
Proceedings of the KI 2015

Workshop on Formal and

Cognitive Reasoning

5th Workshop on Dynamics of
Knowledge and Belief (DKB-2015)

and
4th Workshop KI & Kognition

(KIK-2015)

Christoph Beierle, Gabriele Kern-Isberner,
Marco Ragni, Frieder Stolzenburg (eds.)

Dresden, 22-Sep-2015



Contents

Preface
(Christoph Beierle, Gabriele Kern-Isberner,
Marco Ragni, Frieder Stolzenburg) 1

Shaping the Dynamics of Recurrent Neural Networks by Conceptors
(Herbert Jaeger) 3

Human Reasoning, Logic Programs, and Connectionist Systems
(Steffen Hölldobler) 4

Learning Rules for Cooperative Solving of Spatio-Temporal Problems
(Daan Apeldoorn) 5

Qualitative Probabilistic Inference with Default Inheritance
(Paul Thorn, Christian Eichhorn, Gabriele Kern-Isberner,
Gerhard Schurz) 16

Algebraic Semantics for Graded Propositions
(Haythem Ismail and Nourhan Ehab) 29

On the Functional Completeness of Argumentation Semantics
(Massimiliano Giacomin, Thomas Linsbichler, Stefan Woltran) 43

Approximate Reasoning with Fuzzy-Syllogistic Systems
(Bora I Kumova) 55



Preface

Information for real life AI applications is usually pervaded by uncertainty and
subject to change, and thus demands for non-classical reasoning approaches.
At the same time, psychological findings indicate that human reasoning cannot
be completely described by classical logical systems. Sources of explanations
are incomplete knowledge, incorrect beliefs, or inconsistencies. Generally, people
employ both inductive and deductive reasoning to arrive at beliefs; but the same
argument that is inductively strong or powerful may be deductively invalid.
Therefore, a wide range of reasoning mechanisms has to be considered, such
as analogical or defeasible reasoning. The field of knowledge representation and
reasoning offers a rich palette of methods for uncertain reasoning both to describe
human reasoning and to model AI approaches. Its many facets like qualitative vs.
quantitative reasoning, argumentation and negotiation in multi-agent systems,
causal reasoning for action and planning, as well as nonmonotonicity and belief
revision, among many others, have become very active fields of research. Beyond
computational aspects, these methods aim to reflect the rich variety of human
reasoning in uncertain and dynamic environments.

The aim of the series of workshops is on the one hand to address recent
challenges and to present novel approaches to uncertain reasoning and belief
change in their broad senses and in particular provide a forum for research
work linking different paradigms of reasoning and on the other hand to foster
a multidisciplinary exchange between the fields of AI and cognition by bringing
together researchers from artificial intelligence, automated deduction, computer
science, cognitive psychology, and philosophy. Previous events of the Workshop
on Dynamics of Knowledge and Belief (DKB) took place in Osnabrück (2007),
Paderborn (2009), Berlin (2011), and Koblenz (2013). Previous editions of the
Workshop on KI & Kognition (KIK) took place in Saarbrücken (2012), Koblenz
(2013), and Stuttgart (2014).

This year, we put a special focus on papers from both fields that provide
a base for connecting formal-logical models of knowledge representation and
cognitive models of reasoning, addressing formal as well as experimental or
heuristic issues. Reflecting this focus, the workshop Formal and Cognitive Rea-
soning at KI 2015 is organized jointly by the GI special interest groups FG
Wissensrepräsentation und Schließen and FG Kognition.

