
History-based Conflict Management                             
for Multi-users and Multi-services* 

Choonsung Shin, Yoosoo Oh and Woontack Woo 

 GIST U-VR Lab. 
Gwangju 500-712,  S.Korea 

{cshin,yoh,wwoo}@gist.ac.kr 

Abstract. Context management in context-aware applications manages con-
texts obtained from various sensors and services related to users and environ-
ments. However, most of the previous context management mainly focuses on 
single user or single application. In this paper, we propose Context Manager 
that resolves conflicts among multiple users and multiple services for context-
aware application in smart home environments. In such environments, the pro-
posed Context Manager resolves conflicts among users by assigning priority to 
each user based on their context. In addition, it adjusts weights of the context 
by applying Bayesian theory to conflict history of users and applications. Fur-
thermore, Context Manager detects and resolves conflicts among services by 
utilizing preferences of users and properties of the services. During experiments 
on ubiHome, a smart home test-bed, the proposed Context Manager resolved 
conflicts among users more accurately than resolution method having fixed-
priority. The Conflict Manager also resolved conflicts among ubiServices. We 
expect the proposed method can play a vital role in context-aware applications 
for offering personalized services to users by resolving service conflicts among 
applications as well as users. 

1   Introduction 

The aim of ubiquitous computing is to provide users with intelligent services based 
on the information obtained from distributed but invisible computing resources. 
These services do not require any cumbersome interface or leaning procedures for 
users to use them [1]. Especially context-aware applications offer appropriate services 
to users by utilizing contextual information of environment including users. This 
information is obtained from various sensors or computing resources distributed in 
our daily life [2] [3]. However, conflicts occur in context-aware applications when 
multiple users share the applications or these applications share the limited resources 
in environment [9][10]. A service conflict is a situation in which applications cannot 
directly provide users with personalized services [19]. The service conflict is classi-
fied into three types according to sources of conflicts: service conflicts among multi-
ple users, service conflicts among multiple applications and service conflicts among 

                                                           
* This work was supported by DSC of Samsung Electronics Co., Ltd., in Korea  



multiple users and multiple applications. Service conflicts among users are caused 
due to use of an application by multiple users. Service conflicts among multiple ap-
plications are caused by providing of services among multiple applications.  Service 
conflicts among users and applications are caused due to the use of multiple services 
by multiple users. Consequently, applications start serving to the users without pos-
sessing all the necessary resources and thus may result in unsatisfactory services. 
     Over the last decade, most research, aimed on resolving conflicts, has been done 
on smart home and intelligent office. Reactive Behavioral System (ReBa) supports 
conflict resolution among devices in office environment such as, between electric 
lamps, display devices, and telephones [4][8]. Reconfigurable Context-Sensitive 
Middleware for Pervasive Computing (RCSM), an object-based framework, makes 
sensors and application services independent, forms ad-hoc communication between 
them, and delivers the necessary context to the applications [5]. Context Toolkit col-
lects, interprets, and delivers context between sensors and application services [6]. 
Contextual Information Service (CIS) manages contextual information such as loca-
tion and characteristics of users, devices, and status of network to provide contexts to 
application services [7]. 
     However, context management techniques in the previous research have various 
limitations when they are applied to multi-user environment with various applications. 
In the case of ReBa, it is difficult to provide to each user with particular services 
because ReBa focuses on the service for grouped users by inferring main activities 
from the environment [4]. In RCSM, context management does not consider shared 
devices or services because contextual information services are provided only 
through individual device possessed by each user [5]. In the case of Context toolkit 
and CIS, application developers have to consider both conflict between services and 
between users because contexts are delivered to applications when current context of 
environment matches an application-specified condition [6][7].  
     In this paper, we propose Context Manager to resolve conflicts caused by use of 
services among multiple users and limited resources among multiple services. In 
order to resolve the conflicts, the proposed context manager consists of four compo-
nents: Context Preprocessor, Context Database, Conflict Manager and Final Context 
Deliverer.  Context preprocessor carries out filtering and converting context. Context 
Database keeps track of several kinds of context. Conflict Manager resolves conflicts 
among services and among users. Final Context Deliverer sends the conflict-resolved 
context to applications.  
     The proposed Context Manager has following advantages. Firstly, it resolves the 
conflicts among users by assigning priority to users based on their contexts, such as 
users’ identity, time, location and behaviors. Secondly, the Context Manager adjusts 
weight of context by applying Bayesian probability to conflict history of users. Con-
sequently, it can reflect the change of users’ preference and their environment. 
Thirdly, the Context Manager detects and resolves conflicts among applications by 
utilizing their properties and relationship between them. Therefore, applications pro-
vide users with personalized services by resolving conflicts not only among applica-
tions, but also among users.  
     This paper is composed as follows. In Chapter 2, we introduces unified context-
aware application model for ubiquitous computing environments. Chapter 3 describes 



the architecture of Context Manager and Chapter 4 explains the conflict resolution 
method to resolve conflicts among services and among users. Experimental setup and 
results are discussed in Chapter 5. Finally, we conclude in Chapter 6. 

