
A Context-Based Approach to the Development of
Decision Support Systems

Alexandre Gachet1, Ralph Sprague

Department of IT Management
University of Hawaii at Manoa

2404 Maile Way
Honolulu HI 96822, USA
gachet@acm.org

sprague@hawaii.edu

Abstract. After more than three decades of research, the Decision Support Sys-
tems (DSS) community is still looking for a unified and standardized DSS de-
velopment methodology. In this paper, we argue that the existing solutions re-
main too distinct and project-specific because they fail to properly consider the
context of the target DSS in their processes.
This paper describes a new approach, whose goal is to formalize the notion of
context in the study of DSS development. The proposed approach is based on
the concept of value-based software engineering. It is structured around two
techniques called the benefits-realization approach and the realization feedback
process. An example is provided to illustrate how an impractical, context-free
DSS development life cycle can be turned into a context-based life cycle focus-
ing on the most success-critical aspects of the target DSS.

1 Introduction

Finding appropriate Decision Support Systems (DSS) development processes and
methodologies is a topic that has kept researchers in the decision support community
busy for the past three decades at least. Studies on DSS development conducted dur-
ing the last fifteen years (e.g., Arinze 1991; Saxena 1992) have identified more than
thirty different approaches to the design and construction of decision support methods
and systems (Marakas 2003). Interestingly enough, none of these approaches predom-
inate and the various DSS development processes usually remain very distinct and
project-specific.

In this paper, we argue that the context of the target DSS (whether organizational,
technological, or developmental) is not properly considered in the literature on DSS
development. Researchers propose processes (e.g., Courbon et al. 1979, Stabell
1983), methodologies (e.g., Blanning 1979, Martin 1982, Sprague and Carlson 1982,
Saxena 1991), cycles (e.g., Keen and Scott Morton 1978, Sage 1991), guidelines

1 Research partly supported by Swiss NSF grant Nr. PBFR2-104340.

(e.g., for end-user computer), and frameworks, but often fail to explicitly describe the
context in which the solution can be applied. Experience shows that the development
process of a large strategic DSS for a multinational company, spanning many organi-
zational units and getting connected to many transaction information systems, is
much different from the development process of a small-scale logistics DSS for a lo-
cal company.

We propose in this paper a new approach, whose goal is to formalize the notion of
context in the study of DSS development. We believe that this approach can help the
actors involved in the process of building a DSS to find the methodology best adapted
to the context of the target system.

2 Context-Based DSS Development

A DSS is broadly considered as “a computer-based system that aids the process of de-
cision making" (Finlay 1994). In a more precise way, Turban (1995) defines it as “an
interactive, flexible, and adaptable computer-based information system, especially de-
veloped for supporting the solution of a non-structured management problem for im-
proved decision making. It utilizes data, provides an easy-to-use interface, and allows
for the decision maker's own insights.” This second definition gives a better idea of
the underlying architecture of a DSS. Even though different authors identify different
components in a DSS, academics and practitioners have come up with a generalized
architecture made of six distinct parts: (a) the data management system, (b) the model
management system, (c) the knowledge engine, (d) the user interface, (e) the DSS ar-
chitecture and network, and (f) the user(s) (Power 2002; Marakas 2003).

Many DSS development processes try to guide the development of the DSS with a
sequence of steps resembling Table 1 (Sage 1991).

Table 1. Phases of the DSS design and development life cycle (Sage 1991)

1. Identify requirements specifications
2. Preliminary conceptual design
3. Logical design and architectural specifications
4. Detailed design and testing
5. Operational implementation
6. Evaluation and modification
7. Operational deployment

The exact number of steps can vary depending on the aggregation level of each
phase. Moreover, steps are usually sequenced in an iterative manner, which means the
process can iterate to an earlier phase if the results of the current phase are not satis-
factory. Even though these processes are useful from a high-level perspective, we ar-
gue that they poorly support the DSS designers and builders to cope with contextual
issues. The next paragraphs provide a couple of examples to illustrate this argument.

