plain textual form as presented in the results section.

6. EXPERIMENT
We present phases of the recommendation algorithm along

with an illustrative example of recommendations for user
John.

6.1 Testing data
CARE system architecture is applicable to many recom-

mendation domains where the context may influence user
preferences. Possible domains of application include books,
music or movies as well as restaurants recommendations
as user’s choice may depend on aspects such as changing
weather or time. Here we present the results from testing
our prototype on the LDOS-CoMoDa dataset [18] that con-
tains movie ratings along with contextual information, and
user and item characteristics. Contextual data contain in-
formation about the season, type of day (weekend, working
day or holiday), time of day (morning, afternoon, evening),
companion, and so on.

The dataset also contains information about the mood of
the movie and it could be interesting to consider this data
as well. However, the dataset only provides the dominant
and end emotional values, without any information about
the user’s mood before watching the movie. Since we treat
contextual factors as facts known at the moment of recom-
mendation (as the initial data), we cannot make a recom-
mendation considering user’s mood after or during watch-
ing the movie. In future work, we plan to add a feature to
query user’s mood at the moment of recommendation, and
consider this information as a contextual parameter.

Table 2 contains a part of John’s ratings for the analyzed
example along with contextual information.

6.2 Recommendation process
We present below a brief description of the different stages

of our algorithm along with illustrative examples. The main
steps of algorithm are listed below and described in the sub-

sequent sections:

1. Initialization with contextual input data.

2. Contextual type-splitting - identifying significant con-
textual factors and relevant data types.

3. Collaborative filtering items recommendation for each
of the types defined in 2.

4. Explanation generation for each of the recommended
types and a corresponding contextual factor.

6.2.1 Input data
Input for the recommendation is the user data and the in-

formation about the context in which the recommendation
takes place. This data may contain information explicitly
provided by the user (such as whether they are alone or
with a companion) or implicit information extracted auto-
matically from the date and location data (such as day of
week, time of the day, weather, and so on).

Example:

Context:
Season: Summer
Day type: working day
Time: evening
Weather: sunny
Companion: alone

6.2.2 Contextual type-splitting
For the context-aware recommendation process, we intro-

duced contextual type-splitting algorithm which is an adap-
tation of the standard contextual item-splitting approach.
We incorporated an additional abstraction level and treated
the item features as the recommendation objectives. Table
2 illustrates the difference between approaches.

• Contextual item-splitting

In the first phase of the basic algorithm, each item is
associated with the most relevant contextual feature
that diversifies its ratings. Then the ratings for this
item are split according to this division. The mean rat-
ing values for each item are compared for the situation
where particular circumstance occurs and otherwise.

For example, we could compare ratings for a particular
movie that were given during the weekend with ratings
from all other days. If they are significantly different,
we can infer that the user preferences for this item are
influenced by the day of the week.

• Contextual type-splitting

In our approach, we perform analogical computations,
but instead of comparing the contexts for each movie,
we analyze each context for a group of movies with a
common feature (such as a genre). As a result we can,
for example, find out that the user prefers to watch
horror movies during the weekends than on other days.
This step may be generalized to recommend items grouped
by other features, such as the director, country of ori-
gin, etc.

17

movie id genre rating daytype time weather season companion
23 action movie 1 working day evening sunny autumn alone
160 action movie 2 working day evening sunny autumn alone
2755 action movie 4 working day evening rainy winter alone
3898 action movie 5 weekend night cloudy spring with family
3942 action movie 3 working day evening sunny spring alone
4020 action movie 5 weekend night rainy summer alone
3992 action movie 5 working day afternoon sunny summer with family
3962 animated movie 4 weekend evening rainy spring alone
65 comedy 3 working day evening sunny autumn alone
101 comedy 2 working day afternoon cloudy autumn alone
4025 comedy 5 working day evening sunny summer alone
4054 comedy 5 holiday night cloudy summer alone
30 crime movie 4 weekend evening rainy autumn alone
227 crime movie 2 working day night cloudy autumn alone
3715 crime movie 1 working day evening cloudy winter alone
248 crime movie 5 weekend night sunny winter with family
149 drama 5 weekend evening sunny autumn alone
61 drama 2 weekend afternoon sunny autumn alone
239 drama 3 holiday night rainy autumn in public
242 drama 4 holiday evening cloudy autumn alone

Table 1: User’s ratings with contextual information.

Exemplary ratings with a context
User Item Item type Rating Context
U1 I1 T1 1 C1
U1 I3 T1 3 C1
U1 I2 T2 5 C2
U1 I3 T1 5 C2
U1 I2 T2 5 C1

Contextual items splitting
User Item Rating
U1 I3C1 3
U1 I3C2 5

Contextual types splitting
User Item type Rating
U1 T1C1 2
U1 T1C2 5

Table 2: Contextual splitting - basic approach and
proposed modification.

This approach allows us to give more transparent and
intuitive recommendations for the user by presenting
the features that lead to the final recommendation.
It also addresses a major drawback of the context pre-
filtering approaches, namely the data sparsity after ap-
plying the filter. As the number of recommendations
for a particular type of movies is significantly higher
than for each movie separately, we expect the results
to be more accurate. Reducing number of compar-
isons to groups of items also contributes to decreasing
complexity of computations and speeds up the recom-
mendation process. In subsequent steps, the recom-
mendations are performed for selected groups only.

We verify the significance of each contextual feature using
the two-tailed Student’s t-test, assuming the p-value thresh-
old of 10%. Additionally, we consider the significance of
only those features where the mean rating is higher when
a particular context occurs. The t-test is a basic approach

(as presented in [28]), however its use is limited for normally
distributed data. In other cases, it may be replaced by other
statistical methods such as Wilcoxon signed-rank test.

The features significance testing in a context is performed
as follows:

• For each type ti of items (eg. for each of the genres) we
compare the mean rating for items of this type when
each of the input contextual circumstances ci occurs
and otherwise (eg. ratings for comedies in summer
and other seasons).
significance(ci, tj) = ttest(Ratingstj |ci), Ratingstj |¬ci)

• If the statistical test for both groups of ratings split
by the contextual feature ci indicates a significant dif-
ference in mean ratings, and the mean rating for type
when ci occurs (Ratingstj |ci) is higher then otherwise
(Ratingstj |¬ci), we conclude that the type ti is a rele-
vant recommendation in given context ci.

Example:

Contexts significance testing:
Input context: summer, working day, evening, sunny, alone
Ratings in summer vs other seasons: mean ratings for

comedies are significantly higher during summer.
Ratings on working days vs other days: no relation found.
Ratings in the evening vs other time: mean ratings for

comedies are significantly higher in the evening.
Ratings on sunny days vs other weather: no relation found.
Ratings for movies watched alone and other companion:

no relation found.

6.2.3 Types pre-filtering
After identifying the types of movies that are most rele-

vant for a given context, we filter the set of ratings for each
type separately. For example, if we consider a recommen-
dation for Saturday morning and we find out that horror
movies are the most preferred genre during the weekend,
and comedies get the highest ratings in the mornings, we

18

first consider recommendations for horror movies and then
for comedies separately.

We also calculate general recommendations considering
the user preferences of all the items, without any pre-filtering.
This addresses the sparsity problem for context recommen-
dations and deals with the situation when no relevant con-
textual information is provided.

6.2.4 Items recommendation
After filtering the items by their types, we perform a

standard collaborative-filtering recommendation algorithm
to find the most suitable choices considering a particular
user’s taste. We calculate the similarity between users using
Pearson’s correlation measure. Then we consider the ratings
of the most similar users with the K-Nearest-Neighbours al-
gorithm. In further research we plan to address the problem
of scalability by users clustering.

For each of the identified categories we perform a sepa-
rate recommendation process, hence the final output con-
tains the recommendation results from diverse perspectives.
For the current implementation, we incorporated the stan-
dard user-based CF algorithm. However the system may be
easily extend by other modules performing different recom-
mendation algorithms since the calculations are performed
independently.

Example:

Performing user-based collaborative filtering algorithm to
find expected highest-rated movies for each category and
general user’s preferences without any context:

crime story: ”The Usual Suspects”
action movie: ”Pirates of the Caribbean: At World’s End”
all movies: ”Le Concert”

6.2.5 Explanations generation
A major goal of our research is to develop a recommen-

dation system that can present the recommendations along
with accompanying explanations. Hence, we incorporated
modules responsible for generating textual messages to give
rationales for recommendations. Each sentence of the ac-
companying message consists of the following information:
item type; recommended item; context.

The message is generated in the form of a textual tem-
plate. Future improvements of CARE will consider increas-
ing the serendipity aspect of the recommendations by gen-
erating more advanced and surprising commentaries for the
outputs.

The messages generated by all the modules that analyzed
the situation from different perspectives are aggregated in
one template and presented to the user as a message.

Example:

Producing a textual explanation containing descriptions
from all former steps of algorithm:

Hi John! You might like a comedy ”Le Concert” as it
is something in your taste. You might like a drama like
”Shutter Island” because it is evening. Maybe you feel like
watching a comedy like ”Intouchables” because it is summer?

7. CONCLUSIONS AND FUTURE WORK
We proposed an architecture to generate context-aware

recommendations along with accompanying rationales to help
the user choose the most interesting item. In CARE (Context-
Aware Recommender with Explanation), the recommenda-
tion process is performed hierarchically, and with trans-
parency at each abstraction level so as to produce detailed
explanations for the suggested choices. Our approach pro-
motes a diversity of recommendation results since each piece
of contextual information is analyzed separately, and the
most appropriate items are recommended with a rationale
accompanying each suggestion.

Our architecture enables one to implement a flexible and
generic recommender systems that can easily be extended
with new independent modules in a hierarchical structure.
In the current stage of our research, we have tested the
performance of the CARE prototype on a movie-ratings
dataset. Following the suggestions of a domain expert, we
plan to extend the system with modules that incorporate
other diverse movie features such as the director, cast, at-
mosphere and so on. We also plan to follow the Interaction
Design principles during the evaluation of our system and
will perform user testing with a working system. In future
work, we will also address the evaluation of results quality
with standard methods such as RMSE or nDCG.

Our approach is applicable to other domains as well. Cur-
rently we are working on adapting this architecture for sup-
porting legal decision making, and moral and ethical reason-
ing.

8. REFERENCES
[1] Pandora. http://www.pandora.com, 2006.

[2] Netflix dataset. http://www.netflixprize.com/, 2009.

[3] G. Adomavicius and A. Tuzhilin. Context-aware
recommender systems. In Proceedings of the 2008
ACM Conference on Recommender Systems, RecSys
’08, pages 335–336, New York, NY, USA, 2008. ACM.

[4] G. Adomavicius and A. Tuzhilin. Context-aware
recommender systems. In Recommender Systems
Handbook, pages 217–253. 2011.

[5] M. Balabanović and Y. Shoham. Fab: Content-based,
collaborative recommendation. Commun. ACM,
40(3):66–72, Mar. 1997.

[6] L. Baltrunas and F. Ricci. Context-based splitting of
item ratings in collaborative filtering. In Proceedings
of the Third ACM Conference on Recommender
Systems, RecSys ’09, pages 245–248, New York, NY,
USA, 2009. ACM.

[7] L. Baltrunas and F. Ricci. Experimental evaluation of
context-dependent collaborative filtering using item
splitting. 24(1-2):7–34, 2014.

[8] D. Bridge, M. H. G oker, L. McGinty, and B. Smyth.
Case-based recommender systems. The Knowledge
Engineering Review, 20:315–320, 9 2005.

[9] R. Burke. Hybrid recommender systems: Survey and
experiments. User Modeling and User-Adapted
Interaction, 12(4):331–370, Nov. 2002.

[10] A. Cooper, R. Reimann, and D. Cronin. About Face:
The Essentials of Interaction Design. John Wiley &
Sons, Inc., New York, NY, USA, 2014.

[11] D. D. Corkill. Blackboard systems. AI Expert, 6, 1991.

[12] A. H. Dong, D. Shan, Z. Ruan, L. Zhou, and F. Zuo.
The design and implementation of an intelligent
apparel recommend expert system.

19

[13] B. S. Francesco Ricci, Lior Rokach. Introduction to
recommender systems handbook. In F. Ricci,
L. Rokach, B. Shapira, and P. B. Kantor, editors,
Recommender Systems Handbook, pages 1–35.
Springer US, 2011.

[14] G. Guo, J. Zhang, and N. Yorke-Smith. A novel
bayesian similarity measure for recommender systems.
In Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence, IJCAI ’13,
pages 2619–2625. AAAI Press, 2013.

[15] A. Karatzoglou, X. Amatriain, L. Baltrunas, and
N. Oliver. Multiverse recommendation: n-dimensional
tensor factorization for context-aware collaborative
filtering. In Proceedings of the fourth ACM conference
on Recommender systems, pages 79–86. ACM, 2010.

[16] Y. Koren and R. Bell. Advances in collaborative
filtering. In F. Ricci, L. Rokach, B. Shapira, and P. B.
Kantor, editors, Recommender Systems Handbook,
pages 145–186. Springer US, 2011.

[17] P. Lops, M. De Gemmis, and G. Semeraro.
Content-based recommender systems: State of the art
and trends. In Recommender systems handbook, pages
73–105. Springer US, 2011.

[18] A. Odić, M. Tkalčič, J. F. Tasič, and A. Košir. In
G. Adomavicius, editor, Proceedings of the 4th
Workshop on Context-Aware Recommender Systems
in conjunction with the 6th ACM Conference on
Recommender Systems (RecSys 2012), volume 889,
2012.

[19] L. Qin and X. Zhu. Promoting diversity in
recommendation by entropy regularizer. In
Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence, IJCAI ’13, pages
2698–2704. AAAI Press, 2013.

[20] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor,
editors. Recommender Systems Handbook. Springer,
2011.

[21] A. Ruiz-Iniesta, G. Jiménez-Dı́az,
M. Gómez-Albarrán, et al. A framework for the rapid
prototyping of knowledgebased recommender systems
in the learning domain. Journal of Research and
Practice in Information Technology, 44(2):167, 2012.

[22] J. Sabater, M. Singh, and J. M. Vidal. A Protocol for
a Distributed Recommender System, 2005.

[23] A. Said, S. Berkovsky, and E. W. De Luca.
Introduction to special section on camra2010: Movie
recommendation in context. ACM Trans. Intell. Syst.
Technol., 4(1):13:1–13:9, Feb. 2013.

[24] J. Schafer, D. Frankowski, J. Herlocker, and S. Sen.
Collaborative filtering recommender systems. In
P. Brusilovsky, A. Kobsa, and W. Nejdl, editors, The
Adaptive Web, volume 4321 of Lecture Notes in
Computer Science, pages 291–324. Springer Berlin
Heidelberg, 2007.

[25] N. Tintarev and J. Masthoff. Designing and evaluating
explanations for recommender systems. In F. Ricci,
L. Rokach, B. Shapira, and P. B. Kantor, editors,
Recommender Systems Handbook, pages 479–510.
Springer US, 2011.

[26] K. Verbert, D. Parra-Santander, P. Brusilovsky, and
E. Duval. Visualizing recommendations to support
exploration, transparency and controllability. In

Proceedings of the 2013 international conference on
Intelligent user interfaces - IUI ’13, page 351. ACM
Press, 2013.

[27] Y. ZHANG, H. Liu, and S. Li. A Distributed
Collaborative Filtering Recommendation Mechanism
for Mobile Commerce Based on Cloud Computing.
2011.

[28] Y. Zheng, B. Mobasher, and R. D. Burke. The role of
emotions in context-aware recommendation. In
L. Chen, M. de Gemmis, A. Felfernig, P. Lops,
F. Ricci, G. Semeraro, and M. C. Willemsen, editors,
Decisions@RecSys, volume 1050 of CEUR Workshop
Proceedings, pages 21–28. CEUR-WS.org, 2013.

[29] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and
G. Lausen. Improving recommendation lists through
topic diversification. In Proceedings of the 14th
International Conference on World Wide Web, WWW
’05, pages 22–32, New York, NY, USA, 2005. ACM.

20

Inspection Mechanisms for Community-based Content
Discovery in Microblogs

Nava Tintarev
University of Aberdeen

Aberdeen, UK
nava.tintarev@gmail.com

Byungkyu Kang
Dept. of Computer Science

University of California
Santa Barbara, USA
bkang@cs.ucsb.edu

Tobias Höllerer
Dept. of Computer Science

University of California
Santa Barbara, USA

holl@cs.ucsb.edu
John O’Donovan

Dept. of Computer Science
University of California

Santa Barbara, USA
jod@cs.ucsb.edu

ABSTRACT
This paper presents a formative evaluation of an interface for
inspecting microblog content. This novel interface introduces
filters by communities, and network structure, as well as rank-
ing of tweets. It aims to improving content discovery, while
maintaining content relevance and sense of user control. Par-
ticipants in the US and the UK interacted with the interface
in semi-structured interviews. In two iterations of the same
study (n=4, n=8), we found that the interface gave users a
sense of control. Users asked for an active selection of com-
munities, and a more fine-grained functionality for saving in-
dividual ‘favorite’ users. Users also highlighted unanticipated
uses of the interface such as iteratively discovering new com-
munities to follow, and organizing events. Informed by these
studies, we propose improvements and a mock-up for an in-
terface to be used for future larger scale experiments for ex-
ploring microblog content.

Author Keywords
Microblogs, visualization, communities, explanations,
interfaces, content discovery

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

INTRODUCTION
Filtering of streaming data such as microblog content is in-
evitable, even if it is done by showing the most recent content
as restricted by screen-size. However our live timelines do
often get tailored to us, without transparency or a sense of
control. Getting the selection of the content right is a delicate
matter.

ACM Recommender Systems 2015, Workshop on Interfaces and Human Decision
Making for Recommender Systems (IntRS15), Vienna, Austria. Copyright held by the
authors

Recommender systems address the challenges of finding ‘hid-
den gems’ which are tailored to individuals from a very wide
selection. Implemented well, they hold the key to helping
users discover items that are both unexpected and relevant,
while helping catalog holders sell a wider range of items [3].

In trying to help users make such discoveries, recommender
systems walk a thin line between a) making unexpected but
risky recommendations (increasing the chances of irrelevant
recommendations), and on the other hand b) over-tailoring
(resulting in unsurprising recommendations). Over-tailoring
can also result in filter bubbles [15], whereby users do not
get exposed to items outside their existing interests. For cur-
rent events, such as content in microblogs, personalization
algorithms may narrow what we know, and surround us with
information that supports what we already believe. This can
result in polarization of views, especially as we have a ten-
dency to self-filter [2].

This paper address these issues by supporting controlled fil-
tering of microblog content. It introduces a novel visualiza-
tion which supports filtering by allowing a user to control: a)
which communities influence their feed b) the network struc-
ture relating to these communities and c) different ways of
ranking tweets. This visualization is evaluated in two iter-
ations of a qualitative study that assesses the value of such
controls, as well as the concrete implementation choices ap-
plied. We also discuss the ways these filters and controls are
perceived by users, and how they envision that they would
use them. We conclude with describing our next steps.

BACKGROUND

Inspectability and Control in Recommender Systems
In the domain of recommender systems there is a grow-
ing acceptance and interest in user-centered evaluations [12].
For example, [9] argues for a framework that takes a user-
centric approach to recommender system evaluation, beyond
the scope of recommendation accuracy. Along the same vein,
it has also been recognized that many recommender systems
function as black boxes, providing no transparency into the

21

pasquale.lops
Rectangle

working of the recommendation process, nor offering any ad-
ditional information to accompany the recommendations be-
yond the recommendations themselves [6].

To address this issue, explanations can be given to improve
the transparency and control of recommender systems. Re-
search on textual explanations in recommender systems to
date has been evaluated in wide range of domains (varying
from movies [18] to financial advice [4]). Increasingly, there
has also been a blurring between recommendation and search,
making use of information visualization. For example, [19]
has looked at how interaction visualization can be used to im-
prove the effectiveness and probability of item selection when
users are able to explore and interrelate multiple entities –
i.e. items bookmarked by users, recommendations and tags.
Similarly [16] found that in addition to receiving transpar-
ent and accurate item recommendations, users gained infor-
mation about their peers, and about the underlying algorithm
through interaction with a network visualization.

Inspectability and Control in Microblogs
In order to better deal with the vast amounts of user-generated
content in microblogs, a number of recommender systems re-
searchers have studied user experiences through systems that
provide transparency of and control over recommendation al-
gorithms. Due to the brevity of microblog messages, many
systems provide summary of events or trending topics with
detailed explanations [11]. This unique aspect of microblogs
makes both inspectability and control of recommender algo-
rithms particularly important, since they help users to more
efficiently and effectively deal with fine-grained data. For
example, experimental evidence to argue that inspectability
and control improve recommendation systems is presented
for microblogs in [16], via a commuter traffic analysis ex-
periment, and more generally in [8] using music preference
data in their TasteWeights system.

Community-based Content Discovery
Serendipity is defined as the act of unexpectedly encountering
something fortunate. In the domain of recommender systems,
one definition has been the extent to which recommended
items are both useful and surprising to a user [7]. This pa-
per investigates how exploration can be supported in a way
that improves serendipity.

The intuitions guiding the studies in this paper are based on
findings in the area of social recommendations, that is based
on people’s relationships in online social networks (e.g., [13])
in addition to more classical recommendation algorithms.

The first intuition is that weak rather than strong ties are im-
portant for content discovery. This intuition is informed by
the findings of the cohesive power of weak ties in social net-
works, and that some information producers are more influ-
ential than others in terms of bridging communities and con-
tent [5]. Results in the area of social-based explanations also
suggest that mentioning which friend(s) influence a recom-
mendation can be beneficial (e.g, [17, 20]). In this case, we
support exploring immediate connections or friends, as well
as friends-of-friends.

The second intuition is that the intersection of groups may be
particularly fortuitous for the discovery of new content. This
is informed by exploitation of cross-domain model inspira-
tion as a means for serendipitous recommendations, e.g., [1].

VISUALIZATION
In this study, we designed a web-based visualization that al-
lows users to experience the recommender system we pro-
pose (see Figure 1). The first two columns represent “groups”
(communities) and “people” (users), allow us to filter ‘tweets’
in the third column by both of these ‘facets’. The system sup-
ports therefore support a faceted navigation, with the third
column representing the resulting information. In addition,
the system supports Pivoting (or set-oriented browsing), in
that it allows users to navigate the search space by starting
from a set of instances (by selecting which groups they would
like to follow).

The rational for the visualization follows several intuitions
with regards to exploring novel and relevant content in social
network, as outlined in the section in related work.

The first is that people can find relevant content in the inter-
section between multiple communities. In the visualization
this is represented by the selection of up to three communi-
ties to which a user belongs, and color blending to indicate
people and content that represents this type of overlap. An-
other intuition is that weak ties, or friends of friends, are also
good candidates for content discovery. In this visualization
they are represented as two hops in a network structure. Con-
sequently we included a slider which included 0-hops (do not
consider this community), 1-hop (include people who follow
a given community), 2-hops (include people who follow peo-
ple in a given community).