2   A Unified Context-Aware Application Model 

In order to provide the personalized service, we represent context information as 
5W1H (Who, What, Where, When, How, Why). 5W1H contains comprehensive 
information about user and his surrounding environment. We defined it as unified 
context [11]. With each field having sub-fields, the unified context also represents 
detailed information a user. The unified context expressed with 5W1H ensures inde-
pendence between sensors and services. It also has advantage of being re-used by 
other services. In addition, the unified-context ensures reducing additional manage-
ment required to change the context to other forms according to individual service. 
ubi-UCAM 2.0 (Unified Context-aware Application Model for ubiquitous computing 
environment) is context-based application model to provide users the personalized 
service by exploiting context in ubiquitous computing environments where many 
different kinds of sensors and services are distributed [20]. Ubi-UCAM is composed 
of ubiSensors and ubiServices. The ubiSensors and ubiServices exchange contextual 
information with several types of contexts based on the unified context. Figure 1 
shows the overall architecture of the ubi-UCAM 2.0. 

Context Manager

Service Provider

Self Configuration Manager

Context IntegratorIn
te

rp
re

te
r

ubiService

ubiSensor
Self Configuration Manager

Preliminary Context Generator

Signal processing

FCPC/FC PC/FC FC

PC

ubiService

FC’

UCC

FC/IC

SCC/SS

FC/PC

FC

FC: Final Context
PC: Preliminary Context
IC: Integrated Context
SCC: Service Conditional context
SC: Service Status
UCC: User Conditional context

A sensor

UCC’

Network

PC

 

Fig. 1. The architecture of ubi-UCAM 2.0. It consists of ubiSensor and ubiService. 

As shown in Figure 1, ubi-UCAM 2.0 employs different types of contexts according 
to the role of each context. These include Preliminary Context, Integrated Context, 
User Conditional Context, Service Conditional Context, and Final Context. 

 
　 Preliminary Context (PC): A unified context which describes current situation of 

a user and his environment, and includes all or part of 5W1H.  It is generated by 
ubiSensors 



　 Integrated Context (IC): A unified context which describes current situation of a 
user and his/her environment, and includes all of the 5W1H. It is generated by 
Context Integrator 

　 User Conditional Context (UCC): A unified context which expresses an action 
and parameters of a service and related user condition. It is used for generating 
User Conditional Context’. User conditional Context’ is generated by Profile 
Manger. 

　 User Conditional Context’ (UCC’): A unified context which expresses an action 
and parameters of a service and related user condition. It is used for matching In-
tegrated Context. User conditional Context’ is generated by Interpreter. 

　 Service Conditional Context (SCC): A unified context which expresses an action 
and parameters of a service and related user condition. It is used for matching In-
tegrated Context. Service conditional Context is generated by Service provider. 

　 Final Context (FC): A unified context which describes a user, his environments, 
and service action and parameters. It is used for triggering a service. It is generated 
by Context Manager.  
 
An ubiSensor is composed of a physical sensor, Signal Processing module, Pre-

liminary Context Generation module and Self Configuration Manager. The physical 
sensor perceives a change related to a user and his environment. Signal processing 
module extracts feature information from the sensed signal. Preliminary Context 
Generation module generates a preliminary context from the feature information. The 
ubiSensor delivers this context to ubiServices located within a working area through a 
multicast group established by Self Configuration Manager. A ubiService is com-
posed of Context Integrator, Context Manager, Interpreter and Service Provider. 
Context Integrator collects preliminary contexts created by various ubiSensors lo-
cated within a working area during given time interval. It classifies the preliminary 
contexts to each sub-element and analyzes the sub-elements by applying a decision 
making technique. Context Integrator generates an integrated context of each user and 
delivers integrated contexts based on Context Manager. Context Manager searches 
conditional context from a Hash-table, which manages specific service action and 
condition, corresponding for each integrated context. It generates a final context to be 
used by applications after resolving conflicts among users and services. Finally, Ser-
vice Provider executes appropriate action with parameters described in the final con-
text. This utilizes application-specified methods which are programmed by applica-
tion developers. 

3   Context Manager 

In ubiquitous computing environments, computers with limited memory and process-
ing power are embedded in objects or appliances. In the limited and distributed com-
puting environments, Context Manager maintains only small amount of information, 
unlike the centrally managed systems that keep all the information [4][7]. Consider-
ing the limitations, the proposed Context Manager mainly focuses on the ability to 
resolve conflicts cause by multi-user and multi-devices in context-aware applications. 