The first example is related to the user interface. The DSS community widely rec-
ognizes that the user interface is a critical component of a DSS and that it should be

designed and implemented with particular care. But how critical is this component?
On the one hand, if we consider a DSS that is intended to be used by a wide range of
non-technical users (for example, a medical DSS for the triage of incoming patients
in an emergency room, that will be used by nurses and MDs working under pressure),
then the user interface is indeed the single most critical component of the DSS, at
least from a usability/acceptability point of view. In this context, the human-computer
interaction (HCI) literature tells us that usability must definitely be considered before
prototyping takes place, because the earlier critical design flaws are detected, the
more likely they can be corrected (Holzinger 2005). There are techniques (such as us-
ability context analysis) intended to facilitate such early focus and commitment
(Thomas and Bevan 1996). On the other hand, if we consider a highly specific DSS
that will be handled by a few power-users with a high level of computer literacy
(sometimes the DSS builders themselves), then the user interface is less critical and
usability considerations can be postponed until a later stage of the development pro-
cess, without threatening the acceptability of the system. This kind of decision has an
impact on the entire development process, but is rarely considered explicitly in the lit-
erature.

The second example deals with the expected lifetime of the DSS. On the one hand,
some DSS are complex organizational systems connected to a dense network of trans-
action information systems. Their knowledge bases accumulate large quantities of
models, rules, documents, and data over the years, sometimes over a few decades2.
They require important financial investments and are expected to have a long life-
time. For a computer-based system, a long lifetime inevitably implies maintenance
and legacy issues. The legacy information systems (LIS) literature offers several ap-
proaches to deal with these issues, such as the big bang approach (Bateman and Mur-
phy 1994), the wrapping approach (Comella-Dorda et al. 2000), the chicken little ap-
proach (Brodie and Stonebraker 1995), the butterfly approach (Wu et al. 1997), or the
iterative re-engineering approach (Bianchi et al. 2003). Some authors also provide
methods fostering the clear separation between the system part (called container) and
the knowledge base part (called contents), in order to maximize reusability (Gachet
and Haettenschwiler 2005). On the other hand, some DSS are smaller systems used to
deal with very specific – and sometimes unique – problems, that do not go past the
prototyping stage, that require minimal finances, and use a time-limited knowledge
base which is not expected to have a long lifetime. Maintenance and legacy issues are
less salient for these systems and their development follows a different process.

We describe in the coming sections of this paper a new approach allowing DSS
designers to explicitly take these contextual aspects into considerations, in order to
guide the development process of a DSS. This new approach is based on the concept
of value-based software engineering.

2 One author worked on the development of a DSS for crisis management in the food supply
sector, whose underlying models have been nurtured for more than twenty years.

3. Value-Based Software Engineering

Suggesting that the DSS community never considered the context of a DSS prior to
its development would be unfair. Several authors acknowledge that a systems design
process must be specifically related to the operational environment for which the final
system is intended (Wallace et al. 1987; Sage 1991). For example, Sprague and Carl-
son (1982) explicitly specified in their “DSS action plan” a phase consisting of steps
to develop the DSS environment. The purpose of this phase is to “form the DSS
group, articulate its mission, and define its relationships with other organizational
units. Establish a minimal set of tools and data and operationalize them.” (p. 68).
Nevertheless, how these tasks should be carried out is not specified. In this section,
we propose an approach allowing DSS designers to model contextual value proposi-
tions and perform feedback control of a DSS project. This approach is inspired by the
concept of value-based software engineering (Boehm and Guo Huang 2003).

