

OCIP – An OntoClean Evaluation System Based on a

Constraint Prolog Extension Language

Cleyton Mário de Oliveira Rodrigues
1,2

, Frederico Luiz Gonçalves de Freitas
1
,

Ryan Ribeiro de Azevedo
1,3

1
Center of Informatics – Federal University of Pernambuco, UFPE

50.732-970, Recife-PE, Brazil

2
FACETEG – University of Pernambuco, UPE

55.294-902, Garanhuns-PE, Brazil

3
UAG – Rural Federal University of Pernambuco, UFRPE

55.292-270, Garanhuns-PE, Brazil

{cmor,fred,rra2}@cin.ufpe.br

Abstract. An ontological model must evolve, since several and different

knowledge sources can contribute to the addition of new concepts, relations

and properties. Hence, we expect a certain level of quality during the

engineering of ontologies, as well as the ontological commitment, in order to

produce clear, well-formulated and correct subsumption relations. OntoClean

is a methodology that addresses the creation of clean ontologies, i.e. the

creation of taxonomic hierarchies to model properly the concepts in the

domain. Due the lack of stable implementations in the literature, this paper

presents OCIP: an OntoClean implementation in Constraint Handling Rules

(CHR), a Constraint Programming Prolog extension.

1. Introduction

Ontologies, in a higher level of abstraction, establish a common and unambiguous

terminology for the domain in question. The idea of ontology is often restricted to what

is called “formal ontology” [Guarino 1998]. This means that the content of an ontology

is described using mathematical logic, which can provide computer system’s ability of
logical inference. You can also support autonomous discovery from recorded data, as

well as reuse and exchange of knowledge. Recently the use of ontologies has been

popularized through various other sub-areas of computer science, such as Software

Engineering, Database and Information System.

 OntoClean [Guarino and Welty 2000] [Welty and Guarino 2001], on the other

hand, is a methodology that addresses the creation of clean ontologies, i.e. the creation

of taxonomic hierarchies to model properly the concepts in the domain of discourse.

OntoClean comprises a set of meta properties, restrictions and assumptions which

together defines a methodology for conceptual analysis of taxonomic subsumption (is-a)

in any arbitrary ontology. OntoClean does not care about the semantics of the

relationship itself, but with the ontological nature of concepts in the relationship. Due to

the lack of stable implementations in the literature, this paper presents an OntoClean

implementation in Constraint Handling Rules (CHR
v
), a Constraint Programming

Prolog extension.

 CHR
v
 [Frühwirth 2009] is a rule based language which was initially conceived

to represent white box constraint solvers, but that has been shown to be able to

implement many different reasoning services in a straightforward way. Through this

language, we have defined a set of rules to check any restrictions violation imposed by

OntoClean, known as OCIP (OntoClean Implementation in Prolog).

 This paper is organized as follows. Section 2 explores the OntoClean

methodology, highlighting the meta properties and restrictions used in this work. Then,

Section 3 illustrates CHR
v
 language through an example for coloring maps. Syntax and

Semantics are briefly discussed. Section 4 discusses the implementation of OntoClean in

Prolog. Following, Section 5 explains the evaluation of a legal ontology through OCIP,

highlighting some violations. Sections 6 explores some related work. Finally, last

section presents a conclusion of what has been achieved so far in this research, as well

as outlines up prospects for the continuation of this work.

2. OntoClean

An ontological model must evolve, since several and different knowledge sources can

contribute to the addition of new concepts, relations and properties. Hence, we expect a

certain level of quality during the engineering of ontologies, as well as the ontological

commitment, in order to produce clear, well-formulated and correct subsumption

relations. That is, decisions regarding the taxonomic structure must faithfully represent

the real domain elements and their associations. In addition to leveraging the

understanding with a cleaner ontology, the correct establishment of subsumption

between these concepts (relying on the ontological nature of them) favors the reuse and

integration of these models. Hence, it avoids rework to adjust/tune ontologies by adding

new knowledge, allowing them to be widely shared across several information systems.