Out of eight submissions, five have been selected for presentation at the work-
shop after a thorough review process, four of them as regular papers and one
as a short paper. In consequence, the workshop hosts contributions on learning
rules for cooperative problem solving, qualitative probabilistic inference with
default inheritance, algebraic semantics for graded propositions, functional com-
pleteness of argumentation semantics, and approximate reasoning with fuzzy-
syllogistic systems. We are happy also to have two invited talks, jointly with
the Workshop on Neural-Cognitive Integration (NCI @ KI 2015) and the 29th
Workshop on (Constraint) Logic Programming (WLP 2015). The two invited
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speakers, Herbert Jaeger and Steffen Hölldobler, both outstanding researchers
in their respective fields, present interesting insights in recurrent neural net-
works with conceptors, and aim at combining human reasoning, logic programs
and connectionist systems, respectively.
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Shaping the Dynamics of Recurrent Neural
Networks by Conceptors

Herbert Jaeger

Jacobs University Bremen
Campus Ring
28759 Bremen

Germany

Summary

The human brain is a dynamical system whose extremely complex sensor-
driven neural processes give rise to conceptual, logical cognition. Understanding
the interplay between nonlinear neural dynamics and concept-level cognition
remains a major scientific challenge. Here I propose a mechanism of neurody-
namical organization, called conceptors, which unites nonlinear dynamics with
basic principles of conceptual abstraction and logic. It becomes possible to learn,
store, abstract, focus, morph, generalize, de-noise and recognize a large number
of dynamical patterns within a single neural system; novel patterns can be added
without interfering with previously acquired ones; neural noise is automatically
filtered. Conceptors may help to explain how conceptual-level information pro-
cessing emerges naturally and robustly in neural systems, and may help to re-
move a number of roadblocks in the theory and applications of recurrent neural
networks.
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Human Reasoning, Logic Programs and
Connectionist Systems

Steffen Hölldobler

International Center for Computational Logic
Technische Universität Dresden

01062 Dresden
Germany

Summary

The suppression task, the selection task, the belief bias effect, spatial rea-
soning and reasoning about conditionals are just some examples of human rea-
soning tasks which have received a lot of attention in the field of cognitive sci-
ence and which cannot be adequately modeled using classical two-valued logic.
I will present an approach using logic programs, weak completion, three-valued
 Lukasiewicz logic, abduction and revision to model these tasks. In this setting,
logic programs admit a least model and reasoning is performed with respect to
these least models. For a given program, the least model can be computed as
the least fixed point of an appropriate semantic operator and, by adapting the
Core-method, can be computed by a recurrent connectionist network with a
feed-forward core.
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Learning Rules for Cooperative Solving of
Spatio-Temporal Problems

Daan Apeldoorn

Information Engineering Group,
Technische Universität Dortmund, Germany

daan.apeldoorn@tu-dortmund.de

Abstract. This paper addresses the issue of creating agents that are
able to learn rules for cooperative problem solving behavior in different
multi-agent scenarios. The proposed agents start with given rule frag-
ments that are combined to rules determining their action selection. The
agents learn how to apply these rules adequately by collecting rewards
retrieved from the simulation environment of the scenarios. To evaluate
the approach, the resulting agents are applied in two different example
scenarios.

Keywords: multi-agent simulation, cooperative problem solving, rule
learning, knowledge extraction

1 Introduction

Learning to solve problems cooperatively is an interesting and challenging task
for agents in multi-agent scenarios with possible applications in logistics, schedul-
ing or robotics (e. g., [5]). In this paper, it is tried to approach this issue by intro-
ducing agents that learn to apply rules which are combined from given rule frag-
ments. The agents are then evaluated in the context of different spatio-temporal
problem solving scenarios that are defined using the multi-agent framework
AbstractSwarm [1, 2] and the learned rules are extracted from the agents’
epistemic state.

Section 2 introduces the agent model. Section 3 evaluates the agent model in
the context of two different example scenarios and the results are presented. A
conclusion and an outlook on future work are given in Section 4.

2 Agent Model

The agent model is considered a template which is instantiated for every agent
that is part of a multi-agent scenario. Thus, only homogeneous multi-agent sce-
narios are considered here, where every agent follows the same implementation.
Agents have a collective epistemic state, but every agent infers its own actions
also considering its current percepts.

In AbstractSwarm the two basic concepts agents and stations exist. The
former refer to the active components of a scenario (being able to act) and the
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latter represent the passive components of a scenario (serving as locations of
the agents). These concepts are used in the following as a basis for the agents’
percepts and actions.