Finally, the ranking of tweets according to a) relevance to a
user compared to b) popularity and c) time is also likely to
help users find relevant and unexpected content compared to
tweets only ordered by time.

Structure and Interaction
Figure 3 shows a snapshot of the interactive visualization
used in the study. Information is presented in three columns.
From left to right, these are: group/community, people and
tweet columns. Users can interact with entities in any of these
three columns to highlight associations to entities in other
columns. In the people and tweet columns, entities are clus-
tered and colored based on community associations. In the
first column, we visualize a set of communities (also referred
to as groups), which by design, may have some membership
and content overlapping. Within this column, each entity has
a widget to control network distance from that entity. This
enables the user to specify how that entity contributes users
and content to the other columns. In particular, sliders were
used for control in Study 1 and radio buttons in Study 2.

In the second column, a ranked list of users related to each
community is visualized. These users serve as sources for in-
formation recommened in the third column, but the visualiza-
tion also supports analysis of the connectivity of these users
across communities in addition to the content they distribute.

22

Figure 1. Visualization of the recommendation system used in the study 1.

The third column shows the recommended tweets which are
by default filtered and ordered according to recency. A user
can change the ranking algorithm for this column to either
popularity or relevance.

Color Scheme
Selecting appropriate color scheme is one of the important as-
pects to consider in user interface design. We examined dif-
ferent sets of colors and carefully selected three major colors
that represent each group on the first column. They have been
selected among the most popular color palettes on Adobe
Color website1. These colors are tested under grayscale con-
dition.

Materials
The materials for the experiment were abstracted: people
were given random names of both genders, tweets were short
lines from a short Latin text (“Lorem Ipsum. . . ”), resulting in
a total of 229 tweets. When participants interacted with the
system, a random subset of 12 tweets was presented. The top
4 of these tweets included a retweet, to visually increase the
similarity with a twitter feed, and was applied consistently
across adaptations.

STUDY 1
This section describes a formative study conducted to eval-
uate the proposed visualization. We used a layered evalua-
tion approach [14], focusing on the decision of an adaptation
and how it was applied (in contrast to which data was col-
lected or how it was analyzed). Participants took part in semi-
structured interviews, in order to evaluate the user experience
(following the guiding scenarios of [10]). More concretely
this study aimed to answer the following questions: a) are the
three introduced controls (selection of communities, network

1https://color.adobe.com/explore/most-popular/
?time=all

structure, and ranking of tweets) considered useful for par-
ticipants? b) is the way they are implemented useful? c) do
these controls give users a sense of control? d) do participants
use the controls in the way that we envisaged? The version of
the system used for this study can be found online2.

Participants
4 participants were recruited from research staff at computer
science department at a UK university. Their ages ranged
from 23-51. They all had twitter accounts, but their experi-
ence with twitter ranged from inactive to highly experienced
(including the use of twitter management and analytics appli-
cations). 1 was female, and 3 male. They all had a native
or fluent level of English language skills. Participants varied
from PhD students, post-doctoral fellows to teaching staff.

One of the participants had done research with visualizations
and twitter, the other three had no experience with either.
None knew Latin (one had taken Latin course, but professed
a very rudimentary level of knowledge).

Procedure
Participants took part in individual semi-structured inter-
views, following a user test plan3. Following the collection
of basic demographic data, participants were given a brief in-
troduction to the system. The various interface components
were verbally introduced without interacting with the system.
Participants were then given several simple tasks such as in-
cluding people who are connected to other people for a given
community, or ranking tweets by relevance (rather than time).
Following each interaction participants were asked how the
tweets had changed, if new ones had been added, or if tweets
had disappeared. The tasks given were:

• Go to the system online. What are your first impressions?
2http://goo.gl/krOvuJ
3https://goo.gl/3KpH9z

23

https://color.adobe.com/explore/most-popular/?time=all
https://color.adobe.com/explore/most-popular/?time=all
https://goo.gl/3KpH9z

• Select one of three communities that you are a member of
and reflect your interests (if user can not think of any tell
them to think of conferences that they attend). Have a look
at the tweets that are recommended to you.

• Add tweets (1 hop) for a second community of your choice
from the above.

• Is there any relevant tweet from this second community
you did not see before? Are there any that have disap-
peared?

• The tweets are currently ranked by time, change this to
rank the tweets by popularity.

• Are there now any tweets you did not see before? Are there
any that have disappeared?

• Now, change who you get your tweets from to include peo-
ple who are linked to (2 hops) people that attend your first
community. You may want to remove the second commu-
nity for this too.

• How about now, are there now any tweets you did not see
before? Are there any that have disappeared?

Following the interaction with the system, participants took
part in an exit interview where they were asked about their
perceived control of the system, the usefulness of various
functionalities, and how they would use them for exploration.
More concretely the questions asked included

• How did it feel? What was your impression? (Positive
impressions? Negative impressions?)

• Would you have liked more training on how to interact with
the visualization before you got started?

• How helpful did you find the following functionalities (1-7,
unhelpful to helpful), and how could they be improved?

– Tweets organized by community;

– Changing how the tweets are ordered/ranked

– Changing who I get tweets from (0,1,2 hops)

– Being able to interact with the system to specify dif-
ferent preferences

– The links between different parts of the interface (peo-
ple, groups, tweets).

• Do you think these functionalities would help you find new
and relevant information you would not find otherwise?
How would you use them to do this?

• Does the filtering give you a sense of what you might be
missing, or does it hide information that you need?

• Did you feel like you had control over which information
was presented to you?

• Would you liked to have had any controls that are not
present in this interface?

Results
Are the introduced controls (communities, network structure,

and ranking of tweets) considered useful by participants?
The scores given to the various controls was generally high (5
or above). There were three exceptions. Participant3 did not
find tweet ranking by relevance and popularity useful at all.
Participant4 gave low scores to the hop control for network
structure, and the links, but this was due to the way they were
implemented, and is discussed below.

Is the way they are implemented useful?
All the participants noted that the interface was simple and
clean, and had a good first impression. Participant4 noted
that it would be well suited for a mobile interface.

• Hop control All of the participants found it difficult to
understand the control for the network structure. When
thinking aloud, several said that pulling the slider further
to the right would increase the number of tweets on a cer-
tain topic, rather than widen the network (which potentially
would dilute the focus of the tweets).

• Community selection Participant1 wanted to ‘activate’ a
community by selecting its box. This seems more intuitive
than selecting 0 hops for the communities they did not want
to follow.

• People In addition to filtering on community structure and
inclusion, several participants wanted a finer grain control
of which users were included in the selection of tweets.
Some users wanted to activate users somehow, by either
adding them to favorites at the top of the person list, or
activating through selection. These participants felt that
this should influence the ranking of tweets.

• Tweets Participants felt that tweets belonging to the same
community should not only have the same color, but be
grouped together. Participant3 (experienced twitter user)
felt that ranking of tweets by any other measure than re-
cency (time) was not useful.

• Links Participant3 found the links and colors between the
columns inconsistent. The relationship between the first
two columns used links, whereas the relationship between
the second two columns used colors.

• Color-interleaving Participant1 mistook the color-
interleaving to imply significance, as they varied in hue.
However, the other participants interpreted this correctly
although did ask if the interpretation was correct.

Do these controls give users a sense of control?
All of the participants felt that the interface improved their
control over their tweets. They also consistently agreed that
they would be missing some content, and that they were not in
complete control, but that they were happy with the balance
in the trade-off.

However, Participant3 felt that they wanted to be able to scroll
through all of their tweets, especially because they did not
have the finer grained control of which individuals appeared
in their feed.

24

Figure 2. Plot showing correlation between participant age and reported
importance of “Being able to interact with the system to specify different
preferences”.

Do participants use the controls in the way that we envisaged?
All of the participants completed the simple tasks given to
them. They all stated that they would find new and relevant
content using the interface, although the highly experience
twitter user felt they already find novel content using tools
such as TweetDeck. When asked how they would you use the
functionalities to find new and relevant information, partici-
pants suggested two uses we had not initially considered:

Organizing events Participant3 felt that the groups could be
defined by other characteristics rather than membership of
a community, such as geographic location. This participant
suggested that they would use this functionality to identify
and coordinate groups of people when organizing events on
the topics they were interested in.

Discover new groups Participant2 was confident that they
would find new relevant communities when looking at the in-
tersection of existing communities that they follow. This par-
ticipant listed three music bands that they listen to and would
follow on twitter. They would use the system to discover new
bands, and would then add them as a new group as a ”seed”
for further discovery.

Other suggestions
Participants suggested several features they would expect in
an interface that was integrated with twitter. For example,
they would want to be able to view the profiles (or at least,
the first 50 characters) of the people they are receiving tweets
from. Others wanted to be able to reply to tweets directly
from the feed. Another suggestion was to introduce separate
columns for different communities. This may be related to
the request by other users to be able to group tweets by com-
munity.

STUDY 2
The first study identified several limitations of the system,
which were addressed for a second iteration of evaluation.
Improvements included: a) using buttons rather than a slider
to control the number of hops; b) sorting people by group
affinity, e.g. greenGroup people were listed at the top, rather
than mixed throughout the list; c) identifying how many peo-
ple were filtered (i.e. “Showing 12 of 1307”). The improved

Figure 4. Analysis of subjective results in exit interviews for the two
studies. Error bars show standard error.

interface can be seen in Figure 3, with annotations to high-
light each improvement. The version of the system used for
this study can be found online4.

Participants
8 participants were recruited from research staff at computer
science department at a US university. Their ages ranged
from 20 to 45. 5 participants were female and 3 were male.
Participants varied from PhD students, post-doctoral fellows
to teaching staff in computer science, engineering, media-arts
and physics. They all had a native or fluent level of English
language skills. 6 of the participants had Twitter accounts,
and one person had done research with Twitter data in the
past. 5 had done research with visualization. As with Study1,
no participants knew Latin.

Procedure
As in Study1, participants took part in individual semi-
structured interviews. Studies were conducted in a computer
science lab on campus using two notebook computers. The
participant interacted with the UI on one, and the experi-
menter/interviewer took notes on the other. On average, stud-
ies lasted 35 minutes (min 28 minutes, max 43 minutes).

Results
In this section, we revisit questions from Study1 and add ad-
ditional comments and discussion based on the new partici-
pants interacting with the improved UI in Study2. Figure 4
shows a comparison of participants’ opinions on the differ-
ent features of the system between Study1 (N=4) and Study2
(N=8), along with the combined score (N=12). We note that
the combined score is based on two slightly different UI de-
signs, and it is only used as a rough estimate of the overall
group evaluation.

Are the introduced controls (communities, network structure,

and ranking of tweets) considered useful by participants?
The scores shown in Figure 4 range between 5.58 and 6.87 for
Study2, shown in the middle column of each group, an aver-
age of approximately one point on the 7 point scale. Com-
pared to Study1, the interface modifications appear to have
had a positive impact on user experience with the system.
4http://penguinkang.com/intRS/

25

http://penguinkang.com/intRS/

Figure 3. Improved visualization design used in the main user study. Annotation (A) shows changes to the number-of-hops selection. (B) shows the
number of filtered users interactively in the form “m of n”, and (C) shows connectivity-based clustering and associated coloring of nodes in the “People”
column.

While this is a promising side result, the purpose of the study
was to provide a formative evaluation of the interface.

Participants reported the best score for the feature to organize
Tweets by community, which is a core contribution of the sys-
tem. This is encouraging feedback as the authors are design-
ing a larger-scale quantitative evaluation with this as a central
feature. The features that elicited the lowest scores were the
hop-distance selector and the edge visualizations between the
columns.

Participants also reported that they liked the ability to change
how Tweets were ordered and ranked through the interface.
One participants commented that “I can’t do this in Face-
book or Twitter – this is great!”. Support for expressing real-
time preferences through interactive interface components
met with strong positive feedback, with all users reporting
a sense of increased control over the information feed.

Is the way they are implemented useful?
Similarly to Study1 study, all participants commented that the
interface was clean and well organized. One participant com-
plained that it was too complex and could benefit from having
less data. 50% of the participants pointed out an issue with
the node-coloring in column 2, shown in Figure 3. Note that
this figure needs to be viewed in color to see the true effect
(see link to system above).

• Hop control Some participants did not realize that the 0
position essentially turned the group node off. There were
also multiple comments that when hop control was set to 0,
showing the nodes opaquely was not a good design choice.
One participant explicitly mentioned that it would be better
to remove these nodes completely, noting that the visual ef-
fect of setting the hop-control to 0 would be much shorter.
Unlike Study1, no participants confused the hop slider with

a weighting mechanism, and all understood that it sourced
users from n-hops farther away in the Twitter network.

• Community selection Most participants commented that
community selection and analysis was a strong point of the
system. Suggested communities included musical artists,
pet fan clubs, and conferences or meetings.

• People A few participants reported having trouble un-
derstanding the coloring and community-based group-
ing/clustering in this column. All participants understood
the data flow correctly by the end of the sessions, but this
feature took longer than others for them to master. The
main cited reason for this was that the colors – added to dis-
tinguish the groups, were too similar, as mentioned above.
Two participants mentioned that it would be useful to select
or weight people of interest.

• Tweets Two participants suggested that a ranking score
would be useful to distinguish between tweets in the right
column. Participants also requested that when a change is
made in the system, the source of that change’s effect on
the list should be visualized. Our proposed solution to this
is shown in Figure 5 as a ranking source indicator for each
tweet.

• Links Participants were slightly dissatisfied with how links
were shown in the system. Three people commented that
links should be shown across all columns when a particular
group is selected in the left column, or when any other node
is selected, to visually communicate the associations of that
node. Other participants commented that the on-demand
design was a good idea to avoid cluttering the view.

• Color-interleaving Half of the users complained that this
was too subtle and needed to be made more explicit. This
has been addressed through the use of colored icons next

26

to people to signal group memberships. The color palette
has also been changed to make clearer distinction between
groups.

Do these features give users a sense of control?
In keeping with Study1, all of the participants felt that the
interface improved their control over their tweets. They also
consistently agreed that they would be missing some content,
and that they were not in complete control, but that they were
happy with the balance in the trade-off. Similar to the Study1,
two participants suggested use of scrolling or similar mecha-
nism to view filtered-out tweets in case they wanted to.

Do participants use the features in the way that we envisaged?
Generally, participants reported that they would find the sys-
tem useful for discovering new content and exploring com-
munity structure in the domains that they chose (music, con-
ferences, pet fan clubs etc.). In particular, they felt that
real-time preference feedback, community selection and al-
gorithm selection (time, relevance or popularity) gave them a
good sense of control. Many commented that such features
would be useful on everyday social media streams such as in
Twitter and Facebook.

Participants suggested similar uses of the controls as in
Study1. Many suggested using the system for organizing
events and advertising across relevant communities, and for
discovering new groups. Echoing the comments of Study1,
one participant mentioned that they would like to use the sys-
tem for exploring a broader network of musical artists. They
described selection of three fan club communities as in our
experimental setup, but went on to describe iteratively re-
placing them with new nodes that were discovered on the
right column, thereby applying the interface (theoretically)
as a network traversal and discovery tool. This is an example
of a reported use that was not in our design. Another partici-
pant proposed to use the system to analyze which community
produced the most popular content on Twitter, by using the
popularity ranking algorithm and traversing the edge connec-
tions back to the groups.

Other suggestions
Participants suggested a variety of ways to improve the in-
terface. These included addition of multimedia content to
the tweet column, and visually distinguishing retweets (com-
pared to original tweets) by color. Participants also suggested
creating visually distinct colorings for blended color groups,
and displaying links to all group memberships upon clicking
a user node (rather than upon hover). Another request was
for an indication of how much data has been filtered in all
the columns (currently only for the people column). Partici-
pants also suggested measuring the usefulness of the system
for getting an overview of a new community or topic. Several
comments, including from reviewers, focused on the group
selection widget. In the current version, a group is activated
by clicking on the box that represents the group, then the ra-
dio buttons within it are used to control the number of hops
that feed to the people column from that group. Other possi-
bilities that are being considered for activation of group nodes
are a) a simple check box and b) extending the radio button

selection to include an option for 0-hops, thereby disabling
the node.

Demographics Analysis
A brief analysis of demographics and responses showed an
interesting correlation between participant age and the per-
ceived importance of specifying preferences on-the-fly in the
user interface. Figure 2 shows a plot with the Likert-scale
responses for the dynamic preferences shown on the Y-axis
and participant age shown on the X-axis. The data follows a
negative linear trend, with younger participants specifying a
higher perceived importance of specifying preferences.

CONCLUSION AND FUTURE WORK
In this paper we evaluated a visualization which allowed users
to explore and filter microblog content for communities to
which they belong. The ability to organize Tweets by com-
munity, the core contribution of the visualization, was rated
the most highly. Users also stated that the interface gave them
enough control over their content, even if they felt some in-
formation would inevitably be hidden – the trade-off was con-
sidered acceptable. We also found several unexpected uses of
the system. For example two separate participants, in differ-
ent experimental settings (one in the UK and one in the US)
applied the interface (theoretically) as a network traversal and
discovery tool for music. Figure 5 introduces an improved
mock-up with a number of changes. In addition to these im-
provements, we are planning larger-scale quantitative evalua-
tions. One of these will explore the use of community-based
filters, and the other controls introduced in this paper, on ex-
isting twitter feeds.

ACKNOWLEDGMENTS
This research has been carried out within the project Scrutable Autonomous Systems

(SAsSY), funded by the UK Engineering and Physical Sciences Research Council, grant

ref. EP/J012084/1. This work was also partially supported by the U.S. Army Research

Laboratory under Cooperative Agreement No. W911NF-09-2-0053; The views and

conclusions contained in this document are those of the authors and should not be inter-

preted as representing the official policies, either expressed or implied, of ARL, NSF, or

the U.S. Government. The U.S. Government is authorized to reproduce and distribute

reprints for Government purposes notwithstanding any copyright notation here on.

REFERENCES
1. André, P., m.c. schraefel, Teevan, J., and Dumais, S. T.

Discovery is never by chance: Designing for
(un)serendipity. In CC (2009).

2. Bakshy, E., Messing, S., and Adamic, L. A. Exposure to
ideologically diverse news and opinion on facebook.
Science 348 (2015), 1130–1132.

3. Castells, P., Hurley, N., and Vargas, S. Recommender
Systems Handbook (second ed). (in press), ch. Novelty
and Diversity in Recommender Systems.

4. Felfernig, A., Teppan, E., and Gula, B.
Knowledge-based recommender technologies for
marketing and sales. Int. J. Patt. Recogn. Artif. Intell. 21
(2007), 333–355.

5. Granovetter, M. S. The Strength of Weak Ties. The
American Journal of Sociology 78, 6 (1973),
1360–1380.

27

Figure 5. Mock-up of improved UI and interaction design based on study results and analysis: (A) improved representation of the hop-distance controls,
(B) iconization to show group memberships, (C) Activation (on/off) control of nodes, (D) visualization of dynamic edges, (E) addition of a ranking score
for recommended content, and (F), addition of a provenance arrow to show what the previous interaction did to the ranking of each recommendation.

6. Herlocker, J. L., Konstan, J. A., and Riedl, J. Explaining
collaborative filtering recommendations. In ACM
conference on Computer supported cooperative work
(2000), 241–250.

7. Herlocker, J. L., Konstan, J. A., Terveen, L., and Riedl,
J. T. Evaluating collaborative filtering recommender
systems. ACM Trans. Inf. Syst. 22, 1 (2004), 5–53.

8. Knijnenburg, B. P., Bostandjiev, S., O’Donovan, J., and
Kobsa, A. Inspectability and control in social
recommenders. In Proceedings of the Sixth ACM
Conference on Recommender Systems, RecSys ’12,
ACM (New York, NY, USA, 2012), 43–50.

9. Knijnenburg, B. P., Willemsen, M. C., Gantner, Z.,
Soncu, H., and Newell, C. Explaining the user
experience of recommender systems. User Modeling
and User-Adapted Interaction 22, 4-5 (2012), 441–504.

10. Lam, H., Bertini, E., Isenberg, P., Plaisant, C., and
Carpendale, S. Empirical studies in information
visualization: Seven scenarios. IEEE Transactions on
Visualization and Computer Graphic 18(9) (2012),
1520–1536.

11. Marcus, A., Bernstein, M. S., Badar, O., Karger, D. R.,
Madden, S., and Miller, R. C. Twitinfo: Aggregating and
visualizing microblogs for event exploration. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’11, ACM (New
York, NY, USA, 2011), 227–236.

12. McNee, S. M., Riedl, J., and Konstan, J. A. Being
accurate is not enough: How accuracy metrics have hurt
recommender systems. In Extended Abstracts of the
2006 ACM Conference on Human Factors in Computing
Systems (CHI 2006) (2006).

13. Nagulendra, S., and Vassileva, J. Providing awareness,
understanding and control of personalized stream
filtering in a p2p social network. In Conference on
Collaboration and Technology (CRIWG) (2013).

14. Paramythis, A., Weibelzahl, S., and Masthoff, J. Layered
evaluation of interactive adaptive systems: Framework
and formative methods. User Modeling and
User-Adapted Interaction 20 (2010).

15. Pariser, E. The filter bubble: What the Internet is hiding
from you. Penguin Books, 2011.

16. Schaffer, J., Giridhar, P., Jones, D., Höllerer, T.,
Abdelzaher, T., and O’Donovan, J. Getting the
message?: A study of explanation interfaces for
microblog data analysis. In Proceedings of the 20th
International Conference on Intelligent User Interfaces,
IUI ’15, ACM (New York, NY, USA, 2015), 345–356.

17. Sharma, A., and Cosley, D. Do social explanations
work? studying and modeling the effects of social
explanations in recommender systems. In World Wide
Web (WWW) (2013).

18. Tintarev, N., and Masthoff, J. Personalizing movie
explanations using commercial meta-data. In Adaptive
Hypermedia (2008).

19. Verbert, K., Parra, D., Brusilovsky, P., and Duval, E.
Visualizing recommendations to support exploration,
transparency and controllability. In Proceedings of the
2013 International Conference on Intelligent User
Interfaces, IUI ’13, ACM (New York, NY, USA, 2013),
351–362.

20. Wang, B., Ester, M., Bu, J., and Cai, D. Who also likes
it? generating the most persuasive social explanations in
recommender systems. In Twenty-Eighth AAAI
Conference on Artificial Intelligence (2014).