 Therefore, it is suggested that a methodology for decision evaluation is widely

required. Furthermore, this methodology must not be directed to a particular domain. It

must be general enough to be used and reused in different fields, without adjustments.

Thus, this work explores a domain-independent methodology for assessing decisions

about the ontological nature of the elements in subsumption relations, namely the

OntoClean [Guarino and Welty 2000], [Guarino and Welty 2004]. This methodology,

relying on notions arising from philosophical ontology, was proposed by the Ontology

Group at the Italian National Research Council (CNR).

 OntoClean is a methodology that allows the construction of clean ontologies.

Firstly, establishing a set of general and well formalized meta properties so that the

concepts can be properly characterized. Secondly, as a result, these meta properties

impose a set of constraints between a super and a subclass. Regarding the ontology

definition proposed by [Studer et al 1998]: “A formal explicit specification of a shared

conceptualization”, hopefully, through the methodology is possible to detect possible

disagreements amongst different conceptualizations, so that some corrective action can

be taken.

2.1. OntoClean Meta Properties

Table 1 summarizes the basic notions extracted from philosophical sphere, in which

OntoClean is based, namely: Rigidity, Identity, Unity and Dependence. Herein, we will

consider concepts and classes as equivalent. Therefore, they represent a collection of

individuals, which have been grouped by having common characteristics. The concepts

are related by subsumption association, where concept ρ subsumes concept σ, if σ → ρ
which means that all individuals from σ, are also part of ρ, but the reverse is not

necessarily true. For further information, the complete basic notions as well as a brief

formal analysis can be found at [Welty and Guarino 2001].

Table 1. OntoClean Meta Properties

Meta Property Symbol Label Definition

Rigidity +R Rigid All the instance will always be instances of

this concept in every possible world

-R Non-Rigid There are instances that will stop being

instances of the concept

~R Anti-Rigid All instances will no longer be instance of

that concept

Identity +I Carry Identity Instances carry an unique identification (IC)

criteria from any superclass

-I Non Carry Identity There is no identification criteria (IC)

+O Supply Identity Instances themselves provide an unique

identification criteria (IC)

Unity +U Unity InstanĐes are ͞ǁhole͟, and haǀe a single unit

criteria (UC)

-U Non-Unity InstanĐes are ͞ǁhole͟, ďut they do not haǀe
a single unit criteria (UC)

~U Anti-Unity InstanĐes are not ͞ǁholes͟

Dependence +D External Dependence There is dependency on external concept

-D Non External

Dependence

There is no dependency

2.2. OntoClean Constraints

From the methodology, emerges a set of restrictions on the subsumption relations

present in the taxonomy. In total, there were defined five restrictions [Guarino and

Welty 2000], which follow:

 Anti-rigid class cannot subsume a rigid subclass;

 A class with identity cannot subsume a non-identity subclass;

 A class with the unity meta property cannot subsume a subclass without unity

criterion;

 Anti-Unit class cannot subsume unity class;

 Dependent class cannot subsume non-dependent class.

3. CHR
v

Constraint Handling Rules with Disjunction (CHR
v
) [Abdennadher and Schütz 1998] is

a general concurrent logic programming language, rule-based, which has been adapted

to a wide set of applications as: constraint satisfaction [Wolf 2005], abduction

[Gavanelli et al 2008], component-development engineering [Fages et al 2008], and so

on. The language also emerges as an attempt to integrate an ontological language of the

Semantic Web with some rule-based logic programming [Frühwirth 2007]. In essence, it

is designed for creation of constraint solvers. CHR
v
 is a fully accepted logic

programming language, since it subsumes the main types of reasoning systems

[Frühwirth 2009]: the production system, the term rewriting system, besides Prolog

rules. Additionally, the language is syntactically and semantically well-defined

[Abdennadher and Schütz 1998].