2.1 Percepts, Actions and Communication

Following the agent interface of the AbstractSwarm simulation framework,
the percepts of an agent a consist of:

– a’s current location (i. e., the station where a is currently located)
– the current location of all other agents (i. e., the stations where the other

agents are currently located)
– the next action of every agent ai 6= a that was computed in the same time

step before a (i. e., the station every agent ai selected as its next target)1

An agent’s action is defined as the decision about its next target location chosen
from a given set of potential target locations.

Before the action of an agent a is executed (i. e., after the agent decides
about its next target location, but before the agent starts moving towards this
new target location), the agent communicates its decision to all other agents
aj 6= a that are computed subsequently to a. This information then is part of the
percepts of the agents aj (see the third point at the beginning of Section 2.1).

2.2 Rules

The agents are provided with a set of rule fragments that can be combined to
rules. The resulting rules are used by the agents to select their target locations.
A rule fragment is either the subject or the strategy of a rule. A rule subject
represents a property of a location (e. g., the current free space of the location)
and a rule strategy is a selection criterion (e. g., whether a location should be
selected according to the maximum or the minimum value of a given subject).
A complete rule is of the form subject strategy, stating that locations will be
selected based on the given subject and according to the given strategy.

As an Example, consider the rule FreeSpace Max : Following this rule, an
agent would choose, among all potential target location, the one with the max-
imum free space as next target.

Since locations can have a broad variety of different properties that could
potentially serve as selection criteria, a subset of rule subjects must be selected
here. The focus is set to subjects that seem to be relevant for the example
scenarios considered in Section 4:2

1 Note that in the AbstractSwarm framework, in every discrete time step, all agents
of a scenario are computed subsequently (in random order) and agents can consider
the information communicated by other agents that were computed before.

2 Note that the selection of possible rules is also restricted by the limited number of
properties that are available in the AbstractSwarm framework.
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– FreeSpace: The current available space of a location (e. g., the remaining
number of car agents that are still able to enter a parking deck until it will
be completely covered)

– MaxSpace: The total available space of a location (e. g., the total number of
parking boxes of a parking deck)

– VisitTime: The duration of visiting a location, excluding the time to get to
the location (e. g., the time that will be needed to do a transaction on a bank
counter)

– RemainingTime: The time left until a fully covered location becomes avail-
able again (e. g., the remaining time a bank counter will be occupied while
a bank customer agent is finishing its transaction)

The following rule strategies are selected, which are covering the most common
cases:

– Min: Selection according to the minimal value of the rule subject
– Max : Selection according to the maximal value of the rule subject
– Avg : Selection according to the average value of the rule subject
– None: No selection according to the value of the rule subject (random selec-

tion regarding the rule subject)

In case the application of a rule results in the selection of more than one target
location (i. e., the values of the rule subject are equal), multiple rules can be
chained, meaning that the rules are applied subsequently.

As an example, following the rule chain FreeSpace Max→VisitTime Min,
agents will first select the locations with a maximum amount of free space (com-
pared to all other potential target locations). If more than one location are
currently having the same amount of free space, the one with the minimum
visiting time will be selected from these.

If all rules are chained and there are still more than one location in the result
set, one of the locations in the result set is chosen randomly.

The order of the rule chains is learned based on the agents’ experiences and
is inferred from the agents’ current epistemic state. The epistemic state together
with the learning and the inference process will be explained in the following.

2.3 Epistemic State

The epistemic state of an agent comprises its knowledge about which rules (or
rather rule chains) are most preferable. Since the usefulness of rules strongly
depends on the problem to be solved (and in many cases there is no a priori
knowledge about which rules could be useful), the agents learn their epistemic
state by acting in the problem scenario and by earning rewards for their actions.
The epistemic state is represented as a Bayesian Logic Network [3] which is
trained using Statistical Relational Learning. By this, the learned rules can later
be extracted easily from the epistemic state.