Two frequently used techniques in value-based software engineering are the bene-
fits realization approach and the value-realization feedback process. The benefits re-
alization approach (Thorp 2003) allows developers to determine and reconcile the
value propositions of the project's success-critical stakeholders. The centerpiece of
this approach is the results chain (Figure 1). This chain establishes a framework link-
ing initiatives that consume resources, such as implementing a new DSS, to contribu-
tions (describing the effects of the delivered system on existing operations) and out-
comes (which can lead either to further contributions or to added value, such as in-
creased profit). A results chain links to assumptions, which condition the realization
of outcomes. Once the stakeholders agree on the initiatives of the final results chain,
“they can elaborate them into project plans, requirements, architectures, budgets, and
schedules.” (Boehm and Guo Huang 2003, p. 36)

Figure 1. Benefits-realization approach results chain (adapted from Boehm and Guo Huang
2003)

Once the benefits-realization approach is completed, stakeholders can monitor the
development of the project using the value-realization feedback process (Figure 2).
As explained by Boehm and Guo Huang (2003):

“The results chain, business case, and program plans set the baseline in
terms of expected time-phased costs, benefit flows, returns on investment,
and underlying assumptions. As the projects and program perform to plans,
the actual or projected achievement of the cost and benefit flows and the as-
sumptions' realism may become invalid, at which point the project team will
need to determine and apply corrective actions by changing plans or initia-
tives, making associated changes in expected cost and benefit flows.” (p. 37)

Figure 2. The realization feedback process (adapted from Boehm and Huo Huang 2003)

One obvious advantage of this feedback process is its ongoing consideration of the
assumptions' validity. The development of an organizational DSS can take time and
the project's plan can change several times during the whole process. It is therefore
important to regularly monitor the process to be sure that the system still meets the lo-
cal needs and helps answer the right questions (the popular “do the right thing”
proposition). Otherwise, a DSS can be seen as very successful in terms of cost-orient-
ed earned value, but a complete disaster in terms of actual organizational value.

The feedback process used in value-based software engineering focuses on value
realization. Assessing the value of a transaction information system is a difficult task
(Tillquist and Rodgers 2005). However, assessing the value of a DSS is even more
difficult, since its main function (supporting decision-makers) leads to effects that are
very difficult to measure in isolation from the complementary processes and activities
in which the DSS is embedded. Even worse, measuring the value of a DSS during its
development is almost impossible. Therefore, the feedback process that we propose in
Figure 2 focuses more of the realization of the decision support function of the DSS
(“do the thing right”) rather than on an objective measure of value realization.

In the next section, we show how this context-based approach can be used for the
development of a DSS, using the example scenario of a medical DSS for the triage of
patients in an emergency room.

4. Modeling the Context-Based Development of a DSS

The basic idea is to use initiatives, contributions, outcomes, and assumptions to ex-
plicitly model the context-based elements of the DSS in the results chain. For the pur-
pose of this paper, Figure 3 extends the results chain of Figure 1 by adding new ini-
tiatives explicitly dealing with the two issues we mentioned in Section 2, namely the
user interface and the maintenance and legacy issues. These additional initiatives are
shown with bold borders. Needless to say, a realistic and complete results chain for a
triage medical DSS would be much more complicated than Figure 3, with many more
initiatives, outcomes, and assumptions related to other value propositions. For the
sake of simplicity, however, we decided to limit the scope of the results chain in order
to improve its readability. The ultimate purpose of the figure is to show how the ben-
efits realization approach allows DSS designers to dynamically identify the project's
success-critical stakeholders and to determine their propositions in terms of decision
support.

Figure 3. Extended results chain for a triage medical DSS. Stakeholders and contextual infor-
mation are explicitly considered

Figure 3 shows that MDs, nurses, staff, and patients are considered as important
stakeholders in the initiatives. Their satisfaction and acceptance of the new system is
deemed critical for the DSS success. Expected outcomes such as the increased staff
and patient satisfaction, or initiatives focusing on user and system interfaces acknowl-
edge this fact.

The results chain also expresses the extra precautions that need to be taken to en-
sure patient safety and avert the possibility of costly medical malpractice lawsuits.

The initiative to tightly integrate the triage DSS with the rest of the patient care sys-
tem are necessary to ensure patients are being given the drugs corresponding to the
diagnosis. The initiative to include maintenance and backup systems illustrates the
necessity to safeguard the data and knowledge bases of the entire infrastructure, for
increased safety and better accountability.