28

uRank: Exploring Document Recommendations through
an Interactive User-Driven Approach

Cecilia di Sciascio
Know-Center GmbH

Graz, Austria
cdisciascio@know-

center.at

Vedran Sabol
Know-Center GmbH

Graz, Austria
vsabol@know-center.at

Eduardo Veas
Know-Center GmbH

Graz, Austria
eveas@know-center.at

ABSTRACT
Whenever we gather or organize knowledge, the task of search-
ing inevitably takes precedence. As exploration unfolds, it be-
comes cumbersome to reorganize resources along new interests,
as any new search brings new results. Despite huge advances in
retrieval and recommender systems from the algorithmic point of
view, many real-world interfaces have remained largely unchanged:
results appear in an infinite list ordered by relevance with respect to
the current query. We introduce uRank, a user-driven visual tool for
exploration and discovery of textual document recommendations.
It includes a view summarizing the content of the recommenda-
tion set, combined with interactive methods for understanding, re-
fining and reorganizing documents on-the-fly as information needs
evolve. We provide a formal experiment showing that uRank users
can browse the document collection and efficiently gather items rel-
evant to particular topics of interest with significantly lower cogni-
tive load compared to traditional list-based representations.

General Terms
Theory

Keywords
recommending interface, exploratory search, visual analytics, sense-
making

1. INTRODUCTION
With the advent of electronic archival, seeking for information

occupies a large portion of our daily productive time. Thus, the skill
to find and organize the right information has become paramount.
Exploratory search is part of a discovery process in which the user
often becomes familiar with new terminology in order to filter out
irrelevant content and spot potentially interesting items. For exam-
ple, after inspecting a few documents related to robots, sub-topics
like human-robot interaction or virtual environments could attract
the user’s attention. Exploration requires careful inspection of at
least a few titles and abstracts, when not full documents, before

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IntRS ’15
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

becoming familiar with the underlying topic. Advanced search en-
gines and recommender systems (RS) have grown as the preferred
solution for contextualized search by narrowing down the number
of entries that need to be explored at a time.

Traditional information retrieval (IR) systems strongly depend
on precise user-generated queries that should be iteratively refor-
mulated in order to express evolving information needs. However,
formulating queries has proven to be more complicated for humans
than plainly recognizing information visually [6]. Hence, the com-
bination of IR with machine learning and HCI techniques led to a
shift towards – mostly Web-based – browsing search strategies that
rely on on-the-fly selections, navigation and trial-and-error [15]. As
users manipulate data through visual elements, they are able to drill
down and find patterns, relations or different levels of detail that
would otherwise remain invisible to the bare eye [32]. Moreover,
well-designed interactive interfaces can effectively address infor-
mation overload issues that may arise due to limited attention span
and human capacity to absorb information at once.

Sometimes RS can be more limited than IR systems if they do
not tackle trust factors that may hinder user engagement in explo-
ration. As Swearingen et al. [27] pointed out in their seminal work,
the RS has to persuade the user to try the recommended items. To
fulfill such challenge not only the recommendation algorithm has to
fetch items effectively, but also the user interfaces must deliver rec-
ommendations in a way that they can be compared and explained
[22]. The willingness to provide feedback is directly related to the
overall perception and satisfaction the user has of the RS [13]. Ex-
planatory interfaces increase confidence in the system (trust) by
explaining how the system works (transparency) [28] and allowing
users to tell the system when it is wrong (scrutability) [11]. Hence,
to warrant increased user involvement the RS has to justify recom-
mendations and let the user customize their generation.

In this work we focus mainly on transparency and controllability
aspects and, to some extent, on predictability as well. uRank 1 is
and interactive user-driven tool that supports exploration of textual
document recommendations through:

i) an automatically generated overview of the document collec-
tion depicted as augmented keyword tags,

ii) a drag-and-drop-based mechanism for refining search inter-
ests, and

iii) a transparent stacked-bar representation to convey document
ranking and scores, plus query term contribution. A user study
revealed that uRank incurs in lower workload compared to a tradi-
tional list representation.

1http://eexcessvideos.know-center.tugraz.at/
urank-demo.mp4

29

pasquale.lops
Rectangle

2. RELATED WORK

2.1 Search Result Visualization
Modern search interfaces assist user exploration in a variety of

ways. For example, query expansion techniques like Insyder’s Vi-
sual Query [21] address the query formulation problem by leverag-
ing stored related concepts to help the user extend the initial query.
Tile-based visualizations like TileBars [7] and HotMap [9] make an
efficient use of space to convey relative frequency of query terms
through – gray or color – shaded squares, and in the case of the
former, also their distribution within documents and relative docu-
ment length. This paradigm aims to foster analytical understanding
of Boolean-type queries, hence they do not yield any rank or rele-
vance score. All these approaches rely on the user being able to ex-
press precise information needs and do not support browsing-based
discovery within the already available results.

Faceted search interfaces allow for organizing or filtering items
throughout orthogonal categories. Despite being particularly useful
for inspecting enriched multimedia catalogs [33, 23], they require
metadata categories and hardly support topic-wise exploration.

Rankings conveying document relevance have been discouraged
as opaque an under-informative [7]. However, the advantage of
ranked lists is that users know where to start their search for po-
tentially relevant documents and that they employ a familiar for-
mat of presentation. A study [24] suggests that: i) users prefer
bars over numbers or the absence of graphical explanations of rel-
evance scores, and ii) relevance scores encourage users to explore
beyond the first two results. As a tradeoff, lists imply a sequential
search through consecutive items and only a small subset is visible
at a given time, thus they are mostly apt for sets no larger than a
few tens of documents. Focus+Context and Overview+Detail tech-
niques [20, 9] sometimes help overcome this limitation while alter-
native layouts like RankSpiral’s [25] rolled list can scale up to hun-
dreds and maybe thousands of documents. Other approaches such
as WebSearchViz [16] and ProjSnippet [3] propose complementary
visualizations to ordered lists, yet unintuitive context switching is
a potential problem when analyzing different aspects of the same
document.

Although ranked list are not a novelty, our approach attempts
to leverage the advantages provided by lists; i.e. user familiarity,
and augment them with stacked-bar charts to convey document rel-
evance and query term contribution in a transparent manner. Insy-
der’s bar graph [21] is an example of augmented ranked lists that
displays document an keyword relevance relevance with disjoint
horizontal bars aligned to separate baselines. Although layered bar
dispositions are appropriate for visualizing distribution of values in
each category across items, comparison of overall quantities and
the contribution of each category to the totals is better supported
by stacked-bar configurations [26]. Additionally, we rely on inter-
action as the key to provide controllability over the ranking criteria
and hence support browsing-based exploratory search.

LineUp [4] has proven the simplicity and usefulness of stacked
bars to represent multi-attribute rankings. Despite targeting data of
different nature – uRanks’s domain is rather unstructured with no
measurable attributes –, the visual technique itself served as inspi-
ration for our work.

2.2 Recommending Interfaces
In recent years, considerable efforts have been invested into lever-

aging the power of social RS through visual interfaces [17, 12]. As
for textual content, TalkExplorer [29] and SetFusion [18] are ex-
amples of interfaces for exploration of conference talk recommen-
dations. The former is mostly focused in depicting relationships

Federated

RS

Directory

Listing

Knowledge

Management

System

F
ee

d
b

a
ck

User

Collection

Interactive process

Automatic process

Figure 1: uRank visual analytics workflow showing automatic
(black arrows) and interactive mechanisms (red arrows)

among recommendations, users and tags in a transparent manner,
while SetFusion emphasizes controllability over a hybrid RS. Rank-
ings are not transparent though, as there is no explanation as to how
they were obtained. Kangasraasio et al. [10] highlighted that not
only allowing the user to influence the RS is important, but also
adding predictability features that produce an effect of causality
for user actions.

With uRank we intend to enhance predictability through docu-
ment hint previews (section 3.1.1), allow the user to control the
ranking by choosing keywords as parameters, and support under-
standing by means of a transparent graphic representation for scores
(section 3.2).

3. URANK VISUAL ANALYTICS
uRank is a visual analytics approach that combines lightweight

text analytics and an augmented ranked list to assist in exploratory
search of textual recommendations. The Web-based implementa-
tion is fed with textual document surrogates by a federated RS (F-
RS) connected to several sources. A keyword extraction module
analyzes all titles and abstracts and outputs a set of representative
terms for the whole collection and for each document. The UI al-
lows users to explore the collection content and refine information
needs in terms of topic keywords. As the user selects terms of in-
terest, the ranking is updated, bringing related documents closer to
the top and pushing down the less relevant ones. Figure 1 outlines
the workflow between automatic and interactive components.

uRank’s layout is arranged in a multiview fashion that displays
different perspectives of the document recommendations. Follow-
ing Baldonados’s guidelines [30], we decided to limit the number of
views to keep display space requirements relatively low. Therefore,
instead of multiple overlapping views, we favor a reduced number
of perspectives fitting in any laptop or desktop screen. The GUI
dynamically scales to the window size, remaining undistorted up to
a screen width of approximately 770 px.

The GUI presents the data in juxtaposed views that add to a
semantic Overview+Detail scheme [2] with three levels of gran-
ularity: Collection overview. The Tag Box (Figure 2.A) sum-
marizes the entire collection through by representing keywords as
augmented tags. Documents overview. The Document List shows
titles augmented with ranking information and the Ranking View
displays stacked bar charts depicting document relevance scores
(Figure 2.C and D, respectively). Together they represent mini-

30

Figure 2: uRank User Interface displaying a ranking of documents for the keywords “gender”, “wage” and “gap”. The user has
selected the third item in the list. A. The Tag Box presents a keyword-based summary, B. the Query Box contains the selected
keywords that originated the current ranking state, C. the Document List presents a list with augmented document titles. D. the
Ranking View renders stacked bars indicating relevance scores, E. the Document Viewer shows the title, year and snippet of the
selected document with augmented keywords, and F. the Ranking Controls wrap buttons for ranking settings.

mal views of documents where they can be differentiated by title
or position in the ranking and compared at a glance basing on the
presence of certain keywords of interest. Document detailed view.
For a document selected in the list, the Document Viewer (Figure
2.E) displays the title and snippet with color-augmented keywords.

These views can be modified through interaction with the Rank-
ing Controls (Figure 2.F) and the Query Box (Figure 2.B). The for-
mer provides controls to reset the ranking or switch ranking modes
between overall and maximum score. The latter is the container
where the user drops keywords tags to trigger changes in the rank-
ing visualization.

3.1 Collection Overview
uRank automatically extracts keywords from the recommended

documents with a twofold purpose: i) give an overview of the col-
lection, and ii) provide manipulable elements that serve as input for
an on-the-fly ranking mechanism (see section 3.2).

Summarizing the collection in a few representative terms allows
the user to scan the recommendations and grasp the general topic
at a glance, before even reading any of them. This is particularly
important in the context of collections brought by RS, where the
user is normally not directly generating the queries that feed the
search engine.

3.1.1 Inspecting the Collection
The Tag Box provides a summary of the recommended texts as

a whole by presenting extracted keywords as tags. Keywords tags
are arranged in a bag-of-words fashion, encoding relative frequen-
cies through position and intensity (Figure 2.A). The descending
ordering conveys document frequency (DF) while five levels of
blue shading help the user identify groups of keywords in the same
frequency range. Redundant coding is intentional and aims at max-
imizing distinctiveness among items in the keyword set [32].

At first glance, the Tag Box gives an outline of the covered topic

in terms of keywords and their relative frequencies. Nevertheless, a
bag-of-words representation per se does not supply further details
about how a keyword relates to other keywords or documents. We
bridge this gap by augmenting tags with two compact visual hints
– visible on mouse over – that reveal additional information: i) co-
occurence respect to other keywords, and i) a preview of the effect
of selecting the keyword.

The document hint (Figure 3) consists in a pie chart that con-
veys the proportion of documents in which the keyword appears.
A tooltip indicates the exact quantity and percentage. Upon click-
ing on the document hint, unrelated documents are dimmed so that
documents containing the keyword remain in focus Even unranked
documents become discretely visible at the bottom of the Docu-
ment List. This hint provides certain predictability regarding the
effect of selecting a keyword, in terms of which ranked items will
change their scores and which documents will be added to the rank-
ing.

The co-occurrence hint (Figure 2.A) shows the number of fre-
quently co-occurring keywords in a red circle. Moving the mouse
pointer over it brings co-occurring terms to focus by dimming the
others in the background. Clicking on the visual hint locks the
view so that the user can hover over co-occurring keywords, which
shows a tooltip stating the amount of co-occurrences between the
hovered and the selected keyword. This hint supports the user in
finding possible key phrases and sub-topics within the collection.

3.1.2 Mining a collection of documents
The aforementioned interactive features are supported by a com-

bination of well-known text-mining techniques that extend the rec-
ommended documents with document vectors and provide mean-
ingful terms to populate the Tag Box.

Document vectors ideally include only content-bearing terms like
nouns and frequent adjectives – appearing in at least 50% of the col-
lection –, hence it is not enough to just rely on a list of stop words

31

Figure 3: Document hints show a preview of documents con-
taining the hovered keyword, even if they are currently un-
ranked

to remove meaningless terms. Firstly, we perform a part-of-speech
tagging (POS tagging) [1] step to identify words that meet our cri-
teria, i.e. common and proper nouns and adjectives. Filtering out
non-frequent adjectives requires an extra step. Then, plural nouns
are singularized, proper nouns are kept capitalized and terms in up-
per case, e.g. "IT", remain unchanged. We apply the Porter Stem-
mer method [19] over the resulting terms, in order to increase the
probability of matching for similar words, e.g. "robot", "robots"
and "robotics" all match the stem "robot". A document vector is
thus conformed by stemmed versions of content-bearing terms.

Next, we generate a weighing scheme by computing TF-IDF
(term frequency inverse document frequency) for each term in a
document vector. The score is a statistical measure of how impor-
tant the term is to a document in a collection. Therefore, the more
frequent a term is in a document and the fewer times it appears in
the corpora, the higher its score will be. Documents’ metadata are
extended with these weighted document vectors.

To fill the Tag Box with representative keywords for the collec-
tion set, all document keywords are collected in a global keyword
set. Global keywords are sorted by document frequency (DF), i.e.
the number of documents in which they appear, regardless of the
frequency within documents. To avoid overpopulating the Tag Box,
only terms with DF above certain threshold (by default 5) are taken
into account. Note that terms used to label keyword tags are actual
words and not plain stems. Scanning a summary of stemmed words
would turn unintuitive for users. Thus, we keep a record of all term
variations matching each stem, in order to allow for reverse stem-
ming and pick one representative word as follows:
1. if there is only one term for a stem, use it to label the tag,
2. if a stem has two variants, one in lower case and the other in
upper case or capitalized, use it in lower case,
3. use a term that ends in ’ion’, ’ment’, ’ism’ or ’ty’,
4. use a term matching the stem,
5. use the shortest term.

To feed the document hint (Figure 3), uRank attaches a list of
bearing documents to each global keyword. For the case of co-
occurrence hints (Figure 2.A), keyword co-occurrences with a max-
imum word distance of 5 and a minimum of 4 repetitions are recorded.

3.2 Ranking Documents On The Fly
In theory, recommendations returned by a RS are already ranked

by relevance. However, in practice the lack of control thereof could
hinder user engagement if the GUI does not provide enough ratio-

a

b

Figure 4: a) Keyword tag before being dropped in Tag Box.
b) Keyword tag after dropped: weight slider and delete button
added, background color changed according to a categorical
color scale. Weight sliders have been tuned.

nale for the recommendations and features for shaping the recom-
mendation criteria. Hence, one of uRank’s major features is the
user-driven mechanism for re-organizing documents as information
needs evolve, along with its visually transparent logic.

3.2.1 Ranking Visualization
The ranking-based visualization consists of a list of document ti-

tles (Figure 2.C) and stacked bar charts (Figure 2.D) depicting rank
and relevance scores for documents and keywords within them.
Document titles are initially listed following the order in which they
were supplied by the F-RS.

Interactions with the view are the means for users to directly
or indirectly manipulate the data [31]. In uRank, changes in the
ranking visualization originate from keyword tag manipulation in-
side the Query Box (Figure 2.B). As the user manipulates tags, se-
lected keywords are immediately forwarded to the Ranking Model
as ranking parameters. Selected tags are re-rendered by adding a
weight slider, a delete button on the right-upper corner – visible on
hover – and a specific background color determined by a qualita-
tive palette (Figure 4). We chose Color Brewer’s [5] 9-class Set
1 palette for background color encoding, as it allows the user to
clearly distinguish tags from one another. When the user adjusts a
weight slider, the intensity of the tag’s background color changes
accordingly (see Figure 4). We provide three possibilities for key-
word tag manipulation:

• Addition: keyword tags in the Tag Box can be manually
unpinned (Figure 4a), dragged with the mouse pointer and
dropped into the Query Box (Figure 4b).

• Weight change: tags in the Query Box contain weight slid-
ers that can be tuned to assign a keyword a higher or lower
priority in the ranking.

• Deletion: tags can be removed from the Query Box and re-
turned to their initial position in the Tag Box by clicking on
the delete button.

As the document ranking is generated, the Document List is re-
sorted in descending order by overall score and stacked bars appear
in the Ranking View, horizontally aligned to each list item. Items
with null score are hidden, shrinking the list size to fit only ranked
items. The total width of stacked bars indicates the overall score of
a document and bar fragments represent the individual contribution
of keywords to the overall score. Bar colors match the color en-
coding for selected keywords in the Query Box, enabling the user
to make an immediate association between keyword tags and bars.
Missing colored bars in a stack denote the absence of certain words
in the document surrogate. Additionally, each item in the Docu-
ment List contains two types of numeric indicators: the first one
- in a dark circle - shows the position of a document in the rank-
ing while the adjacent colored number reveals how many positions

32

Figure 5: Ranking visualization in maximum score mode: doc-
uments are ranked basing on the keyword with highest score

the document has shifted, encoding upward and downward shifts in
green and red, respectively. This graphic representation attempts to
help the user concentrate only on useful items and ignore the rest by
bringing likely relevant items to the top, pushing less relevant ones
to the bottom and hiding those that seem completely irrelevant.

uRank allows for choosing between two ranking modes: overall
score (selected by default) and maximum score (Figure 5). In max-
imum score mode, the Ranking View renders a single color-coded
bar per document in order to emphasize its most influential key-
word. Finally, resetting the visualization clears the Query Box and
the Ranking View, relocating all selected keywords in the Tag Box
and restoring the Document List to its initial state.

3.2.2 Document Ranking Computation
Quick content exploration in uRank depends on its ability to

readily re-sort documents according to changing information needs.
As the user manipulates keyword tags and builds queries from a
subset of the global keyword collection, uRank computes docu-
ments scores to arrange them accordingly in a document ranking.
We assume that some keywords are more important to the topic
model than others and allow the user to assign weights to them.

Document scores are relevance measures for documents respect
to a query. As titles and snippets are the only content available for
retrieved document surrogates, these scores are computed with a
term-frequency scheme. Term distribution schemes are rather ade-
quate for long or full texts and are hence out of our scope. Boolean
models have the disadvantages that they not only consider every
term equally important but also produce absolute values that pre-
clude document ranking.

The Ranking Model implements a vector space model to com-
pute document-query similarity using the document vectors previ-
ously generated during keyword extraction (section 3.1.2). Nonethe-
less, a single relevance measure like cosine similarity alone is not
enough to convey query-term contribution, given that the best over-
all matches are not necessarily the ones in which most query terms
are found [7, 14]. The contribution that each query term adds to the
document score should be clear in the visual representation, in or-
der to give the user a transparent explanation as to why a document
ranks in a higher position than another. Therefore, we break down
the cosine similarity computation and obtain individual scores for
each query term, which are then added up as an overall relevance
score.

Given a document collection D and a set of weighted query terms
T , such that ∀t ∈ T : 0 ≤ wt ≤ 1; the relevance score for term t in
document vector d ∈ D respect to query terms T is calculated as
follows:

s(td) =
t f id f (td)×wt

|d|×
√

|T |
,

where t f id f (td) is the tf-idf score for term t in document d and |d|
is the norm for vector d.

The overall score of a document S(d) is then computed as the

sum of each individual term score s(td). The collection D is next
sorted in descending order by overall score with the quicksort al-
gorithm and ranking positions are assigned in such way that docu-
ments with equivalent overall score share the same place.

Alternatively, users can rank documents by maximum score, in
which case S(d) = max(s(td)).

3.3 Details on Demand
Once the user identifies documents that seem worth further in-

specting, the next logical step is to drill down one by one to deter-
mine whether the initial assumption holds. The Document Viewer
(Figure 2.D) gives access to textual content - title and snippet -
and available metadata for a particular document. Query terms are
highlighted in the text following the same color coding for tags in
the Query Box and stacked bars in the Ranking View. These sim-
ple visual cues pop out from their surroundings, enabling the user
to preattentively recognize keywords in the text and perceive their
general context prior to conscious reading.

3.4 Change-Awareness Cues and Attention Guid-
ance

We favor the use of animation to convey ranking-state transitions
rather than abrupt static changes. Animated transitions are inher-
ently intuitive and engaging, giving a perception of causality and
intentionality [8]. As the user manipulates a keyword tag in the
Query Box, uRank raises change awareness in the following way:

• Keyword tags are re-styled as explained in section 3.2.1. If
the tag is removed from the Query Box, animation is used
to shift the tag to its original position in the Tag Box at a
perceivable pace.

• Depending on the type of ranking transition, the Document
List shows a specific effect:

– If the ranking is generated for the first time, an accordion-
like upward animation shows that its nature has changed
from a plain list to a ranked one.

– If the ranking is updated, list items shift to their new
positions at a perceptible pace.

– If ranking positions remain unchanged, the list stays
static as a soft top-down shadow crosses it.

• Green or red shading effects are applied on the left side of list
items moving up or down, respectively, disappearing after a
few seconds.

• Stacked bars grow from left to right revealing new overall
and keyword scores.

The user can closely follow how particular documents shift po-
sitions by clicking on the watch - eye-shaped - icon. The item is
brought to focus as it is surrounded with a slightly darker shadow
and the title is underlined. Also, watched documents remain on top
of the z-index during list animations, avoiding being overlaid by
other list items.

The same principle of softening changes is applied to re-direct
user attention when a document is selected in the Ranking View.
The selected row is highlighted and the snippet appears in the Doc-
ument Viewer in a fade-in fashion. Animated transitions for ranking-
state changes and document selection help the user intuitively switch
contexts, either from the Tag Box to the Document List and Rank-
ing View, or from the latter to the Document Viewer. As Baldonado
[30] states in the rule of attention management, perceptual tech-
niques lead the users attention to the right view at the right time.

33

4. EVALUATION
The goal of this study was to find out how people responded

when working with our tool. In the current scenario, recommenda-
tions were delivered in a sorted list with no relevance information.
Since we aim at supporting exploratory search, we hypothesized
that participants using uRank would be able to gather items faster
and with less difficulty, compared to a typical list-based UI.

We were also interested in observing the effect of exposing users
to different sizes of recommendation lists. We expected that with-
out this relevance information, a slight growth in the number of
displayed items would frustrate the user at the moment of deciding
which items should be inspected in detail in the first place. For ex-
ample, finding the 5 most relevant items in a list of ten appears as
an easy task, whereas accomplishing the same task but searching
a list of forty or sixty items would be more time consuming and
entail a heavier cognitive load.