In the following three subsections, the Bayesian Logic Network representing
the epistemic state will be introduced and both the learning and the inference
process will be described.
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Bayesian Logic Network. A Bayesian Logic Network (BLN), introduced by
Jain et al. in [3], is a Bayesian Network extended by (many-sorted) first-order
Logic. Functions and predicates (which are considered functions with the co-
domain {True, False}) are associated with the nodes of an underlying Bayesian
Network, such that every node represents a (conditional) probability distribu-
tion over the co-domain of the associated predicate. Logical formulas can be
added, which then will be considered by the inference mechanism (in addition to
the probability distributions of the network). A BLN can be trained such that
the (conditional) probability distributions are learned from a given set of data.
The BLN is implemented and visualized in the following using ProbCog [4], a
software suite for Statistical Relational Learning.

Besides some logical formulas, the BLN for modeling the epistemic state of
the agents consists of only three nodes:

– The node selectedValue( sit ) represents the function with the corresponding
probability distribution for the rule subjects.

– The node applyRule( sit ) represents the function with the corresponding
conditional probability distribution for the rule strategies, given a rule sub-
ject. The associated function of the node is later queried for inference.

– The isolated node valueComplete( sit, val ) represents a predicate which is
only relevant for the logical formulas implemented in the BLN. (These formu-
las are used later to handle special cases where some of the potential target
locations of an agent are lacking a property and therefore are incomparable
regarding this subject, see explanation of the logical formulas below).

The functions associated with the nodes selectedValue( sit ) and applyRule( sit )
depend on the current situation of an agent (which is used to specify evident
knowledge for the inference queries and for the training data later). The predicate
valueComplete( sit, val ) depends on the current situation of the agent and on
the subject of a rule. Figure 1 shows the described BLN in the initial state.

Fig. 1. Initial BLN for the agents’ epistemic state.

Note that the agents are using a collective epistemic state (see Section 2),
such that all agents access the same BLN (both for learning and inference).
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However, every agent a infers its own actions, which are additionally depending
on its current external state σat at time t in the environment.

The logical rules implemented in the BLN handle the cases where some loca-
tions are lacking some of the properties represented by the rule subjects, which
can lead to anomalies for certain subjects (e. g., a closed bank counter does not
have a limited duration for visiting, thus applying the rule VisitTime Max would
always lead to the selection of the closed bank counter). These kinds of problems
are covered by the following formulas:

selectedV alue(sit, V isitT ime) ∧ ¬valueComplete(sit, V isitT ime)
⇒ ¬applyRule(sit,Max)

selectedV alue(sit, RemainingT ime) ∧ ¬valueComplete(sit, RemainingT ime)
⇒ ¬applyRule(sit,Max)

The first formula states that the rule VisitTime Max is never applied in case
not all of the potential target locations have a defined duration for visiting. The
second formula states this analogously for the time left until a fully covered
location is available again.

Learning. While a simulation episode is running, the agents select their loca-
tions by trying out different rule subjects and strategies. After the execution of
an action is completed by an agent a ∈ A (i. e., after the agent visited a selected
location), the agent gets a local reward r from the simulation environment, which
is calculated as follows:

r :=
1

trwd − tact + 1

trwd∑

t=tact

(
1

|A|
∑

a∈A
w(σat )

)
(1)

where tact is the point in time when a selected a target location, trwd is the point
in time when a finished visiting this location, σat describes the state of a at time
t, and function w is defined as:

w(σat ) :=

{
1, if a is visiting a location at time t
0, otherwise

. (2)

Thus, the reward for the action of agent a is calculated from the number of
agents in the scenario, that are visiting locations as a consequence of the action
performed by a, averaged over time tact to time trwd: Agents gain higher re-
wards, the more their actions allow other agents to simultaneously perform their
respective actions and lower rewards the more they are restricting other agents.

An agent can easily calculate a global reward from the local rewards of its
actions by summing up all local rewards until the end of a simulation episode.