Once the initiatives of the results chain are set, the DSS designers can turn them
into plans, requirements, architectures, budgets, and schedules. At that stage, tradi-
tional DSS development processes and methodologies can be used with a context-
based flavor. For example, Table 2 extends Table 1 (Sage's DSS design and develop-
ment life cycle) with contextual information. The original life cycle proposed by Sage
comes with long, context-free checklists for each of the seven phases, encompassing
all kinds of issues, such as system objectives, user commitment, frequency of use, ex-
pected effectiveness improvement, planning horizons, leadership requirements, train-
ing, political acceptability, institutional constraints, management support, value of in-
formation, hardware and software requirements, functional performance, to name a
few. We maintain that these context-free checklists are impractical, because they bury
the DSS designer under considerations that are not necessarily relevant in the context
of the target DSS. Using results chain, on the other hand, the DSS designer can ex-
tract the contextual issues relevant to his task and associate them to the correct steps
of the process.

Table 2. Extended context-based development lifecycle

1. Identify requirements specifications based on contextual issues
• User interface requirements from the end-user perspective (nurses, MDs, etc.)
• Data integration requirements (global patient care system)
• Workflow requirements (treatment procedure)
• Maintenance and backup requirements
• ...

2. Preliminary conceptual design
• Determine the appropriate design and implementation approach for the DSS
• Identify the specific input/output formats to satisfy user interface requirements
• Determine specific hardware and software requirements
• Identify conceptual specifications for the transactional and backup databases
• ...

3. Logical design and architectural specifications
• User interface design and early prototyping
• Process modeling for the registration-to-treatment procedures
• Specification of a distributed architecture adapted to the required integration with

the patient care system
• Data modeling and strategic design of the maintenance and backup architecture
• ...

4. Detailed design and testing
• Testing of the user interface with end users

• Testing of the process model with regard to the DSS integration in the patient care
system

• Testing of the architecture (resilience, reliability, scalability)
• Use of failure scenarios to test the maintenance and backup system
• ...

5. Operational implementation
• Production of the components of the operational DSS
• Implementation of the distributed functionalities with integration in the patient care

system
• Implementation of the maintenance and backup system and integration with the

DSS
• Selection and training of a test group
• ...

6. Evaluation and modification
• Preparation of an evaluation methodology and of specific evaluation tests for each

critical aspect of the DSS (user acceptance, system integration, architecture re-
silience and scalability)

• Execution of the test procedure with the test group, for each critical aspect of the
DSS

• ...

7. Operational deployment
• Final design and implementation of the DSS
• Training of all user groups
• Continuous monitoring of postimplementation realization of the DSS
• ...

Instead of focusing on traditional performance issues, the context-aware DSS de-
signer can focus on the most salient and relevant aspects of the target system. In our
example DSS for medical triage, the requirements specification phase should focus
on user interface requirements (to guarantee the system acceptability) and on data in-
tegration and workflow activities (to prepare a smooth integration with the global pa-
tient care system). Maintenance and backup considerations are traditionally post-
poned until the last step of the process (operational deployment). In our example,
however, we clearly identified maintenance and backup as critical value propositions
for the DSS. Therefore, it is wise to move the corresponding requirements to the first
step of the process. Traditional methodologies described in the DSS literature, such as
functional mapping (Blanning 1979), decision graph (Martin 1982), or descriptive
and normative modeling (Stabell 1983) can be used to identify requirements specifi-
cations.

The primary goal of the preliminary conceptual design phase (step 2) is “to devel-
op conceptualization of a prototype that is responsive to the requirements identified in
the previous phase” (Sage 1991). In our example, this consists in determining the ap-
propriate design and implementation approach for the DSS (for example, the evolu-
tive approach based on prototyping; Courbon et al. 1979); identifying input and out-

put formats to satisfy the user interface requirements; determining specific hardware
and software requirements; and working on the conceptual specification of the trans-
actional and backup databases.