In addition, short-term memory in Context Manager manages the history of users and 
services to resolve conflicts dynamically. To deal with the conflicts in a dynamic way, 
Context Manager preprocesses context, resolve conflicts with history management, 
and generates final context. Figure 2 illustrates an overall architecture of the Context 
Manager. 

Context Pre-Processor

Service 
Provider

Network

User conditional context

Conflict  Management

Final Context
D

eliverer

Final Context

Context Database

Context 
Integrator

Final context

Integrated context

Service Information

Interpreter

Service 
Provider

 
Fig. 2. Context Manager. It consists of Context Preprocessor, Conflict Manager, Final Context 
Deliverer, and Context Database 

As shown in Figure 2, Context Preprocessor receives final contexts and integrated 
contexts from Context Integrator. It also receives conditional contexts from Inter-
preter and Service Provider. Then, it stores the resulting contexts to Context Database. 
The Context Database keeps track of the contexts and maintains conflict history of 
users and services to resolve conflicts among users and services. Final Context Deliv-
erer builds a final context after resolving conflicts among users and services, and then 
delivers it to Service Provider and Network module. 

3.1 Context Preprocessor 

Context Preprocessor carries out pre-treatment of several kinds of contexts, such as 
integrated context, conditional context, and final context. Figure 3 shows context 
processing in Context Preprocessor. 

Conditional context database

User 1
- - -

User N

Default

Hash table

If there is a  user conditional context table, 
then add conditional context to the table.
Otherwise, create a new table and add 

conational context the table

5W1H

5W1H

Conditional contexts

Conditional Context 
Preprocessing 

Conditional
Context

From users

From a registered service

5W1H

        

If integrated context matches user-
specified or default conditional context, 

then Context Preprocessor build 
matched context

User 1 5W1H

5W1H

5W1H

Integrated contexts

User 2

User 3

User1

Conditional context database

User 1
- - -

User N

User3

Default

Matched user context

Integrated Context 
Preprocessing 

Hash table

Conditional
Context

Who What WhereWhen How Why

Who What WhereWhen How Why

 
Fig. 3. Context Preprocessing 

 



As shown in Figure 3, Context Preprocessor inserts user conditional contexts and 
service conditional contexts to Hash table. In the case of integrated contexts, Context 
Preprocessor yields a matched user context after matching integrated context to con-
ditional context. Context matching is archived in two ways: by matching integrated 
context with user-specified conditional context and matching it with default condi-
tional context. In each step, if integrated context matches a conditional context, Con-
text Preprocessor builds a matched user context by combining ‘What’ field of the 
conditional context and ‘Who, When, Where, How and Why’ fields of the integrated 
context. Furthermore, Context Preprocessor collects and filters the final contexts from 
other services within working area. 

3.2 Context Database 

Context Database keeps necessary contexts and related information in order to sup-
port generation of final context. It contains several kinds of context such as condi-
tional context, final and user context within a service area, and conflict history of 
users and a registered service. Conditional context table stores conditional contexts 
generated by users and a service developer. User context table keeps context of the 
users who are currently related to a service. The user context table is used to select 
one user when users leave the service area. The final context table storing final con-
texts of other services is used to confirm whether conflicts are caused within the ser-
vice area. 

3.3 Final Context Deliverer 

Final Context Deliverer offers the final context, which has service action and infor-
mation about its user, to Service Provider and Network module. Therefore, Final 
Context Deliverer performs two kinds of works: context generation and context de-
livery. In context generation, it makes a final context which has unique information of 
the service and doesn't cause conflict. Next, Final Context Deliverer provides the 
context with Service Provider. It also confirms whether the context is reflected to the 
service by utilizing service status information coming from Service Provider. With 
the result, Final Context Deliverer notifies the change of the service to other services 
if the result is true. Otherwise, it tries to again send the final context, if the service did 
not work on the final context. 

4   Conflict Management 

Conflicts of context-aware applications occur not only due to multiple users who 
access services at the same time, but also due to services trying to share resources in 
their surrounding. To solve conflict among users, Conflict Manager assigns priority 
to users and chooses the user given the highest priority. In addition, to deal with con-
flict among services, Conflict Manager detects and resolves conflicts, based on the 



properties of services and relationship between them. Meanwhile, priority of users 
and services are not fixed, but adapts to user's preference and behaviors. Therefore, 
Conflict Manager not only resolves conflicts among users and among services, but 
also dynamically assigns priority to users and services.  

