

Expressing Systemic Contexts in Visual Models of
System Specifications.

José D. de la Cruz, Alain Wegmann, Gil Regev

School of Computer and Communications Sciences
Ecole Polytechnique Fédérale de Lausanne

CH-1015 Lausanne, Switzerland
josediego.delacruz@epfl.ch1, alain.wegmann@epfl.ch, gil.regev@epfl.ch

Abstract. Decision support systems can be used to manage systems. Managed
systems are described by system specifications. System specification notations,
such as UML, often separate in different diagrams the static specification and
the dynamic specification of the system of interest. As a consequence, precious
contextual information disappears, leading to misunderstandings during the
interpretation of the specification. We claim that these problems result from a
mechanistic view of reality. By taking a systemic view of reality, it is possible
to develop a specification technique that integrates the static and dynamic
aspects of the system and, hence, make the contextual information explicit. The
benefit is the creation of more expressive system specifications that are less
error prone when used for designing and managing systems.

1 Introduction

In decision-making, people have to take decisions about controlled systems. Often a
controlled system is managed by an operator and a decision support system [1]. When
the controlled system is not in an expected state, the operator needs to decide what
actions to take to regulate the system. When taking its decision, the operator uses a
model of the controlled system. Such models are often represented with a graphical
specification. We will show in this paper that these graphical representations do not
make explicit a lot of the contextual information (for example, what are the effects of
the different actions of the controlled system). Our approach for system specification
makes contextual information explicit in diagrams. Thus, the operator, who works
with a graphical system specification to take her decisions, has less implicit
information to include in her decision process.

Our goal is the representation of contextual information in graphical system
specifications. We base our work on the Merriam-Webster [2] definition of context; a
definition which is well formed from a systemic modeling standpoint. They define the
“context of something” as the “interrelated conditions in which something exists or

1 The work presented in this paper was supported (in part) by a fellowship awarded by the

CFBE and the EPFL-SOC.

occurs”. Our goal with this paper is to understand both what “something” is and what
the “interrelated conditions” are when this definition is applied to graphical system
specifications.

UML [3] is one of the most popular graphical notations for modeling software
(UML takes its roots in software development), systems [4] and businesses [5]. UML
consists of a set of diagrams that can be categorized into structure-related diagrams
(part I of [6]) and behavior-related diagrams (part II of [6]). Examples of structure
related diagrams are: class, object, and deployment diagrams; examples of behavior-
related diagrams are: interaction, activity, and state diagrams2. The choices made to
classify the diagrams as either structure-related or behavior-related dramatically
reduce the possibility to express the “interrelated conditions” in which model
elements exist: i.e. reduce the capability to express context.

The way UML diagrams are categorized (and the kind of elements they represent)
can be explained by the epistemological principles that underlie mechanistic human
thinking, and in particular scientific thinking. As claimed by Lemoigne [8], the
universal ontology principle drives us to look for theories that are “time-invariant”
(universal ontology epistemological principle). This leads all of us (including the
UML language designers) to carefully separate diagrams that are time-independent
(structure-related) from diagrams that are time-dependent (behavior-related). Quite
often, the time-independent diagrams are considered as more general as the time-
dependent diagrams. For example, a class diagram describes the concepts known by a
system at all times. A sequence diagram is “just” an occurrence of a behavior (among
the many possible). To make a class diagram specific to a context (i.e. to show only
the concepts necessary to describe a behavior) appears to reduce its generality and,
hence, to reduce its value. So, class diagrams are usually not context-dependent. This
example illustrates why diagrams do not represent time-dependent together with time-
independent model elements. So such diagrams cannot represent contextual
information (i.e. the “interrelated relations” between these two kinds of model
elements).