 Without loss of generality, a CHR
v
 program is a conjunction of simpagation

rules, whose syntax is described as follows:

rule_name@ Hk \ Hr <=> G | B.

 rule_name@ is the non-compulsory rule identification. The head is defined by

the predicates represented by Hk and Hr, with which an engine tries to match with the

constraints in the store. Further, G stands for the set of guard predicates, that is, a

condition imposed to be verified to fire any rule. Finally, B is the disjunctive body,

corresponding to a set of constraints added within the store, whenever the rule fires. The

logical conjunction and disjunction of predicates are syntactically expressed by the

symbols ’,’ and ’;’, respectively. Logically, the interpretation of the rule is as follows:

VGH (G  ((Hk  Hr)  ( VB\GH B  Hk))),

where VGH = vars(G) U vars(Hk) U vars(Hr),

VB\GH = vars(B) \ VGH

 For the sake of space, we ask the reader to check the bibliography for further

reference to the declarative semantics. Besides the simpagation rule, there are two other

cases that are specializations of the former: the simplification (Hr <=> G | B.) which

replaces constraints by others equivalent; and the propagation rules (Hk ==> G | B.)

which add new constraints within the store, leading to further simplification.

Figure 1: A Pedagogical Map Coloring Problem

 Figure 1 illustrates a pedagogical map coloring problem. There are 7 places (X1,

X2, X3, X4, X5, X6, X7) whose neighborhood is expressed by an arc connecting these

locations. Further, each one can assume one of the following domain values: D =

{r,g,b}, referring to the colors, red, green, and blue, respectively. The only constraint

imposed restricts the neighboring places (that is, each pair of nodes linked by an arc) to

have different colors. As usual, this problem can be reformulated into a search tree

problem, where the branches represent all the possible paths to a consistent solution. By

definition, each branch not in accordance with the restriction must be pruned. The

problem depicted in Figure 1 is represented by the logical conjunction of the following

CHR
v
 rules:

f@ facts ==> m, d(x1,C1), d(x7,C7), d(x4,C4), d(x3,C3), d(x2,C2), d(x5,C5), d(x6,C6).

d1@ d(x1,C) ==> C=red; C=green; C=blue.

d7@ d(x7,C) ==> C=red; C=green; C=blue.

d4@ d(x4,C) ==> C=red; C=green; C=blue.

d3@ d(x3,C) ==> C=red; C=green; C=blue.

d2@ d(x2,C) ==> C=red; C=green; C=blue.

d5@ d(x5,C) ==> C=red; C=green; C=blue.

d6@ d(x6,C) ==> C=red; C=green; C=blue.

m@ m <=> n(x1,x2), n(x1,x3), n(x1,x4), n(x1,x7), n(x2,x6), n(x3,x7), n(x4,x7), n(x4,x5), n(x5,x7),

n(x5,x6).

n1@ n(Ri,Rj), d(Ri,Ci), d(Rj,Cj) <=> Ci=Cj | fail.

 The first rule f introduces the constraints into the store, which is a set of

predicates with functor d and two arguments: the location and a variable to store the

possible color. The seven following rules relate the locations with the respective

domain. Additionally, rule m adds all the conceptual constraints, in the following sense:

n(Ri,Rj) means there is an arc linking Ri to Rj, thus, both places could not share the same

color. Finally, the last rule is a sort of integrity constraint. It fires whenever the

constraints imposed are violated. Logically, it says that if two linked locations n(Ri,Rj)

share the same color (condition ensured by the guard), then the engine needs to

backtrack to a new (consistent) valuation.

4. OCIP

Due to lack of implementations for OntoClean as already discussed briefly, this paper

proposes a new, simple Prolog-based implementation, particularly using the CHR

library provided by SWI-Prolog
1
. Being a logic, rule-based and constraint-oriented

language, CHR
v
 has allowed a rapid prototyping of an ontology analyser: OCIP

(OntoClean Implementation in Prolog). Through propagation rules, a forward chaining

reasoner analyzes metaproperties and restrictions pointing out the inconsistencies.

