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ABSTRACT
Web augmentation techniques allow the adaptation of web-
sites on client side using browser extensions or plug-ins de-
signed to run dedicated user scripts. However, while number
and variety of such scripts from publicly available reposito-
ries have grown remarkably in recent years, they usually
neglect the user’s personal profile or individual preferences,
and therefore fail to provide enhanced personalized services.
At the same time recommender systems have become power-
ful tools to improve personalization on the Web. Yet, many
popular websites lack this functionality, e. g., for missing fi-
nancial incentive. Therefore, we present a novel approach to
empower user script developers to build more personalized
augmenters by utilizing collaborative filtering functionality
as an external service. Thus, script writers can build rec-
ommender systems into arbitrary websites, in fact operating
across multiple website domains, while guarding privacy and
supplying provenance information. This paper discusses the
architecture of the proposed approach, including real-world
application scenarios, and presents our tool kit and pub-
licly available prototype. The results show the feasibility of
combining Web augmentation with recommender systems,
to empower the crowd to build new kinds of applications for
a more personalized browsing experience.

1. INTRODUCTION
In recent years web augmentation techniques, i. e., the

addition of external content or behaviour to Web pages,
have become a popular means for end users to adapt pages
according to their own requirements, with reduced depen-
dency on the website provider. Thereby, advanced users
with knowledge of JavaScript, so-called scripters, write (user)
scripts to modify web pages, which are then executed within
the browser on client side – using dedicated browser plug-
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ins such as GreaseMonkey1, and without the inclusion of
the sites’ webmasters. These user scripts are often publicly
shared, and to date there are several large repositories pro-
viding a vast amount of various scripts for all kinds of Web
pages and modification tasks. For instance, GreaseFork2

has more than six thousand scripts, some of which are in-
stalled more than fifty thousand times. Another well-known
repository, called UserScripts3, hosts more than one hun-
dred thousand scripts. Examples range from layout modifi-
cation and tweaks (e. g., regarding video player size, video
& audio customizations, etc.) on youtube.com4, managing
comments on geocaching.com5, to improving navigation on
dropbox.com by rendering a Tree View panel6.

Unfortunately, as pointed out by a recent survey [8], and
according to our own experience, current technologies for
adapting the Web browsing experience still do not suffi-
ciently support individual personalization, as it is provided
by applications incorporating recommender system function-
ality. Consequently, with a single Web augmentation artifact
(i. e., script) every user has the same experience.

Recommender systems meanwhile have a longer standing
history in various domains, such as e-commerce or music
recommendations, and have become one of the most popu-
lar ways to personalize services and user experience. Com-
monly, they are classified [17] into content-based, collabo-
rative, knowledge-based, as well as hybrid approaches. Al-
though all these approaches rely on a user model, they dif-
fer in how they build this model, and they exploit different
kinds of additional information and algorithms for present-
ing personalized recommendations of items to the user. For
instance, collaborative approaches, also known as collabo-
rative filtering or community-based, take into account the
opinions of large amounts of users to make predictions about
a specific user’s preferences for items. Despite their poten-
tial, however, oftentimes websites do not implement recom-
mendation services, either because of lack of economic incen-
tives, or simply for lack of know-how on these techniques.

To alleviate these problems, we aim to introduce rec-
ommender system functionality for enhancing personaliza-
tion in Web augmentation, combining the benefits of both
approaches. To illustrate the use of collaborative filtering

1http://www.greasespot.net (Firefox)
2http://greasyfork.org
3http://userscripts-mirror.org
4
http://greasyfork.org/es/scripts/943-youtube-center

5
http://userscripts-mirror.org/scripts/show/75959

6
http://greasyfork.org/es/scripts/4955-dropbox-plus/code
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for realizing Personalization in Web Augmentation Appli-
cations (paa) we exhibit an example: The website cock-

tailscout.de is one of largest German language websites
for cocktail recipes7, having a community of almost 4000
registered users, who can search, rate and comment recipes
for drinks. A rating mechanism is used for ranking of recipes,
and averages and distributions of ratings for each drink can
be viewed. Yet the users’ individual ratings are not exploited
to give them personalized recipe recommendations. Instead,
the site provides a random link to a recipe on each page.
Containing more than 1500 recipe items, however, the site
is a perfect target for implementing a collaborative filtering
recommender system. Based on the tastes of similar users,
personalized recommendations for drinks could be presented
in one of the sidebars, as shown in Figure 1.