This categorization of diagrams would not be so much of a problem if some
additional graphical elements were added to represent the relations between the
elements represented in the separate diagrams. For example, in a sequence diagram, it
could be useful to represent the state changes of objects that result from the
processing of messages. Unfortunately, another epistemological principle strikes here.
It is one aspect of reductionism, called Occam’s razor [9]. This principle leads us to
minimize the number of elements used in our theories (and in the diagrams). As a
consequence, we do not consider useful to represent the context of what we model.
We consider that this context is obvious, already known by the modelers, and will
clutter the diagram with superfluous information, distracting the modeler from the
“essential” message.

2 The use case diagram is an exception as it describes structure and behavior, however, the use
case diagram has some limitations (e.g. diagram centered on one system) which limits its use as
a general purpose diagram [7].

In summary, the categorization of the UML diagrams and the loss of contextual
information could be explained by the implicit application to the modeling language
of both the universal ontology and the Occam’s razor epistemological principles.

We claim that we can define three modeling principles that can contribute to bring
contextual information back into graphical modeling languages applied to system
specifications. Based on these principles, we define the elements that need to be
represented in a system functional specification and we propose a graphical notation
that makes the context explicit (i.e. the modeling elements are represented with their
“interrelated conditions”). The notation is relatively close to UML, so people with
UML experience can understand it.

The structure of the paper is as follows. In Section 2 we present an example to
illustrate the research questions we address in this paper. This example will be used
through the paper. In Section 3, we present the three principles underlying our
notation and explain what needs to be made explicit in the diagrams. In Section 4, we
present the solution we obtained for the example of Section 2. Finally, in Section 5,
we relate our work to other research.

2 Example and Research Questions

We illustrate our point with the example of a video rental store. The focus of the
analysis is the store’s IT system called the POint of Rental Terminal (PORT). We
provide, in this Section, the UML specification of one service provided by the PORT.

The PORT registers the loan of videos as well as the return of rented videos made

by the customers. For renting videos, a customer must first log into the PORT. Then,
she selects the videos she wants to rent. The selected videos are all put into one
virtual basket. At the end of the selection process, the customer performs either a
Submit or a Cancel. The Submit action confirms the rental of the videos already in the
basket; a loan record will then be created in the PORT. If the customer cancels the
action, no loan record will be created.

The concepts known by the PORT in this example are: video (in states rented and
available), customer, and loan (in states onLoad and committed). We will model the
Submit action, when the videos are already selected and a confirmation from the
customer is required to finalize the loan.

Fig. 1. A simplified set of UML diagrams + OCL code for defining the service
Submit_LoanVideo.

Figure 1 describes the service Submit_LoanVideo. This service is represented as an
activity executed by the PORT (Fig.1a). The PORT system has one list, which
includes the videos that belong to the video store (Fig.1b). The states of both videos
and loans change over time (Fig. 1c and 1d). The objects of class Video can be in
either state: available or rented. The transitions are triggered by the messages shown
in Fig 1c. In general, there is one state machine by object. We can also see that the
objects dialog during the activity (Fig.1e). For instance, the PORT has videos
Video_1, Video_2 and Video_3 before the loan (Fig. 1f); then, the customer loans
Video_2 and Video_3. As a result, Video_2 and Video_3 become part of the loan
Loan_1 (Fig. 1g). Video_1 is the only instance that is not rented at the end of the
activity Submit_LoanVideo

The UML system specification is made up of a set of seven diagrams and one OCL
description.

Each diagram represents a different concern of the system. This makes the
individual diagrams more legible than if they would be merged together. But, as a
consequence, the overall specification cannot be easily understood as a whole. There
are no visible links between the elements represented in the different diagrams. In
most cases, it is the modeler who “glues” the diagrams together within his or her
mind [10]. The seven diagrams required to model the single, partial scenario
Submit_LoanVideo in figure 1 illustrates this problem.

The OCL description is used to add contextual information. OCL [11] is a textual
language for UML. It is used as a complement to the diagrams but is not fully
integrated with them. OCL adds one more artifact to interpret.