4.1 Method
We conducted an offline evaluation where participants performed

four iterations of the same task with either uRank (U) or a baseline
list-based UI (L) with usual Web browser tools, e.g. Control+F
keyword search. Furthermore, we introduced two variations in the
number of items to which participants were exposed, namely 30
or 60 items. Therefore, the study was structured in a 2 x 2 re-
peated measures design with tool and #items as independent vari-
ables, each with 2 levels (tool = U/L, #items = 30/60).

The general task goal was to "find 5 relevant items" for the given
topic and all participants had to perform one task for each com-
bination of the independent variables, i.e. U-30, U-60, L-30 and
L-60.

To counterbalance learning effects, we chose four different top-
ics covering a spectrum of cultural, technical and scientific content:
Women in workforce (WW), Robots (Ro), Augmented Reality (AR)
and Circular economy (CE). Thus, topic was treated as a random
variable within constraints. We corroborated that participants were
not knowledgeable in any of the topics. All variable combinations
were randomized and assigned with balanced Latin Square.

Wikipedia provides a well-defined article for each topic men-
tioned above. We considered them as fictional initial exploration
scenarios but participants were not exposed to them. Instead, we
simulated a situation in which the user has already received a list of
recommendations while exploring certain Wikipedia page. There-
fore, we prepared static recommendation lists of 60 and 30 items
for each topic and used them as inputs for uRank throughout the dif-
ferent participants and tasks. To create each list, portions of texts
from the original Wikipedia articles were fed to the F-RS, which
preprocessed the text and created queries that were forwarded to a
number of content providers. The result was a sorted merged list of
items from each provider with no scoring information.

Each task comprised three sub-tasks (Q1, Q2 and Q3) that con-
sisted in finding the 5 most relevant items for a given piece of text.
In Q1 and Q2 we targeted a specific search and the supplied text
was limited to two or three words. Q3 was designed as a broad-
search sub-task where we provided an entire paragraph extracted
from the Wikipedia page and the users had to decide themselves
which keywords described the topic better. The motivation to ask
for the "most relevant" documents was to avoid careless selection.

We recorded completion time for every individual sub-task and
for the overall task. To measure workload, we leveraged a 7-likert
scale NASA TLX questionnaire covering six workload dimensions.

4.1.1 Participants
Twenty four (24) participants took part in the study (11 female,

Table 1: Participants found uRank reduces workload in all di-
mensions

Dimension F(1,23) p ε
Mental Demand 19.70 p < .05 .10
Physical Demand 14.52 p < .01 .07
Temporal Demand 7.72 p < .05 .05
Performance 11.80 p < .01 .10
Effort 48.60 p < .001 .22
Frustration 15.12 p < .01 .07
Workload 35.25 p < .01 .20

13 male, between 22 and 37 years old). We recruited mainly gradu-
ate and post-graduate students from the medical and computer sci-
ence domains. None of them is majoring in the topic areas selected
for the study.

4.1.2 Procedure
A session started with an introductory video explaining the func-

tionality of uRank. Each participant got exactly the same instruc-
tions. Then came a short training session with a different topic
(Renaissance) to let participants familiarize with uRank and the
baseline the tool. At the beginning of the first task, the system
showed a short text describing the topic and the task to be fulfilled.
After reading the text, the participant pressed "Start" to redirect the
browser to the corresponding UI. At this point, the first sub-task be-
gan and the internal timer initiated the count, without disturbing the
user. The goal of the task and the reference text were shown in the
upper part of the UI. Participants were able to select items by click-
ing on the star-shaped icon and inspect them later on a drop-down
list. In a pilot study, we realized that asking for the "most" rele-
vant items made the experiment overly long, as participants tried to
carefully inspect their selections (particularly in the L condition).
Then we decided to limit the duration of the three tasks to 3m, 3m
and 6m respectively. The time constraint was not a hard deadline.
During the study the experimenter reminded the participants when
the allotted time was almost over, but did not force them to aban-
don. The sub-task concluded when the participant clicked on the
"Finished" button. The UI alerted participants when attempting to
finish without collecting 5 items, but allowed them to continue if
desired. The second sub-task started immediately afterward and
once the whole task was completed they had to fill the NASA TLX
questionnaire. The procedure for the remaining tasks was repeated
following the same steps. Finally, participants were asked about
comments and preferences.

4.2 Results
Workload: A two-way repeated measures ANOVA with tool and

#items as independent variables revealed a significant effect of tool
on perceived workload F(1,23)=35.254, p < .01,ε = .18. Bonfer-
roni post-hoc tests showed significantly lower workload when us-
ing uRank (p < .001). We also assessed the effect for each work-
load dimension. Again, ANOVA showed a significant effect of tool
in all of them, as shown in Table 1. (#items) did not have a major
effect in any case.

Completion Time: We analyzed the task overall completion time,
as well as completion times for each sub-task. A two-way re-
peated measures ANOVA revealed a significant effect of tool on
overall completion time F(1,23)=4.94, p < .05,ε = .02. This ef-
fect disappeared in a Bonferroni post-hoc comparison. For Q1
and Q2 ANOVA reported no significant effect, but it showed a
significant effect of tool on completion time for Q3, F(1,23)=6.2,

34

Figure 6: Results. (Left) Workload interaction lines show that
uRank is significantly less demanding. (Right) Boxplots of time
completion for each condition show a regularity towards using
all available time.

Table 2: Similarities in collections gathered during evaluation
Sub-task Comparison WW Ro AR CE All topics

U vs L .55 .79 .58 .74 .66
Q1 U-30 vs U-60 .71 .83 .94 .67 .79

L-30 vs L-60 .58 .83 .56 .56 .63
U vs L .70 .86 .84 .86 .81

Q2 U-30 vs U-60 .84 .89 .90 .93 .89
L-30 vs L-60 .82 .74 .81 .87 .81
U vs L .75 .72 .75 .63 .72

Q3 U-30 vs U-60 .64 .88 .75 .62 .72
L-30 vs U-60 .59 .66 .63 .33 .55

p < .05,ε = .05. As a surprise, post-hoc comparison showed that
using uRank took significantly longer.

Performance: Relevance is a rather subjective measure. Hence,
instead of contrasting item selections to some ground truth, we an-
alyzed “consensus” in item selection.

We aggregated the collections gathered under the manipulated
conditions and computed cosine similarity across UI (tool), data
set size (#items), topic (WW, Ro, AR, and CE) and sub-task (Q1,
Q2 and Q3).

Overall, there was a high similarity between collections pro-
duced with uRank and those obtained with the list-based UI across
all sub-tasks. Choices regarding relevant documents matched three
out of four times (M = .73, SD = .1).

Table 2 shows that collections produced with our tool (U) for the
two variations of #items (U-30 vs U-60) turned highly similar re-
gardless of topic and sub-task (M = .8, SD = .12, with a minimum
of .62). Comparisons for a typical list-based UI (L) displaying 30
and 60 items (L-30 vs L-60) denote greater diversity (M = .67,
SD = .16, with a minimum of .33) in item selection.

Interestingly, similarity values tend to decrease for broad search
task (Q3) (M = .66, SD = .13) respect to targeted search (Q1 and
Q2) (M = .77, SD = .13).

4.3 Discussion
The study results shed a light on how people interact with a tool

like uRank. For each hypotheses we contrasted the results with the
subjective feedback acquired after evaluation.

Workload: The results support our hypothesis that uRank incurs
in lower workload during exploratory search, both in specific and

broad search tasks. Participants commented feeling alleviated when
they could browse the ranking and instantly discard document that
did not contain any word of interest. As a remark, the majority
claimed that a few tasks were too hard to solve, especially without
the uRank, because sometimes the terms of interest barely appeared
in the titles or were perceived as too ambiguous, e.g. "participa-
tion of women in the workforce". Also dealing with technical texts
about unfamiliar topics was posed some strain. For example, two
participants had to momentarily interrupt exploration to look up a
word they did not understand. In spite of that, workload was sig-
nificantly lower with uRank across all dimensions.

Completion Time: We expected people would be faster perform-
ing with uRank than using a browser-based keyword filter, but com-
pletion times were not significantly different. The closing interview
revealed that participants who had collected five items before the
due time exploited the remainder to refine their selections. In gen-
eral, participants understood that they were not expected to perform
perfectly but to do their best in the given time. However, we noticed
that a small group that behaved in the opposite way reported feel-
ing more pressed by time and not satisfied with their performance.
The general tendency is reflected in the significant result on tem-
poral demand: participants felt significantly less pressed to finish
while performing with uRank. The lower subjective time pressure
suggests that participants indeed had more time to analyze their
choices with uRank.

Performance: The results suggest that our tool produces more
uniform results as the number of items to which users are exposed
grows. Nevertheless, the proportion of matching documents in list-
generated collections – two out of three – still conveys a moderate
consensus.

The decrease in consensus for broad search task respect to tar-
geted search could be explained by the inherent variability across
participants at the moment of chosing the terms of interest for a
given text larger than a couple of words.

5. CONCLUSION
We introduced a visual tool for exploration, discovery and anal-

ysis of recommendations of textual documents. uRank aims to help
the user: i) quickly overview the most important topics in a col-
lection of documents, ii) interact with content to describe a topic
in terms of keywords, and iii) on-the-fly reorganize the documents
along keywords describing a topic.

This paper presented the reasoning line for the visual and inter-
active design and a comparative user study where we evaluated the
experience of collecting relevant items to topics of interest. Par-
ticipants found it significantly more relaxing to work with uRank,
and most of them wanted to start actively using it in their scientific
endeavors (e.g., report or paper writing). Yet, selecting the right
keywords to describe a topic is not a trivial task, as it showed on
the performance results of the evaluation. We will continue to ex-
plore different techniques, e.g. topic modeling, in the near future.
As for the GUI, we will work further on solving scaling problems,
for example when the amount of tags in the Tag Box or the length of
the result list becomes unmanageable. Moreover, we will leverage
the document selections collected during the evaluation as feedback
to improve recommendations, closing the interactive loop with the
RS as depicted in Figure 1.

35

6. REFERENCES
[1] E. Brill. A simple rule-based part of speech tagger. In

Proceedings of the workshop on Speech and Natural
Language - HLT ’91, page 112, Morristown, NJ, USA, 1992.
Association for Computational Linguistics.

[2] A. Cockburn, A. Karlson, and B. B. Bederson. A review of
overview+detail, zooming, and focus+context interfaces.
ACM Computing Surveys, 41(1):1–31, 2008.

[3] E. Gomez-Nieto, F. San Roman, P. Pagliosa, W. Casaca, E. S.
Helou, M. C. F. de Oliveira, and L. G. Nonato. Similarity
preserving snippet-based visualization of web search results.
IEEE transactions on visualization and computer graphics,
20(3):457–70, Mar. 2014.

[4] S. Gratzl, A. Lex, N. Gehlenborg, H. Pfister, and M. Streit.
LineUp: visual analysis of multi-attribute rankings. IEEE
transactions on visualization and computer graphics,
19(12):2277–86, Dec. 2013.

[5] M. Harrower and C. A. Brewer. ColorBrewer.org: An Online
Tool for Selecting Colour Schemes for Maps. The
Cartographic Journal, 40(1):27–37, June 2003.

[6] M. Hearst. User interfaces for search. Modern Information
Retrieval, 2011.

[7] M. A. Hearst. TileBars: Visualization of Term Distribution
Information in Full Text Information Access. In Proceedings
of the SIGCHI conference on Human factors in computing
systems - CHI ’95, pages 59–66. ACM Press, 1995.

[8] J. Heer and G. Robertson. Animated transitions in statistical
data graphics. IEEE transactions on visualization and
computer graphics, 13(6):1240–7, 2007.

[9] O. Hoeber and X. D. Yang. The Visual Exploration of Web
Search Results Using HotMap. In Proceedings of the
Information Visualization (IV06), 2006.

[10] A. Kangasrääsiö, D. Gowacka, and S. Kaski. Improving
Controllability and Predictability of Interactive
Recommendation Interfaces for Exploratory Search. In IUI,
pages 247–251, 2015.

[11] J. Kay. Scrutable adaptation: Because we can and must. In
Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 4018 LNCS, pages 11–19, 2006.

[12] B. P. Knijnenburg, S. Bostandjiev, J. O’Donovan, and
A. Kobsa. Inspectability and control in social recommenders.
Proceedings of the 6th ACM conference on Recommender
systems - RecSys ’12, page 43, 2012.

[13] B. P. Knijnenburg, M. C. Willemsen, Z. Gantner, H. Soncu,
and C. Newell. Explaining the user experience of
recommender systems. User Modelling and User-Adapted
Interaction, 22(4-5):441–504, 2012.

[14] C. D. Manning. Introduction to Information Retrieval.
Cambridge University Press, 2008.

[15] G. Marchionini. Exploratory search: from finding to
understanding. Communications of the ACM, 49(4):41, 2006.

[16] T. N. Nguyen and J. Zhang. A novel visualization model for
web search results. IEEE transactions on visualization and
computer graphics, 12(5):981–8, 2006.

[17] J. O’Donovan, B. Smyth, B. Gretarsson, S. Bostandjiev, and
T. Höllerer. PeerChooser: Visual Interactive
Recommendation. Proceeding of the twenty-sixth annual
SIGCHI conference on Human factors in computing systems,
pages 1085–1088, 2008.

[18] D. Parra, P. Brusilovsky, and C. Trattner. See what you want
to see: Visual User-Driven Approach for Hybrid

Recommendation. Proceedings of the 19th international
conference on Intelligent User Interfaces - IUI ’14, pages
235–240, 2014.

[19] M. Porter. An algorithm for suffix stripping. Program:
electronic library and information systems, 40(3):211–218,
1980.

[20] R. Rao and S. K. Card. The table lens. In Proceedings of the
SIGCHI conference on Human factors in computing systems
celebrating interdependence - CHI ’94, number April, pages
318–322, New York, New York, USA, 1994. ACM Press.

[21] H. Reiterer, G. Tullius, and T. Mann. Insyder: a
content-based visual-information-seeking system for the
web. International Journal on Digital Libraries, pages
25–41, 2005.

[22] F. Ricci, L. Rokach, and B. Shapira. Introduction to
recommender systems handbook. In F. Ricci, L. Rokach,
B. Shapira, and P. B. Kantor, editors, Recommender Systems
Handbook, pages 1–35. Springer, 2011.

[23] C. Seifert, J. Jurgovsky, and M. Granitzer. FacetScape : A
Visualization for Exploring the Search Space. In Proceedings
18th International Conference on Information Visualzation,
pages 94–101, 2014.

[24] G. Shani and N. Tractinsky. Displaying relevance scores for
search results. Proceedings of the 36th international ACM
SIGIR13, pages 901–904, 2013.

[25] A. Spoerri. Coordinated Views and Tight Coupling to
Support Meta Searching. In Proceedings of Second
International Conference on Coordinated and Multiple Views
in Exploratory Visualization, pages 39–48, 2004.

[26] M. Streit and N. Gehlenborg. Bar charts and box plots.
Nature methods, 11(2):117, Feb. 2014.

[27] K. Swearingen and R. Sinha. Beyond Algorithms Beyond
Algorithms : An HCI Perspective on Recommender
Systems. ACM SIGIR 2001 Workshop on Recommender
Systems (2001), pages 1–11, 2001.

[28] N. Tintarev and J. Masthoff. Evaluating the effectiveness of
explanations for recommender systems. User Modeling and
User-Adapted Interaction, 22(4-5):399–439, Oct. 2012.

[29] K. Verbert, D. Parra, P. Brusilovsky, and E. Duval.
Visualizing recommendations to support exploration,
transparency and controllability. Proceedings of the 2013
international conference on Intelligent user interfaces - IUI
’13, page 351, 2013.

[30] M. Q. Wang Baldonado, A. Woodruff, and A. Kuchinsky.
Guidelines for using multiple views in information
visualization. Proceedings of the working conference on
Advanced visual interfaces (AVI), pages 110–119, 2000.

[31] M. O. Ward, G. Grinstein, and D. A. Keim. Interactive Data
Visualization: Foundations, Techniques, and Application. A.
K. Peters, Ltd, May 2010.

[32] C. Ware. Information visualization: perception for design.
Elsevier, 3rd edition, 2013.

[33] K.-P. Yee, K. Swearingen, K. Li, and M. Hearst. Faceted
metadata for image search and browsing. Proceedings of the
conference on Human factors in computing systems - CHI
’03, pages 401–408, 2003.

36

FutureView: Enhancing Exploratory Image Search

Sayantan Hore, Dorota Głowacka, Ilkka Kosunen, Kumaripaba Athukorala and Giulio Jacucci
Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of Helsinki

first.last@cs.helsinki.fi

ABSTRACT
Search algorithms in image retrieval tend to focus on giving the
user more and more similar images based on queries that the user
has to explicitly formulate. Implicitly, such systems limit the users
exploration of the image space and thus remove the potential for
serendipity. As a response, in recent years there has been an in-
creased interest in developing content based image retrieval sys-
tems that allow the user to explore the image space without the
need to type specific search queries. However, most of the research
focuses on designing new algorithms and techniques, while little
research has been done in designing interfaces allowing the user to
actively engage in directing their image search. We present an inter-
active FutureView interface that can be easily combined with most
existing exploratory image search engines. The interface gives the
user a view of possible future search iterations. A task-based user
study demonstrates that our interface enhances exploratory image
search by providing access to more images without increasing the
time required to find a specific image.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
Interactive user interfaces, Content Based Image Retrieval (CBIR),
Exploratory search

1. INTRODUCTION
In recent years, image retrieval techniques operating on meta-

data, such as textual annotations or tags, have become the industry
standard for retrieval from large image collections, e.g. Google
Image Search. This approach works well with sufficiently high-
quality meta-data, however, with the explosive growth of image
collections, it has become apparent that tagging new images quickly
and efficiently is not always possible. Secondly, even if instanta-
neous high-quality image tagging was possible, there are still many
instances where image search by query is problematic. It might be
easy for a user to define their query if they are looking for an image

.

of a cat but how do they specify that the cat should be of a very
particular shade of ginger with sad looking eyes.

A solution to this problem has been content based image retrieval
(CBIR) [5, 12] combined with relevance feedback [24]. However,
evidence from user studies indicates that relevance feedback can
lead to a context trap, where the user has specified their context so
strictly that the system is unable to propose anything new, while
the user is trapped within the present set of results and can only
exploit a limited area of information space [11]. Faceted search
[22] was an attempt to solve the problem of context trap by using
global features. However, the number of global features can be very
large thus forcing the user to select from a large amount of options,
which can make the whole process inconvenient and cognitively
demanding. Employing various exploration/exploitation strategies
into relevance feedback has been another attempt at avoiding the
context trap. The exploitation step aims at returning to the user the
maximum number of relevant images in a local region of the feature
space, while the exploration step aims at driving the search towards
different areas of the feature space in order to discover not only
relevant images but also informative ones. This type of systems
control dynamically, at each iteration, the selection of displayed
images [18, 7].

However, in spite of the development of new techniques to sup-
port queryless exploratory image search, not much attention has
been devoted to the development of interfaces to support this type
of search [19]. Most research in CBIR interface design concen-
trates either on faceted search [20, 22] or enabling CBIR through a
query image or a group of images [15]. In fact, most of the existing
techniques and interfaces rely for exploration on iterative trial-and-
error. All of the above techniques provide only limited support
for the recent emerging trend of combining interactive search and
recommendation [2]. One key question in this respect is how to
utilise relevance feedback in optimising not only the narrowing but
also the broadening of the scope of the search. We contribute to
this problem with FutureView – an interface that supports queryless
CBIR image search through more fluid steering of the exploration.
This system uses a novel technique that allows users to preemp-
tively explore the impact of the relevance feedback before operat-
ing a query iteration. We investigate in an evaluation whether this
approach is useful in allowing users to explore more pictures. The
evaluation of FutureView is carried out in a comparative user study
and we conclude with implications for future development of image
search systems that blur interactive search and recommendation.

2. RELATED WORK
Most image search systems still rely on search queries in order

to return to the user a set of images associated with a tag related to
the search query [1, 19]. There are also a number of alternative in-

37

Figure 1: The FutureView interface: users can rate images on the panel on the left-hand side of the screen and the future view of the
next iteration is presented on the right-hand side of the screen.

terfaces that group similar images based on various clustering tech-
niques [21], or display similar images close to one another [14, 17,
16, 23]. However, all of these techniques rely on the availability
of a dataset of tagged images or an automatic expansion of an ini-
tial textual query. Another approach is to rank images based on
features extracted from a set of query images provided by the user
[4, 6]. Faceted search [22] is another technique applied in CBIR
to allow the user to browse through a collection of images using
high-level image features, such as colour or texture. However, this
approach often leads to a very large number of features, which can
make the search process cognitively demanding.

3. OUR APPROACH
The main idea behind interactive interfaces used in most query-

less exploratory CBIR systems [3, 13, 18] is that instead of typing
queries related to the desired image, the user is presented with a
set of images and navigates through the contents by indicating how
“close” or “similar” the displayed images are to their ideal image.
Typically, the user feedback is given by clicking relevant images or
through a sliding bar at the bottom of the image. At the next iter-
ation, the user is presented with a new set of images more relevant
to his interest. The search continues until the user is satisfied with
the results. Previous studies of CBIR systems show that this type
of interface is intuitive and easy to use [3], however, users often
feel that the new set of images does not reflect the relevance feed-
back they provided earlier: users do not feel fully in control of the
system.

Our solution to this problem is an interface that provides the user
with a “peek into the future". The FutureView interface, illustrated
in Figure 1, is divided into two sections. The left-hand part of the
screen is similar to a traditional interface, where the user can rate
images by using a sliding bar at the bottom of each image. How-
ever, after rating one or more images, the user is not taken to the
next search iteration but instead presented with the future view of
the next iteration on the right-hand side of the screen. This allows
the user to “try out" what impact providing feedback to different
images will have on future iterations. When the user is satisfied
with one of the future views, he clicks the “next" button in the right

upper corner of the screen to confirm his choice and then is taken
to the next search iteration.

4. EXPERIMENTAL STUDY
We conducted a comparative user study to evaluate the impact

of FutureView on three types of image search tasks: target, cat-
egory and open. The study included two conditions: 1) our Fu-
tureView interface; 2) a version of our interface without the future
view, which from now on we will refer to as "single view". The
same backend system was used with both user interfaces. We used
as our backend an existing exploratory image search system, the
details of which can be found in [9]. We also recorded the gaze be-
havior of the participants to determine how much time they spent
observing the future during the FutureView condition. Gaze data
was recorded during both conditions, and the participants were not
informed that only the data in the FutureView condition would be
used. We used the Tobii X2-60 eye tracker with sampling rate of
60Hz.

4.1 Participants
We recruited 12 post-graduate students from our university to

participate in the study (3 female). The average age of the partic-
ipants was 24 years (from 20 to 30). Google image search is the
most frequently used images search tool by all the participants.

4.2 Design
We used the MIRFLICKR-25000 dataset with three types of fea-

tures: colour, texture and edge, as described in [10]. We followed
the most commonly used categorization of image search to design
our tasks[3]:

• Target search - the user is looking for a particular image, e.g.
a white cat with long hair sitting on a red chair.

