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Abstract
Context-aware recommender systems (CARS) go
beyond traditional recommender systems, that only
consider users’ profiles, by adapting their recom-
mendations also to users’ contextual situations.
Several contextual recommendation algorithms
have been developed by incorporating context
into recommendation algorithms in different ways.
The most effective approaches try to model
deviations in ratings among contexts, but ignore the
correlations that may exist among these contexts.
In this paper, we highlight the importance of
contextual correlations and propose a correlation-
based context-aware matrix factorization algori-
thm. Through detailed experimental evaluation we
demonstrate that adopting contextual correlations
leads to improved performance.

1 Introduction
Recommender systems (RS) are an effective ways to alleviate
information overload by tailoring recommendations to users’
personal preferences. Context-aware recommender systems
(CARS) emerged to go beyond user preferences and also take
into account the contextual situation of users in generating
recommendations.

The standard formulation of the recommendation problem
begins with a two-dimens-ional (2D) matrix of ratings,
organized by user and item: Users × Items → Ratings.
The key insight of context-aware recommender systems is
that users’ preferences for items may be a function of the
context in which those items are encountered. Incorporating
contexts requires that we estimate user preferences using
a multidimensional rating function – R: Users × Items ×
Contexts→ Ratings [Adomavicius et al., 2011].

In the past decade, a number of context-aware recom-
mendation algorithms have been developed that attempt to
integrate context with recommendation algorithms. Some
of the most effective methods, such as context-aware matrix
factorization (CAMF) [Baltrunas et al., 2011c] and contex-
tual sparse linear methods (CSLIM) [Zheng et al., 2014b;
2014c], incorporate a contextual rating deviation component
into the recommendation algorithms. However, these
methods generally ignore contextual correlations that may

have bearing on how the rating behavior in different contexts
is modeled. In this paper, we highlight the importance
of contextual correlation, and propose a correlation-based
context-aware matrix factorization algorithm.

2 Related Work
In context-aware recommender systems, context is usually
defined as, “any information that can be used to characterize
the situation of an entity [Abowd et al., 1999]”, e.g., time and
companion may be two influential contexts in movie domain.

According to the two-part classification of contextual
information by Adomavicius, et al. [Adomavicius et al.,
2011], we are concerned with static and fully observable
contexts, where we already have a set of known contextual
variables at hand which remain stable over time, and
try to model users’ contextual preferences to provide
recommendations.

Several context-aware recommendation algorithms have
been developed in the past decade. Typically, context can be
taken into account using three basic strategies: pre-filtering,
post-filtering and contextual modeling [Adomavicius et al.,
2011]. Pre-filtering techniques, such as context-aware
splitting approaches [Baltrunas and Ricci, 2014; Zheng et
al., 2014a], simply apply contexts as filters beforehand to
filter out irrelevant rating profiles. Post-filtering, on the
other hand, applies the context as filters to the recommended
items after the recommendation process. Or, contexts can
be used as filters in the recommendation process, such as
differential context modeling [Zheng et al., 2012; 2013].
In contextual modeling, predictive models are learned using
the full contextual data, and context information is used
in the recommendation process. Most of the recent work,
such as CAMF [Baltrunas et al., 2011c], tensor factorization
(TF) [Karatzoglou et al., 2010] and CSLIM [Zheng et al.,
2014b; 2014c], belong to contextual modeling.

The most effective context-aware recommendation algo-
rithms, such as CAMF and CSLIM, usually incorporate a
contextual rating deviation term which is used to estimate
users’ rating deviations associated with specific contexts.
Alternatively, the contextual correlation could be another
way to incorporate contextual information. This idea has
been introduced in the context of sparse linear method in
our previous work [Zheng et al., 2015], but it has not been



explored as part of recommendation models based on matrix
factorization.

3 Preliminary: Matrix Factorization and
Context-aware Matrix Factorization

In this section, we introduce matrix factorization used in
recommender systems, as well as the existing research
on Context-Aware Matrix Factorization which utilizes the
contextual rating deviations.