This example raises the following questions:
1. “Can we use fewer, more integrated, diagrams?” The principle of separation of

concerns [12] says that each aspect of the description must be treated individually.
However, our experience shows that the overview of the specification is lost in the
process.

2. “Can we represent more contextual information in diagrams?” OCL is the means
for communicating information that binds diagrams together. We would like to
introduce similar information as OCL but graphically.

3. “Can we create a model that graphically shows what the services we model
actually do?” Traditionally, the changes made by the service are made explicit by
snapshots. However, to fully understand what happens, the modeler needs to write
and read OCL in addition to all the diagrams. As a consequence, the task of
understanding the goal the modeler wants to achieve with the service requires a
large effort from the modeler [10].

3 Systemic Modeling of Systems

In order to make context explicit in system specification, we need to first define the
concepts we use to specify systems. Our modeling ontology is inspired by the

ISO/ITU standard RM-ODP [13] that defines how to model systems. A formal
description of RM-ODP we have developed is available in [14].

We define the model elements system and environment3. The “system” can be
defined as a whole (i.e. only its externally visible functionality is described) or as a
composite (i.e. its composition is described). One cannot design a system of interest
(SoI) without taking into consideration the immediate “environment” that interacts
with it. The “supra-system” of the SoI is “the next higher system in which the SoI is
a component. The immediate environment is the supra-system minus the SoI itself.”
[15].

System functionality is described with “information objects” and “actions”.
Information objects describe information that the system has about itself and about its
environment. The system’s information is modeled with the “state” of information
objects. Actions modify the state of information objects. Note that the information
objects and the actions can be further considered as whole or as composite.

In our approach, we also define two hierarchies: the organizational level hierarchy
and the functional hierarchy[16]. If a system is represented as a whole at a given
organizational level then it is represented, at the next organizational level, as a
composite (i.e. showing its sub-systems). The “organizational level hierarchy” is
useful to capture system components (e.g. an IT system made of software
components). The “functional level hierarchy” captures different levels of detail in
the functionality of the systems. For example, an action might be described as a
whole in one level of functionality and as a composite in the next one. All these
concepts are informally defined in [16] and formally in [17].

The definition of context is the “interrelated conditions in which something exists or
occurs” [2]. The term “something” can be replaced by the concepts defined in our
modeling ontology. We therefore need to show the “interrelated conditions” (in terms
of system, environment, information object, action, state) in which the system,
environment, information object, action, state exist. Our main focus in this paper is
system specification. Hence, we will mainly analyze the relationships between the
concepts: system, information objects, states and actions. We will briefly mention the
relation between the system and its environment but this is the topic of future work.

The “interrelated conditions” between these key elements can be grouped to create
a few principles that can explain how to describe context:

• System / environment complementarity
• Action / information object & state complementarity
• Whole / composite complementarity

In this Section, we present these modeling principles and their impact on the notation.
In some cases, we illustrate the principle with illustrations taken from the PORT
example.

3 In RM-ODP, the term “system” designates an entity in the universe of discourse and not a

model element in the model. For sake of simplicity, in this paper, we consider that the term
“system” designates the representation of a “system” in the model. So “system” is a model
element. This paper does not address any issues related to the universe of discourse.

System / environment complementarity
The most obvious “interrelated condition”, as stated in the Merriam-Webster
definition, is between the system and its information objects and actions. All actions
and information objects are within a system. In the notation, the information objects
and the actions should be surrounded by a rectangle that represents the system to
which they belong (as shown in Figure 2 for the Information Object X of S).

Fig. 2. “Interrelated condition” between a system and its environment

Another “interrelated condition” that we will just mention in passing here is the
relation between the system and its environment. A system has information about
itself and about its environment. For example, in the video store example, the PORT
has some information about the physical video that exists in its environment. So, one
of the “interrelated conditions” in which an information object exists is the relation
between the information object itself (belonging to a system of interest) and what it
represents (in the environment of the system of interest). In Figure 2, T represents the
supra-system of S and X shown in the left part of T is in the immediate environment
of the system S. The information object X in S represents the knowledge of S about X
in T. This is represented by the <<trace>> relationship. A more systematic analysis of
the relationship between a system and its environment is part of our future research.