Before a new simulation episode starts, the agents store their experiences
from the previous episode (i. e., which rules were applied in which situations) by
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logging training datasets that consist of value assignments to the functions. The
following example shows three exemplary training data records:

selectedV alue(sit1) = FreeSpace

applyRule(sit1) = Max

selectedV alue(sit2) = FreeSpace

applyRule(sit2) = Max

selectedV alue(sit3) = V isitT ime

applyRule(sit3) = Min

A situation identifier siti contains the name of the agent that was applying
a rule and an index value (including the time when the rule was applied). In
the given example, it was preferable in two cases to select a target location
according to the rule FreeSpace Max and in only one case it was preferable to
select a target location according to the rule VisitTime Min.

The amount of records that are stored depends on the global reward earned
by the agent during an episode: The higher the reward, the more training data
records are stored. After storing the training data records, the (conditional)
probability distributions of the BLN are updated by counting relative frequencies
from the training data.

Inference. For inferring results from the trained BLN, the function associated
with the node applyRule( sit ) is queried for every rule subject (i. e., for every
value of the co-domain of the function associated with the node selectedValue( sit )).
The results are the conditional probabilities over the different rule strategies,
given the subjects.

Based on the conditional probabilities retrieved from the BLN, if an agent
determines its next target location, it performs the following steps:

1. The rule (i. e., the subject-strategy-combination) with the overall highest
probability value is applied to select a target location.

2. If this results in more than one location (i. e., the resulting locations are
indistinguishable regarding the rule subject), the rule with the next lower
probability value is applied to the results from the previous rule. This is
continued until there is only one location left in the result set or until all rule
subjects were used. Thus, the conditional probabilities P (Str1|Sub1) > ... >
P (Strn|Subn) would lead to the rule chain Sub1 Str1→ ... →Subn Strn.
(If in this case there are still more than one location in the result set, one of
the remaining locations is selected randomly.)

By this, stronger rules, that where reinforced through the learning process, are
preferred over weaker rules and weaker rules are used with lower priority in a
rule chain (in case not all stations could be distinguished by the stronger rules).
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To explore the different combinations of rule fragments (even if the agents
already learned that some rules are preferable), an exploration probability de-
termines in how many cases an agent decides to use another rule than the one
that was inferred from its current epistemic state. The exploration probability
depends on the number of already tried rules and the total amount of change in
the conditional probability distribution. By this, the exploration probability is
slightly discounted over time with increasing experience of the agent.

3 Evaluation

3.1 Test Scenarios

This section introduces the two example scenarios from [1], which are used here as
test scenarios to evaluate the agent model. In both scenarios, agents have to solve
a problem cooperatively. The scenarios are modeled using the AbstractSwarm
framework.

Scenario 1: School Timetabling. In this scenario, a small fictive school is
considered, where timetables have to be created for teachers, pupils and rooms.
The school comprises:

– 2 math teachers, 2 English teachers and 1 music teacher
– 5 classes (every class has to get 2 math lessons, 2 English lessons, 1 music

lesson)
– 4 rooms (3 normal class rooms, 1 special music room)

Teacher agents, class agents and course agents must organize themselves to effi-
ciently create an optimized timetable for the school (i. e., which agent has to be
at which time in which room). In this scenario, all locations have the same size
(e. g., only one class can be located in a room at a point in time) and the duration
of visiting is identical for all locations (i. e., all courses have the same length).

Scenario 2: Production Simulation. In this scenario, a small factory is con-
sidered, where workers are producing different products. As part of the quality
assurance process, the products have to be analyzed using different machines.
The factory comprises:

– 8 workers
– 2 kinds of products (5 of each kind, one kind having the need to be analyzed

at higher priority)
– 3 machines (2 of which being able to analyze on their own, 1 needing a

worker to monitor the analysis

Worker agents and product agents must organize themselves to efficiently create
an optimized production plan with few waiting times on the machines. Machines
are considered locations with different amounts of space (i. e., one of the machines
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is able to analyze more than one product at a time) and with different durations
of the production and the analysis processes (i. e., the production times depend
on the kinds of products and the analysis time needed depends on the specific
kind of analysis of a machine.)