4.1 User Conflict Manager 

User conflict Manager resolves conflicts caused by users who try to use services 
within a service area. To resolve the conflict, User Conflict Manager manipulates user 
contexts in two steps: building a user conflict list and selecting a proper user from it. 
User Conflict Manager makes a conflict list of matched user context on users who are 
expected to cause conflict among users, including those who are currently using the 
service. In this process, users who leave the service area are excluded from the list 
because we assume they do not want to use the service any more. In addition, user’s 
feedback is also delivered to Conflict History Manager. The context is considered as 
user feedback if there is user implicit context such as a remote controller or Tangible 
Media Controller (TMC) [13]. In the next stage, User Conflict Manager chooses one 
user from the conflict list based on user’s priority according to context weight to 
user’s context calculated from Conflict History Manager. In this process, conflicts are 
handled in several ways according to the number of users within the service area. In 
the case of one user situation, we know that there is no conflict among users. There-
fore, User Conflict Manager just selects the user context as a result of conflict resolu-
tion. However, we have to consider the situation when there is more than one user 
within a service area. In this situation, User Conflict Manager selects the user having 
the highest priority because conflicts may occur. In addition, it notifies the result of 
conflict resolution to enable Conflict History Manager to store conflict context. Fig-
ure 4 shows an example of service conflict among users and a resolution procedure 
on it. 

 

Television 
Service

Television
Available contents
-News
-Drama
-Sitcom

Sitcom

Drama

Today’s news

User 1
User 2

User 3

       

Build
A conflict list

Choose 
A user context 

User 1 5W1H

User2 5W1H

User conflict list

Selected user context

Context priority

User context

Matched user context

User1 5W1H

5W1HUser2

Conflict H
istory M

anager

Context query 

Users’ Feedback

Conflict context

 
                         (a)                                                          (b) 

Fig. 4. A service conflict among users (a) and resolution procedure (b)   

As shown in Figure 4(a), there is a television service providing user 1 with sitcom 
program in a service area. Simultaneously two users, user 2 and user 3, are trying to 



use the service. In this scenario, we assume that user 2 usually uses the service when 
conflicts cause among them. Therefore, a service conflict arises due to use of 
television services by the three users. In this conflict situation, User Conflict Manager, 
shown in Figure 4(b), detects the conflict and builds a conflict list consisting of con-
texts of user 1, user 2 and user 3. Based on the conflict list, it then queries priority of 
each user from Conflict History Manager. User Conflict Manager obtains the priority 
of users within the service area. Finally, it selects user 2 having the highest priority.  

4.2 Service Conflict Manager 

Service Conflict Manager resolves conflicts caused by multiple ubiServices trying 
to share resource in a service area. It deals with conflict in two ways: inward conflict 
resolution and outward conflict resolution. In inward conflict resolution, it resolves 
conflicts caused by other services within a service area. Service Conflict Manager 
creates a context which contains information about the service and a stop command 
for it, if resources involved in other services are the same as those of the service itself. 
As a result, the application responds to changes of other services which cause conflict, 
using final contexts coming from other services. In case of outward conflict resolu-
tion, Service Conflict Manager prevents the registered service causing conflict with 
other services. To detect possible conflicts, it checks to see if there are any services 
using the same resource before delivering the context. Service Conflict Manager 
compares priority of the service contexts calculated from Conflict History Manager if 
there are conflict services within a service area. Finally, it sends the conflict-resolved 
context to Final Context Deliverer when there aren’t any services related to the same 
resource. In addition, Service Conflict Manager just sends the resolved context to 
Conflict History Manager to notify the result of conflict resolution. Figure 5 shows a 
conflict situation among ubiServices and a resolution procedure on it. 

 

Light 
Service

Music
Service

Telephone
Service

Movie 
Service

Television
Service

P:70

P:50

P:90

P:60 P:80

Resources
-light

Resources
-sound

Resources
-sound
-light
-display

Resources
-sound

Electric Light

Audio Telephone

Television      

5W1H

Outward
conflict

Bully
Selector 

Light service
5W1H

User1 5W1H
Conflict-resolved

context

Service contexts

5W1H

Selected 
user context

FC of Telephone
service

User 1Inward
Conflict

Context priority

context Query 

User’s Feedback

Conflict context

Conflict H
istory M

anager

User 1

 
 
                             (a)                                                               (b) 

Fig. 5. A service conflict among ubiServices (a) and resolution procedure (b) 

As shown in Figure 5, there are four devices: eclectic light, audio player, television 
and telephone. Audio provides music service, electric light provides light service, 
telephone provides telephone service and television provides movie and television 



services. These services also utilize specific resources of each device. In this situation, 
the telephone service causes a conflict with television service due to the sound re-
source. Therefore, Service Conflict Manager detects the conflict in inward conflict 
resolution. It then builds a final context containing a stop command for the registered 
service. Afterward, Service Conflict Manager compares the priority of the registered 
service with the priority of telephone service. According to the priority, it selects the 
context of the telephone service. 

Service Conflict Manager also deals with the situation when multiple services want 
to use resources at the same time. This is because services can respond to the same 
condition. In the case of this conflict, several services want to use the same resource. 
For example, television and movie services can be triggered at the same time when a 
user enters home. To deal with this situation, we adopt bully algorithm that elects a 
leader among processes in distributed computing environment. The algorithm chooses 
a coordinator with the highest priority [18]. In case of service conflicts, the algorithm 
is used to choose the ubiService having the highest priority among ubiServices which 
try to use shared resources.  