• Category search - the user does not have a specific image
in mind and will be satisfied with any image from a given
category, e.g. an image of a cat.

• Open search - the user is browsing a collection of images

38

without knowing what the final target may look like, e.g.
looking for an illustration to an essay about “youth”.

We used a within subject design so that every participant per-
formed three tasks covering all task types in both systems (six tasks
in total = 3 (task types) × 2 (systems)). We designed two tasks for
each category to assign unique task for each system. The subject
of the two tasks for target search are: red rose, and tall building.
In category search, we asked the participants to find images from
the following categories: city by night, seashore. In open search,
we asked the participants to imagine they were writing a newspaper
article on a given topic and they had to find an image to accompany
their article. The topics of the articles were: (1) happiness; (2) gar-
dening. We selected these topics because they are well covered in
the MIRFLICKR-2500 dataset. We showed 12 images per itera-
tion in the single view interface and in Futureview. After receiving
feedback, FutureView shows the next 12 images on the right-hand
side.

4.3 Procedure
At the beginning of the experiment, we briefed the participants as

to the procedure and purpose of the experiment before they signed
the informed consent form. We then provided them with practice
tasks to get them familiar with both systems. The participant would
then proceed to perform six search tasks, divided into two groups of
three tasks so that each participant would complete each different
type of search task once with both systems. Before they started
the target search tasks, we presented three example images and a
short description of the image that they should look for. We did not
provide any example images for category search and open search
tasks. We randomized the order of tasks as well as the order of
systems. After training, the eye tracker was calibrated.

We instructed the participants to finish each task when they find
the target image (in case of target search) or when they feel they
found the ideal image for the tasks from category search and open
search. In all the tasks, we limited the search to 25 iterations to en-
sure that the participants did not spend an excessive amount of time
on any task. After finishing each task, the participants completed
the NASA TLX questionnaire [8]. After the completion all 6 tasks,
we conducted a semi-structured interview with every participant to
understand their overall satisfaction with the FutureView. A study
lasted approximately 45 minutes. We compensated the participants
with a movie ticket.

5. FINDINGS
Overall 12 users completed 72 tasks and all the participants com-

pleted all the tasks in fewer than 25 iterations. Figure 2 shows the
average duration of a search session and the average number of im-
ages shown over a search session. On average, category searches
were the shortest (104 seconds with single view and 109 seconds
with FutureView), while open searches took the longest (145 sec-
onds with single view and 140 seconds with FutureView). The
Wilcoxon signed rank test indicates no significant difference in
search session duration for any search type with the two interfaces
(p > 0.6). In spite of the fact that no additional time is required
to complete each type of search with FutureView, users are ex-
posed to a much higher number of images – on average three times
more than with single view. The Wilcoxon signed rank test shows
that this number is significantly higher in open and target searches
(p < 0.05) and marginally higher (p = 0.05) in category search
with FutureView. These results indicate that FutureView supports
more exploration.

Figure 3 shows the average scores of the NASA TLX question-

Figure 2: Average duration of a search session (in seconds) and
average number of images shown over a search session for the
three type of searches with a single view interface and Future-
View

naire. In spite of the fact that with FutureView users were exposed
to three times as many images as with the single view interface
within the same period of time, users did not report feeling hur-
ried, stressed or irritated. Similarly, users did not feel that Future-
View made the task more mentally or physically demanding and
they did not feel that they had to work any harder to achieve their
goal. The Wilcoxon signed rank test indicates that there was not
significant difference between the two interfaces in terms of scores
for questions 1,2, 4, 5 and 6 (p > 0.2). The users, however, felt
significantly more successful completing the task with FutureView
(p < 0.04 according to Wilcoxon signed rank test).

The eye tracking results show that the participants spent similar
amount of time looking at both the current search results and the
future view. Out of the 12 participants, three had excessive amount
of errors in the eye tracking data, so only nine participants were
considered. On average, the users spent 41.8% of the time looking
at the future section of the screen, with standard deviation of 11.8%.

The post-experiment interviews with the participants also indi-
cate that they found the FutureView interface helpful and easy to
use. Some of the comments include: “The FutureView is pleasant
to use and play with"; “The FutureView helps in reaching target
quicker than the single view"; “The FutureView is helpful for peo-
ple whose job is to search for images". These comments are in
striking contrast to the remarks the participants made in the pre-
study questionnaire, where they stated that most existing image
search engines are tiring and cumbersome to use. The participants
also remarked that “Single View can be discouraging as the user
has no idea what is coming next", “ once deviated from the actual
path, there is no way to come back [in single view]".

6. CONCLUSIONS
In this paper, we introduced the FutureView interface for query-

less exploratory content based image search. It allows the user to
see the effect of the relevance feedback on currently presented im-
ages on future iterations, which, in turn, allows the user to direct
their search more effectively. Initial experiments show that users
take advantage of the FutureView interface and engage in more ex-
ploration than in a system with a single view interface.

Our future plans include more extensive user studies with various
types of image datasets and various image feature representations.

39

Figure 3: Average score for the NASA TLX questionnaire for tasks conducted with a single view interface and the FutureView.

Currently, the FutureView does not save the search history. We
are planning to add this feature to our system to allow the user to
branch out their searches using any point in the history as a new
starting search point.

7. ACKNOWLEDGEMENTS
This work was supported by The Finnish Funding Agency for In-

novation (projects Re:Know and D2I) and the Academy of Finland
(the Finnish Centre of Excellence in Computational Inference).

8. REFERENCES
[1] P. André, E. Cutrell, D. S. Tan, and G. Smith. Designing

novel image search interfaces by understanding unique
characteristics and usage. In Proc. of INTERACT, 2009.

[2] E. H. Chi. Blurring of the boundary between interactive
search and recommendation. In Proc. of IUI, 2015.

[3] I. Cox, M. Miller, T. Minka, T. Papathomas, and P. Yianilos.
The bayesian image retrieval system, pichunter: theory,
implementation, and psychophysical experiments. Image
Processing, 9(1):20–37, 2000.

[4] J. Cui, F. Wen, and X. Tang. Real time google and live image
search re-ranking. In Proc. of MM, 2008.

[5] R. Datta, J. Li, and J. Wang. Content-based image retrieval:
approaches and trends of the new age. In Multimedia
information retrieval, pages 253–262. ACM, 2005.

[6] J. Fogarty, D. Tan, A. Kapoor, and S. Winder. Cueflik:
Interactive concept learning in image search. In Proc. of
CHI, 2008.

[7] D. Głowacka and J. Shawe-Taylor. Content-based image
retrieval with multinomial relevance feedback. In Proc. of
ACML, 2010.

[8] S. G. Hart and L. E. Staveland. Development of nasa-tlx
(task load index): Results of empirical and theoretical
research. Advances in psychology, 52:139–183, 1988.

[9] S. Hore, L. Tervainen, J. Pyykko, and D. Glowacka. A
reinforcement learning approach to query-less image
retrieval. In Proc. of Symbiotic, 2014.

[10] M. J. Huiskes, B. Thomee, and M. S. Lew. New trends and
ideas in visual concept detection: The mir flickr retrieval
evaluation initiative. In Proc. of MIR, 2010.

[11] D. Kelly and X. Fu. Elicitation of term relevance feedback:
an investigation of term source and context. In Proc. of
SIGIR, 2006.

[12] H. Kosch and P. Maier. Content-based image retrieval
systems-reviewing and benchmarking. JDIM, 8(1):54–64,
2010.

[13] J. Laaksonen, M. Koskela, S. Laakso, and E. Oja.
Picsom–content-based image retrieval with self-organizing
maps. Pattern Recognition Letters, 21(13):1199–1207, 2000.

[14] H. Liu, X. Xie, X. Tang, Z.-W. Li, and W.-Y. Ma. Effective
browsing of web image search results. In Proc. of MIR, 2004.

[15] M. Nakazato, L. Manola, and T. S. Huang. Group-based
interface for content-based image retrieval. In Proc. of the
Working Conference on Advanced Visual Interfaces, 2002.

[16] N. Quadrianto, K. Kersting, T. Tuytelaars, and W. L.
Buntine. Beyond 2d-grids: A dependence maximization view
on image browsing. In Proc. of MIR, 2010.

[17] G. Strong, E. Hoque, M. Gong, and O. Hoeber. Organizing
and browsing image search results based on conceptual and
visual similarities. In Advances in Visual Computing, pages
481–490. Springer, 2010.

[18] N. Suditu and F. Fleuret. Iterative relevance feedback with
adaptive exploration/exploitation trade-off. In Proc. of
CIKM, 2012.

[19] B. Thomee and M. S. Lew. Interactive search in image
retrieval: a survey. International Journal of Multimedia
Information Retrieval, 1(2):71–86, 2012.

[20] R. Villa, N. Gildea, and J. M. Jose. A faceted interface for
multimedia search. In Proc. of SIGIR, 2008.

[21] S. Wang, F. Jing, J. He, Q. Du, and L. Zhang. Igroup:
Presenting web image search results in semantic clusters. In
Proc. of CHI, 2007.

[22] K.-P. Yee, K. Swearingen, K. Li, and M. Hearst. Faceted
metadata for image search and browsing. In Proc. of CHI,
2003.

[23] E. Zavesky, S.-F. Chang, and C.-C. Yang. Visual islands:
Intuitive browsing of visual search results. In Proc. of CIVR,
2008.

[24] X. Zhou and T. Huang. Relevance feedback in image
retrieval: A comprehensive review. Multimedia systems,
8(6):536–544, 2003.

40

An Adaptive Electronic Menu System for Restaurants

Paulo Henrique Azevedo Filho
Aberklar GbR

Helene-Mayer-Ring 7
80809, Munich, Germany

paulo.azevedo@aberklar.com

Wolfgang Wörndl
Technische Universität München

Boltzmannstraße 3
85748, Garching bei München, Germany

woerndl@informatik.tu-muenchen.de

ABSTRACT
This work shows the early stages of the development of a
collaborative-filtering-inspired adaptive system to stream-
line the ordering process at restaurants that use electronic
menu systems.

Among other results, the proposed system achieved a reduc-
tion of the session duration, while increasing feedback given
by restaurant guests.

Categories and Subject Descriptors
H.4.m [Information Systems Applications]: Miscella-
neous

General Terms
Human Factors, Economics

Keywords
Recommender Systems, Adaptive, Collaborative-Filtering,
Electronic Menu, Target Variable

1. INTRODUCTION
There is an increasing trend in the number of tablet-based
systems for ordering food, in order to streamline the ser-
vice, increasing efficiency and profit. This is a great oppor-
tunity to make a change: instead of mere replacements for
the paper menu and replacement for some of the roles of
the waiters, such systems can do much more, such as be-
coming feedback-gathering devices, or helping guests choose
their dishes better and increasing their satisfaction by offer-
ing meaningful suggestions.

Those meaningful suggestions may stem from collaborative
filtering. Well-established algorithms for collaborative filter-
ing exist, as well as several hybridization techniques blend-
ing this with other approaches. However, since users of
electronic menus are mostly anonymous (no log-in neces-
sary), and the offer of dishes and drinks varies greatly from

RecSys Vienna, Austria, 16th-20th September 2015

restaurant to restaurant, the choice for a recommendation
technique has to be further tweaked to address these issues.

The present work is an attempt to embrace this opportu-
nity, building an adaptive recommender system for elec-
tronic restaurant menus, to aid guests in their ordering pro-
cess, based on MenuMate.

MenuMate, developed by the German startup Aberklar1,
is an electronic menu that offers users a picture-centric ap-
proach for use at restaurants. Through MenuMate users can
place orders, request the bill and provide feedback about
their experience. This is the system that was extended with
the adaptive system described in this paper. Figure 1 gives
an idea of the general structure of the dish overview screen,
and the arrows suggest the repositioning of dishes of the
proposed method, that will be described soon.

The dish overview screen shows a title bar for each category,
followed by thumbnails of each dish in that category. From
that screen, the user can go to the dish details screen, with a
full screen picture and detailed description, from where the
dish can be ordered. After orders have been placed and the
tab asked for, the user is invited to provide feedback about
a few different variables, such as food, drinks, service and
electronic menu system, using a star-based rating.

The rest of this document is organized as follows: Section 2
will put this work in perspective in terms of the electronic
menu used for its implementation, as well as of the related
work. Section 3 will describe in general terms the proposed
algorithm and how it fits in. Section 4 describes some of the
performed experiments and displays their results. Finally,
section 5 offers a brief summary as well as points some pos-
sibilities of further work to be explored.

2. BACKGROUND AND RELATED WORK
To achieve the aforementioned goal, once the current state
of MenuMate is known, it is necessary to know what the
current state of the art for this specific niche is.

Wasinger et al. have proposed an electronic menu with an
embedded recommender system, called Menu Mentor [9].
The authors come from a perspective of highly personalized
explicit recommendations, processed on the user’s phone,
and that must be scrutable, that is, allow the users to know
why a given recommendation (be it positive or negative) was

1www.aberklar.com/en

41

pasquale.lops
Rectangle

Figure 1: Screen of MenuMate with the overview of
the dishes, as well as a suggestion of the dynamic
reordering of the menu items.

given, and give them the chance to override it. It does, how-
ever, assume explicit user profiles, acquired through usage of
the system on the user’s smartphone. In order to minimize
user setup, restaurants should be able to offer the system
and the hardware.

There are psychological studies about how to organize a
restaurant menu, with techniques such as placing items with
high prices first to ”smoothen” the effect of the lower-priced
items following, even if they are not actually cheap [6]. There
are also studies evaluating guests’ gaze and how it corre-
lates to which dishes get ordered, placing dishes restaura-
teurs want to have ordered in those positions, such as shown
at [1]. There are as well other possibilities that go in a sim-
ilar direction, such as [8] and [10]. Going for this sort of
psychological study, however, would require extensive trials
after every change to the menu, as well as the usage of the
same menu in a different place where cultural background
changes. This type of approach is also sensitive to the direc-
tion of reading of the mother tongue of the restaurant guest,
such as right to left in case of Arabic speakers.

The goal of this work was to develop an electronic menu sys-
tem that adapts itself according to a certain target variable,
such as session duration, but while avoiding the need both
for the setup of a user profile and extensive trials after each
change. This is what will be presented in the next section.

3. ALGORITHM AND ARCHITECTURE
The proposed idea is rather simple. It consists in reordering
the menu items to optimize a quantifiable target variable,
that can be either maximized or minimized. For this work,
four target variables were studied: tab value, session dura-
tion, revenue rate (cents per minute) and feedback rating.
Once this definition is set, as different menu sequences are
used the value of each target variable is recorded for each
session, as well as the position of each dish in the menu.
The optimal menu sequence is computed by calculating the
correlation coefficient between each dish’s position and the
performance, and sorting ascending or descending, depend-
ing on whether the action is to maximize or minimize, re-
spectively.

Four correlation coefficients were tested: Spearman’s [4],
Pearson’s [5], Goodman and Kruskal’s [2] and Kendall’s [3].
In fact, the experiments tried all of them in different sessions
and made a comparison between them. More coefficients
could be used, the only requirement is that they must yield
values between -1 and 1, which could imply a normalization
step for coefficients that do not yield results in this range.

In order to vary the position of dishes, there is what we
called pre-optimization randomization, which will shuffle the
dishes before sorting them, giving the chance to dishes that
have the same coefficient (within a small delta) to change
places, changing not only absolute but also relative order.
A bias could, otherwise, arise from the fact that stable sort-
ing algorithms were used, thus keeping items with a simi-
lar correlation coefficient always in the same relative order,
preventing them from switching places and moving far away
from each other. Also, dishes for which there is no previous
information always start with coefficient 0.

The basic principle is as follows: after each session, the
tablets send the raw data gathered to the system that gen-
erates the sequence (there is one such system per restau-
rant). This system, based on the chosen coefficient and tar-
get variable, calculates the value for that variable and the
coefficients, generates the menu sequence, and at the be-
ginning of each session the tablets poll this system for the
latest sequence to be employed. This system, called Menu
Optimizer, is configurable in respect to the target variable,
action (maximize or minimize) and correlation coefficient,
together with other parameters relevant for the A/B testing
performed, that will be explained in the next section.

4. PRELIMINARY USER STUDIES
Since the method proposed does not explicitly recommend
a single item or try to predict ratings, some methods usu-
ally employed to evaluate recommender systems cannot be
employed, such as cross-validation, recall and precision and
accuracy.

There are, however, other methods that can be employed
directly: the test was a double-blind A/B test, in which nei-
ther the user nor the waiter knew which the target variable
at the time was, nor the correlation coefficient used. It was
also online (in the sense that real users were using the sys-
tem, generally spending real money through it [7], as was
the case in our tests), and measured a few variables.

Since there is no way to directly measure accuracy for this
system, there is employment of efficiency. In traditional rec-
ommender systems, the goal is to try to predict what the
user would like to find and show it to them, shortening the
search. Assuming that users find more easily the informa-
tion they are looking for, they will more promptly take deci-
sions based on that information, namely order the dish they
intend to. Assuming this to be true, it would derive that
a reduction of session duration would imply increased ac-
curacy in a way. To assess whether this is true, it should
be coupled with an increase of the feedback ratings, which
would show that the items found satisfied the user. This
metric, that as mentioned before, is called efficiency, and
was used to assess the system.

42

Figure 2: The evolution of feedback ratings and ses-
sion duration at one of the restaurants, that suggests
good efficiency.

Another adaptation made was with regards to serendipity.
Instead of measuring it, there was the measurement of cat-
alog coverage: the measurement of how much users tend
to order varied dishes, compared to users of plain paper
menu. For that, observations were made of tables whose
guests did not use MenuMate, and which dishes they or-
dered, and those were compared to the orders of MenuMate
users.

There were two classes of tests performed, the stress tests
and the user tests. The stress tests, which will not be dis-
played in detail here, were used to assess the scalability of
the system, which was developed to be run on a Raspberry
Pi computer, with an embedded 900MHz ARM processor. It
suffices to say that the system could serve between 100 and
160 tablets with unnoticeable performance losses, and that
the limits reached were due to the test rig employed, rather
than the system itself. Another interesting result on this
front is that, on the employed hardware, menu optimization
time is increased on average by 3ms for each session stored,
which allows prediction of the optimization time based on
the size of the history of observations.

The preliminary user studies were performed at two differ-
ent restaurants in Munich, for about a week in each, time
during which the system would gather session data and au-
tomatically adapt itself, switching the target variable at reg-
ular intervals. The number of observations was rather small
due to the reduced number of days allowed for observations.
There were 13 sessions observed in one restaurant, called El
Patio, and 35 in the other, called Wendlinger. The restau-
rants had, respectively, 201 and 290 menu items, split in 24
and 34 categories. The original menu sequence was devised
by their respective owners.

Figure 2 shows the evolution over time of the efficiency at
Wendlinger (the number of sessions to which users gave feed-

Figure 3: How the values of the correlation coeffi-
cients evolved over time at the two restaurants.

back at El Patio was too low to assume it was meaningful).
It suggests that indeed over time, independent of those be-
ing the target variables, feedback tends to rise and session
duration to reduce, indicating good efficiency.

Table 1 shows how the choice of a target variable influences
the performance of that variable, as well as of other vari-
ables. In this table only sessions optimized with Spearman’s
correlation coefficient are used, because it was the only co-
efficient with a high enough number of observations from
which to derive conclusions (21 sessions in total). The ”none”
line, represents results for a non-optimized menu. The sys-
tem did well in optimizing for the target variable, with the
best results for both feedback and session duration, a close
second for tab value, while not delivering good results for
revenue rate, because the higher tab value was not enough
to compensate for the roughly halved session duration time
achieved when the target variable was the duration. It is
also worth noticing that indeed, revenue rate is a direct con-
sequence of both tab value and session duration, but the av-
erage revenue rate is not necessarily the same as the revenue
rate of the averaged tab values and durations. For clarity,
the best results for each variable are displayed in boldface.

Figure 3 shows another facet of the inner workings of the
system: although the number of observed sessions was low,
it is very fast to converge the internal coefficients, suggesting
some stability after approximately 10 sessions. Another in-
teresting effect is that the absolute values of the coefficients
tend to be higher for dishes that ended up being ordered,
which means the system can in fact predict which dishes
will be ordered, by checking the dishes with highest abso-
lute value of the coefficients.

Due to operational constraints, catalog coverage was only
measured at El Patio. There, 12 of the 13 sessions were
with menu optimization enabled, that will be considered for
this measurement. 50 sessions with paper menus were also

43

Target Variable Feedback Value (e) Duration Rev. Rate

None 2,0 25,17 12.865,6 20,9
Feedback 5,0 13,25 15.779,9 33,8

Tab Value 4,4 38,00 7.499,5 59,1
Session Duration 4,3 36,85 2.406,9 154,9

Revenue Rate 5,0 40,10 4.400,6 56,6

Table 1: Cross-references between target variables and the results for all interest variables.

observed. In total, 97 different dishes and drinks were or-
dered, in different quantities. From those 97, 19 were or-
dered both with and without MenuMate, 63 only by users
of the paper menu and 15 only by users of MenuMate with
menu optimization.

It is not easy to extrapolate how those proportions would be
in case an equal number of observations was available, and
discarding paper menu-based sessions could arbitrarily lead
to any results. Assuming, however, that for both systems at
each session there is an equal probability of adding not pre-
viously ordered items, and that this probability is inherent
to either MenuMate or the paper menu, a proportion rule
may be followed.

In the case of the paper menu, 19 + 63 = 82 different items
were ordered in 50 sessions, which yields an average of 1,64
new items per session. With MenuMate in use, there were
19 + 15 = 34 different items ordered in 12 sessions, resulting
in 2,83 new items per session. That may indicate that thus,
the menu optimizations led to guests ordering a bigger vari-
ety of items. Alternatively, it could be that as more sessions
would be measured, these sessions would progressively get
less ”innovative”, in terms of the ordered dishes, which could
revert this balance. An extended evaluation, with a similar
number of sessions in both conditions would help settle this
matter.

5. CONCLUSIONS AND FUTURE WORK
The proposed menu optimizer harnesses principles of rec-
ommender systems to improve restaurant menus according
to an arbitrary interest variable. In fact, it can be used
to facilitate user interaction for any system to which access
is anonymous and the number of items not overwhelming.
Another use that comes to mind is the choice of which pre-
sentations to attend at a conference, or main sights to visit
in a city.

One of the main contributions is the strong suggestion that
this purely statistical method may improve the menu even if
the underlying mechanism that drives the change is not un-
derstood by the system (i.e. the psychological implications).

The developed system comprises the algorithm for menu op-
timization, coupled with a robust and scalable implemen-
tation of it. It was followed by qualitative and quantita-
tive tests, with real paying users, of which only very few
results were presented this time due to page number con-
straints, but that nevertheless suggest efficacy of the pro-
posed method.