 In essence, the analyzer focuses on two logical predicates: sub/2 and oc/5. The

former establishes a subsumption relation between two classes of the ontology, i.e.

sub(ClassA, ClassB) means ClassA subsumes ClassB. Only direct subsumption relations

(between an arbitrary parent class and its immediately children classes) have to be

1
 http://www.swi-prolog.org/

directly defined by the user. The other relations (involving ancestor classes) are trivially

propagated through the following transitivity rule:

transitivityRule@ sub(CA,CB), sub(CB,CC) ==> sub(CA,CC).

 Following, the logical predicate oc/5 lists the metaproperties of any class, which

is the first argument, and the four other defining respectively the Rigidity, Identity,

Unity and Dependence criteria. oc(agent, r, ni, nu, nd) states that the Agent Class is

rigid, besides it has non identity, non unity, and non external dependence. Other

available labeling criteria are: Anti Rigid (ar), Non Rigid (nr), Identity (i), Owner

Identity(o), Unity (u), Anti Unit (au) and finally, Dependence (d).

 In order to avoid trivial non-termination (when forward chaining reasoners

match indefinitely the same predicates with the same rules), besides the CHR
v

operational semantics [Duck et al 2004] fully adopted by the SWI-Prolog, some

simpagation rules delete equivalent predicates.

sympaOcRule@ oc(Class,R,I,U,D) \ oc(Class,R,I,U,D) <=> true.

sympaSubRule@ sub(CA,CB) \ sub(CA,CB) <=> true.

 In essence, OCIP is based on three blocks rules: rules of natural propagation,

horizontal constraints and vertical constraints, plus some auxiliary predicates for

explanation of violating constraints. With regard to the rules of natural propagation, new

facts contemplating the same class are propagated into the knowledge base. It is known,

for example, a class that provide their own identification criterion (+O), is logically a

rigid class (+R), which carries an identification criterion (+I). Also, anti-unit classes

(~U) are also non-unit classes (-U). The same logical consequence is valid for

metaproperties Anti-Ridig (~R) and Non-Rigid (-R).

supplyPropagRule@ oc(Class, ,o,X,Y) ==> oc(Class,r,i,X,Y).

unityPropagRule@ oc(Class,X,Y,au,Z) ==> oc(Class,X,Y,nu,Z).

rigidPropagRule@ oc(Class,ar,X,Y,Z) ==> oc(Class, nr,X,Y,Z).

 Horizontal constraints have this name because they do not analyze

superclass/subclass relationships. Unlike, these only evaluate whenever a class has been

erroneously characterized with inconsistent metaproperties, like (+R and -R). Therefore,

this block has four rules, one for each metaproperty. It is worth noting that anti-

properties (~U and ~R) have not been codified, since firing the propagation rules (of the

last block), classes should also be classified as -U and -R, respectively.

rigidRule@ oc(Class,r, , ,), oc(Class,nr, , ,) ==> rigidViolation(Class).

identityRule@ oc(Class, ,i, ,), oc(Class, ,ni, ,) ==> identityViolation(Class).

unityRule@ oc(Class, , ,u,), oc(Class, , ,nu,) ==> unityViolation(Class).

depedenceRule@ oc(Class, , , ,d), oc(Class, , , ,nd) ==> dependentViolation(Class).