4.3 Conflict History Manager 

Conflict History Manager takes charge of maintaining conflict history and determin-
ing priority of conflicting context. To efficiently use the limited storage, it only main-
tains conflict history for a short period of time. In addition, to reflect user preference, 
Conflict History Manager calculates the priority of conflicting contexts based on 
Bayes theory which is widely used for classification or prediction [12][14][15]. Fig-
ure 6 shows the overall architecture of Conflict History Manager. 

 

Priority
Calculation

Priority
Calculation

Feedback context Context
Accumulation

Context
Accumulation

Weight
Masking

Weight
Masking

Weight
Calculation

Weight
Calculation

Conflict history

Weight Table

feature vectors

User 1
- - -

User N

Conflict history
of a user

User 1
- - -

User N Weighted  history

Context
Selection

Context
SelectionConflict context

Context Query 
Context Priority

Conflict Manager Conflict history Manager

 
Fig. 6. Conflict History Manager 

As shown in Figure 6, Conflict History Manager receives feedbacks and conflict-
ing contexts of users from Conflict Manager. Based on the contexts, Conflict History 
Manager builds feature vectors containing information about the conflict situation. 
Each feature vector is represented in the Table 1. Afterwards, the feature vector is 
stored in a history file so that it can be retrieved when required. Then, Conflict His-
tory Manager loads the feature vectors, related to a specific user, from conflict history. 
Conflict History Manager manipulates weights of conflicting contexts used for prior-
ity calculation of users. Therefore, it recalculates weights of conflicting contexts 



based on feature vectors of a user. In order to obtain the weight, Conflict History 
Manager applies Bayesian theory to the feature vectors. 

Table 1.  The features of feature vectors  

Feature Category 

What Service[SVC] 

Content 1: 0 
Content 2: 1 
Content 3: 2 
Content 4: 3 

Where Location[L] 

Other: 0 
Front: 1 
Side: 2 
Entrance: 3 

When Time[T]  Hour: 0~23 

How Gesture[G] 

None: 0 
In: 1 
Out: 2 
Sitdown:3 
Standup: 4 
Moving: 5 

Who(other) Who_conflict[WC] ID 

Target class Resolution result Selected: 1  
Not Selected: 2 

 
Equation (1) shows Bayesian theory. In the equation, feature vector X is composed 

of (x1, x2, x3, x4, x5, x6). Each element of X is mapped to the value of SVC (Service 
Type), L(location), T(Time), G(Gesture), S(Stress), and WC(Who_conflict) in table 1. 
The result of conflict resolution Hj, which is represented by (H1, H2) indicates the SC 
which is Target class. Consequently, we obtain probability P(H1|X), for allowing the 
current user of a service to continue using the service when conflict arises, by multi-
plying  posteriori probability (X|H1) and prior probability P(H1). 

)(
)()|(

)|(
XP

HPHXP
XHP jj

j =  (1) 

According to the equation, we assume that current user of a service will continue 
using the service in case of a conflict when posteriori priority P(H1|X) is greater then 
P(H2|X). Otherwise, another user uses the service. So, priority of context is the differ-
ence between maximized posteriori probability of P(X|H1)(H1) and P(X|H2)(H2). 
Therefore, weight of each feature is expressed by priori probability of the feature 
P(xk|Hj)=skj/sj. skj is the number of conflicting contexts having a specific value of sk 
within the class Hj class. sj is the sum of  values of conflicting contexts belonging to 
Hj. Conflict History Manager calculates weights of conflicting contexts of users based 
on the weight table. The calculated results are updated in hash-table and a weight file 
for future search.  



     Conflict History Manager also provides priority of the conflicting context based 
on the weight table when Conflict Manager requests priority for a conflicting context. 
Conflict History Manager retrieves weights of the user, identified by ‘Who’ context 
of conflicting context, from the hash-table. Afterwards, it applies the weights to the 
conflicting context to Equation (2) to calculate posteriori probability. The Conflict 
History Manager calculates posteriori probability P(Xi|H1) when current user will 
continue using the service, and posteriori probability as P(Xi|H2) when other user will 
use it.  

∏
=

=
n

k
jkji HxPHXP

1

)|()|(  (2) 

     Finally, Conflict History Manager calculates priority of the conflicting context. 
Equation (3) shows the priority of conflicting context. In the equation, P(X|H1)P(H1) 
is the maximized probability of the current user to continue using the service. 
P(X|H2)P(H2) is the maximized probability of another user to use the service. Conflict 
History Manager delivers the difference of these two probabilities to Conflict Man-
ager as a priority of the conflicting context.  