3.1 Matrix Factorization
Matrix factorization (MF) [Koren et al., 2009] is one of the
most effective recommendation algorithm in the traditional
recommender systems. Simply, both users and items are
represented by vectors. For example, −→pu is used to denote
a user vector, and −→qi as an item vector. The values in
those vectors indicate the weights on K (e.g., K = 5) latent
factors. As a result, the rating prediction can be described by
Equation 1.

r̂ui = −→pu · −→qi (1)
More specifically, the weights in −→pu can be viewed as how

much users like those latent factors, and the weights in −→qi
represent how this specific item obtains those latent factors.
Therefore, the dot product of those two vectors can be used
to indicate how much the user likes this item, where users’
preferences on items are captured by the latent factors.

In addition, user and item rating biases can be added to the
prediction function, as shown in Equation 2, where µ denotes
the global average rating in the data set, bu and bi represent
the user bias and item bias respectively.

r̂ui = µ+ bu + bi +−→pu · −→qi (2)

3.2 Context-aware Matrix Factorization
Consider the movie recommendation example in Table 1.
There is one user U1, one item T1, and three contextual
dimensions – Time (weekend or weekday), Location (at
home or cinema) and Companion (alone, girlfriend, family).
In the following discussion, we use contextual dimension
to denote the contextual variable, e.g. “Location”. The
term contextual condition refers to a specific value in a
dimension, e.g. “home” and “cinema” are two contextual
conditions for “Location”. A context or contextual situation
is, therefore, a set of contextual conditions, e.g. {weekend,
home, family}.

Table 1: Contextual Ratings on Movies
User Item Rating Time Location Companion
U1 T1 3 weekend home alone
U1 T1 5 weekend cinema girlfriend
U1 T1 ? weekday home family

More specifically, let ck and cm denote two different
contextual situations each of which is composed of a set
of contextual conditions. We use ck,l to denote the lth

contextual condition in the context ck. For example, assume
ck = {weekend, home, alone}, then ck,2 is the contextual

condition “home”. In the following discussion, we continue
to use those terms and symbols to describe corresponding
contextual dimensions and conditions in the algorithms or
equations.

The CAMF algorithm was proposed by Baltrunas et
al. [Baltrunas et al., 2011c]. The CAMF rating prediction
function is shown in Equation 3.

r̂uick,1ck,2...ck,L
= µ+ bu +

L∑
j=1

Bijck,j
+−→pu · −→qi (3)

Assume there are L contextual dimensions in total, then
ck = {ck,1ck,2...ck,L} describes a contextual situation, where
ck,j denotes the contextual condition in the jth context
dimension. Therefore, Bijck,j

indicates the contextual rating
deviation associated with item i and the contextual condition
in the jth dimension.

A comparison between Equation 2 and Equation 3 reveals
that CAMF simply replaces the item bias bi by a contextual

rating deviation term
L∑

j=1

Bijck,j
, where it assumes that the

contextual rating deviation is dependent on items. Therefore,
this approach is named as CAMF CI. Alternatively, this
deviation can also be viewed as being dependent on users,
which replaces bu by the contextual rating deviation term
resulting in the CAMF CU variant. In addition, CAMF C
algorithm assumes that the contextual rating deviation is
independent of both users and items.

The parameters, such as the user and item vectors,
user biases and rating deviations, can be learned by the
stochastic gradient descent (SGD) method to minimize
the rating prediction errors. In early work [Baltrunas et
al., 2011c], CAMF was demonstrated to outperform other
contextual recommendation algorithms, such as the tensor
factorization [Karatzoglou et al., 2010].

4 Correlation-Based CAMF
Introducing the contextual rating deviation term is an
effective way to build context-aware recommendation al-
gorithms. Our earlier work [Zheng et al., 2014b; 2014c]
has successfully incorporated the contextual rating deviations
into the sparse linear method (SLIM) to develop contextual
SLIM (CSLIM) which was demonstrated to outperform
the state-of-the-art contextual recommendation algorithms,
including CAMF and tensor factorization.

As mentioned before, contextual correlation is an alternat-
ive way to build context-aware recommendation algorithms,
other than modeling the contextual deviations. Our recent
work [Zheng et al., 2015] has made the first attempt to
introduce the contextual correlation (or context similarity)
into SLIM. In this paper, we further explore ways to develop
correlation-based CAMF.