Figure 1: Adopted cocktailscout.de website with
personalized recommendations augmented (right).

Typically, the implementation of such functionality heav-
ily depends on the website provider, and in the world of on-
line shopping there is a lot of incentive for service providers
to introduce such recommenders for increasing sales and
profit. In contrast, for non-commercially oriented websites,
or when items and monetization are not related directly,
as with cocktail recipes, there is no such incentive for the
site provider. For end users, however, recommender system
techniques are commonly beyond the scope and to complex
to be employed. Nevertheless, users of the CocktailScout
website who are hobby JavaScript programmers, might be
interested, and have the skills to implement a user script for
utilizing the ratings and adding personalized recommenda-
tions of recipes. They do, however, lack access to a recom-
mender system providing them with item recommendations.

Such a system could theoretically be implemented as a
content-based recommender on client-side, given a catalog
of items with features (such as a drink’s ingredients), and
the user’s interests (such as preferences for ingredients). If
no such item catalog is as available, however, the alterna-
tive, namely to collect all possible items manually in the Web
augmentation script, seems to be a tedious task. For collab-

7Highest global Alexa rank (http://www.alexa.com/) in a
comparison of 13 German language cocktail websites.

orative filtering, in contrast, such explicit domain knowledge
is not required, but instead, only explicit or implicit user rat-
ings (i. e., weighted relations between users and items) are
required. Therefore, for the paa approach we propose to
share ratings and compute recommendations using collab-
orative filtering on a dedicated server, not least because of
the current trend to cloud services, and protection of users’
privacy. Consequently, providing a restful api for standard
http requests (and a corresponding object-oriented library
in JavaScript, the prevailing language in the Web augmen-
tation community), a recommendation service can be of-
fered to the exemplary cocktail-drinking hobby JavaScript
programmer. Providing a generic service, the approach has
the potential to reach and benefit a large existing web aug-
mentation community, and can be employed for arbitrary
websites, under control of users and on client-side, and it
may even go beyond single domains or the scope of a sin-
gle site provider. Thereby, providing a simple and clear api
and complete documentation is a key requirement, as we
also discovered in the context of the composition language
for building personalized recommenders and services in our
research project TheHiddenYou [19].

In the upcoming Section 2 we discuss related work in the
context of our approach. The following Section 3 presents an
overview of the approach, including the tasks for scripters.
Next, Section 4 introduces several real-world application sce-
narios, and demonstrates the approach as seen by the users.
Section 5 elaborates on the architecture in detail, in partic-
ular the server part, and the paa-api for scripters, which
provides the functionality to store and retrieve item ratings,
and to retrieve rating predictions and recommendations. In
this context important issues are privacy and provenance,
issues that are commonly disregarded in the Web augmenta-
tion community, but gain importance in the light of a central
repository for collecting ratings. Finally, Section 6 discusses
our prototype and some practical issues, before Section 7
presents conclusions and future work.

2. RELATED WORK
This section discusses related research in several fields,

such as adaptive hypermedia, Web personalization, recom-
mender systems, as well as Web augmentation, and finally
compares our approach to similar approaches which are used
in practice.

Research on Web personalization has been steadily grow-
ing, and in order to satisfy the huge number of end-users,
several approaches for personalizing Web content have emerged,
e.g. user profiling for personalization [14], or recommender
systems [17]. In this context different ways for rating have
been studied [24], and classifications of user feedback have
been surveyed (including their correlation to ratings) [18].