Priority (Xi) = P(Xi |H1)P( H1)– P(Xi|H2)P( H2) (3) 

     Based on the two modules, Conflict History Manager adjusts the weight of con-
flicting context by using conflict history of users after conflicts are resolved. It also 
assigns a priority to conflicting contexts of users based on the weight table when 
conflicts arise 

5   Implementation and Experiments 

We have evaluated the effectiveness of the conflict resolution method based on the 
ubiHome test-bed. The proposed conflict resolution method chooses one among sev-
eral users when multiple users attempt to access a registered service. In addition, it 
decides to start the service when priority of the service is higher than other services 
located within a service area. We also compared accuracy of the proposed method 
with fixed priority method in each service. Furthermore, we surveyed on how much 
of the family members conflict with each other in daily activities. Finally, we con-
ducted a survey on the usefulness of the conflict resolution method to family mem-
bers. 

5.1 Experimental setup 

The proposed Context Manager was implemented with J2SDK 1.4TM so that it can be 
applied to various applications. As shown in Figure 7, we tested Context Manager in 
ubiHome, a smart home test-bed [16]. In ubiHome, we utilized various ubiServices 
such as, television service, music service, movie service, light services, etc, which 
offer customized services to users. In addition to the services, we also exploited vari-
ous sensors: ubiCouch sensors, ubiTrack, TMC (tangible media controller) and ubi-



Remocon. The ubiCouch sensors are couch sensors, comprising of on/off switches 
and PIC16F84, detect user's behaviors. ubiTrack is infrared-based location tracking 
system that tracks user's location [17]. TMC is a tangible media control object to 
manipulate these services [13]. ubiRemocons are remote controllers, based on Per-
sonal Java, to control these services [21]. 

 

 
Fig. 7. ubiHome test-bed 

To set up the condition of each ubiService, we conducted a survey on service pref-
erences of users about their home environment. The survey was conducted for the 
home appliances frequently used in living room. Seventy persons, (40 parents / 30 
children), were asked the following questions. 

 
Question 1: What kind of services or appliances do you use frequently in your home?  
Question 2: When do you usually use the services answered in the Question 1? 
 
     As a result, we found that parents usually spend their time watching television 
around 9 P.M. Especially, they prefer to watch news to get social or weather informa-
tion through the television. However, children usually consume their time by watch-
ing movie and listening to music. They also enjoy watching sitcom or comic pro-
grams through television. Based on their preference and time, we assigned condi-
tional context of each user to each service in ubiHome. Furthermore, for the experi-
ment, the number of members in family was four: two parents and two children. This 
is the average number of members in Korean family system [22]. 

5.2 Experimental analysis 

In order to measure the accuracy of resolution method of the proposed Context Man-
ager, we experimented on user conflict in two ways: a resolution method based on the 
Bayesian theory and a resolution methods having fixed priority. The proposed resolu-
tion method assigns priority to conflict contexts and then chooses one user having the 
highest priority when conflict occurs. On the other hand, resolution method having 
fixed priority chooses one user which belongs to the eldest user in the conflict situa-
tion. To test two methods, we employed television service that users use most in a 



home environment. While using the television service, family members cause con-
flicts due to their preferences and its broadcasts. In our experiment, the television 
service selects a preferred broadcast channel of a user. It decided a specific channel of 
the user who has the highest priority according to each selection strategy when con-
flicts occurred. The service gathered feedback of users in pre-defined amount of time 
and judged the accuracy on the selection. The television service counts the number of 
"incorrectness" and "correctness" of the selection. Based on the selection result, we 
have built confusion matrix to know how well it works. First of all, we tested user 
conflict with fixed resolution method. We did the experiment from 18:00 to 24:00 in 
two weeks. Table 2 shows confusion matrix of conflict resolution method using fixed 
priority. 

Table 2. Confusion matrix for conflict resolution having fixed priority (unit :%) 

Users Father Mother Son Daugh-
ter 

Father 100 0 0 0 
Mother 31 69 0 0 

Son 43 20 37 0 
Daughter 51 29 20 0 

 
As shown in the table 2, the resolution method provided the service to only a specific 
user because the conflict solution method selects one user according to the fixed pri-
ority of users when conflict occurred. Therefore, the higher priority users have, the 
more services the users have. In the case of father, the rate of correct selection 
reached to 100% since he has the highest priority among family member. However, 
the daughter hardly used the television service based on her context due to her lowest 
priority. Furthermore, the method cannot encompass the changes of preference or 
behaviors of users in their home environment. This shows how the resolution method 
is inappropriate to context-aware applications. On the other hand, resolution method, 
based on the Bayesian theory, reflected these changes. Table 3 shows the experimen-
tal results of the proposed conflict resolution method.  