 The 1-ary prolog predicates (rigidViolation, identityViolation, unityViolation,

dependentViolation) use other built-in predicates to generate explanations to the user

about inconsistencies detected by class. The last rule block corresponds the vertical

constraints, that is, those which evaluate the relations of subsumption. For each

OntoClean constraint (mentioned before), a CHR
v
 rule will identify whether there is any

violation.

antiRigidRule@ oc(ClassSuper,ar, , ,), oc(ClassSub,r, , ,), sub(ClassSuper,ClassSub) ==>

antiRigidViolation(ClassSuper,ClassSub).

noIdentityRule@ oc(ClassSuper, ,i, ,), oc(ClassSub, ,ni, ,), sub(ClassSuper,ClassSub)

==> noIdentityViolation(ClassSuper,ClassSub).

nonUnityRule@ oc(ClassSuper, , ,u,), oc(ClassSub, , ,nu,), sub(ClassSuper,ClassSub)

==> noUnityViolation(ClassSuper,ClassSub).

antiUnityRule@ oc(ClassSuper, , ,au,), oc(ClassSub, , ,u,), sub(ClassSuper,ClassSub)

==> antiUnityViolation(ClassSuper,ClassSub).

nonDependentRule@ oc(ClassSuper, , , ,d), oc(ClassSub, , , ,nd),

sub(ClassSuper,ClassSub) ==> noDependentViolation(ClassSuper,ClassSub).

5. Evaluating OCIP through Legal Ontologies

5.1. Legal Ontologies

OntoCrime and OntoLegalTask [Rodrigues 2015] are ontological representations,

through which it is possible to formalize the Brazilian Penal Code
2
, making it possible

to check the violation of norms, the resolution of legal conflicts (known as antinomies)

and the automation of legal reasoning. These formalities have arisen due to semantic

deficiencies found in legal texts, either linguistic or conceptual order. OntoCrime

emerges as a Domain ontology, defining key concepts and relationships arising from the

Penal Code, such as Crime, Punishment, Rules and Articles. OntoLegalTask extends

these concepts by defining the tasks mentioned above.

 The formalization expected for sound representation and complete reasoning

relies on the Descriptions Logic (DLs) [Sirin et al 2007], a decidable subset of First

Order Logic (FOL). DLs are the core of OntoCrime and OntoLegalTask representation,

for structuring the knowledge bases and for providing reasoning services. Below, we list

some DL expressions, which indicate: (i) a person who cannot be criminally punished is

the one with a mental illness or a child, teenager or elderly person, (ii) an attributable

person is one who does not fit the above profile, (iii) a prohibitive norm prohibits some

conduct, (iv) a conduct is prohibited by some article, (v) Crime is a prohibited conduct

(vi) with arrest or detention as punishment. For the sake of space, we ask the reader to

check the reference for further information.

i. UnimputablePerson ≡ NaturalPerson ِ (hasDisorder.MentalDisorder ّ

hasAge.(Child ّ Teenager ّ Elderly)

ii. AttributablePerson ⊑ UnimputablePerson

iii. ProhibitiveArticle ≡ prohibits.ConductProhibited ِ prohibits.ConductProhibited

iv. ConductProhibited ⊑ isProhibitedBy.ProhibitiveArticle

2
 http://www.planalto.gov.br/ccivil 03/decreto-lei/del2848.htm

v. Crime ⊑ ConductProhibited

vi. Crime ≡ hasPunishment.(Arrest ّ Detention)

5.2. Legal Ontologies Labelling

Figures 2 and 3 illustrate a partial view of the the is-a relationships extracted from the

legal ontologies for analysis. In the legal field conceptualization, Agent is a rigid class

whose instances are “whole”, but with different unit criteria since the class specializes in
Person and Organization. Similarly, instances do not have the same criterion of identity.

An instance of an Organization will always be necessarily an organization. Whenever an

Organization faces bankruptcy, the entity ceases to be an organization, but also ceases to

exist. If an Organization is bought by other, and change the CNPJ
3
, the organization also

is not the same, it ceased to exist and became a new one. Clearly, the criterion of

identity of the instances is the CNPJ itself. A Person, in turn, has as a criterion of

identity their own fingerprint.