Although usually recommenders work on server-side, some
approaches for client-side personalization have been devel-
oped [2, 16]. In such scenarios, since different Web ap-
plications can share a single user profile (e.g. managed on
client-side using a browser extension), and recommendations
may cover different sites. Regardless whether personaliza-
tion mechanisms work on server or client side, these mech-
anisms are usually specified by website owners, and they
are always limited by the information available on the user
profile. Meanwhile browser extensions monitoring user navi-
gation can be used to populate user profiles (with navigation
history, bookmarks, keywords, etc.) and thereupon recom-



mend relevant Web pages to users [10, 12]. Although there
are some works aiming to define and extract [25] compre-
hensive profiles, and analyze their interoperability [5], it
is difficult to implement an adaptation mechanism which is
broad enough to contemplate every user requirement, espe-
cially while protecting privacy [20] and providing prove-
nance information [21].

Web augmentation techniques are another way to achieve
personalization; augmentation allows users to customize web-
site user interfaces (UIs) in terms of content and function-
ality, according to their own requirements [11]. Most Web
augmentation approaches are developed as browser exten-
sions, and once installed by the user, they modify loaded
Web pages, thus altering what the user perceives. In this
way, end users with programming skills are the ones cre-
ating Web augmentation artifacts. However, most recent
research about Web augmentation do not target personal-
ization, but aim to provide tools (frameworks, or languages)
to solve domain-specific adaptations (i.e., support recurrent
tasks, automate tasks, improve accessibility, etc.) or raise
the abstraction level in order to allow more users (without
advanced programming skills) to specify how they want to
augment their preferred Web sites. For instance, CSWR
[13] aims to improve Web accessibility, and WebMakeUp
[9] allows end-users to specify their own augmentations. All
these approaches propose a way to customize the Web, but
most of them work without an underlying user profile. Web
augmentation may be employed for guiding the user through
content, whereas the navigation mechanisms are not imple-
mented by the content provider himself. Using a collabo-
rative system for recommending items on the Web, in this
context, represents a ‘social mechanism’ with an ‘open cor-
pus of documents’.

A similar kind of systems to adapt existing third-party
Web content are intermediaries [3], which intercept the con-
tent in a proxy server and not on client-side. From our point
of view, and in comparison with intermediaries, Web aug-
mentation approaches are usually more powerful as adapta-
tion mechanisms. Web augmentation tools usually extend
the Web Browser, and consequenlty these tools give more
information about the users activity than a those systems
working on a proxy server.

Some authors have proposed personalization as a service
[15], and nowadays there are several companies offering rat-
ing8 and recommendation9 as Web services. Despite simi-
larities to the proposed paa approach in terms of the em-
ployed technology, these approaches require changes in the
”original” Web site, and these changes need to be performed
by the provider, for instance, by integrating a JavaScript
library. Furthermore, these approaches require an upload
of a complete product catalog beforehand9, thereby caus-
ing additional maintenance effort. In our proposed paa ap-
proach, this catalog is built on-the-fly, i.e., product details
are pushed to our repository alongside with ratings. Finally,
whereas in recommendation as a service, concrete recom-
mendations are rather generic; we argue that a scripter who
is an active member from both Web site community and
Web augmentation community may have further insight to
exploit domain knowledge about human decision making in
that community (cf. [6]) for giving item recommendations.

8Rating-Widget: http://rating-widget.com/
9Strands: http://retail.strands.com/

3. THE APPROACH IN A NUTSHELL
This section gives an overview of the approach, in partic-

ular as seen by the script writer, referring to the example
outlined in the introduction. The complete architecture and
technical details about the server will be explained in Sec-
tion 5. In short, the paa approach supports the scripter to
make adaptations to the website, as outlined in Figure 2. At
first ratings are collected in the browser by the scripter 1
and sent to the server using dedicated api methods 2 . After
processing on the server 3 , another set of methods may be
used to retrieve previous ratings, rating predictions, as well
as recommendations 4 , to be finally employed to modify the
page 5 , for instance for link ordering, link hiding, link an-
notation, or link generation, as classified by Brusilovsky [4].
In the following, the five steps are outlined in detail.