Table 3. Confusion matrix for conflict resolution based on Bayesian theory (unit:%) 

Users Father Mother Son Daugh-
ter 

Father 81 8 4 7 
Mother 8 79 7 6 

Son 4 3 78 15 
Daughter 5 6 14 75 

 
     As shown in the table 3, the resolution method gave the television service to other 
users who have lower priority in the conflict resolution having fixed priority. This is 
because conflict resolution method assigned priorities to users based on their context.  
In addition, the accuracy of the resolution method was relatively higher than the fixed 
resolution method. The improvement of accuracy is due to the fact the resolution 



method reflected the changes of their preference and resolution policy. Therefore, 
conflict solution resolved conflicts caused by use of services among multiple users. 
In addition, we configured properties of ubiServices to deal with conflict among 
services. In the experiment, all the ubiServices were in the same area. Especially, 
television, movie and Internet services were operated on the same computer. Table 4 
shows the properties given to each ubiService. 

Table 4. Property of ubiServices 

Services Sound Display Light Priority 
Television  O O 90 

Audio O   50 
Light   O 60 
Movie O O O 80 

 
     As shown in the table 4, each ubiService has its own set of required resources, 
such as sound, display and light, according to the resources it uses. Therefore, ser-
vices which require the same resource cannot be executed simultaneously. Such ser-
vice can start after stopping other services. For example, the television service uses 
sound, display and light resources and Internet service needs display resources. In this 
situation, those two services cannot be executed at the same time, because they share 
the display resource. Then, we monitored the services in ubiHome in order to observe 
resource conflicts among services. Table 5 shows the amount of service conflicts 
found during the observation.  

Table 5. Amount of Service Conflicts in each ubiService (unit: %) 

Services Television Movie Music Light 
Television - 33 56 11 

Movie 54 - 25 21 
Music 72 28 - - 
Light 77 23 - - 

 
In case of television service, most of the conflicts are related to Music service. The 

rest of the conflicts are associated with movie service. Movie service, which shares 
sound, light, and display resource, is related to all the services. In particular, conflicts 
with Movie service are mostly due to television service which is accessed by users 
frequently. Besides, Movie service also conflicts with electric light service since the 
services use light resource. Music service was related to television and movie service 
using sound and display resources. Finally, conflicts of the electric light service are 
caused by movie and television services which share light resource. Therefore, con-
flicts between these services depend on users and their pattern of using services in 
home environments.  

Finally, we questioned 70 volunteers in ages from 10 to 60 who had experienced 
context-aware service supporting conflict resolution, in order to estimate the conflict 
in home environment. They were asked to answer the following questions. 



 
Question 1: Who is the most related to you when you are trying to use television 
service. 

As shown in Table 6, the conflicts appeared high in the viewpoint of parents when 
they were using the service with their children. In the case of children, they showed 
high conflict when they spend their time on using the service with other brother or 
sisters. This result implies that conflicts are occurred because the preferences of each 
family member are different in using services in home environment. Moreover, each 
member feels a service conflict differently. This is because the persons who are to-
gether are different with each others, when they spent their time on using the services 
in the living room. 

Table 6. The amount of conflict among family members (Unit: %) 

 Father Mother Children 
Father - 40 60 
Mother 30 - 70 

Children 33 20 47 
 

Furthermore, to evaluate the effectiveness of the proposed conflict resolution 
method, we asked them to answer following question. 
 
Question 2: What do you think of context-aware services that choose a proper user 
when several members try to use them at the same time? 

 

 

0
10
20
30
40
50
60
70
80

10~19 20~29 30~39 40~49 50~59
The age of Users

U
se

r s
af

ac
tio

n(
%

)

  
Fig. 8. User satisfaction 

As shown in Figure 8, the respondent showed a satisfaction rate to correspond to 
average 62%. 10s and 40s of the users showed a high satisfaction rate on the survey. 
Especially, the teenagers showed relatively higher satisfaction then other ages. This is 
because they have a lot of curiosities with the services, and adhere to use the services. 
In case of 40s, they showed higher satisfaction rate on using the services too. This is 
because they want to use their service although there is more than one member. On 
the other hand, in case of 20s and 30s, lower satisfaction rate appeared. In the case of 
30s, their families were comprised of only a few members of family. Most of 20s are 
live alone. Therefore, we found that satisfaction rate of usefulness of the service re-
solving conflicts are related to users and their environment. 



6   Conclusion 

In this paper, we proposed the Context Manager to resolve conflicts that arise 
when multiple users access various context-aware applications and when the applica-
tions are trying to share resources in ubiquitous computing environments. In order to 
resolve conflicts among users, the proposed Context Manager maintained the conflict 
history of users, calculated the weight of context with Bayes theory, and then selected 
one having the highest priority among users. In addition, Context Manager detected 
conflicts among services based on the resource properties of each service. These 
conflicts were resolved with the priority so that the services are exclusively executed. 
Through the experiment, we have shown the effectiveness of the proposed method. In 
our future works, however, we will employ additional services to deal with the con-
flicts. We will also observe user’s behaviors over longer periods. These remaining 
works will be done step by step in the near future.  
 