We capture the necessity to relate actions, information objects and states to a
system in which they exist and the necessity to relate a system to its environment as
the “system / environment complementarity principle”.

Action / information object complementarity
An action changes the state of one or more information objects. Quite often the
action’s identifier makes implicitly references to the information objects that change
state. For example, the modeler can guess that an action rent in a video store refers to
a video and a renter because she knows the meaning of the word rent. With this
knowledge, the modeler can guess the relationship between the elements in the
diagrams (e.g. in UML, the action rent shown in an activity diagram and the video
concept shown in a class diagram as illustrated in Figure 1). This is not sufficient as
the concepts used can be defined in multiple ways. For example, it is unclear if the
rent is related to some payment or not. We can eliminate this ambiguity by making
explicit, in one diagram, the “interrelated conditions” between the actions and the
information objects involved in the actions. So one of the “interrelated conditions”, in
which an action exists, is the set of information objects that are modified by the
action.

This relation between actions and information objects can be further developed.
When a modeler represents an action, implicitly she is referring to a change of state
of information objects. Vice-versa, when a modeler represents the change of state of

information objects, she is referring to an action. This is known as the state/behavior
duality. This duality leads the modeler to often consider that modeling either the
action or the state change is sufficient to specify the system. We claim that, if we
want to make the context explicit, we need to model both. So, the “interrelated
conditions” in which an action exists include the states (before and after the action) of
the information objects involved in the action. Vice-versa, the state is related to the
actions that consumes them or modifies them. Figure 3 represents an action A that
modifies the state of the information object X and created the object Y. The arrow
between the states S1 and S2 illustrates the state transition resulting from the
execution of A.

To show the relation between the actions and their effects, we need a way to relate
them. This is done by an identifier (eventA in Figure 3), that designates all changes. It
is also necessary to represent what triggers the action’s execution (and how the action
enables system exchanges with its environment). This is done by special information
objects that act as parameters. The stereotype <<par in>> indicates that the
information object is an input parameter for the system (<<par out>> would indicate
an output parameter). In Figure 3, the fact that parA enters the system via Param (an
input parameter) triggers the state change of X (rounded arrow from S1 to S2) and the
creation of Y (shown by the multiplicity change 0 1). All the changes are marked
by eventA. One of the labels is underlined and this highlights what triggers the
changes. We can see in Figure 3 that a UML class diagram, a UML activity diagram
and a UML state diagram can be merged together.

Fig. 3. Action/State complementarity

Information objects live in the context of actions. We call this the context of
existence of an information object. In figure 3 we see that action A is the context of
existence of all the information objects shown. This means that none of the
represented information objects will out-live the action A. In Section 4, we will
illustrate how we can represent that an information object can potentially exist during
the whole lifecycle of a system (this will be done by relating information objects to
the action that represents the overall system lifecycle).

We capture the necessity to relate action, information objects and state as the “action /
information object / state complementarity principle”.

Whole / composite complementarity
In systemic modeling, the modeling elements (e.g. system, action, information object)
can be interpreted as whole or as composite. A modeling element as whole appears as
monolithic and its internal structure is hidden for the modeler. A model element as

composite exposes to the modeler the component elements and the way they are
related. The whole is defined as the result of the composition of its components. The
composition of the components can be understood as we know what the whole is. So,
as system theory shows[18], whole and composite are both necessary as they define
the context of each other: the whole is part of the “interrelated conditions” of
existence of the composite (and vice-versa). It is because we can recognize the whole
that we can see the components and vice-versa. For example, in a video store, the
action Rent is understood because we implicitly know that such action includes
getting information about the renter and getting information about the videos to be
rented. Vice-versa, it is because we know the component actions GetRenter and
GetVideos that we can imagine the existence of the composite action Rent. Even if
this point appears to be “hair splitting”, it is actually crucial if we want to make
explicit the implicit information that is hidden in the diagrams.