The underlying assumption behind the notion of “con-
textual correlation (or context similarity)” is that the more
similar or correlated two contexts are, the more similar two
recommendation lists for the same user within those two
contextual situations should be. When integrated into matrix



Table 2: Example of a Correlation Matrix
Time=Weekend Time=Weekday Location=Home Location=Cinema

Time=Weekend 1 0.54 N/A N/A
Time=Weekday 0.54 1 N/A N/A
Location=Home N/A N/A 1 0.82

Location=Cinema N/A N/A 0.82 1

factorization, the prediction function can be described with
Equation 4.

r̂uick = −→pu · −→qi · Corr(ck, cE) (4)

where cE denotes the empty contextual situation – the value
in each contextual dimension is empty or “NA”; that is, cE,1 =
cE,2 = ... = cE,L = N/A. Therefore, the functionCorr(ck, cE)
estimates the correlation between the cE and the contextual
situation ck where at least one contextual condition is not
empty or “NA”. Note that in Equation 3, the contextual rating
deviation can be viewed as the deviation from the empty
contextual situation to a non-empty contextual situation.

Accordingly, the user and item vectors, as well as the
contextual correlations can be learned based using stochastic
gradient decsent by minimizing the rating prediction errors.
The loss function is described in Equation 5. Note that this is
the general formulation for the loss function, where the term
“Corr2” should be specified and adjusted accordingly when
the similarity of context is modeled in different ways. We will
introduce three context similarity models in the next section.

Minimize
p,q,Corr

1

2
(ruick −

_
r uick )

2+
λ

2
(‖−→pu‖2+‖−→qi ‖2+Corr2) (5)

The remaining challenge is how to represent or model the
correlation function in Equation 4. Different representations
may directly influence the recommendation performance.
In our recent work [Zheng et al., 2015], we considered
four strategies: Independent Context Similarity (ICS),
Latent Context Similarity (LCS), Multidimensional Context
Similarity (MCS) and Weighted Jaccard Context Similarity
(WJCS) 1. And those strategies can also be reused for
the correlation-based CAMF. The prediction function in
Equation 4 and loss function in Equation 5 can be updated
accordingly when the correction is represented by different
ways.

In this paper, we will not consider WJCS since it only
uses the contextual dimensions with the same values, and
the correlation in Equation 4 is measured between a context
and the empty context. WJCS is therefore not applicable to
the correlation-based CAMF, since it only works when the
contextual conditions are the same. In the following, we
introduce and compare the ICS, LCS and MCS approaches
based on CAMF. Note that context correlation or similarity
is assumed to be measured between any two contextual
situations ck and cm. However, in the correlation-based
CAMF, the correlation is actually measured between ck and
cE , where cE is the empty context.

1Here, context similarity is identical to context correlation

4.1 Independent Context Similarity (ICS)
An example of a correlation matrix can be seen in Table 2.
With Independent Context Similarity, we only measure the
context correlation or similarity between two contextual
conditions when they lie on the same contextual dimension,
e.g., we never measure the correlation between “Time =
Weekend” and “Location = Home”, since they are from two
different dimensions. Each pair of contextual dimensions
are assumed to be independent. In this case, the correlation
between two contexts can be represented by the product of
the correlations among different dimensions. For example,
assume ck is {Time = Weekend, Location = Home}, and cm
is {Time = Weekday, Location = Cinema}, the correlation
between ck and cm can be represented by the correlation of
<Time = Weekend, Time = Weekday> multiplied by the
correlation of <Location = Home, Location = Cinema>,
since those two dimensions are assumed as independent.

Assuming there are L contextual dimensions in total,
the correlations can be depicted by Equation 6, where
ck,l is used to denote the value of contextual condition
in the lth dimension in context ck, and the “correlation”
function is used to represent the correlation between two
contextual conditions, which is also what to be learnt in
the optimization. In other words, the correlation between
two contexts is represented by the multiplication of the
individual correlations between contextual conditions on each
dimension.

Corr(ck, cm) =

L∏
l=1

correlation(ck,l, cm,l) (6)

These correlation values (i.e., correlation(ck,l, cm,l)) can
be learned by the optimization process accordingly. The
risk of this representation is that some information may be
lost, if correlations are not in fact independent in different
dimensions. For example, if users usually go to cinema
to see romantic movies with their partners, the “Location”
(e.g. at cinema) and “Companion” (e.g. partners) may be
significantly correlated as a result.