Data Collection 1 : Scripters may rely on an existing
rating mechanism to measure the user’s interest in an item.
If no such mechanism exits, it can be implemented by the
scripter, either in terms of an explicit rating (e. g., 1-5 stars,
like vs. dislike, etc.) or implicitly computing a score (e. g.,
based on page visit, time spent on the page, activities such as
posting comments or uploading pictures). For modeling the
user’s interest, we rely on events relating users with items
(both identified with unique ids) and including a numeric
score for rating. For presentation purposes later on (cf. 5 ),
here we also require additional features about an item, in-
cluding a human readable name, or meta-info such as an
image, to be shown as link in the web browser. For the use-
case regarding cocktails, this means we will need the drink’s
url, its name, an image url, as well as a user id and the
numeric rating from the page. Tasks for the scripter: To
extract all this information, the scripter usually reads the
Web page’s document object model (dom): 1. Extract a
unique user id from dom (or rely on user’s login on the paa
server’s web interface; cf. Sect. 5); 2. Extract a unique item
id from dom; 3. Extract further information about the item
from dom, such as name (to be used as link text), or links
(to be used for image links); 4. Extract the rating value, or
compute a numeric rating from collected explicit or implicit
user feedback (or rely on default scores of predefined event
types; cf. Sect. 5).

Send to Server 2 : As a next step, the previously col-
lected data must be sent to the server, to ultimately collect
a large number of such events as basis for the recommender
algorithm. Tasks for the scripter: Send data to the server
via the api, using our provided JavaScript library (parame-
ter string, or object-oriented), or using http post requests.

Processing on Server 3 : On the server events are
stored, a timestamp is added, and they are processed to be
in a format for being used by the recommender (cf. Sect. 5).

Retrieval from Server 4 : As a next step, queries may
be performed from the script, either for any page on the site
or pages representing or containing items (i. e., automat-
ically), or on demand of the user (i. e., manually, cf. ‘pull
recommendations’ [23]). The following data can be retrieved
from the server: firstly, previously stored ratings including
meta-information, such as average ratings and their distri-
butions; secondly, predictions for user ratings; and finally,
recommendations for items, with the latter two being com-
puted on-the-fly using a recommender system library on the
server. Tasks for the scripter: Via several dedicated api
methods, the scripter can query this information from the
server, again using our provided JavaScript library or http
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addEvent( Tom, http://cocktail.de/pinacolada.htm, "Piña Colada", 
                   "http://cocktail.de/pinacolada.jpg", "rating", 4 ) 

     Augmentation of ratings, predictions 
     and recommendations in the page 5 

Prediction: 'Black Russian': 4.5 

Rating: 'White Russian': 4; avg: 3.5 

White Russian: 5 
Piña Colada: 4 

Margarita: 2 
Pisco Sour: 5 

 
 

White Russian: 4 
Pisco Sour: 3 

Piña Colada: 5 
Margarita: 1 

 
 

White Russian: 1 
Margarita: 4 
Pisco Sour: 5 

 
 
 

White Russian: 4 
Piña Colada: 5 

 

Recommendations: 
• 'Pisco Sour' 
• 'Black Russian' 

getRecommendations( Bob ) 
reply: [ { http://cocktail.de/piscosour.htm, "Pisco Sour", ".../piscosour.jpg" 
} , { http://.../blackrussian.htm, "Black Russian", ".../blackrussian.jpg" } ] 

getRating( Bob, http://cocktail.de/whiterussian.htm ) 
reply: { rating: 4 , avg: 3.5 } 

getPrediction( Bob, http://cocktail.de/blackrussian.htm ) 
reply: { 4.5 } 

      Send data 
      to server 2 

      Retrieval 
      from server 4 

Figure 2: Overview of the five steps of the proposed PAA approach as seen by end users and script writers,
including a simplified representation of the communication between client and server.

post requests.
Augmentation in Page 5 : The previously retrieved

information may finally be augmented in the page. Previ-
ous and average ratings as well as their distributions may
be shown as additional information on the item page, or
for link annotation (cf. [4]), e. g., as popups for all links re-
ferring to drinks. Rating predictions may be employed for
re-ordering items or links on the page, or, if the predicted
score is below a certain threshold, for hiding a link (cf. [4]).
Finally, the provided list of recommendations can be used to
generate (cf. [4]) personalized links on the page, referring to
items the user could be interested in, e. g., as a list of recom-
mended drinks. Tasks for the scripter: The desired results
are displayed on the page by modifying the dom. For show-
ing drink recommendations, this can be achieved by using
the response from the server to add elements and set their
properties. The complete script source code for this example
is available online with our prototype (cf. Sect. 6).