In figure 4, we apply this principle to the action A. Action A as whole (the bubble
on the top) is equivalent to A as composite, composed of the actions A1, A2, A3 and
of the constraints of execution between them. The triple association between A as
whole and A as composite makes this equivalence relation explicit. In other words, A
as whole can be substituted by A as composite.

A2A1 A3

S

A

A

Fig. 4. Action as whole and action as composite

The action A as whole and the action A as composite define two functional levels in
the functional level hierarchy. One interesting question is: what action is at the top of
the functional hierarchy of a system of interest? In other words, what is the action in a
system which includes all the actions the system does? This is the action that
corresponds to the system lifecycle. This lifecycle action captures the behavioral
context in which all other actions exist. The lifecycle action starts when the system is
created and ends when the system is dismissed (i.e. the action lasts from system
“cradle to grave”). The system’s lifecycle action is at the top of the functional
hierarchy. The added-value to model the lifecycle is to force the modeler to think on
how the system is created and how it is phased out. This can highlight critical issues
in terms of system initialization or information retrieval at system phase-out. In figure
5 we can see that the lifecycle of the system S is equivalent to the set of all the actions
that the system can execute (A, B, C and their execution constraints). Each action can
be further refined. For example, action B is decomposed into actions B1, B2, B3
together with their execution constraints. In the figures 4 and 5 we have used the most
simple execution constraint among the actions, but in real cases, more complex
constraints might be used, including loops, partial order, etc.

Fig. 5. Lifecycle composition with actions

The same complementarity whole / composite of actions shown in figures 4 and 5 can
be found on information objects. However, presenting this is out of the scope of this
paper.

We capture the necessity to relate whole and composite as the “whole / composite
complementarity principle”.

Summary
In this section we have presented three principles that drive our modeling process:

• System / environment complementarity
• Action / information object & state complementarity
• Whole / composite complementarity

These principles permit the inclusion of contextual information in graphical system
specification. Contextual information has to do with the “interrelated conditions” in
which model elements exist. Through our systemic approach we have shown that any
system has a lifecycle, made up of actions that will change the state of the
information objects that exist in the system. These information objects represent
information about a system of interest and about its environment. The relations
between all these model elements need to be explicit if we want to model explicitly
the context

To accept adding the additional contextual information we propose, requires
abandoning the two epistemological principles we have presented in the Introduction.

The universal ontology epistemological principle states that we can have
“universal models”. We have shown in our discussion that the actions and the
information objects are bound to the lifecycle of the object in which they exists. So,
instead of a universal ontology principle we rely on the “lifecycle epistemological
principle” that we define as “all actions and information objects exist in specific
lifecycles (of systems and actions/information objects)”.

To accept to contextual relations between the model elements requires being less
strict in applying the Occam’s razor. We still wish to limit the number of concepts we
use in the theory (for example in our method, we have 6 main concepts: system,
environment, action, information object and state). However, we should not limit the
analysis of the relationships between them to only relations between information
objects or relations between actions (as, for example, normally done in UML). We

should keep the possibility to represent all relationships between actions, information
objects and state. In other words: we claim that the Occam’s razor should not be
applied to eliminate the contextual information.

4 Application

Systemic Enterprise Architecture Methodology (SEAM) models complex systems by
applying systemic principles [16]. SEAM is based on explicit epistemological
principles (such as the “lifecycle principle”) and on the three complementarity
principles we just presented. SEAM aims at a holistic and hierarchical representation
of the systems. Its main application is enterprise architecture and service modeling.

Fig. 6. SEAM diagram for service Submit_LoanVideo.. Whenever the input
parameter Confirm arrives, the OK event is enabled in all transitions.