Figure 2: Agent and Comportment subclasses

 In criminal law, the passive person is one who suffered the criminal action (or

their dependents in the case of murder), while the Active person is the one who practices

the act. Thus, a Person may cease to be passive, but it will be the same person. Suppose

that this person is an active agent in another crime, notably, it cannot be also passive by

the restrictions of the penal code. Another point is that a passive person could be passive

in different crimes, but there is not a global criterion of identification; a passive person

may be the victim of a thief, or may be the daughter of someone who was murdered, for

example. Instances of this class must be related to a criminal conduct, there is an

external dependency. The ActivePerson class fits in the same labels.

 Class AttributablePerson is anti-rigid: people become old naturally. On the other

hand, when a teenager goes into adulthood, he is no longer unimputable. Nevertheless,

whether a person has been diagnosed with a mental disorder, even after the legal age, he

3
 CNPJ is the National Register of Legal Entities: a unique number that identifies a legal person

cannot be criminally penalized. Therefore, some instances of UnimputablePerson
4

remain unimputable while live.

 With respect to class Comportment (and its subclasses), this depends on the

agent who performs the comportment. An instance is bound to be a behavior in all

possible worlds. Comportment instances can be identified by a set of variables such as:

the action, the agent, place and time. However, there is no single unit criterion: some

actions are performed with (criminals) objects, others do not.

Figure 3: Conduct sublcasses

 Similar to Comportment class, Conduct has the same metaproperties, except

that it does not provide its own criterion of identity. According to the Criminal Code,

Conduct is a voluntary Comportment (thus implicitly Conduct becomes a Voluntary

subclass). Among its subclasses, Action class brings together some peculiar

characteristics. While a Conduct depends on other external factors, an Action is

something more specific, self-contained. Action instances do not share a common IC.

Furthermore, their instances have a morphological unit in common (linguistically

speaking): are verbs. Finally, the class is labeled with non-rigid metaproperty.

Depending on the context, some instances can no longer be part of that concept. When

one says, “He walked down the street when he was hit by a car” clearly there is an
action. However, when someone says, “He walked nervously”, we just have an agent
state/condition

5
.

 ConductProhibited is non-rigid because there may be decriminalization.

Instances have an IC in common: the Article prohibitive, with ongoing dependence.

Nevertheless, with decriminalization, this prohibitive document will no longer be valid.

In principle, the conduct boundaries are known (wholes instances), but there is no single

UC for all of them. The ConductProhibited subclasses have the same metaproperties. In

GuiltConduct, for example, there are dependencies, as it needs to know the agent

4
 Dead people, animals and legal people cannot be criminally penalized.

5
 In the Portuguese Grammar, in this context, walk is a linking verb, which does not indicate action,

but a state.

liability. Similarly, for Contravention and Crime, the dependence relates to the kind of

penalty imposed by the article of the law. In contrast, due to criminalization,

ConductPermitted is labeled as non rigid. The class also has no common IC criteria.

5.3. OCIP Evaluation

In order to carry out the ontological evaluation through OCIP implementation, it was

necessary to add into a knowledge base the facts concerning the subsumption relation

and the meta properties of the ontology concepts, as previously shown. Some violations

were identified as the identity and dependence criteria, between Comportment,

Voluntary, Action and Omission classes:

 Identity Class Comportment can not subsume Non Identity Class Action;

 Dependent Class Comportment can not subsume Non Dependent Class Action;

 Identity Class Voluntary can not subsume Non Identity Class Action;

 Identity Class Comportment can not subsume Non Identity Class Omission;

 Revisiting the General Theory of Crime within the Brazilian Penal Code, it is

said that: “Conduct is any human action or omission, conscious and voluntary, focused

on one purpose”. Then, at a first glance, a misinterpretation leads us to believe that a

conduct is accomplished through an action or omission, besides being a purely voluntary

comportment. Poor written specifications has caused inconsistencies such as these

detected by OCIP. Unfortunately, these flaws and ambiguities (besides other linguist and

conceptual problems) are present in other legal documents. To fix the inconsistency, it is

enough to say that: “Conduct has a human action or omission, conscious and voluntary

[...]”. From this perspective, the classes Action and Omission were disconnected as of

Conduct specializations. In fact, a Conduct has an action/omission.