4. APPLICATION SCENARIOS
This section elaborates on several user script use-cases

that can be realized with our approach, and focuses on ben-
efits for the end user.

Cocktail Recipes – Recommendation Scenario. In
the previous sections and example we based on the example
of cocktailscout.de, a site which has almost 4000 regis-
tered users and more than 1500 recipe items, and an existing
rating mechanism. Only by exploiting these ratings on the
paa server, personalized drink item recommendations can
be generated for the user.

Bookstore – Rating Mechanism. The Argentinean
online bookstore cuspide.com provides functionality to com-
ment on books, but does neither offer ratings nor personal-
ized recommendations. In such scenarios without a re-usable
rating mechanism, a rating widget may be added to the page
(cf. Fig. 3), to show items annotated with previous ratings

Figure 3: Example modified bookstore website with
an augmented rating mechanism (bottom).

and statistics, as well as to generate personalized recom-
mendations. For the scripter this scenario is slightly more
complicated, since it requires the definition of what items
can be rated in the first place, i. e., a definition of items to
be processed by the user script.

Board Games #1 – Using Predictions. In addition
to annotation and generation of links, to improve the visi-
bility of relevant items for the user, rating predictions may
be exploited for link hiding and re-ordering. This is partic-
ularly useful for sites with a large catalog of items, such as
the board gaming community website boardgamegeek.com,
with around 77.000 games grouped by publishers, artists, as
well as various categories and families (and more than one
million of registered users). Even though a rating mecha-



Figure 4: Example modified BoardGameGeek web-
site with augmented recommendations (left) and
rating prediction (center/top).

nism exits, personalized recommendations of games are not
given to users. Instead, the site displays a list of 50 currently
‘hot’ games. To personalize this list using the paa approach,
e. g., it can be re-ordered according to rating predictions for
these items and users, and games having a particularly bad
prediction (e. g., below a certain threshold) can be hidden.

Board Games #2 – Feedback & Event Types. As
an alternative to the previous scenarios, where users are re-
quired to give explicit ratings, other kinds of user feedback
may be exploited, such as explicit feedback without numeric
ratings, or implicit user feedback. On boardgamegeek.com,
besides explicit ratings, users can become fan of a game,
subscribe, tag, record plays, add games to collections, and
much more. In addition to these explicit events, implicit
feedback may be recorded directly in the browser (i. e., be-
haviors exhibited by the user while using the site; cf. [18] –
paa does not require a special browser for this functionality,
but it can be implemented as scripts). Based on this, a script
can compute a single numeric rating value to be communi-
cated to the server. Alternatively, to relieve the scripter of
this task, we further propose a mechanism to allow putting
multiple events to the server, and compute an aggregated
single rating value to estimate the user’s interest in an item
on server-side. Thus, for the scripter the task of comput-
ing a rating value is broken down to recording different user
actions (i. e., events), and defining how the events should
be accumulated to a collective score (sum, average, median,
logarithmic, etc.). Details about how this is achieved will be
explained in detail below in Section 5.

Scientific Literature – Cross Domain. Finally, since
Web augmentation scripts can be defined to run on mul-
tiple websites, going beyond the scope of a single content
provider, the paa approach enables personalized link rec-
ommendations across multiple domains. This feature is spe-
cially useful for those Web sites sharing an underlying do-
main. For instance, for scientific literature search, a script
can track user activities such as page visits and downloads
on sites such as acm dl, Springer, ieee Xplore, or Science
Direct10. In every site of this list, the same item (Paper)
may be defined with similar properties (url, title, authors,
abstract). Based on events collected from these user activi-
ties, a recommendations pane can be added to each of these
websites to present potentially relevant scientific literature

10
http://dl.acm.org/, http://link.springer.com/,

http://ieeexplore.ieee.org/, http://www.sciencedirect.com/

Figure 5: Example modified literature search web-
site with augmented recommendations (right).

from any of the sites to the user, as shown exemplary in
Figure 5.