Figure 6 illustrate our technique to represent contextual information. Figure 6

represents, in one diagram, the Submit_LoanVideo action that was modeled with the 7
UML diagrams and the OCL code in Figure 1. We can interpret the diagram in Figure
6 as follows:

The PORT system manages:

− Video which represents the PORT information about the physical video in the
VideoStore. The Video can be either rented or available. The system keeps the
knowledge of which Video is available (through the lifecycle association called
PORT_Available_Video_List).

− Loan which represents the fact that a video is rented. The Loan can be either
committed or onLoad (when prepared). The system keeps the knowledge of

which Loan exists (through the lifecycle association called
PORTcommitted_Loan_List).

All these represent what we would call the “invariant” information in the system.
This information will exist during the whole lifecycle of the system (but will not
be universal!).

We need now to represent the action Submit_LoanVideo.
− Actions have parameters. The parameter information objects are special cases of

information objects that enable communication with the environment of the
system. Submit and Response (in gray in Figure 6) are parameters. Parameters
exist only during the execution of the action and they are not known to other
actions.

− Actions have pre and post conditions. These are visible in Figure 6 (beginning
and end of the rounded arrows). The action takes as pre-condition a Loan in the
onLoad state and the parameter Submit in the state Confirm. The parameter is
coming from the system’s environment. As a post-condition, the action creates a
Loan in the committed state and outputs a message to the environment (via the
parameter Response).

− Actions are triggered. In Figure 6, event [OK] that corresponds to the fact that
the Submit input parameter is in the state Confirm, triggers the action. As a
result, all transitions marked by [OK] (e.g. Loan from onLoad to committed,
rented; Video referenced by Loan/committed and not by Loan/onLoad and
output parameter Response generated) are executed.

− Actions work on specific information objects. This is represented by the relation
current that goes from the action towards the information object Loan. The
relation current exists only in the context of the action Submit_LoanVideo. It is
not known by any other actions in the lifecycle of the PORT system. On the
other hand, the information objects PORT_available_Video_List and
PORT_committed_Loan_List exist in the context of the lifecycle of the PORT
system; thus, they exist for all actions. Information can be exchanged between
actions with the interplay between information objects that exist at different
levels of action (e.g. information exchanged between actions using information
objects that exist in the system lifecycle). The detailed presentation of this
aspect is out of the scope of this paper.

If wished, it is also possible to represent the action with two diagrams: one showing
the state of the system before the action (Figure 7a) and one after the action (Figure
7b). These two diagrams explain the meaning of Figure 6 but provide less
information as the relation between both diagrams is not made explicit. The effect of
the action can be understood by the fact that the cardinality of the association
between Loan in state committed and Video in state rented changes from 0 to 2 while
the other one changes from 2 to 0.

Fig.7. Describing behavior of action Submit_LoanVideo in two diagrams. (a) is the
state of the system before the action, (b) the state of the system after the action.

In summary, Figure 6 is a general purpose dynamic diagram that integrates the pre-
and post-conditions shown in Figure 7 into a single diagrammatic context. Its purpose
is to make explicit the changes caused by the action Submit_LoanVideo; these
changes are not evident in figures 7a and 7b (as no relations are shown between the
two diagrams). We can say that change is a property that emerges to the modeler
whenever he compares two diagrams of system state as the ones in Figure 7. With our
notation, as shown in Figure 6, we make such changes apparent to the modeler.

Now, we can show how the contextual information we propose to add can address the
problems identified in Section 2. Let us discuss each problem:

• “Can we use fewer, more integrated, diagrams?” We have shown that the
diagrams can provide more contextual information if “structure-related”

(a)

(b)

and “behavior-related” elements can appear in the same diagram. It could
even be conceived that one diagram can represent all information (about a
simple situation). This shows that the definition of what should be in the
diagram does not need to be enforced by the modeling language but
should only be the result of modeler’s taste and needs.

• “Can we represent more contextual information in diagrams?” With the
definition of context we have selected, it is possible to make all
contextual information explicit. There is only a limit dictated by the
legibility of the diagram.