Acknowledgement 
The authors would like to thank Seiie Jang for his valuable input and useful discus-
sion about conflicts in context-aware applications 

References 

1. Mark Weiser. Computer of the 21st Century. Scientific American, 265(3): 94-104, September. 
(1991) 

2. Schilit, B., Adams, N. Want, R. Context-Aware Computing. Proceding of the 1st Interna-
tional Workshop on Mobile Computing System and Applications,  pp. 85-90. (1994) 

3. Anind K. Dey, “Understanding and Using Context.  Personal and Ubiquitous Computing, 
Special issue on Situated Interaction and Ubiquitous Computing, 5(1),. (2001) 

4. Nicholas Hanssens, Ajay Kulkarni, Rattapoom Tuchinda, and Tyler Horton, “Building 
Agent-Based Intelligent Workspaces,” In ABA Conference Proceedings, June. (2002) 

5. Anind K. Dey and Gregory D. Abowd, The Context Toolkit: Aiding the Development of 
Context-Aware Applications, Proceedings of the Workshop on Software Engineering for 
Wearable and Pervasive Computing (SEWPC), Limerick, Ireland, June 6. (2000)   

6. S. S. Yau, F. Karim, Y. Wang, B. Wang, and S.Gupta, “Reconfigurable Context-Sensitive 
Middleware for Pervasive Computing,” IEEE Pervasive Computing, joint special issue with 
IEEE Personal Communications, 1(3), , pp.33-40, July-September. (2002) 

7. Judd, G, Steenkiste, P., “Providing Contextual Information to Pervasive Computing Applica-
tions”, IEEE International Conference on Pervasive Computing (PERCOM), Dallas, March 
23-25. (2003) 

8. John Canny, Danyel fisher, “Active-Based Computing,” in Proceeding of CHI, The Hague, 
The Netherlands. (2000) 

9. Christian Kray, Rainer Wasinger, and Gerd Kortuem, Proceedings of the workshop on Multi-
User and Ubiquitous User Interfaces (MU3I) at IUI 2004, Funchal, Madeira, Portugal, 
ISSN 0944-7822, pp. 7-11. (2004). 

10. Meyer, S. and Rakotonirainy, A survey of Research on Context-Aware Home. Proc. Of the 
Australasian information serucrity workshop conference on ACSW frontiers 2003, pp. 159-
168. (2003) 



11. S.Jang, and W.Woo, “ubi-UCAM: A Unified Context-Aware Application Model”, Lecture 
Note Artificial Intelligence (Context’03), Vol, 2680, pp.178-189, 2003 

12 Jiawei Han, Micheline Kamber, Data Mining: Concepts and Techinques, Morgan Kauf-
manm. (2001) 

13. Sj.Oh, W.Woo, “Manupulating multimedia contents with Tangible Media Control”, 
LNCS(ICEC), vol.3166, pp.57-67.(2004) 

14. Anand Ranganathan, Jalal Al-Muhtadi, Roy H. Campbell, Reasoning about Uncertain 
Contexts in Pervasive Computing Environments.. In IEEE Pervasive Computing, pp 62-70, 
Apr-June, (2004)   

15. Panu Korpipaa, Jani Mantyjarvi, Juha Kela, Haikki Keranen, and Esko-Juhani Malm, Man-
aging Context Information in Movile Device, In IEEE Pervasive Computing, pp. 42-51, 
July-September, (2003) 

16. Y.Oh, W.Woo, "A unified Application Service Model for ubiHome by Exploiting Intelli-
gent Context-Awareness," Proc. Of Second Intern. Symp. On Ubiquitous Computing sys-
tems (UCS2004), pp. 117-122, 2004. 

17. S.Jung, W.Woo, " UbiTrack: Infrared-based user Tracking System for indoor environ-
ment," ICAT'04, 1, paper 1, pp. 181-184. (2004) 

18. Garcia-Molina, H. Elections in Distributed Computer Systems. IEEE Transactions on 
Computers, Vol, C-31, No. 1, pp. 48-59. (1982) 

19 C.Shin and W.Woo, “Conflict Resolution among Users by Utilizing Context History”, the 
3rd International Conference on Pervasive Computing 2005 workshop, will be published. 

20 Y.Oh, C.Shin S.Jang and W.Woo, “ubi-UCAM 2.0: Unified Context-aware Application 
Model for ubiquitous computing environments”, the 1st Korea/ Japan Joint workshop on 
Ubiquitous Computing and Network Systems, 2005, will be published. 

21. http://java.sun.com/products/personaljava/ 
22. http://www.nsf.or.kr 
 