6. Related Work

OntOWLClean is a proposal for cleaning ontologies using OWL. The approach has been

implemented both in SWOOP tool, as through Protégé [Welty 2006]. In the former case,

the tool is no longer available, and in the latter case the plug-in was discontinued. This

research had defined two ontologies: one with the metaproperties and restrictions and

the other with the semantic definitions to map the classes from a domain ontology in the

metaproperties (classes of OntOWLClean). Each new domain ontology then needed to

be mapped into OntOWLClean. In addition, the tools have had problems to clearly

display or explain the inconsistency.

 WebODE
6
 was a framework for editing ontologies, which had allowed

Ontological analysis, but the environment was discontinued in 2006. Also, the plug-ins

available for Ontology edition/evaluation in NeOn project
7
 does not support analysis by

OntoClean. Being a framework for defining, creating and analyzing, WebODE

presented portability issues with other platforms. So an ontology created in WebODE

would hardly be analyzed in another tool.

6
 http://mayor2.dia.fi.upm.es/oeg-upm/index.php/en/old-technologies/60-webode

7
 http://www.neon-project.org/

 UFO [Guizzardi and Wagner 2004] is a foundational ontology for evaluate

business modeling methods, based on other foundational ontologies as

OntoClean/DOLCE. OCIP is designed to be a simple tool to assess domain ontologies,

even without a foundational ontology. OCIP will be transformed into a plug-in for

Protégé that people have a more simple and intuitive interface for analysis. It will be

possible for the user, for example, to choose specific metaproperties for analysis, or

even graphically shows the backbone of ontology (rigid classes). In fact, the

CHR
v
/Prolog language enables rapid rule prototyping for forward and backward

reasoning to manipulate the metaproperties and restrictions. Although, as a future

research, we plan to deepen the analysis amongst UFO and OCIP.

6. Conclusion and Future Steps

For a correct and ambiguity-free formalization of knowledge, an important and

necessary step is the ontological validation to determine whether there is a close

correlation between the domain knowledge and that modeled. OntoClean has emerged

as a simple and precise methodology by grouping a set of metaproperties, constraints

and assumptions to produce clean and consistent ontological structures. Surprisingly, as

far as we know, it has not been identified any valid implementation of OntoClean

methodology.

 On the other hand, CHR
v
 has become a general and powerful logic language

capable of creating constraint-oriented systems through rewriting, propagation, and

Prolog-based system. Then this project has followed the idea of creating the OCIP: a

Prolog-based implementation (in particular through CHR library), where the OntoClean

metaproperties could be attributed, and consequently, the restrictions could be verified.

Furthermore, the general purpose CHR
v
 language led to the creation of a simple

validator, but that fully covers the methodology proposed by OntoClean.

 Our next step will be to make the OCIP implementation plug-in available, so

that more and more researchers can use and share their experiences, difficulties and

improvements. A key step will be to build a parser able to read the RDF/OWL

ontologies code and automatically create the necessary facts (metaproperties and

subsumption relationships), leaving the user only labeling directly on the facts of the

knowledge base.

 Finally, it’s worthy of remembering that due to the large amount and the

heterogeneity of documents, the ontological evaluation is essential. As soon as more and

more models are being built, justify the need for the plug-in to evaluate whether the

concepts, their relationships and properties, really express what you see.

References

Abdennadher S. and Schütz, H. (1998) “CHRv, a flexible query language,” pp. 1–14.

Baader. F., Calvatese. D., McGuinness. D., Nardi, D. and Patel-Schneider, P. F. (2007)

“The description logic handbook, theory, implementation, and applications” (2nd
edition). CAMBRIDGE: Cambridge University Press.

Duck, J. D., Stuckey, P. J., de la Banda, M. J. G. and Holzbaur, C. (2004) “The refined
operational semantics of constraint handling rules.” in ICLP, ser. Lecture Notes in

Computer Science, B. Demoen and V. Lifschitz, Eds. Springer, pp. 90–104.