• “Can we create a model that graphically shows what the services we
model actually do?” With our notation we have shown that we could
show pre and post conditions for actions. They are represented by the
“change” relationship.

5 State of the art

UML [5] is the de facto standard of the software industry for object-oriented analysis
and design.. Studies on usability of UML, such as [10, 19], focus only on single
diagrams, avoiding the problems caused by the heterogeneous notations. However,
some authors consider the UML richness as notation has negative effects since
dealing with many items require more analytic effort from the designer[20]. It is clear
that UML can be improved to show more contextual information as we define it in
this paper.

Reasoning with Diagrams (RwD) is an initiative where two sets of graphical
formal specifications have been created, namely Spider and Constraint diagrams.
Such diagrams are used for reasoning about properties of the resulting object’s
instances after an action. The first ones describe sets and constraints between sets
[21]. The latter ones extend spider diagrams to show relations between sets and their
elements [22]. The specification of behavior can be done via 3-D contract boxes [23].
RwD specifications are similar to ours. However, their scope is limited to expressing
constraints, and their notation is incompatible with UML (they use 3-D layouts for
contracts, and special notation for expressing constraints).

Object-Process Method (OPM) is Dori’s work on system modeling [24]. As
SEAM, it is a holistic approach. Dori has created a graphical and a textual notation
(OPD and OPL, respectively), that are exchangeable at any moment of the
development. This notation is incompatible with UML but the OPM tool supports the
translation of OP models to UML.

Brézillon proposes the use of Contextual Graphs [25]. They distinguish different
viewpoints (contexts from observers) on a process or situation, and inherently the
roles of the agents that participate in the system. They facilitate reasoning for decision
making but they are not designed to represent behavior as presented in this paper. Our
approach complements the one of Brézillon as our goal is to support precise system
specification.

6 Conclusions and Future Work

This paper addresses the graphical representation of contexts in visual system
specification. We show that the two epistemological principles (universal ontology
and Occam’s razor) can explain the way we currently structure graphical
specifications. We claim that, if we adopt the lifecycle epistemological principle
(instead of the universal ontology principle) and if we do not eliminate the contextual
relationships, we can get system specifications that exhibit the “interrelated
conditions in which the model elements exist”. In other words: we can have system
specifications that make the contextual information explicit. It is worth highlighting
that the Merriam-Webster context definition is very well written from a systemic
standpoint.

Practically, we identified three modeling principles that need to be adopted to
model the contexts:

• System / environment complementarity
• Action / information object & state complementarity
• Whole / composite complementarity

With these principles, we have shown how an action (Submit_LoanVideo) can be
graphically specified in its in context if we make explicit its relations to the
information objects it modifies (Video and Loan) and its relations to the parameters
that enter and leave the system (Submit and Response).
 The proposal made in this paper has been validated in software engineering
courses and by making an explicit mapping between the proposed notation and the Z
specification language [26]. Future work includes: modeling of relations between
system and environment, modeling of relations between whole / composite,
scalability of the notation, tool support.

In the context of decision support system, our proposal can bring benefits when it is
necessary to document the systems that need to be controlled with a decision support
system. This is necessary if we expect that the operators, that will use the decision
support system, should have an explicit understanding of the controlled system they
will have to regulate. Further work includes the validation of the notation in relation
with an existing decision support system.