Whereas the first two phases are conceptual in nature and produce documents, the
third phase (detailed design and architectural specifications) should result in a usable
prototype that end users can get familiar with. Confronted with a running system for
the first time, end users can update their mental models about the target DSS and re-
fine their requirements during early tests (step 4). Even though the realization feed-
back process (check back to Figure 2) should be executed after each phase, its execu-
tion is particularly important here. With a prototype at hand, it becomes possible to
determine if the expected decision support functionalities are likely to be realized by
the final DSS (“do the thing right”), and if the assumptions defined in the results
chain are still valid (“do the right thing”). The feedback process reminds the stake-
holders that the actual or projected achievement of the decision support functionali-
ties and the assumptions' validity may become invalid, in which case the DSS design-
ers will need to iterate to an earlier phase and apply corrective actions by changing
initiatives and outcomes in the results chain.

If no corrective action is needed, the various DSS components are implemented
and aggregated into a complete system ready to be tested and evaluated by a test
group (step 5). During the evaluation phase, each critical aspect of the DSS is subject-
ed to a specific set of tests conducted with the test group. For example, user interface
testing can be conducted using methodologies described in the human-computer in-
teraction (HCI) literature. This phase (step 6) is again an important milestone for the
realization feedback process, since it represents the last chance to determine correc-
tive actions before the operational deployment and final implementation of the DSS.
Once the DSS is deployed, all user groups (i.e., nurses, MDs, and administrative
staff) need to be properly trained. To guarantee the expected lifetime of the system,
continuous monitoring of postimplementation realization must be provided. If neces-
sary, modifications must be retrofitted in the DSS. In other words, the realization
feedback process still has to be regularly executed, even after the seven steps of the
life cycle.

5 Concluding Remarks

In this paper, we have described a new approach to formalize the notion of context in
the study of DSS development. The proposed solution relies on the concept of value-
based software engineering. It provides DSS designers and builders with the appro-
priate techniques to explicitly consider the context of the target DSS during the entire
development process.

The first technique is the benefits realization approach, which uses diagrams called
results chains to determine and reconcile the value propositions of the project's suc-
cess-critical stakeholders. The results chain establishes a framework linking initia-
tives to contributions and outcomes. The results chain also links to assumptions,
which condition the realization of outcomes.

The second technique is the realization feedback process, which regularly monitors
the realization of the expected decision support functionalities and the validity of the
assumptions. If the decision support functionalities are not realized, or the assump-
tions' realism becomes invalid, the DSS designers need to to determine and apply cor-
rective actions by changing plans or initiatives.

We then provided an example to illustrate how a somewhat impractical, context-
free DSS development life cycle can be turned into a context-based life cycle focus-
ing on the most success-critical aspects of the target DSS, without overwhelming the
DSS designers with long checklists that are not necessarily relevant in the context of
the target system.

The inability of the DSS community to come up with unified and standardized
methods to develop decision support systems is a recurring topic that has kept re-
searchers and practitioners busy for the past three decades. We strongly believe that
our approach finds a partial answer to the problem, by explicitly acknowledging the
fact that DSS can be widely different in their goals, scope, depth, lifetime, and costs.
Rather than looking for an elusive context-free, one-size-fits-all solution, we propose
a context-based set of tools able to formalize the DSS environment and context before
choosing the appropriate development methodology. It is our hope that the approach
described in this paper provides a vehicle for researchers and practitioners to develop
better and more successful DSS.

References

Arinze, B. (1991). "A Contigency Model of DSS Development Methodology." Journal of Man-
agement Information Systems 8(1): 149-166.

Bateman, A. and J. Murphy (1994). Migration of Legacy Systems, School of Computer Appli-
cations. Dublin: Dublin City University: Dublin.