There are, however, some promising improvements to the
method. Among which, the highlights are:

• Feature extraction, to allow dishes of different restau-
rants to be matched and correlation information ex-
change, possibly improving results;

• Extra variable isolation, that would allow control over
influential external variables such as weather, time of
the day or season;

• If individual user profiling is done, further personaliza-
tion, such as filtering out dishes based on allergies or
taste preferences, could be done;

• Stochastic exploration of dishes, which could allow for
recommendation of the next course based on previ-
ously ordered dishes in a session.

6. REFERENCES
[1] J.-G. Choi, B.-W. Lee, and J.-w. Mok. An experiment

on psychological gaze motion: a re-examination of
item selection behavior of restaurant customers.
Journal of Global Business and Technology, 6(1):68,
2010.

[2] L. A. Goodman and W. H. Kruskal. Measures of
association for cross classifications iii: Approximate
sampling theory. Journal of the American Statistical
Association, 58(302):310–364, 1963.

[3] M. G. Kendall. A new measure of rank correlation.
Biometrika, pages 81–93, 1938.

[4] J. L. Myers, A. Well, and R. F. Lorch. Research design
and statistical analysis. Routledge, 2010.

[5] K. Pearson. Notes on regression and inheritance in the
case of two parents. In Proceedings of the Royal
Society of London, volume 58, pages 240–242, 1895.

[6] W. Poundstone. Priceless: The myth of fair value
(and how to take advantage of it). Macmillan, 2010.

[7] G. Shani and A. Gunawardana. Evaluating
recommendation systems. In Recommender systems
handbook, pages 257–297. Springer, 2011.

[8] B. Wansink, J. Painter, and K. Van Ittersum.
Descriptive menu labels’ effect on sales. The Cornell
Hotel and Restaurant Administration Quarterly,
42(6):68–72, 2001.

[9] R. Wasinger, J. Wallbank, L. Pizzato, J. Kay,
B. Kummerfeld, M. Böhmer, and A. Krüger. Scrutable
user models and personalised item recommendation in
mobile lifestyle applications. In User Modeling,
Adaptation, and Personalization, pages 77–88.
Springer, 2013.

[10] S. S. Yang, M. M. Sessarego, et al. $ or dollars: Effects
of menu-price formats on restaurant checks. Cornell
Hospitality Reports, pages 6–11, 2009.

44

User Controlled News Recommendations
Jon Espen Ingvaldsen

Norwegian University of Science and
Technology, Department of Computer
and Information Science, Trondheim

Norway
jonespi@idi.ntnu.no

Jon Atle Gulla
Norwegian University of Science and
Technology, Department of Computer
and Information Science, Trondheim

Norway
jag@idi.ntnu.no

Özlem Özgöbek
Department of Computer Engineering,

Ege University,
Izmir,

Turkey
ozlem.ozgobek@ege.edu.tr

ABSTRACT
The adoption of mobile devices is pushing the Internet into a more
personal and context aware space. A common challenge for online
news services is to deliver contents that are interesting to read. In
this paper, we describe the user interface design of the
SmartMedia news recommender prototype. Through deep analysis
of textual news contents it is able to deliver local, recent and
personalized news experiences, and the user interface is designed
to give the users control over the news stream compositions. We
will present its innovative user interface and the approach taken to
transform raw textual data into well defined and meaning bearing
entities.

Categories and Subject Descriptors
H.4.7 [Information Systems Applications] Communications
Applications – Information browsers

General Terms
Algorithms, Design, Experimentation, Human Factors.

Keywords
Recommender system, news, mobile, user interfaces, user control

.

1. INTRODUCTION
The Smartmedia project1 at NTNU targets construction of context
aware news experiences based on deep understanding of text in
continuous news streams [4, 9]. The goal of the Smartmedia
project is to deliver a mobile and context aware news experience
based on deep understanding of textual contents, combining both
geo spatial exploration and context aware recommendations. The
system is designed with scalability in mind and ability to support
multiple languages.
Privacy is an important aspect when engineering recommender
systems and exploitation of user interaction and context data.
When dealing with personal data and privacy, transparency tools
are tools that can provide to the concerned individual clear
visibility of aspects relevant to these data and the individual’s
privacy. The combination of transparency tools and user control
yields viable functionality to empower users to protect their
privacy [5].

In the Smartmedia project, we want to build transparent news
recommender systems where the user can control gathered data
and how their news streams are composed based on geo spatial

1 http://research.idi.ntnu.no/SmartMedia

location, personal interest profile and time. When designing user-
friendly systems for mobile devices, we need to be careful about
the amount of buttons and menu items introduced. In this paper
we will describe the news recommender system prototype and its
mobile user interface where the users can control their news
stream recommendations from three toggleable buttons.

2. IMPLEMENTATION
The backend of the news recommender prototype developed is
constructed as a pipeline of operations harvesting and
transforming Rich Site Summary (RSS) entries and raw text data
into a semantic and searchable representation. The pipeline and its
operations are implemented with using Apache Storm2. This
distributed computing framework enable scalability and ability to
handle large amounts of news items from a magnitude of
publishers continuously.
As shown in Figure 1, the news processing pipeline consists of
five steps. The first step creates an input stream by continuously
monitoring a large set of RSS feeds. Whenever a new news item
occurs, properties such as the title, lead text and HTML sources
are extracted. The HTML sources are parsed and cleaned to
extract a representative body text. In the second step, natural
language processing operations such as language identification,
sentence detection and part-of-speech tagging is applied to extract
entity mentions from the textual data. The third step uses
supervised models to map entity mentions to referent entities in
the WikiData3 and Geonames4 knowledge bases. These models
combine textual similarities, graph relations and entity frequency
and co-occurrence statistics to classify the relevance of multiple
referent candidates. First Story Detection (FSD) is applied in the
forth step to group news items describing the same news story. In
the fifth step this semantic representation is indexed and made
searchable. As this backend architecture is stream based, it is able
to index and promote recent news items.

WikiData is the community-created knowledge base of Wikipedia
[12]. Since its public launch in 2012, the knowledge base has
gathered more than 15 millions entities, including more than 34
million statements and over 80 million labels and descriptions in
more than 350 languages [3]. Most geographical entities in
WikiData provide a reference to Geonames containing more
detailed geographical properties. In the implementation of the
Smartmedia prototype, the news and entity information including
news text, titles, publication timestamps, entity labels and

2 http://storm.apache.org/
3 https://www.wikidata.org/
4 https://www.geonames.org/

45

geospatial properties are indexed in a Lucene based search index.
This index makes the news items and their related entities
searchable and creates a foundation for detailed querying.

When a user is opening the news app on the mobile a request
containing user id, location and preferences are sent to the
backend. Here, a multi factor search query is formed to retrieve
relevant news entries from the index.

3. USER INTERFACE
A web-based user interface is developed to make the news stream
contents explorable on mobile devices. In this interface, the user is
allowed to extract news items that are relevant to the geo special
locality context, personal interests and given point of time. These
three relevance factors are customizable and the user can select
whether or not they should influence the retrieval and ranking of
available news items.

To customize the geographical locality, the user specifies a
circular relevance region on a map. Figure 2a shows an example
of such a relevance region. By default, the relevance region is set
to users current GPS location with a 50 km radius. By moving the
region or modifying the radius, users can generate a local
newspaper for any region of the world. If the location factor is
disabled, it means that the system is recommending news from
any location in the world and news that are not containing
location information.

In the current Smartmedia prototype, we have predefined a
handful of user interest profiles. Examples of such profiles are
stock trader, soccer fan, technology geek, etc. Each profile
consists of a weighted concept vector, where each entry is a
WikiData entry associated with an interest score between 0 and 1.
By selecting any of these interest profiles, the retrieved news will
be influenced and biased towards the interest topics. When the

personal interest factor is disabled, the user retrieve a news
composition which is general and without such bias.

To customize the time-factor, the user is presented with a calendar
where it is possible to move in time and retrieve either recent or
historic news items. When, the time-factor is disabled the user
will retrieve news solely based on the other relevance factors
(location and personal interests).

Figure 2b shows an example of how news stories are presented.
Here we see one news article “Theresa May urges media restraint
in coverage of terror suspects” from the Guardian about politics
and terror, followed by another news story from BBC. The three
circular buttons on the bottom of the screen allow users to toggle
whether their locality, personal interest profile and time setting
such influence news story retrieval.

By clicking on a news story, the user gets the ingress of the news
story and a list of the most salient entities for the selected news
story. Figure 1c shows the ingress and relevant WikiData entities
from the news article about Theresa May. As we can see, our
news story about politics and terror related to Syria, Theresa May,
ISIL and Sky News. By hovering these items, the user is
presented with their textual WikiData description. On figure 2c,
we can see that the WikiData entity for Theresa May contains the
description “British politician”.

In general, the three buttons at the bottom of the screen for
location, interest profile and time can at any time be activated and
de-activated to provide very different recommendation strategies.
For example, keeping all buttons active with default parameters
means that the system will recommend news articles that have
recently takes place in the vicinity of the reader and are consistent
with her profile. Figure 3 describes different combinations of
recommendation factors and summarizes how the user can control
the retrieval and composition of news items.

Figure 1. Steps of the news stream processing pipeline.

46

 a) b) c)

Figure 2. Screenshots from the Smartmedia prototype. a) The map query interface. b) Presentation of news stories. c) Presentation

of news details.

4. RELATED WORK
People nowadays have access to more worldwide news
information than ever before. As Internet services get more
information about their users and their context, they can deliver
personal and customized contents and user experiences.

The prototype system, described in this paper, share similarities to
other academic news applications such as NewsStand [8, 10] and
News@Hand [1, 2]. Both these systems map textual news
contents to entities defined in a knowledge base.
NewsStand targets geo spatial exploration of news. It is an
example application of a general framework developed to enable
people to search for information using a map query interface. It
utilize maps both to explore and find news stories and to visualize
and present single news events.

News@hand combines textual features and collaborative
information to make news suggestions. It uses Semantic Web
technologies to describe the news contents and user preferences.
Both news items and user profiles are represented in terms of
concepts appearing in domain ontologies, and semantic relations
among those concepts are exploited to enrich the above
representations, and enhance recommendations.

Both these NewsStand and News@Hand have user interfaces
targeting desktops and larger device screens. They both provide
user control over the retrieved set of news, either through a map
or category based navigation or preferences settings.
Tran and Herder [11] have looked at the studied news event
timelines and shown that manually constructed timelines are
subjective and often missing important dates or other information.
By complementing the timelines with elements extracted
algorithmically from multiple sources, it is possible to create more
objective and argumentative timelines. However, the manual
processing and editing efforts are still needed to enhance the
communicative qualities of the timelines, and to adapt it to the
needs of the readers

Parra et al. [6, 7] presents SetFusion, a visual user-controllable
interface for hybrid recommender system. Their approach enables
users explore and control the importance of recommender
strategies using an interactive Venn diagram visualization. Their
evaluations indicate that this interface had a positive effect on the
user experience and improved users engagement. Their idea of
using the Venn diagram to explain intersections among
recommendation approaches is transferable and valuable to the
news domain.

47

Local
Retrieve news from a geospatial area

Personal
Retrieve news matching the interest profile of
the user
Temporal
Retrieve news published after a given date

Local and personal
Retrieve news that both relate to a geospatial
area and match users interest profile.
Local and temporal
Retrieve news related to a given geospatial
area and published after a given date.
Personal and temporal
Retrieve news matching the interest profiles
of the user and published after a given date.
Local, personal and temporal
Retrieve news with relevance for the selected
geospatial area and interest profile, and
published after a given date.

Figure 3. Combinations of selectable recommendation factors

5. CONCLUSIONS AND FUTURE WORK
The predefined user profiles can be replaced or used in
combination with more personal profiles trained on traced
interaction logs from the system. As users leave interaction data
behind, we can gather knowledge about what the users interests
are. However, for new users where no past interaction records
exist, we have a cold-start problem where we still benefit on
predefined stereotypes.

In future work we plan to use trained personal profiles with
predefined stereotypes in combination. We will also gather user
feedback and evaluate to which extent users want to control and
customize their news presentations and study how their
requirements can be met in a mobile user interface design.

Deep understanding of textual contents together with knowledge
base structures provides a fundament for innovative and
intelligent applications. This paper has described one such
innovation from the news domain, and how its mobile user
interface allow users to control the composition of news. A
screencast video demonstrating the prototype and its user interface
is available at: http://vimeo.com/121835936

6. REFERENCES

[1] Cantador, I. et al. 2008. News@ hand: A semantic web
approach to recommending news. Adaptive hypermedia
and adaptive web-based systems. (2008).

[2] Cantador, I. et al. 2008. Ontology-based personalised and
context-aware recommendations of news items.
Proceedings of the 2008 IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent
Technology. 1, (2008).

[3] Erxleben, F. et al. 2014. Introducing Wikidata to the
Linked Data Web. The Semantic Web–ISWC 2014.
(2014).

[4] Gulla, J.A. et al. 2013. Learning User Profiles in Mobile
News Recommendation. Journal of Print and Media
Technology Research. II, 3 (2013), 183–194.

[5] Hansen, M. 2008. Marrying transparency tools with user-
controlled identity management. The Future of Identity in
the Information Society. (2008).

[6] Parra, D. et al. 2014. See what you want to see.
Proceedings of the 19th international conference on
Intelligent User Interfaces - IUI ’14 (New York, New
York, USA, Feb. 2014), 235–240.

[7] Parra, D. and Brusilovsky, P. 2015. User-controllable
personalization: A case study with SetFusion.
International Journal of Human-Computer Studies.
(2015).

[8] Samet, H. et al. 2014. Reading news with maps by
exploiting spatial synonyms. Communications of the
ACM. 57, 10 (Sep. 2014), 64–77.

[9] Tavakolifard, M. et al. 2013. Tailored news in the palm
of your hand: a multi-perspective transparent approach to
news recommendation. (May 2013), 305–308.

[10] Teitler, B. and Lieberman, M. 2008. NewsStand: A new
view on news. Proceedings of the 16th ACM
SIGSPATIAL international conference on Advances in
geographic information systems. (2008).

[11] Tran, G. and Herder, E. 2015. Detecting Filter Bubbles in
Ongoing News Stories. Extended Proc. UMAP 2015.
(2015).

[12] Vrandečić, D. and Krötzsch, M. 2014. Wikidata: a free
collaborative knowledgebase. Communications of the
ACM. (2014).

48

Interaction Design in a Mobile Food Recommender System

Mehdi Elahi
Politecnico di Milano, Italy
mehdi.elahi@polimi.it

Mouzhi Ge
Free University of

Bozen-Bolzano, Italy
mouzhi.ge@unibz.it

Francesco Ricci
Free University of

Bozen-Bolzano, Italy
fricci@unibz.it

Ignacio
Fernández-Tobías

Universidad Autónoma de
Madrid, Spain

ignacio.fernandezt@uam.es

Shlomo Berkovsky
CSIRO, Australia

shlomo.berkovsky@csiro.au

Massimo David
Free University of

Bozen-Bolzano, Italy
david.massimo@stud-inf.unibz.it

ABSTRACT
One of the most important steps in building a recommender
system is the interaction design process, which defines how
the recommender system interacts with a user. It also shapes
the experience the user gets, from the point she registers
and provides her preferences to the system, to the point
she receives recommendations generated by the system. A
proper interaction design may improve user experience and
hence may result in higher usability of the system, as well
as, in higher satisfaction.

In this paper, we focus on the interaction design of a mo-
bile food recommender system that, through a novel interac-
tion process, elicits users’ long-term and short-term prefer-
ences for recipes. User’s long-term preferences are captured
by asking the user to rate and tag familiar recipes, while for
collecting the short-term preferences, the user is asked to
select the ingredients she would like to include in the recipe
to be prepared. Based on the combined exploitation of both
types of preferences, a set of personalized recommendations
is generated. We conducted a user study measuring the us-
ability of the proposed interaction. The results of the study
show that the majority of users rates the quality of the rec-
ommendations high and the system achieves usability scores
above the standard benchmark.

1. INTRODUCTION
Recommender systems are decision support tools that proac-

tively identify and suggest items, which are expected to be
interesting for the users. Recommendations are based on
the users’ previous interactions with the system and the ex-
plicitly provided users’ preferences [15]. One important and
new application domain for recommender systems is food.
This application has recently drawn much attention in the
research community due to its potential to improve eating
behaviour of users and positively influencing their lives [8,

.

18, 20, 4, 11]. There is a broad spectrum of available in-
formation about food, such as recipe data and cooking in-
structions. Thus, some applications and websites already
provide support functions allowing users to browse recipes
and related information. However, most applications only
offer generic and non-personalized recipe catalogue browsing
support, without tailoring it to the tastes and preferences of
individual users.

User preference elicitation is a fundamental and necessary
step to go beyond this generic support and generate person-
alized recipe recommendations. More importantly than in
other application domains, such as movies or books, recipe
recommendations should not only be based on user’s long-
term tastes, but also fit their ephemeral preferences, such as
the available ingredients or current cooking constraints.

In this paper we address this problem by proposing a pref-
erence elicitation approach for food recommender systems
that obtains user preferences through a novel and effective
interaction design. First, it exploits an integrated Active
Learning algorithm [5, 6] for selecting the recipes to rate
and tag that are estimated to be the most useful for the rec-
ommender. The active learning algorithm scores a recipe ac-
cording to its predicted its rating (using transformed matrix
of user-recipe) and then selects the highest scoring recipes.
This reveals the users’ long-term preferences, i.e., what they
usually like to eat or cook. Second, when requested to gener-
ate recommendations, the system acquires short-term pref-
erences referring to ingredients the user wants to cook or to
include in the meal. The acquired preferences are used by a
Matrix Factorization (MF) rating prediction model designed
to take into account both tags and ratings [11, 13, 7].

In a real user study, we evaluated the proposed prefer-
ence elicitation interaction and observed that the users have
scored the usability of the system between “good” and “ex-
cellent” and assessed the presented recommendations, which
are generated on the basis of the elicited preferences, to be
of high quality.

Thus, the main contributions of our paper are: (a) a novel
interaction design that is used to elicit long-term (general)
and short-term (session-based) user preferences; and (b) an
effective preference elicitation method that exploits active
learning in the food recommendation domain.

49

Figure 1: (a) user instructions, (b) browsing food categories, and (c) selecting eaten or cooked recipes.

2. RELATED WORK
Several recommender systems for the food domain have

recently been developed [9, 18, 19, 20]. For example, Freyne
and Berkovsky [9] proposed a food recommender that, through
an easy-to-use interface, elicits user preferences and provides
personalized recommendations Their system transferred the
recipe ratings collected by the system to ingredient ratings
and then aggregated the ratings of the ingredients used in a
recipe to generate rating predictions.

Elahi et al. [4] proposed a food recommendation model
that combines the predicted value of a recipe along differ-
ent dimensions (user food preferences, nutritional indicators,
and ingredients costs) to compute a single utility measure
of a recipe. The goal is to consider factors influencing the
user’s food decisions in order to produce more useful and
valuable recommendations. In a follow-up work [11], the au-
thors conducted an offline evaluation of the rating prediction
algorithm, which extends MF by using, in addition to rat-
ings, the users’ tags assigned to recipes. It was shown that
this additional source of information about the user pref-
erences allowed the proposed method to outperform other
state-of-the-art algorithms, e.g., those proposed in [10].

In general, the user’s preferences that are collected and
used by a recommender can be either long-term (general
preferences) or short-term (session-based and ephemeral).
While obtaining both preference types is crucial, many rec-
ommender systems do not distinguish between the two. In
fact, there are few studies that taken this consideration into
account. Ricci and Nguyen proposed in [14] a mobile rec-
ommender system in travel domain, which elicits both gen-
eral long-term preferences (e.g., explicitly defined by users)
and short-term preferences in the form of critiques express-
ing more detailed session-based preferences. More recently,
short term preferences were found to depend on the rec-
ommendation context and many context-aware approaches
have been proposed to better suit the needs of the users [1].

It is worth noting that RSs research often focused on the
improvement of the prediction model, by assuming that the
preference elicitation process is completed. Hence, they
ignore the complete user-system interaction, required for

building a real-world recommender system. To address this
limitation, this paper focuses on the interaction design, mainly
for the preference elicitation: long-term and session-based.

3. USER-RECOMMENDER INTERACTION
We designed a complete human-computer interaction for

collecting user preferences, in the form of recipe ratings and
tags [4]. An Android-based prototype was developed, in or-
der to implement this interaction. The first step is a general
preference elicitation, aimed at collecting the long-term (sta-
ble) user preferences, i.e., what she generally likes to cook
(or eat). This step includes two stages: (1) the system asks
the user to specify the recipes she cooks at home and, (2) the
user assigns ratings and tags to the recipes she experienced.

Upon logging in the system, the user can browse the full
catalogue of recipes and mark those that she has eaten be-
fore (see Figure 1). Users can navigate through the recipe
categories and sub-categories in order to find the desired
recipe, e.g., ‘Beef’ → ‘Roasted Beef’ → ‘Roasted Beef with
Salad’. Inside each category there is a list of recipes mapped
to this category. When the user finds one of them she can
mark it as ‘Eaten’or ‘Cooked’ by clicking the check box.

After that, a selection of the recipes that the user marked
as eaten or cooked, is presented to the user for rating and
tagging. This allows the system to acquire knowledge about
the general user preferences. However, the system also needs
to deeper explore the user’s preferences and it presents addi-
tional recipes for the user to rate and tag. These are found
by predicting what the user might have eaten, but did not
mark in the first step. In order to find such recipes, we use
active learning. For this, the rating dataset is transformed
into a binary format indicating only whether the user rated
an item: null entries are mapped to 0, and not null entries
to 1. Then, using a factor model, predictions are computed
for all the values mapped to 0, and for each user the items
with the highest prediction are shown to the user [5, 6].

Figure 2-a shows the rating and tagging interface. This
interface uses the classical 5-star Likert scale. The users
are also requested to “explain” the core motivations for their
ratings by assigning tags to recipes. Users can either tag a

50

Figure 2: (a) general preference elicitation, (b) session-based preference elicitation, and (c) recommendation.

recipe with the suggested tags or add their own tags. At the
recommendation time, session-specific preference are elicited
(see Figure 2-b). The user enters the core ingredient she
wants to include in the recipe. This is done by selecting
a keyword from the list of suggestions derived from food
ingredients and popular tags assigned by other users.

Then, the recommendations leverage both types of the col-
lected user preferences, long-term and session-specific. The
long term preferences are exploited by a custom MF rating
prediction model [13], which uses the tagging information
[7]. Each user is associated with a vector that models her
latent features and each recipe is modeled by a vector that
contains its latent features. Then, the rating of a user for
an item is predicted by computing the inner product of the
user and item vectors. To exploit the short-term model,
the system post-filters the recommendations according to
the current user preferences. The recipes with the high-
est rating are presented to the user one by one. When the
user selects a recommended recipe, the system presents the
required ingredients and detailed cooking instructions (see
Figure 2-c).