4.2 Latent Context Similarity (LCS)
As noted earlier, contextual rating data is often sparse, since
it is somewhat unusual to have users rate items repeatedly
within multiple contextual situations. This poses a difficulty
when new contexts are encountered. For example, the
correlation between a new pair of contextual conditions
<“Time=Weekend”, “Time=Holiday”> may be required in
the testing set, but it may not have been learned from the train-
ing data due to the sparsity problem. But, the correlation for
two existing pairs, <“Time=Weekend”, “Time=Weekday”>
and <“Time=Weekday”, “Time=Holiday”>, may have been
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Figure 1: Example of Multidimensional Coordinate System

learned. In this case, this representation suffers from the
contextual rating sparsity problem. Treating each dimension
independently prevents the algorithm from taking advantage
of comparisons that might be made across dimensions.

To alleviate this situation, we represent each contextual
condition by a vector of weights over a set of latent
factors (we use 5 latent factors in our experiments), where
the weights are initialized at the beginning and learnt by
the optimization process. The dot product between two
vectors can be used to denote the correlation between each
pair of contextual conditions. As a result, even if the
newly observed pair does not exist in the training data, the
weights in the vectors representing the two conditions (i.e.,
“Time=Weekend” and “Time=Holiday”) will be learned and
updated by the learning process over existing pairs, and the
correlation for the new pair can be easily computed using the
dot product. The correlation is given by

correlation(ck,l, cm,l) = Vck,l
• Vcm,l

(7)

where Vck,l
and Vcm,l

denote the vector representation for
the contextual condition ck,l and cm,l, respectively, over the
space of latent factors. We then use the same correlation
calculation as shown in Equation 6. We call this approach the
Latent Context Similarity (LCS) model. This approach was
able to improve the performance of deviation-based CSLIM
algorithms too [Zheng, 2015]. In contrast to the independent
context similarity approach, LCS provides more flexibility,
but it also has the added computational costs associated with
learning the latent factors. In LCS, what has to be learnt in the
optimization process are the vectors of weights representing
each contextual condition.

4.3 Multidimensional Context Similarity (MCS)
In the multidimensional context similarity model, we
assume that contextual dimensions form a multidimensional
coordinate system. An example is depicted in Figure 1.

Let us assume that there are three contextual dimensions:
time, location and companion. We assign a real value to
each contextual condition in those dimensions, so that each

condition can locate a position in the corresponding axis.
In this case, a context (as a set of contextual conditions)
can be viewed as a point in the multidimensional space.
Accordingly, the distance between two such points can
be used as the basis for a correlation measure. In this
approach, the real values for each contextual condition are
the parameters to be learned in the optimization process. For
example, the values for “family” and “kids” are updated in the
right-hand side of the figure. Thus, the position of the data
points associated to those two contextual conditions will be
changed, as well as the distance between the corresponding
two contexts. Therefore, the correlation can be measured
as the inverse of the distance between two data points. In
our experiments, we use Euclidean distance to measure the
distances, though other distance measures can also be used.
The computational cost is directly associated with the number
of contextual conditions in the data set, which may make
this approach the highest-cost model. Again, the number of
contextual conditions can be reduced by context selection.

5 Experimental Evaluation

In this section, we present our experimental evaluation and
discuss the results.

5.1 Data Sets

We select three context-aware data sets with different
numbers of contextual dimensions and conditions. Restau-
rant data [Ramirez-Garcia and Garca-Valdez, 2014] is
comprised of users’ ratings on restaurants in city of Tijuana,
Mexico. Music data [Baltrunas et al., 2011a] captures
users’ ratings on music tracks in different driving and
traffic conditions. The Tourism data [Baltrunas et al.,
2011b] collects users’ places of interest (POIs) from mobile
applications. The characteristics of these data sets are
summarized in Table 3. For more specific information about
the contextual dimensions and conditions, please refer to the
original papers using those data sets.
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Figure 2: Experimental Comparison (x-axis denotes the number of recommendations.)

Table 3: Context-aware Data Sets
Restaurant Music Tourism

Rating Profiles 50 users, 40 items
2314 ratings

40 users, 139 items
3940 ratings

25 users, 20 items
1678 ratings

# of contextual
dimensions 2 8 14

# of contextual
conditions 7 34 67

Rating Scale 1-5 1-5 1-5

5.2 Evaluation Protocols

We use a five-fold cross validation on our data sets,
performing top 10 recommendation task and using precision
and mean average precision (MAP) as the evaluation metrics.
Precision is defined as the ratio of relevant items selected to
number of items recommended in a specific context. MAP
is another popular ranking metric which additional takes
the ranks of the recommended items into consideration. It
is calculated by Equation 8, where M denotes the number
of the users, and N is the size of the recommendation
list, where P (k) means the precision at cut-off k in the
item recommendation list, i.e., the ratio of number of users
followed up to the position k over the number k, where m in
ap@N denotes the number of relevant items.