3.2 Results

First, the BLNs learned by the agents are inspected in this section and the
learned rules (or rule chains) are extracted from the BLNs. After that, the overall
performance of the agents for finding adequate solutions for the scenarios will
be analyzed.

Learned Rules. In both cases, the agents started without any a priori knowl-
edge about the (conditional) probabilities of the rule fragments (as shown in
Figure 1) and 100 runs were performed. The resulting BLNs are shown in Fig-
ure 2 and Figure 3.

Fig. 2. Learned BLN for School Timetabling (Scenario 1) after 100 runs.

From the BLN for Scenario 1 (Figure 2) it can be seen that the agents learned
the rule FreeSpace Max with a high success probability. Since in Scenario 1 all
locations are of the same size and all courses have the same duration, no further
distinctions can be made regarding other rule subjects. Thus, this is the only
rule that could be learned.

In case of Scenario 2 (Figure 3), it can be extracted from the BLN, that the
rule chain FreeSpace Max→VisitTime Avg→RemainingTime Min was learned
(since P (Max|FreeSpace) > P (Avg|V isitT ime) > P (Min|RemainingT ime)).
Thus, like in case of Scenario 1, it also seems to be useful here to select a target
location according to its current available space. But the result is less clear than
in Scenario 1: As second and third criteria, agents select their locations according
to the average duration of a location (i. e., the average duration of production
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Fig. 3. Learned BLN for Production Simulation (Scenario 2) after 100 runs.

and analysis tasks) and according to the minimal time left until a fully covered
production or analysis location becomes available again.

Performance. To analyze the performance of the learning agents, the total
waiting time of all agents after solving a scenario is considered (i. e., the sum of
the idle times of every agent, after all tasks defined in the scenario description
were completed). Therefore, 20 repetitions of 100 runs are performed for each
scenario and the results are averaged over the 20 repetitions. Every repetition is
divided into two phases:

1. The first 50 runs are a learning phase where the exploration probability is
discounted slightly depending on the experience of the agents (as described
in Section 2.3).

2. The second 50 runs are an exploitation phase, where the exploration proba-
bility is set to zero and the agents act only based on the rules learned in the
first phase.

After every repetition, the probability distributions of the BLN are reset to the
initial state shown in Figure 1.

Figure 4 and Figure 5 show the performance results for the school timetabling
and the production scenarios: The curves represent the minimal waiting time of
all agents after r runs (averaged over the 20 repetitions). The gray bars show
the waiting time of one selected representative repetition. Note that the agents
do not always find a solution for a scenario: The missing gray bars (Figure 5)
indicate that the agents could not find a valid solution in this simulation run
fulfilling all constraints of the scenario description.

In both Figure 4 and Figure 5 it is shown that the agents are able to quickly
find rather good solutions in the two scenarios. Some good solutions are already
found randomly at early stages of the learning phase, but it can be seen that the
overall performance is getting better through exploitation of the learned rules.

Proceedings of the KI 2015 Workshop on Formal and Cognitive Reasoning

13



Fig. 4. Performance of learning agents in the school timetabling scenario (Scenario 1).

Fig. 5. Performance of learning agents in the production scenario (Scenario 2).
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4 Conclusion and Future Work

In this paper, an agent model based on a BLN was presented where multiple
agent instances are able to collectively learn rules (and rule chains) for cooper-
ative solving of spatio-temporal problems.

The resulting agents were evaluated in the context of two example scenarios
and the results showed that the agents benefit from applying the learned rules
(and rule chains).

Unlike other agent-based learning techniques (like Reinforcement Learning),
the learned knowledge (i. e., the rules and rule chains) can be easily inspected
and extracted from the agents (as shown in Section 3.2) and the agents can be
adapted or extended by adding further rule subjects or strategies. Besides that,
learning behavioral rules rather than state-action-pairs reduces the state-action-
space significantly, which is especially useful in high-dimensional environments
(as it is inherently the case in multi-agent-systems, since the state-action-space
grows exponentially with the number of agents [6]).