5. ARCHITECTURE
As it was explained in the introduction, on client-side ded-

icated plug-ins enable the execution of user scripts to ma-
nipulate the dom in the browser. Such user scripts, written
in JavaScript language, may execute http requests to exter-
nal restful apis. This is shown in Figure 6, alongside with
the proposed paa architecture and components of the server,
which will be explained in more detail in the following. In
paa, requests can be made manually using standard script-
ing tools (e. g., functions provided by Firefox or GreaseMon-
key), or using our JavaScript library, which provides func-
tions for sending parameters concatenated as a single strings
(e. g., userName=Bob&rating=4&...), or in an object-oriented
manner. The latter option is shown exemplary in Figure 7,
including code to extract the parameters from the dom, and
the interal library implementation is presented in Figure 8.

Processing of Events. As mentioned in step 3 in Sec-
tion 3, events that are stored on the server are equipped
with a timestamp, before all parameters are checked for va-
lidity, and events are stored to the database. Furthermore,
provided userNames and item ids (itemIri11) are mapped
to numeric ids, and stored along with the rating and the
timestamp in a separate table to be accessed directly by the
recommender engine.

Different Types of Events. To distinguish between dif-
ferent types of events, such as explicit numeric ratings and
other kinds of feedback, the scripter can choose to supply a
custom eventType (e. g., ‘pictureUpload’). Except for the
distinction, this allows us to provide a default rating value
for several pre-defined event types (following a classification
of observable user behaviour found in literature [18]). These
default ratings, however, are currently assigned in unschol-
arly manner, and thus can also be overridden by the scripter.

Rating Accumulation. Whereas events represent user
actions, for the recommender engine we rely on ratings only.
For this, the rating values provided with the events may
be used directly. Defined by a parameter insertAs, first,
events may simply be added as ‘new’ ratings (i. e., several
ratings per user for a single item are provided to the recom-
mender engine). Second, the rating specified by the event
may ‘replace’ the previous one. Finally, as an alternative
multiple events may be accumulated – in a way that can be
configured by the scripter – to compute the rating value to

11commonly uris/iris (http://tools.ietf.org/html/rfc3987)
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} Item data
obtained from DOM

}

Item creation and
initizialization

} User creation (username
obtained from the DOM)

} Rating creation (value 
obtained from DOM)

} Event creation and 
sending to server

}

Obtain recommendations
and handle the result with 
receiveRecommendations()

Figure 7: Example JavaScript code for creating and
storing an event object, and for retrieval of recom-
mendations using the object-oriented PAA library.

be used by the recommender. Since user scripts are typically
run once per page load, this may be a particularly useful op-
tion to track implicit user feedback in terms of potentially
many events regarding a single item. For this accumulation,
ratings may be derived as ‘sum’, ‘average’, or ‘median’

of event scores. While summing or averaging, weights for
older events may be decreased, e. g., linearly or logarithmic.
Furthermore, the aggregationScope can optionally be lim-
ited to a certain number of most recent events, or using a
time window. As a result, the rating scale must allow float
values, and consequently also the ratings provided from the
user script can be continuous, allowing different scales or
binary ratings. For the future we are planning extensions,
and we aim to make this computation more customizable,
for instance, to enable that different event types contribute
to the accumulation in different manners.

Authentication & Web UI. User authentication is not
required if while making api calls the user script provides
a userName. Clearly this is security issue, because in this
basic form there is no authentication involved. This option
was enabled for the sake of simplicity, and for simple scenar-
ios where security is not an issue. Alternatively, instead of
providing a user name, the parameter paaAuthRequired can
be set to true, enabling authentication via the paa website
(the current status can be queried using getLoginStatus(),
to open the login form if necessary). Once logged in, the
corresponding cookie is being included by the browser when

} De�ne and serialize
data (current script,
website, user)
for requesting
recommendations
from the server

} Perform the request
and execute the callback
function (de�ned by the
scripter) to handle
the server’s response
(i.e., recommendations)

Figure 8: Example internal JavaScript library func-
tion of client-side API to request recommendations.

making calls to the server’s api. Via the Web user interface,
users can furthermore manage their profile data and view
coarse grained provenance information. Thereby, the user
may be provided with insights to what data is being stored
and how it is used, including information on why specific rec-
ommendations were given. This increases transparency and
helps to gain the users’ trust, and to satisfy users who might
normally be reluctant to share personal data with providers
of (commercially oriented) personalization services.