MAP@N =

M∑
i=1

ap@N/M , where ap@N =

N∑
k=1

P (k)

min(m,N)
(8)

We choose the CAMF [Baltrunas et al., 2011c] as
baseline in our experiments. We tried all three versions:
CAMF CI, CAMF CU and CAMF C, and only present the
best performing one which is denoted as CAMF-Dev in
the following sections. In addition, we also add tensor
factorization (TF) [Karatzoglou et al., 2010] as baseline.

5.3 Analysis and Findings
The results are depicted by Figure 2, where the correlation-
based CAMF are represented by three algorithms according-
ly: CAMF-ICS, CAMF-LCS and CAMF-MCS.

In terms of the best performing algorithm, CAMF-MCS
outperforms the other ones for the restaurant and tourism data
sets. It is able to obtain comparable results with CAMF-
LCS in the music data. Compared with the deviation-based
CAMF, the correlation-based CAMF can always outperform
CAMF-Dev if the appropriate correlation modeling is
applied. For example, in the restaurant data, CAMF-Dev
works better than CAMF-ICS in precision, but CAMF-MCS



Table 4: Comparison Between CAMF and CSLIM
Restaurant Music Tourism

CAMF-Dev CAMF-MCS CSLIM-Dev CSLIM-MCS CAMF-Dev CAMF-MCS CSLIM-Dev CSLIM-MCS CAMF-Dev CAMF-MCS CSLIM-Dev CSLIM-MCS

Precision @5 0.1309 0.1586 0.2044 0.2151 0.0210 0.0385 0.0332 0.0385 0.0968 0.1105 0.1200 0.1522
@10 0.1130 0.1276 0.1496 0.1723 0.0226 0.0361 0.0359 0.0361 0.1018 0.1061 0.1101 0.1265

MAP @5 0.2001 0.2765 0.2889 0.2993 0.0474 0.0661 0.0871 0.0913 0.1740 0.2148 0.2199 0.3379
@10 0.2122 0.2840 0.3128 0.3187 0.0542 0.0747 0.0995 0.1047 0.2026 0.2350 0.2442 0.3518

outperforms CAMF-Dev significantly, which states that MCS
is the better representation to model contextual correlations
than the ICS for this data set.

Tensor Factorization (TF) only works better than some
CAMF algorithms in the tourism data set, but CAMF-MCS
is still the best one for this data. In TF, contextual dimensions
are considered as extra dimensions in addition to the user and
item dimensions, and they are assumed as independent with
each other, where CAMF algorithms are actually dependent
algorithms which further measures either contextual rating
deviations or contextual correlations.

In our previous work [Zheng et al., 2014c; 2015], we have
incorporated contextual deviations and correlations into S-
LIM respectively to formulate CSLIM algorithms. Therefore,
it is necessary to compare the CAMF and CSLIM, which
can be viewed from Table 4, where we only present the best
performing deviation and correlation models. From the table,
we can see that CSLIM outperforms CAMF significantly
when the same strategy (either deviation or correlation
modeling) is applied. And CSLIM-MCS works the best
in general. It is not surprising, since earlier work [Ning
and Karypis, 2011] has demonstrated that SLIM is able to
outperform the state-of-the-art traditional recommendation
algorithms, including the matrix factorization. Those results
based on contextual recommendations further confirms this
pattern, since CSLIM outperforms CAMF in view of the
Table 4.

In short, those experimental results demonstrate that
correlation-based CAMF is able to outperform deviation-
based CAMF and the TF algorithm, but the representation
for contextual correlation should be carefully selected.
Generally, the multidimensional context similarity is the best
choice to represent contextual correlations.

6 Conclusions and Future Work
In this paper, we highlighted the importance of con-
textual correlation and incorporate this notion into the
matrix factorization technique to formulate correlation-based
Context-Aware Matrix Factorization (CAMF) algorithm. Our
experimental results reveal that correlation-based CAMF is
able to outperform the standard deviation-based CAMF and
the tensor factorization algorithms. In our future work, we
plan to incorporate contextual correlation modeling strategies
into more recommendation algorithms, such as the slope one
recommender.
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