Fages, F., Rodrigues, C. M. O. and Martinez, T. (1998) “Modular CHR with ask and

tell,” In: CHR ’08: Proc. 5th Workshop on Constraint Handling Rules, (Linz,
Austria) pp. 95–110.

Frühwirth, T. (2007) “Description logic and rules the CHR way,” pp. 49–61, extended

Abstract.

Frühwirth, T. (2009) Constraint Handling Rules, 1st ed. New York, NY, USA:

Cambridge University Press.

Gavanelli, M., Alberti, M. and Lamma, E. (2008) “Integrating abduction and constraint
optimization in constraint handling rules,” in Proceedings of the 2008 Conference on
ECAI 2008: 18th European Conference on Artificial Intelligence. Amsterdam, The

Netherlands, The Netherlands: IOS Press, pp. 903–904. [Online].

Guarino, N. (1998) “Formal Ontology in Information Systems”. Proceedings of the 1st
International Conference June 6-8, 1998, Trento, Italy, 1st ed. Amsterdam, The

Netherlands, The Netherlands: IOS Press.

Guarino, N. and Welty, C. (2000) “Ontological analysis of taxonomic relationships,” in
Conceptual Modeling ER 2000, ser. Lecture Notes in Computer Science, A. Laender,

S. Liddle, and V. Storey, Eds., vol. 1920.

Guarino, N. and Welty, C. (2004) “An Overview of OntoClean”, in Handbook on
Ontologies, ser. International Handbooks on Information Systems, S. Staab and R.

Studer, Eds.

Guizzardi, G. and Wagner G (2004) A Unified Foundational Ontology and some

Applications of it in Business Modelling. Proc on Ws on Enterprise Modelling and

Ontologies for interoperability (EMOI-INTEROP).

Rodrigues, C. M. O., Freitas, F. L. G., Silva, E. P., Azevedo, R. R. and Vieira, P. (2015)

“An ontological approach for simulating legal action in the brazilian penal code,” in
Proceedings of The 2015 ACM Symposium on Applied Computing, University of

Salamanca, Salamanca, Spain, pp. 376–381.

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A. and Katz, Y. (2007) “Pellet: A practical
owl-dl reasoner,” Web Semant., vol. 5, no. 2, pp. 51–53.

Studer, R., Benjamins, V.R. and Fensel, D. (1998) “Knowledge engineering: Principles
and methods,” Data Knowl. Eng., vol. 25, no. 1-2, pp. 161–197.

Welty, C. and Guarino, N. (2001) “Supporting ontological analysis of taxonomic

relationships,” Data Knowledge Engineering, vol. 39, no. 1, pp. 51–74. [Online].

Welty, C. (2006) “OntOWLClean: Cleaning OWL ontologies with OWL,” in

Proceeding of the 2006 conference on Formal Ontology in Information Systems.

Amsterdam, The Netherlands, The Netherlands: IOS Press, pp. 347–359.

Wolf, A. (2005) “Intelligent search strategies based on adaptive constraint handling

rules.,” Theory and Pratice of Logic Programming 5(4-5), 567-594.

	1. Introduction
	2. OntoClean
	2.1. OntoClean Meta Properties
	2.2. OntoClean Constraints

	3. CHRv
	The first rule f introduces the constraints into the store, which is a set of predicates with functor d and two arguments: the location and a variable to store the possible color. The seven following rules relate the locations with the respective dom...
	4. OCIP
	5. Evaluating OCIP through Legal Ontologies
	5.1. Legal Ontologies
	v. Crime ⊑ ConductProhibited
	vi. Crime ≡ (hasPunishment.(Arrest ⊔ Detention)
	5.2. Legal Ontologies Labelling
	5.3. OCIP Evaluation

	6. Related Work
	6. Conclusion and Future Steps
	References