Recommender Engine on Server. For adding events,
as well as for queries to the recommender engine, every api
query must provide the script’s pluginName, pluginNames-
pace, and the site domain. These define the operation do-
main for the recommender, i. e., the view for ratings that
are seen by the recommender engine (also user names must
be unique within this operation domain). For computing
predictions and recommendations the current generic pro-
totype implementation relies on the open-source framework
LensKit12, configured to perform item-item collaborative fil-
tering for scoring items (cf. [7, 22], LensKit doc.13), and
directly accessing the database for building models.

Provision to Client. Finally, for answering queries re-
garding ratings, predictions, and recommendations, again
user names and item ids are mapped to numeric ids and
vice versa, and previously stored itemNames and meta infor-

12http://lenskit.org/ – Recommender Toolkit
13

http://lenskit.org/documentation/algorithms/item-item/



mation (stored per event) are added where applicable. Ex-
ample responses are shown online along with the prototype,
as discussed in the following section.

6. PROTOTYPE & EVALUATION
The implemented paa prototype is publicly available on-

line14, including our object-oriented JavaScript library with
example scripts and instructions for their usage. The im-
plementation bases on Jersey15 for handling restful http
requests, and employs Spring Security16 for authentication,
which also allows the future integration of identity providers
such as Openid (supported by Google) or Facebook Connect,
to lower the barrier for acquiring users. In general, persis-
tence is realized with Hibernate17, however, using relational
views LensKit12 accesses the underlying database directly.

The prototype shows the feasibility of combining Web aug-
mentation with recommender systems. It was not yet op-
timized for performance (prediction accuracy and response
times), yet it shows that the approach is suitable for em-
powering scripters to build new kinds of augmentations.

Since we base on established item-item collaborative fil-
tering algorithms, the evaluation of prediction accuracy was
not a goal for this paper. However, we do plan to do this in
the future, along with an evaluation of our methods for com-
puting the cumulative score from different event types. In
this context, an interesting question is how well does the cho-
sen LensKit configuration generalize for all kinds of items,
and how can it be made configurable by the scripter.

Concerning response times, on one hand, the approach is
limited by the connection to the server through Internet,
however, with optimizations possible, for instance by pro-
viding api methods to combine several http requests into
one (e. g., storage of multiple events as a batch, or combining
the storage of an event with a query for recommendations),
or by reducing the amount of redundantly transferred event
meta information. On the other hand, the computation of
recommendations on the server is currently made on demand
for each request, but could be made configurable, such that
the scripter may define whether recommendations should be
computed in advance, or if they have to reincorporate all the
latest added events.

As with collaborative filtering recommenders in general,
the known cold start problem is an issue to be considered,
also for script writers. To mitigate this problem, in sit-
uations where ratings are publicly available, the scripter
may add them as a batch, e. g., by extracting user ratings
from cocktailscout.de, or using the xml api of board-

gamegeek.com. Additionally, to support early development
of new scripts, our prototype can be configured to append
random items to the list of recommendations, until the rec-
ommender algorithm can compute enough actual ones.

Finally, so far our approach does not foresee the removal
of items. In an open environment, where every end user can
add items, maybe role-based user management, a reputa-
tion based approach, or a voting mechanism can be used to
decide which items to remove. In this context, it also may
happen that websites change their url structure. While this
is something that every Web augmentation approach has to

14http://paa.cis.jku.at/
15http://jersey.java.net/ – jax-rs Reference Impl.
16http://projects.spring.io/spring-security/
17http://hibernate.org/ – Object Relational Mapping

deal with, this may cause additional database maintenance
efforts if the ids of items are affected.