Bianchi, A., D. Caivano, V. Marengo and G. Vissagio, "Iterative reengineering of Legacy Sys-
tems", IEEE Transactions on Software Engineering, vol 29(3), pp. 225-241, March 2003.

Blanning, R. W. (1979). "The functions of a decision support system." Information and Man-
agement 2(September): 71-96.

Boehm, B. and L. Guo Huan (2003). "Value-Based Software Engineering: A Case Study."
Computer 36(3): 33-41.

Brodie, M. and M. Stonebraker (1995). Migrating Legacy Systems: Gateways, Interfaces and
the Incremental Approach. San Francisco: Morgan Kaufmann Publishers Inc.

Comella-Dorda, S., K. Wallnau, R. C. Seacord and J. Roberts (2000). "A Survey of Legacy
modernisation approaches", Carnegie Mellon University, Software Engineering Institute,
pp. 1-20, April 2000.

Courbon, J.-C., J. Drageof and J. Tomasi (1979). "L'approche évolutive." Informatique et Ges-
tion 103(Janvier-Février).

Finlay, P. N. (1994). Introducing decision support systems. Oxford, UK Cambridge, Mass.,
NCC Blackwell; Blackwell Publishers.

Gachet, A. and P. Haettenschwiler (2005) "Development Processes of Intelligent Decision
Making Support Systems: Review and Perspective", in Gupta, J., Forgionne G., and Mora,
M. (eds) Intelligent Decision-Making Support Systems (I-DMSS): Foundations, Applica-
tions and Challenges, Springer-Verlag, London [forthcoming]

Holzinger, A. (2005). "Usability Engineering Methods for Software Developers." Communica-
tions of the ACM 48(1): 71-74.

Keen, P. G. W. and M. S. Scott Morton (1978). Decision support systems : an organizational
perspective. Reading, Mass., Addison-Wesley Pub. Co.

Marakas, G. M. (2003). Decision support systems in the 21st century. Upper Saddle River, NJ,
Prentice Hall.

Martin, M. P. (1982). "Determining Information Requirements for DSS." Journal of Systems
Management(Decembre 1982): 14-21.

Sage, A. P. (1991). Decision support systems engineering. New York, Wiley.

Saxena, K. B. C. (1991). Decision support engineering: a DSS development methodology. 24th
Annual Hawaii International Conference on System Sciences (HICSS'91), Los Alamitos,
CA, IEEE Computer Society Press.

Saxena, K. B. C. (1992). DSS Development Methodologies: A Comparative Review. 25th An-
nual Hawaii International Conference on System Sciences (HICSS'92), Los Alamitos, CA,
IEEE Computer Society Press.

Sprague, R. H. and E. D. Carlson (1982). Building effective decision support systems. Engle-
wood Cliffs, N.J., Prentice-Hall.

Stabell, C. B. (1983). A Decision-Oriented Approach to Building DSS. Building Decision Sup-
port Systems. J. L. Bennett. Reading, MA, Addison-Wesley: 221-260.

Thomas, C. and N. Bevan (1996). Usability Context Analysis: A Practical Guide. Teddington,
UK, National Physical Laboratory.

Thorp, J. (2003). The information paradox : realizing the business benefits of information tech-
nology. Toronto, ON, McGraw-Hill Ryerson.

Tillquist, J. and W. Rodgers (2005). "Using Asset Specificity and Asset Scope to Measure the
Value of IT." Communications of the ACM 48(1): 75-80.

Turban, E. (1995). Decision support and expert systems : management support systems. Engle-
wood Cliffs, N.J., Prentice Hall.

Wallace, R. H., J. E. Stockenberg and R. N. Charette (1987). A unified methodology for devel-
oping systems. New York, NY, Intertext Publications : McGraw-Hill.

Wu, B., D. Lawless, J. Bisbal, R. Richardson, J. Grimson, V. Wade and D. O'Sullivan (1997),
"The Butterfly Methodology: A gateway free approach for migrating Legacy Information
Systems", In Proceedings of the ICECCS97, Villa Olmo:Italy.