4. USER STUDY
The main goal of the evaluation was to assess whether the

system can effectively assist users in finding recipes that suit
their preferences. For the user study, we designed a usage
scenario a task that was formulated as follows: “You want to
avoid everyday routine meals. You can use this application
to discover new recipes that suit your taste”.

The users were asked to use the mobile application and
complete a questionnaire referring to two performance in-
dicators: perceived quality of recommendations quality and
system usability. The first part of the questionnaire mea-
sured the level of user satisfaction with the recommenda-
tions. We used a validated instrument based on a set of
questions developed by Knijnenburg et al. [12]. The second
part of the questionnaire aimed at collecting the users’ im-
pression of the usability of the system. Here, we exploited
the System Usability Scale (SUS) questionnaire [17]. The
overall usability scores range from 0 to 100 and the bench-

Figure 3: SUS results.

mark value is 68, which is the average SUS score computed
over 500 usability studies [16].

In our experiment 20 subjects used the system and com-
pleted the questionnaire. They were either computer science
researchers or non-academic people. 60% of subjects were
male and 40% were female, the age range was 23 to 50, and
the ethnical background varied across the subjects (Italy,
France, USA, Germany, China, and more).

We first present the perceived recommendation quality re-
sults. The survey measures the recommendation quality us-
ing 7 questions on a Likert scale from 0 to 4, where 4 is
the highest score. Thus, the maximum overall quality score
is 28. The average perceived recommendation quality score
across the 20 subjects was 19 and the median was 19 (see
[3] for more details on the calculation). We observed that
the maximal recommendation quality score was 26, and the
minimal was 12. Thus, we can conclude that, on average,
the users agreed that the recommendations were well-chosen
and suited their preferences.

For the SUS usability score, we observed that for 75% of
subjects the SUS score was higher than the 68 point bench-
mark (see Figure 3). The system achieved overall average
SUS score of 75.50 and the median was 73.75, which is well
above the benchmark. We observed that the minimal us-
ability score of 55, and the maximal was 95. According to
these results we can conclude that the system usability was
considered between “good” and “excellent” [2].

51

We have computed the average replies for all the SUS
statements and observing the statements with the highest
average values, we can report that the users have evaluated
the system easy to learn and easy to use. They also believe
that various components were well-integrated into the sys-
tem. On the other hand, by observing the statements with
the lowest values we can state that users think that they
have to learn a lot before they can use the system properly
and they may need technical person for that. Our explana-
tion for this result is that we need to improve further the
interface and provide more explanations, so that users can
better learn and understand the usage of the components in
the system.

5. CONCLUSION AND FUTURE WORK
In this paper, we illustrated the preference elicitation pro-

cess of a novel food recommender system [11]. Our system
generates recommendations by exploiting tags and ratings
in a MF algorithm. In our study, we collected user evalu-
ations of the recommendation quality and system usability.
Both measurements were found to be positive. This means
that the proposed preference elicitation process and system
interaction are liked by users.

Considering that this is a preliminary study, this paper
has several limitations. First, the evaluation is performed
on the whole system rather than on preference elicitation.
Since the prediction model was already tested in another
study [11], this work mostly focuses on preference elicita-
tion as the main component of user interaction. Second,
we have not compared our system with alternative prefer-
ence elicitation processes. Our current result mostly reflects
the users’ direct perception of their interaction with the sys-
tem. Third, we admit the limited number of subjects in the
user study. In the future, we plan to increase the number
of participants in the study. Also, we plan to extend the
recommendation model by considering nutritional factors,
e.g., the required calories and proteins, in order to build a
health-aware recommender system.

6. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Context-aware

recommender systems. In Recommender systems
handbook, pages 217–253. Springer, 2011.

[2] A. Bangor, P. Kortum, and J. Miller. Determining
what individual sus scores mean: Adding an adjective
rating scale. Journal of usability studies, 4(3), 2009.

[3] M. Braunhofer, M. Elahi, F. Ricci, and T. Schievenin.
Context-aware points of interest suggestion with
dynamic weather data management. In Information
and Communication Technologies in Tourism 2014,
pages 87–100. Springer International Publishing, 2014.

[4] M. Elahi, M. Ge, F. Ricci, D. Massimo, and
S. Berkovsky. Interactive food recommendation for
groups. In Poster Proceedings of the 8th ACM
Conference on Recommender Systems, RecSys 2014,
Foster City, Silicon Valley, CA, USA, October 6-10,
2014. 2014.

[5] M. Elahi, F. Ricci, and N. Rubens. Active learning
strategies for rating elicitation in collaborative
filtering: A system-wide perspective. ACM
Transactions on Intelligent Systems and Technology
(TIST), 5(1):13, 2013.

[6] M. Elahi, F. Ricci, and N. Rubens. Active learning in
collaborative filtering recommender systems. In
E-Commerce and Web Technologies, pages 113–124.
Springer International Publishing, 2014.

[7] I. Fernández-Tob́ıas and I. Cantador. Exploiting social
tags in matrix factorization models for cross-domain
collaborative filtering. In Proceedings of the 1st
Workshop on New Trends in Content-based
Recommender Systems, Foster City, California, USA,
pages 34–41, 2014.

[8] J. Freyne and S. Berkovsky. Intelligent food planning:
personalized recipe recommendation. In IUI, pages
321–324. ACM, 2010.

[9] J. Freyne and S. Berkovsky. Intelligent food planning:
personalized recipe recommendation. In IUI, pages
321–324. ACM, 2010.

[10] J. Freyne and S. Berkovsky. Evaluating recommender
systems for supportive technologies. In User Modeling
and Adaptation for Daily Routines, pages 195–217.
Springer, 2013.

[11] M. Ge, M. Elahi, I. Fernaández-Tob́ıas, F. Ricci, and
D. Massimo. Using tags and latent factors in a food
recommender system. In Proceedings of the 5th
International Conference on Digital Health 2015,
pages 105–112. ACM, 2015.

[12] B. P. Knijnenburg, M. C. Willemsen, Z. Gantner,
H. Soncu, and C. Newell. Explaining the user
experience of recommender systems. User Modeling
and User-Adapted Interaction, 22(4-5):441–504, 2012.

[13] Y. Koren and R. Bell. Advances in collaborative
filtering. In F. Ricci, L. Rokach, B. Shapira, and
P. Kantor, editors, Recommender Systems Handbook,
pages 145–186. Springer Verlag, 2011.

[14] F. Ricci and Q. N. Nguyen. Acquiring and revising
preferences in a critique-based mobile recommender
system. Intelligent Systems, IEEE, 22(3):22–29, 2007.

[15] F. Ricci, L. Rokach, and B. Shapira. Introduction to
recommender systems handbook. In F. Ricci,
L. Rokach, B. Shapira, and P. Kantor, editors,
Recommender Systems Handbook, pages 1–35.
Springer Verlag, 2011.

[16] J. Sauro. Measuring usability with the system
usability scale (sus).
http://www.measuringusability.com/sus.php.
Accessed: 2013-01-15.

[17] J. Swarbrooke and S. Horner. Consumer behaviour in
tourism. Routledge, 2007.

[18] C.-Y. Teng, Y.-R. Lin, and L. A. Adamic. Recipe
recommendation using ingredient networks. In
Proceedings of the 4th Annual ACM Web Science
Conference, pages 298–307. ACM, 2012.

[19] M. Trevisiol, L. Chiarandini, and R. Baeza-Yates.
Buon appetito: recommending personalized menus. In
Proceedings of the 25th ACM conference on Hypertext
and social media, pages 327–329. ACM, 2014.

[20] R. West, R. W. White, and E. Horvitz. From cookies
to cooks: Insights on dietary patterns via analysis of
web usage logs. In Proceedings of the 22nd
international conference on World Wide Web, pages
1399–1410. International World Wide Web
Conferences Steering Committee, 2013.

52

Recommender Systems for the People —
Enhancing Personalization in Web Augmentation ∗

Martin Wischenbart
CIS, Johannes Kepler University

Linz, Austria
martin@cis.jku.at

Sergio Firmenich,
Gustavo Rossi

LIFIA, Universidad Nacional de La
Plata and CONICET, Argentina

[firstname].[lastname]
@lifia.info.unlp.edu.ar

Manuel Wimmer
BIG, Vienna University of

Technology, Austria
wimmer@big.tuwien.ac.at

ABSTRACT
Web augmentation techniques allow the adaptation of web-
sites on client side using browser extensions or plug-ins de-
signed to run dedicated user scripts. However, while number
and variety of such scripts from publicly available reposito-
ries have grown remarkably in recent years, they usually
neglect the user’s personal profile or individual preferences,
and therefore fail to provide enhanced personalized services.
At the same time recommender systems have become power-
ful tools to improve personalization on the Web. Yet, many
popular websites lack this functionality, e. g., for missing fi-
nancial incentive. Therefore, we present a novel approach to
empower user script developers to build more personalized
augmenters by utilizing collaborative filtering functionality
as an external service. Thus, script writers can build rec-
ommender systems into arbitrary websites, in fact operating
across multiple website domains, while guarding privacy and
supplying provenance information. This paper discusses the
architecture of the proposed approach, including real-world
application scenarios, and presents our tool kit and pub-
licly available prototype. The results show the feasibility of
combining Web augmentation with recommender systems,
to empower the crowd to build new kinds of applications for
a more personalized browsing experience.

1. INTRODUCTION
In recent years web augmentation techniques, i. e., the

addition of external content or behaviour to Web pages,
have become a popular means for end users to adapt pages
according to their own requirements, with reduced depen-
dency on the website provider. Thereby, advanced users
with knowledge of JavaScript, so-called scripters, write (user)
scripts to modify web pages, which are then executed within
the browser on client side – using dedicated browser plug-

∗This work has been funded by grants Mincyt-bmwf
AU/14/02, AU/14/09, öad AR13/2015, ICM-2013-06624.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

ins such as GreaseMonkey1, and without the inclusion of
the sites’ webmasters. These user scripts are often publicly
shared, and to date there are several large repositories pro-
viding a vast amount of various scripts for all kinds of Web
pages and modification tasks. For instance, GreaseFork2

has more than six thousand scripts, some of which are in-
stalled more than fifty thousand times. Another well-known
repository, called UserScripts3, hosts more than one hun-
dred thousand scripts. Examples range from layout modifi-
cation and tweaks (e. g., regarding video player size, video
& audio customizations, etc.) on youtube.com4, managing
comments on geocaching.com5, to improving navigation on
dropbox.com by rendering a Tree View panel6.

Unfortunately, as pointed out by a recent survey [8], and
according to our own experience, current technologies for
adapting the Web browsing experience still do not suffi-
ciently support individual personalization, as it is provided
by applications incorporating recommender system function-
ality. Consequently, with a single Web augmentation artifact
(i. e., script) every user has the same experience.

Recommender systems meanwhile have a longer standing
history in various domains, such as e-commerce or music
recommendations, and have become one of the most popu-
lar ways to personalize services and user experience. Com-
monly, they are classified [17] into content-based, collabo-
rative, knowledge-based, as well as hybrid approaches. Al-
though all these approaches rely on a user model, they dif-
fer in how they build this model, and they exploit different
kinds of additional information and algorithms for present-
ing personalized recommendations of items to the user. For
instance, collaborative approaches, also known as collabo-
rative filtering or community-based, take into account the
opinions of large amounts of users to make predictions about
a specific user’s preferences for items. Despite their poten-
tial, however, oftentimes websites do not implement recom-
mendation services, either because of lack of economic incen-
tives, or simply for lack of know-how on these techniques.

To alleviate these problems, we aim to introduce rec-
ommender system functionality for enhancing personaliza-
tion in Web augmentation, combining the benefits of both
approaches. To illustrate the use of collaborative filtering

1http://www.greasespot.net (Firefox)
2http://greasyfork.org
3http://userscripts-mirror.org
4
http://greasyfork.org/es/scripts/943-youtube-center

5
http://userscripts-mirror.org/scripts/show/75959

6
http://greasyfork.org/es/scripts/4955-dropbox-plus/code

53

pasquale.lops
Rectangle

for realizing Personalization in Web Augmentation Appli-
cations (paa) we exhibit an example: The website cock-

tailscout.de is one of largest German language websites
for cocktail recipes7, having a community of almost 4000
registered users, who can search, rate and comment recipes
for drinks. A rating mechanism is used for ranking of recipes,
and averages and distributions of ratings for each drink can
be viewed. Yet the users’ individual ratings are not exploited
to give them personalized recipe recommendations. Instead,
the site provides a random link to a recipe on each page.
Containing more than 1500 recipe items, however, the site
is a perfect target for implementing a collaborative filtering
recommender system. Based on the tastes of similar users,
personalized recommendations for drinks could be presented
in one of the sidebars, as shown in Figure 1.

Figure 1: Adopted cocktailscout.de website with
personalized recommendations augmented (right).

Typically, the implementation of such functionality heav-
ily depends on the website provider, and in the world of on-
line shopping there is a lot of incentive for service providers
to introduce such recommenders for increasing sales and
profit. In contrast, for non-commercially oriented websites,
or when items and monetization are not related directly,
as with cocktail recipes, there is no such incentive for the
site provider. For end users, however, recommender system
techniques are commonly beyond the scope and to complex
to be employed. Nevertheless, users of the CocktailScout
website who are hobby JavaScript programmers, might be
interested, and have the skills to implement a user script for
utilizing the ratings and adding personalized recommenda-
tions of recipes. They do, however, lack access to a recom-
mender system providing them with item recommendations.

Such a system could theoretically be implemented as a
content-based recommender on client-side, given a catalog
of items with features (such as a drink’s ingredients), and
the user’s interests (such as preferences for ingredients). If
no such item catalog is as available, however, the alterna-
tive, namely to collect all possible items manually in the Web
augmentation script, seems to be a tedious task. For collab-

7Highest global Alexa rank (http://www.alexa.com/) in a
comparison of 13 German language cocktail websites.

orative filtering, in contrast, such explicit domain knowledge
is not required, but instead, only explicit or implicit user rat-
ings (i. e., weighted relations between users and items) are
required. Therefore, for the paa approach we propose to
share ratings and compute recommendations using collab-
orative filtering on a dedicated server, not least because of
the current trend to cloud services, and protection of users’
privacy. Consequently, providing a restful api for standard
http requests (and a corresponding object-oriented library
in JavaScript, the prevailing language in the Web augmen-
tation community), a recommendation service can be of-
fered to the exemplary cocktail-drinking hobby JavaScript
programmer. Providing a generic service, the approach has
the potential to reach and benefit a large existing web aug-
mentation community, and can be employed for arbitrary
websites, under control of users and on client-side, and it
may even go beyond single domains or the scope of a sin-
gle site provider. Thereby, providing a simple and clear api
and complete documentation is a key requirement, as we
also discovered in the context of the composition language
for building personalized recommenders and services in our
research project TheHiddenYou [19].

In the upcoming Section 2 we discuss related work in the
context of our approach. The following Section 3 presents an
overview of the approach, including the tasks for scripters.
Next, Section 4 introduces several real-world application sce-
narios, and demonstrates the approach as seen by the users.
Section 5 elaborates on the architecture in detail, in partic-
ular the server part, and the paa-api for scripters, which
provides the functionality to store and retrieve item ratings,
and to retrieve rating predictions and recommendations. In
this context important issues are privacy and provenance,
issues that are commonly disregarded in the Web augmenta-
tion community, but gain importance in the light of a central
repository for collecting ratings. Finally, Section 6 discusses
our prototype and some practical issues, before Section 7
presents conclusions and future work.

2. RELATED WORK
This section discusses related research in several fields,

such as adaptive hypermedia, Web personalization, recom-
mender systems, as well as Web augmentation, and finally
compares our approach to similar approaches which are used
in practice.

Research on Web personalization has been steadily grow-
ing, and in order to satisfy the huge number of end-users,
several approaches for personalizing Web content have emerged,
e.g. user profiling for personalization [14], or recommender
systems [17]. In this context different ways for rating have
been studied [24], and classifications of user feedback have
been surveyed (including their correlation to ratings) [18].

Although usually recommenders work on server-side, some
approaches for client-side personalization have been devel-
oped [2, 16]. In such scenarios, since different Web ap-
plications can share a single user profile (e.g. managed on
client-side using a browser extension), and recommendations
may cover different sites. Regardless whether personaliza-
tion mechanisms work on server or client side, these mech-
anisms are usually specified by website owners, and they
are always limited by the information available on the user
profile. Meanwhile browser extensions monitoring user navi-
gation can be used to populate user profiles (with navigation
history, bookmarks, keywords, etc.) and thereupon recom-

54

mend relevant Web pages to users [10, 12]. Although there
are some works aiming to define and extract [25] compre-
hensive profiles, and analyze their interoperability [5], it
is difficult to implement an adaptation mechanism which is
broad enough to contemplate every user requirement, espe-
cially while protecting privacy [20] and providing prove-
nance information [21].

Web augmentation techniques are another way to achieve
personalization; augmentation allows users to customize web-
site user interfaces (UIs) in terms of content and function-
ality, according to their own requirements [11]. Most Web
augmentation approaches are developed as browser exten-
sions, and once installed by the user, they modify loaded
Web pages, thus altering what the user perceives. In this
way, end users with programming skills are the ones cre-
ating Web augmentation artifacts. However, most recent
research about Web augmentation do not target personal-
ization, but aim to provide tools (frameworks, or languages)
to solve domain-specific adaptations (i.e., support recurrent
tasks, automate tasks, improve accessibility, etc.) or raise
the abstraction level in order to allow more users (without
advanced programming skills) to specify how they want to
augment their preferred Web sites. For instance, CSWR
[13] aims to improve Web accessibility, and WebMakeUp
[9] allows end-users to specify their own augmentations. All
these approaches propose a way to customize the Web, but
most of them work without an underlying user profile. Web
augmentation may be employed for guiding the user through
content, whereas the navigation mechanisms are not imple-
mented by the content provider himself. Using a collabo-
rative system for recommending items on the Web, in this
context, represents a ‘social mechanism’ with an ‘open cor-
pus of documents’.

A similar kind of systems to adapt existing third-party
Web content are intermediaries [3], which intercept the con-
tent in a proxy server and not on client-side. From our point
of view, and in comparison with intermediaries, Web aug-
mentation approaches are usually more powerful as adapta-
tion mechanisms. Web augmentation tools usually extend
the Web Browser, and consequenlty these tools give more
information about the users activity than a those systems
working on a proxy server.

Some authors have proposed personalization as a service
[15], and nowadays there are several companies offering rat-
ing8 and recommendation9 as Web services. Despite simi-
larities to the proposed paa approach in terms of the em-
ployed technology, these approaches require changes in the
”original” Web site, and these changes need to be performed
by the provider, for instance, by integrating a JavaScript
library. Furthermore, these approaches require an upload
of a complete product catalog beforehand9, thereby caus-
ing additional maintenance effort. In our proposed paa ap-
proach, this catalog is built on-the-fly, i.e., product details
are pushed to our repository alongside with ratings. Finally,
whereas in recommendation as a service, concrete recom-
mendations are rather generic; we argue that a scripter who
is an active member from both Web site community and
Web augmentation community may have further insight to
exploit domain knowledge about human decision making in
that community (cf. [6]) for giving item recommendations.

8Rating-Widget: http://rating-widget.com/
9Strands: http://retail.strands.com/

3. THE APPROACH IN A NUTSHELL
This section gives an overview of the approach, in partic-

ular as seen by the script writer, referring to the example
outlined in the introduction. The complete architecture and
technical details about the server will be explained in Sec-
tion 5. In short, the paa approach supports the scripter to
make adaptations to the website, as outlined in Figure 2. At
first ratings are collected in the browser by the scripter 1
and sent to the server using dedicated api methods 2 . After
processing on the server 3 , another set of methods may be
used to retrieve previous ratings, rating predictions, as well
as recommendations 4 , to be finally employed to modify the
page 5 , for instance for link ordering, link hiding, link an-
notation, or link generation, as classified by Brusilovsky [4].
In the following, the five steps are outlined in detail.

Data Collection 1 : Scripters may rely on an existing
rating mechanism to measure the user’s interest in an item.
If no such mechanism exits, it can be implemented by the
scripter, either in terms of an explicit rating (e. g., 1-5 stars,
like vs. dislike, etc.) or implicitly computing a score (e. g.,
based on page visit, time spent on the page, activities such as
posting comments or uploading pictures). For modeling the
user’s interest, we rely on events relating users with items
(both identified with unique ids) and including a numeric
score for rating. For presentation purposes later on (cf. 5),
here we also require additional features about an item, in-
cluding a human readable name, or meta-info such as an
image, to be shown as link in the web browser. For the use-
case regarding cocktails, this means we will need the drink’s
url, its name, an image url, as well as a user id and the
numeric rating from the page. Tasks for the scripter: To
extract all this information, the scripter usually reads the
Web page’s document object model (dom): 1. Extract a
unique user id from dom (or rely on user’s login on the paa
server’s web interface; cf. Sect. 5); 2. Extract a unique item
id from dom; 3. Extract further information about the item
from dom, such as name (to be used as link text), or links
(to be used for image links); 4. Extract the rating value, or
compute a numeric rating from collected explicit or implicit
user feedback (or rely on default scores of predefined event
types; cf. Sect. 5).

Send to Server 2 : As a next step, the previously col-
lected data must be sent to the server, to ultimately collect
a large number of such events as basis for the recommender
algorithm. Tasks for the scripter: Send data to the server
via the api, using our provided JavaScript library (parame-
ter string, or object-oriented), or using http post requests.

Processing on Server 3 : On the server events are
stored, a timestamp is added, and they are processed to be
in a format for being used by the recommender (cf. Sect. 5).