7. CONCLUSIONS & FUTURE WORK
We have shown the feasibility for providing collaborative

filtering recommender system functionality as a service for
Web augmentation. By providing a simple api and corre-
sponding object-oriented JavaScript library, user script writ-
ers may employ ratings, predictions, as well as recommenda-
tions of items, to develop new kinds of recommender appli-
cations for arbitrary websites. Thus, end users benefit from
personalization of the Web browsing experience through an-
notation, re-ordering, hiding, and generation of links. Sev-
eral real world world application scenarios were discussed,
and we presented our publicly available server prototype.

To improve and further evaluate the proposed approach,
we foresee several lines of potential future work. Therefore,
we are currently working on an extended prototype, mainly
to add some minor features, improve response times, and
add further means of configuration for the scripter. In a
profound evaluation we aim to cover the issues outlined in
the previous section: recommendation relevancy, the server-
side computation of scores, response times and their effect
on users’ browsing experience, and methods to cope with
the removal of items or changing urls. In this kind of sys-
tems another very well known issue is the cold start problem,
in this sense, we plan to provide scripters with some mecha-
nisms to define how the script adapts the Web page when the
available ratings are not enough. A possibility we are study-
ing is to allow a scripter to use a single user profile in several
scripts. In this context, we also plan to conduct several user
studies, first, with scripters to evaluate the comprehensibil-
ity of the api for implementing pre-defined tasks, and how
the provided service is being accepted. Second, we intend to
evaluate performance, quality of recommendations, as well
as scalability, in terms of a larger case study with users,
employing experts or a number of end users, e. g., from the
boardgamegeek.com community. There, publicly available
ratings can be exploited to reduce the cold start problem, or
to build a dataset for an offline evaluation of the employed
recommender algorithm. Finally, with a complete prototype
and documentation, downloads of our scripts and usage of
the api can be evaluated in long term study.

In terms of functionality, we foresee several expansions.
Support for different data formats for the api (e. g., json,
xml, rdf) allows the reduction of technical heterogeneity,
and enables simpler integration with arbitrary websites –
also to give the scripters more options. Moreover, using
rdf facilitates the use of semantic Web technologies and re-
sources, not least to supply further structured information
about items from resources such as dbpedia. Together with
user profile data and item features collected in the browser,
or extracted from online social networks, this information
may be exploited by the recommender algorithms, for in-
stance to better determine user-user or item-item similari-
ties, or for improving recommendation results with content-
based and hybrid recommender mechanisms on server side.
In this context it is particularly interesting how well the
current implementation recommends newly added items or
items with few ratings, and if the algorithms can be made
configurable for end users or scripters, to include items from
the long tail for increasing serendipity in recommendations.
In this context, the recommender system algorithms may



also be configured via the api in a more elaborate way,
for instance using LensKit’s Groovy-based dsl18. Further-
more, feedback on recommendations may be exploited to
improve recommendations (i. e., when the user follows a rec-
ommended link, or rates the corresponding item afterwards),
and item recommendations that are constantly ignored may
be excluded in the future. The set of items considered by
the recommender may also be defined by the scripter, for
instance, by providing a specific set or filter criteria via the
api, as with a Recommendation Query Language (cf. [1]).

To decentralize the approach, giving even more control to
the user script writer, we plan to investigate how the server
functionality can be hosted by a generic ”platform as a ser-
vice” provider of cloud computing services, and if the api
functionality can be provided as a downloadable and con-
figurable bundle. Going beyond the server side approach,
the question remains whether the architecture can be re-
implemented to be independent of a single third party rec-
ommendation service provider, with recommendations being
computed on client-side, and exchanging anonymized data
via a dedicated data exchange server only, or relying on a
peer-to-peer architecture.

Finally, we foresee the implementation of a browser plug-
in to offer a graphical user interface for configuration and
augmentation of recommendations, to be used by scripters
or even end-users, based on a dsl to define extraction and
placement of item and user information in the dom (cf. [11]).
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