As future work, the rule learning approach could be tested in further, more
open environments, as it is the case e. g., for robots cooperating in real world
environments (for a related real world scenario see e. g. [5]).
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Abstract. There are numerous formal systems that allow inference of new con-
ditionals based on a conditional knowledge base. Many of these systems have
been analysed theoretically and some have been tested against human reasoning in
psychological studies, but experiments evaluating the performance of such systems
are rare. In this article, we extend the experiments in [19] in order to evaluate the
inferential properties of c-representations in comparison to the well-known Sys-
tems P and Z. Since it is known that System Z and c-representations mainly differ
in the sorts of inheritance inferences they allow, we discuss subclass inheritance
and present experimental data for this type of inference in particular.

1 Introduction

There are systems of conditional reasoning (such as Adams’ System P [2]) that can be
used to make valid (i.e., truth preserving) inferences about conditional probabilities.
More generally, there are systems of conditional reasoning where it is plausible to adopt
a probabilistic interpretation of conditionals, where conditionals of the form (ψ|φ) are
interpreted as expressing that the corresponding conditional probability, P (ψ|φ), is high.
In some cases, it may be plausible to adopt a probabilistic interpretation of conditionals,
for a given system, even when the inferences licensed by the respective system are
ampliative, and not truth preserving, given the probabilistic interpretation. For example,
although inheritance inference (i.e., from (ψ|φ) infer (ψ|φ∧χ)) may fail to preserve
high probability in many cases, inheritance inference is a reasonable form of inference
that one might like to codify within a system of conditional reasoning.

In the present paper, we compare and evaluate the behaviour of two systems of
conditional reasoning that are stronger than System P, but admit of a probabilistic
interpretation, namely: System Z [16], and System MinC (which we define based on the
inductive method of c-representations [8,9]). The two systems are of interest, since they
both license a number of desirable inference patterns, such as inheritance inference and
contraposition, that are not licensed by System P. Nevertheless the two systems differ in
some important respects, such as in their treatment of inheritance reasoning.

Within a system where conditionals are treated as expressing defaults, it is desirable
that subclass inheritance among defaults be licensed, defeasibly. For example, from the
default that birds usually can fly we would like to infer that crows (a subclass of birds) are
usually capable of flight, in the case where we have no background knowledge indicating
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that crows are exceptional birds. Such inferences are assumed to be defeasible, meaning
that there are conditions under which such inferences are defeated (i.e., conditions under
which the inference is not licensed).

Beyond defeasible subclass inheritance, it is controversial whether inheritance in the
case of exceptional subclasses should be licensed, defeasibly [6]. For example, notice
that penguins are exceptional birds inasmuch as they lack the capacity of flight. Given
that penguins represent an exceptional subclass of the class of birds, it is controversial
whether the subclass, penguins, should inherit other characteristics typical of birds.
For example, assuming that birds usually have wings, it is controversial whether it
is reasonable to infer that penguins usually have wings, given that they are (usually)
incapable of flight.

A principal difference between System Z and System MinC is that the latter, and not
the former, permits inheritance inference in the case of exceptional subclasses. Prima
Facie, this fact speaks in favor of System MinC, a point which we briefly discuss in
Section 5. However, as our primary means of evaluation, our paper reports the results
of experiments which test the behaviour of Systems Z and MinC in reasoning about a
simulated stochastic environment. For additional perspective, we also tested the behavior
of System P and System QC [19,23]. The results show that while System MinC makes
many inferences that are not drawn by System Z, System Z rarely makes an inference
that is not drawn by System MinC. Since the two systems are both ampliative with
respect to the probabilistic interpretation of conditionals (in contrast to System P), it is
clear that the conclusions drawn by Systems Z and MinC are more risky than the ones
drawn by System P. It is also plausible to think that conclusions that are drawn by System
MinC and not System Z are more risky than the conclusions that are drawn by both
systems, since such conclusions go “farther out on a limb”. The results presented here
vindicate this thought, and provide a clearer picture of just how risky these inferences
are.