Retrieval from Server 4 : As a next step, queries may
be performed from the script, either for any page on the site
or pages representing or containing items (i. e., automat-
ically), or on demand of the user (i. e., manually, cf. ‘pull
recommendations’ [23]). The following data can be retrieved
from the server: firstly, previously stored ratings including
meta-information, such as average ratings and their distri-
butions; secondly, predictions for user ratings; and finally,
recommendations for items, with the latter two being com-
puted on-the-fly using a recommender system library on the
server. Tasks for the scripter: Via several dedicated api
methods, the scripter can query this information from the
server, again using our provided JavaScript library or http

55

PAA
API

Tom

Roger

Becky

Bob

Database

Recommender

 Collection of user ratings
 and item data in browser 1

 Post-Processing
 and storage
 on server
3

PA
A

 Se
rve

r C
lie

n
t/

B
ro

w
se

r

addEvent(Tom, http://cocktail.de/pinacolada.htm, "Piña Colada",
 "http://cocktail.de/pinacolada.jpg", "rating", 4)

 Augmentation of ratings, predictions
 and recommendations in the page 5

Prediction: 'Black Russian': 4.5

Rating: 'White Russian': 4; avg: 3.5

White Russian: 5
Piña Colada: 4

Margarita: 2
Pisco Sour: 5

White Russian: 4
Pisco Sour: 3

Piña Colada: 5
Margarita: 1

White Russian: 1
Margarita: 4
Pisco Sour: 5

White Russian: 4
Piña Colada: 5

Recommendations:
• 'Pisco Sour'
• 'Black Russian'

getRecommendations(Bob)
reply: [{ http://cocktail.de/piscosour.htm, "Pisco Sour", ".../piscosour.jpg"
} , { http://.../blackrussian.htm, "Black Russian", ".../blackrussian.jpg" }]

getRating(Bob, http://cocktail.de/whiterussian.htm)
reply: { rating: 4 , avg: 3.5 }

getPrediction(Bob, http://cocktail.de/blackrussian.htm)
reply: { 4.5 }

 Send data
 to server 2

 Retrieval
 from server 4

Figure 2: Overview of the five steps of the proposed PAA approach as seen by end users and script writers,
including a simplified representation of the communication between client and server.

post requests.
Augmentation in Page 5 : The previously retrieved

information may finally be augmented in the page. Previ-
ous and average ratings as well as their distributions may
be shown as additional information on the item page, or
for link annotation (cf. [4]), e. g., as popups for all links re-
ferring to drinks. Rating predictions may be employed for
re-ordering items or links on the page, or, if the predicted
score is below a certain threshold, for hiding a link (cf. [4]).
Finally, the provided list of recommendations can be used to
generate (cf. [4]) personalized links on the page, referring to
items the user could be interested in, e. g., as a list of recom-
mended drinks. Tasks for the scripter: The desired results
are displayed on the page by modifying the dom. For show-
ing drink recommendations, this can be achieved by using
the response from the server to add elements and set their
properties. The complete script source code for this example
is available online with our prototype (cf. Sect. 6).

4. APPLICATION SCENARIOS
This section elaborates on several user script use-cases

that can be realized with our approach, and focuses on ben-
efits for the end user.

Cocktail Recipes – Recommendation Scenario. In
the previous sections and example we based on the example
of cocktailscout.de, a site which has almost 4000 regis-
tered users and more than 1500 recipe items, and an existing
rating mechanism. Only by exploiting these ratings on the
paa server, personalized drink item recommendations can
be generated for the user.

Bookstore – Rating Mechanism. The Argentinean
online bookstore cuspide.com provides functionality to com-
ment on books, but does neither offer ratings nor personal-
ized recommendations. In such scenarios without a re-usable
rating mechanism, a rating widget may be added to the page
(cf. Fig. 3), to show items annotated with previous ratings

Figure 3: Example modified bookstore website with
an augmented rating mechanism (bottom).

and statistics, as well as to generate personalized recom-
mendations. For the scripter this scenario is slightly more
complicated, since it requires the definition of what items
can be rated in the first place, i. e., a definition of items to
be processed by the user script.

Board Games #1 – Using Predictions. In addition
to annotation and generation of links, to improve the visi-
bility of relevant items for the user, rating predictions may
be exploited for link hiding and re-ordering. This is partic-
ularly useful for sites with a large catalog of items, such as
the board gaming community website boardgamegeek.com,
with around 77.000 games grouped by publishers, artists, as
well as various categories and families (and more than one
million of registered users). Even though a rating mecha-

56

Figure 4: Example modified BoardGameGeek web-
site with augmented recommendations (left) and
rating prediction (center/top).

nism exits, personalized recommendations of games are not
given to users. Instead, the site displays a list of 50 currently
‘hot’ games. To personalize this list using the paa approach,
e. g., it can be re-ordered according to rating predictions for
these items and users, and games having a particularly bad
prediction (e. g., below a certain threshold) can be hidden.

Board Games #2 – Feedback & Event Types. As
an alternative to the previous scenarios, where users are re-
quired to give explicit ratings, other kinds of user feedback
may be exploited, such as explicit feedback without numeric
ratings, or implicit user feedback. On boardgamegeek.com,
besides explicit ratings, users can become fan of a game,
subscribe, tag, record plays, add games to collections, and
much more. In addition to these explicit events, implicit
feedback may be recorded directly in the browser (i. e., be-
haviors exhibited by the user while using the site; cf. [18] –
paa does not require a special browser for this functionality,
but it can be implemented as scripts). Based on this, a script
can compute a single numeric rating value to be communi-
cated to the server. Alternatively, to relieve the scripter of
this task, we further propose a mechanism to allow putting
multiple events to the server, and compute an aggregated
single rating value to estimate the user’s interest in an item
on server-side. Thus, for the scripter the task of comput-
ing a rating value is broken down to recording different user
actions (i. e., events), and defining how the events should
be accumulated to a collective score (sum, average, median,
logarithmic, etc.). Details about how this is achieved will be
explained in detail below in Section 5.

Scientific Literature – Cross Domain. Finally, since
Web augmentation scripts can be defined to run on mul-
tiple websites, going beyond the scope of a single content
provider, the paa approach enables personalized link rec-
ommendations across multiple domains. This feature is spe-
cially useful for those Web sites sharing an underlying do-
main. For instance, for scientific literature search, a script
can track user activities such as page visits and downloads
on sites such as acm dl, Springer, ieee Xplore, or Science
Direct10. In every site of this list, the same item (Paper)
may be defined with similar properties (url, title, authors,
abstract). Based on events collected from these user activi-
ties, a recommendations pane can be added to each of these
websites to present potentially relevant scientific literature

10
http://dl.acm.org/, http://link.springer.com/,

http://ieeexplore.ieee.org/, http://www.sciencedirect.com/

Figure 5: Example modified literature search web-
site with augmented recommendations (right).

from any of the sites to the user, as shown exemplary in
Figure 5.

5. ARCHITECTURE
As it was explained in the introduction, on client-side ded-

icated plug-ins enable the execution of user scripts to ma-
nipulate the dom in the browser. Such user scripts, written
in JavaScript language, may execute http requests to exter-
nal restful apis. This is shown in Figure 6, alongside with
the proposed paa architecture and components of the server,
which will be explained in more detail in the following. In
paa, requests can be made manually using standard script-
ing tools (e. g., functions provided by Firefox or GreaseMon-
key), or using our JavaScript library, which provides func-
tions for sending parameters concatenated as a single strings
(e. g., userName=Bob&rating=4&...), or in an object-oriented
manner. The latter option is shown exemplary in Figure 7,
including code to extract the parameters from the dom, and
the interal library implementation is presented in Figure 8.

Processing of Events. As mentioned in step 3 in Sec-
tion 3, events that are stored on the server are equipped
with a timestamp, before all parameters are checked for va-
lidity, and events are stored to the database. Furthermore,
provided userNames and item ids (itemIri11) are mapped
to numeric ids, and stored along with the rating and the
timestamp in a separate table to be accessed directly by the
recommender engine.

Different Types of Events. To distinguish between dif-
ferent types of events, such as explicit numeric ratings and
other kinds of feedback, the scripter can choose to supply a
custom eventType (e. g., ‘pictureUpload’). Except for the
distinction, this allows us to provide a default rating value
for several pre-defined event types (following a classification
of observable user behaviour found in literature [18]). These
default ratings, however, are currently assigned in unschol-
arly manner, and thus can also be overridden by the scripter.

Rating Accumulation. Whereas events represent user
actions, for the recommender engine we rely on ratings only.
For this, the rating values provided with the events may
be used directly. Defined by a parameter insertAs, first,
events may simply be added as ‘new’ ratings (i. e., several
ratings per user for a single item are provided to the recom-
mender engine). Second, the rating specified by the event
may ‘replace’ the previous one. Finally, as an alternative
multiple events may be accumulated – in a way that can be
configured by the scripter – to compute the rating value to

11commonly uris/iris (http://tools.ietf.org/html/rfc3987)

57

Server-Side
Storage

Object
Relational
Mapping
(Hibernate)

Relational
Views

Relational
Database

(MySQL)

PAA Logic

Recommender System
(LensKit)

User Management &
Authentication (Spring-Security)

Query/Retrieval Subsystem

Event Processing &
Rating Accumulation

API

PA
A

 R
ES

T
A

PI

(J
AX

-R
S/

Je
rs

ey
)

W
eb

 U
I

HTTP

Client-Side

User Script
(JavaScript)

PAA Library
(JavaScript)

Augmentation
Engine

e.g. GreaseMonkey

Augmentation Layer

+
Web Page

Figure 6: Architecture of the proposed PAA approach: client-side, server-side, communication via HTTP.

} Item data
obtained from DOM

}

Item creation and
initizialization

} User creation (username
obtained from the DOM)

} Rating creation (value
obtained from DOM)

} Event creation and
sending to server

}

Obtain recommendations
and handle the result with
receiveRecommendations()

Figure 7: Example JavaScript code for creating and
storing an event object, and for retrieval of recom-
mendations using the object-oriented PAA library.

be used by the recommender. Since user scripts are typically
run once per page load, this may be a particularly useful op-
tion to track implicit user feedback in terms of potentially
many events regarding a single item. For this accumulation,
ratings may be derived as ‘sum’, ‘average’, or ‘median’

of event scores. While summing or averaging, weights for
older events may be decreased, e. g., linearly or logarithmic.
Furthermore, the aggregationScope can optionally be lim-
ited to a certain number of most recent events, or using a
time window. As a result, the rating scale must allow float
values, and consequently also the ratings provided from the
user script can be continuous, allowing different scales or
binary ratings. For the future we are planning extensions,
and we aim to make this computation more customizable,
for instance, to enable that different event types contribute
to the accumulation in different manners.

Authentication & Web UI. User authentication is not
required if while making api calls the user script provides
a userName. Clearly this is security issue, because in this
basic form there is no authentication involved. This option
was enabled for the sake of simplicity, and for simple scenar-
ios where security is not an issue. Alternatively, instead of
providing a user name, the parameter paaAuthRequired can
be set to true, enabling authentication via the paa website
(the current status can be queried using getLoginStatus(),
to open the login form if necessary). Once logged in, the
corresponding cookie is being included by the browser when

} De�ne and serialize
data (current script,
website, user)
for requesting
recommendations
from the server

} Perform the request
and execute the callback
function (de�ned by the
scripter) to handle
the server’s response
(i.e., recommendations)

Figure 8: Example internal JavaScript library func-
tion of client-side API to request recommendations.

making calls to the server’s api. Via the Web user interface,
users can furthermore manage their profile data and view
coarse grained provenance information. Thereby, the user
may be provided with insights to what data is being stored
and how it is used, including information on why specific rec-
ommendations were given. This increases transparency and
helps to gain the users’ trust, and to satisfy users who might
normally be reluctant to share personal data with providers
of (commercially oriented) personalization services.

Recommender Engine on Server. For adding events,
as well as for queries to the recommender engine, every api
query must provide the script’s pluginName, pluginNames-
pace, and the site domain. These define the operation do-
main for the recommender, i. e., the view for ratings that
are seen by the recommender engine (also user names must
be unique within this operation domain). For computing
predictions and recommendations the current generic pro-
totype implementation relies on the open-source framework
LensKit12, configured to perform item-item collaborative fil-
tering for scoring items (cf. [7, 22], LensKit doc.13), and
directly accessing the database for building models.

Provision to Client. Finally, for answering queries re-
garding ratings, predictions, and recommendations, again
user names and item ids are mapped to numeric ids and
vice versa, and previously stored itemNames and meta infor-

12http://lenskit.org/ – Recommender Toolkit
13

http://lenskit.org/documentation/algorithms/item-item/

58

mation (stored per event) are added where applicable. Ex-
ample responses are shown online along with the prototype,
as discussed in the following section.

6. PROTOTYPE & EVALUATION
The implemented paa prototype is publicly available on-

line14, including our object-oriented JavaScript library with
example scripts and instructions for their usage. The im-
plementation bases on Jersey15 for handling restful http
requests, and employs Spring Security16 for authentication,
which also allows the future integration of identity providers
such as Openid (supported by Google) or Facebook Connect,
to lower the barrier for acquiring users. In general, persis-
tence is realized with Hibernate17, however, using relational
views LensKit12 accesses the underlying database directly.

The prototype shows the feasibility of combining Web aug-
mentation with recommender systems. It was not yet op-
timized for performance (prediction accuracy and response
times), yet it shows that the approach is suitable for em-
powering scripters to build new kinds of augmentations.

Since we base on established item-item collaborative fil-
tering algorithms, the evaluation of prediction accuracy was
not a goal for this paper. However, we do plan to do this in
the future, along with an evaluation of our methods for com-
puting the cumulative score from different event types. In
this context, an interesting question is how well does the cho-
sen LensKit configuration generalize for all kinds of items,
and how can it be made configurable by the scripter.

Concerning response times, on one hand, the approach is
limited by the connection to the server through Internet,
however, with optimizations possible, for instance by pro-
viding api methods to combine several http requests into
one (e. g., storage of multiple events as a batch, or combining
the storage of an event with a query for recommendations),
or by reducing the amount of redundantly transferred event
meta information. On the other hand, the computation of
recommendations on the server is currently made on demand
for each request, but could be made configurable, such that
the scripter may define whether recommendations should be
computed in advance, or if they have to reincorporate all the
latest added events.

As with collaborative filtering recommenders in general,
the known cold start problem is an issue to be considered,
also for script writers. To mitigate this problem, in sit-
uations where ratings are publicly available, the scripter
may add them as a batch, e. g., by extracting user ratings
from cocktailscout.de, or using the xml api of board-

gamegeek.com. Additionally, to support early development
of new scripts, our prototype can be configured to append
random items to the list of recommendations, until the rec-
ommender algorithm can compute enough actual ones.

Finally, so far our approach does not foresee the removal
of items. In an open environment, where every end user can
add items, maybe role-based user management, a reputa-
tion based approach, or a voting mechanism can be used to
decide which items to remove. In this context, it also may
happen that websites change their url structure. While this
is something that every Web augmentation approach has to

14http://paa.cis.jku.at/
15http://jersey.java.net/ – jax-rs Reference Impl.
16http://projects.spring.io/spring-security/
17http://hibernate.org/ – Object Relational Mapping

deal with, this may cause additional database maintenance
efforts if the ids of items are affected.

7. CONCLUSIONS & FUTURE WORK
We have shown the feasibility for providing collaborative

filtering recommender system functionality as a service for
Web augmentation. By providing a simple api and corre-
sponding object-oriented JavaScript library, user script writ-
ers may employ ratings, predictions, as well as recommenda-
tions of items, to develop new kinds of recommender appli-
cations for arbitrary websites. Thus, end users benefit from
personalization of the Web browsing experience through an-
notation, re-ordering, hiding, and generation of links. Sev-
eral real world world application scenarios were discussed,
and we presented our publicly available server prototype.

To improve and further evaluate the proposed approach,
we foresee several lines of potential future work. Therefore,
we are currently working on an extended prototype, mainly
to add some minor features, improve response times, and
add further means of configuration for the scripter. In a
profound evaluation we aim to cover the issues outlined in
the previous section: recommendation relevancy, the server-
side computation of scores, response times and their effect
on users’ browsing experience, and methods to cope with
the removal of items or changing urls. In this kind of sys-
tems another very well known issue is the cold start problem,
in this sense, we plan to provide scripters with some mecha-
nisms to define how the script adapts the Web page when the
available ratings are not enough. A possibility we are study-
ing is to allow a scripter to use a single user profile in several
scripts. In this context, we also plan to conduct several user
studies, first, with scripters to evaluate the comprehensibil-
ity of the api for implementing pre-defined tasks, and how
the provided service is being accepted. Second, we intend to
evaluate performance, quality of recommendations, as well
as scalability, in terms of a larger case study with users,
employing experts or a number of end users, e. g., from the
boardgamegeek.com community. There, publicly available
ratings can be exploited to reduce the cold start problem, or
to build a dataset for an offline evaluation of the employed
recommender algorithm. Finally, with a complete prototype
and documentation, downloads of our scripts and usage of
the api can be evaluated in long term study.

In terms of functionality, we foresee several expansions.
Support for different data formats for the api (e. g., json,
xml, rdf) allows the reduction of technical heterogeneity,
and enables simpler integration with arbitrary websites –
also to give the scripters more options. Moreover, using
rdf facilitates the use of semantic Web technologies and re-
sources, not least to supply further structured information
about items from resources such as dbpedia. Together with
user profile data and item features collected in the browser,
or extracted from online social networks, this information
may be exploited by the recommender algorithms, for in-
stance to better determine user-user or item-item similari-
ties, or for improving recommendation results with content-
based and hybrid recommender mechanisms on server side.
In this context it is particularly interesting how well the
current implementation recommends newly added items or
items with few ratings, and if the algorithms can be made
configurable for end users or scripters, to include items from
the long tail for increasing serendipity in recommendations.
In this context, the recommender system algorithms may

59

also be configured via the api in a more elaborate way,
for instance using LensKit’s Groovy-based dsl18. Further-
more, feedback on recommendations may be exploited to
improve recommendations (i. e., when the user follows a rec-
ommended link, or rates the corresponding item afterwards),
and item recommendations that are constantly ignored may
be excluded in the future. The set of items considered by
the recommender may also be defined by the scripter, for
instance, by providing a specific set or filter criteria via the
api, as with a Recommendation Query Language (cf. [1]).

To decentralize the approach, giving even more control to
the user script writer, we plan to investigate how the server
functionality can be hosted by a generic ”platform as a ser-
vice” provider of cloud computing services, and if the api
functionality can be provided as a downloadable and con-
figurable bundle. Going beyond the server side approach,
the question remains whether the architecture can be re-
implemented to be independent of a single third party rec-
ommendation service provider, with recommendations being
computed on client-side, and exchanging anonymized data
via a dedicated data exchange server only, or relying on a
peer-to-peer architecture.

Finally, we foresee the implementation of a browser plug-
in to offer a graphical user interface for configuration and
augmentation of recommendations, to be used by scripters
or even end-users, based on a dsl to define extraction and
placement of item and user information in the dom (cf. [11]).

8. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next

generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE Trans.
on Knowledge and Data Eng., 17(6), 2005.

[2] A. Ankolekar and D. Vrandecic. Kalpana - enabling
client-side web personalization. In Proc. of HT’08 -
Hypertext 2008. ACM, 2008.

[3] R. Barrett and P. P. Maglio. Intermediaries: New
places for producing and manipulating web content.
Computer Networks, 30(1-7):509–518, 1998.

[4] P. Brusilovsky. Adaptive navigation support. In The
Adaptive Web, volume 4321 of LNCS. Springer, 2007.

[5] F. Carmagnola, F. Cena, and C. Gena. User model
interoperability: a survey. User Modeling and
User-Adapted Interaction, 21(3), 2011.

[6] L. Chen et al. Human decision making and
recommender systems. ACM Trans. Interact. Intell.
Syst., 3(3), 2013.

[7] M. Deshpande and G. Karypis. Item-based top-n
recommendation algorithms. ACM Trans. Inf. Syst.,
22(1), 2004.

[8] O. Dı́az and C. Arellano. The augmented web:
Rationales, opportunities, and challenges on
browser-side transcoding. ACM Transactions on the
Web, 9(2), 2015.

[9] O. Diaz et al. Towards the personal web: Empowering
people to customize web content. In Web Information
Systems Eng., volume 8786 of LNCS. Springer, 2014.

[10] D. Eynard. Using semantics and user participation to
customize personalization. Technical report, HP Labs,
2008.

18
http://lenskit.org/documentation/basics/configuration/

[11] D. Firmenich, S. Firmenich, J. Rivero, and
L. Antonelli. A platform for web augmentation
requirements specification. In Web Engineering,
volume 8541 of LNCS. Springer, 2014.

[12] X. Fu, J. Budzik, and K. J. Hammond. Mining
navigation history for recommendation. In Proc. of 5th
Int. Conf. on Intelligent User Interfaces, IUI ’00, New
York, NY, USA, 2000. ACM.

[13] A. Garrido, S. Firmenich, G. Rossi, J. Grigera,
N. Medina-Medina, and I. Harari. Personalized web
accessibility using client-side refactoring. Internet
Computing, IEEE, 17(4), 2013.

[14] S. Gauch, M. Speretta, A. Chandramouli, and
A. Micarelli. User profiles for personalized information
access. In The Adaptive Web, volume 4321 of LNCS.
Springer, 2007.

[15] H. Guo, J. Chen, W. Wu, and W. Wang.
Personalization as a service: The architecture and a
case study. In Proc. of 1st Int. Workshop on Cloud
Data Management, CloudDB ’09, New York, NY,
USA, 2009. ACM.

[16] Hendry, H. Pramadharma, and R.-C. Chen. Building
browser extension to develop website personalization
based on adaptive hypermedia system. In Current
Approaches in Applied Artificial Intelligence, volume
9101 of LNCS. Springer, 2015.

[17] D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich.
Recommender Systems: An Introduction. Cambridge
University Press, 2010.

[18] G. Jawaheer, P. Weller, and P. Kostkova. Modeling
user preferences in recommender systems: A
classification framework for explicit and implicit user
feedback. ACM Trans. Interact. Intell. Syst., 4(2),
2014.

[19] G. Kappel et al. TheHiddenYou - A Social Nexus for
Privacy-Assured Personalisation Brokerage. In 12th
Int. Conf. on Enterprise Information Systems
(ICEIS), 2010.

[20] A. Kobsa, B. P. Knijnenburg, and B. Livshits. Let’s
do it at my place instead? attitudinal and behavioral
study of privacy in client-side personalization. In
SIGCHI Conference on Human Factors in Computing
Systems (CHI 2014), Toronto, Canada, 2014.

[21] L. Moreau et al. The open provenance model core
specification (v1.1). Future Generation Computer
Systems, 27(6), 2011.

[22] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Item-based collaborative filtering recommendation
algorithms. In Proc. of 10th Int. Conf. on World Wide
Web, New York, NY, USA, 2001. ACM.

[23] J. Schafer, D. Frankowski, J. Herlocker, and S. Sen.
Collaborative filtering recommender systems. In The
Adaptive Web, volume 4321 of LNCS. Springer, 2007.

[24] E. I. Sparling and S. Sen. Rating: How difficult is it?
In Proceedings of the Fifth ACM Conference on
Recommender Systems, RecSys ’11, New York, NY,
USA, 2011. ACM.

[25] M. Wischenbart et al. Automatic data transformation:
Breaching the walled gardens of social network
platforms. In Proc. of APCCM - vol. 143, Adelaide,
Australia, 2013. Australian Computer Society.

60

	preface
	papers
	invited
	IntRS_2015_paper_1
	IntRS_2015_paper_2
	IntRS_2015_paper_3
	IntRS_2015_paper_4
	Introduction
	Background
	Inspectability and Control in Recommender Systems
	Inspectability and Control in Microblogs
	Community-based Content Discovery

	Visualization
	Study 1
	Participants
	Procedure
	Results

	Study 2
	Participants
	Procedure
	Results

	Conclusion and Future work
	Acknowledgments
	REFERENCES

	IntRS_2015_paper_5
	IntRS_2015_paper_6
	IntRS_2015_paper_7
	IntRS_2015_paper_8
	IntRS_2015_paper_9
	IntRS_2015_paper_10