References

[1] Brézillon, P., Pasquier, L., Pomerol, J.-C.: Reasoning with contextual graphs.
European Journal of Operation Research 136 (2002) 290-298

[2] Merriam-Webster OnLine. Merriam-Webster, Inc. [Online]. Available: www.m-
w.com

[3] OMG. Unified Modeling Language (UML).[Online]. Available: www.omg.org
[4] OMG. SysML Specification v. 0.9 Draft.[Online]. Available:

http://www.sysml.org/artifacts.htm
[5] Eriksson, H.-E., Penker, M.: Business modeling with UML Business Patterns at

work. Wiley (2000)

[6] OMG. (2004) Unified Modeling Language: Superstructure 2.0 Final adopted
specification, ptc/03-08-02.[Online]. Available: http://www.omg.org/docs/ptc/03-08-
02.pdf

[7] Wegmann, A., Genilloud, G.: The Role of ¨Roles¨ in Use Case Diagram. In: Proc.
3rd International Conference on the Unified Modeling Language (UML2000) (2000)
210-224

[8] Le Moigne, J.-L.: Les épistémologies constructivistes. Presses Universitaires de
France, Paris (1995)

[9] Audi, R.: Cambridge dictionary of philosophy. Cambridge University Press (1999)
[10] Dori, D.: Why significant UML change is unlikely. Communications of the ACM

(CACM) 45 (2002) 82-85
[11] Richters, M., Gogolla, M.: On Formalizing the UML Object Constraint Language

OCL. In: Proc. Conceptual Modeling - ER '98, 17th International Conference on
Conceptual Modeling (1998) 449-464

[12] De Win, B., Piessens, F., Joosen, W.: On the importance of the separation-of-
concerns principle in secure software engineering. In: Proc. ACSA Workshop on the
Application of Engineering Principles to System Security Design (WAEPSSD)
(2002)

[13] ISO/IEC: 10746-1, 2, 3, 4 | ITU-T Recommendation X.901, X.902, X.903, X.904.
Open Distributed Processing - Reference Model.
http://isotc.iso.ch/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStan
dards.htm (1995-1996)

[14] Naumenko, A.: Triune Continuum Paradigm: a paradigm for General System
Modeling and its applications for UML and RM-ODP. EPFL (2002)

[15] Miller, J. G.: Living Systems. 2nd edition. University Press of Colorado (1995)
[16] Wegmann, A., Balabko, P., Le, L.-S., Regev, G., Rychkova, I.: A Method and Tool

for Business-IT Alignment in Enterprise Architecture. In: Proc. Conference on
Advanced Information Systems Engineering (CAiSE'05) (2005)

[17] Le, L. S., Wegmann, A.: Definition of an Object-Oriented Modeling Language for
Enterprise Architecture. In: Proc. Hawaii International Conference on System
Sciences (HICSS'05) (2005)

[18] Weinberg, G.: An Introduction to General Systems Thinking: Silver Anniversary
Edition. Dorset House Publishing (2001)

[19] Argawal, R., Sinha, A. P.: Object-oriented modeling with UML: a study of
developers' perceptions. Communications of the ACM (CACM) 46 (2003) 248-256

[20] Miller, G. A.: The Magical Number Seven, Plus or Minus Two: Some Limits on our
Capacity for Processing Information. Psychological Review 63 (1956) 81-97

[21] Howse, J., Molina, F., Taylor, J., Kent, S., Gil, J.: Spider Diagrams: A Diagrammatic
Reasoning System. Journal of Visual Languages and Computing 12 (2001) 299-324

[22] Gil, J., Howse, J., Kent, S.: Towards a Formalization of Constraint Diagrams. In:
Proc. 2002 IEEE CS International Symposium on Human-Centric Computing
Languages and Environments (HCC 2001) (2001)

[23] Kent, S., Gil, J.: Visualising action contracts in object-oriented modelling. IEE
Proceedings - Software 145 (1998) 70-78

[24] Dori, D.: Object-Process Methodology: A Holistic Systems Paradigm. 1 edn.
Springer Verlag (2002)

[25] Brézillon, P.: Context dynamic and explanation in contextual graphs. In: P.
Blackburn, C. Ghidini, R. M. Turner, and F. Giunchiglia, (eds.): Modeling and Using
Context (CONTEXT-03). Springer Verlag (2003) 94-106

[26] Spivey M.: The Z Notation: A Reference Manual. European. 2nd edition.
International Series in Computer Science, Prentice Hall , 1992.