The paper is organised as follows: After introducing the necessary formal preliminar-
ies in Section 2, we introduce Systems P, Z, and QC in Section 3. We define System MinC
via c-representations in Section 4. In Section 5 we discuss subclass inheritance for excep-
tional subclasses. We present the experimental setup and the results of the experiments
in Sections 6 and 7, and conclude in Section 8.

2 Preliminaries

Let Σ = {V1, ..., Vm} be a propositional alphabet where a literal is a variable V
interpreted to true (v) or false (v). From these we obtain the propositional language L
as the set of formulas of Σ closed under negation ¬, conjunction ∧, and disjunction ∨,
as usual; for shorter formulas, we abbreviate conjunction by juxtaposition (i.e., ab is
equivalent to a∧ b), and negation by overlining (i.e., a is equivalent to ¬a). We write the
material implication as φ→ ψ which is, as usual, equivalent to φ∨ ψ. Interpretations or
possible worlds are also defined in the usual way; the set of all possible worlds is denoted
by Ω. We often take advantage of the 1-1 association between worlds and complete
conjunctions, i.e., conjunctions of literals where every Vi ∈ Σ appears exactly once.
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Table 1. Evaluation of conditionals in the penguin example (+ indicates verification, − falsifica-
tion, an empty cell inapplicability) (above). Two OCF for the penguin example (below).

pbfw pbf w pbf w pbf w pbfw pbf w pb f w pb f w pbfw pbf w pbf w pbf w pbfw pbf w pb f w pb f w

(f |b) + + − − + + − −
(f |p) − − + + − − + +
(b|p) + + + + − − − −
(w|b) + − + − + − + −
κZ∆(ω) 2 2 1 1 2 2 2 2 0 1 1 1 0 0 0 0

κc
′
∆(ω) 2 3 1 2 4 4 2 2 0 1 1 2 0 0 0 0

A conditional (ψ|φ), φ, ψ ∈ L, is trivalent, with the evaluation: (ψ|φ) is verified iff
ω |= φψ, (ψ|φ) is falsified iff ω |= φψ, and (ψ|φ) is inapplicable iff ω |= φ [5,8]. A
finite set of conditionals ∆ = {(ψ1|φ1), . . . , (ψn|φn)} is called a knowledge base.

An Ordinal Conditional Function (OCF, ranking function [21,20]) is a function
Ω → N0 ∪ {∞} that assigns to each world an implausibility rank, such that κ−1(0),
the preimage of 0, is non-empty. The rank of a formula ψ ∈ L is the rank of the lowest
ranked world that satisfies the formula, formally: κ(φ) = minω|=φ{κ(φ)}. The rank of a
conditional (ψ|φ) is defined as: κ(ψ|φ) = κ(φψ)− κ(φ). A ranking function accepts a
conditional (ψ|φ) (written κ |= (ψ|φ)) iff κ(φψ) < κ(φψ); κ is admissible with respect
to a knowledge base ∆ if and only if κ |= (ψ|φ) for all (ψ|φ) ∈ ∆.

Example 1. We illustrate these preliminaries with the well-known penguin example. Let
B indicate whether something is a bird (b) or not (b), let P indicate whether something
is a penguin (p) or not (p), let F indicate whether something is capable of flying (f ) or
not (f ), and let W indicate whether something has wings (w) or not (w). This gives us
the alphabet Σ = {P,B, F,W} with a set of worlds given in the top row of Table 1. We
use the conditionals “birds usually can fly” (f |b), “penguins usually cannot fly” (f |p),
“penguins usually are birds” (b|p), and “birds usually have wings” (w|b) to compose
the knowledge base ∆ = {(f |b), (f |p), (b|p), (w|b)}. Table 1 displays the evaluation of
these conditionals within the worlds ω ∈ Ω. Table 1 also displays two ranking functions,
κZ∆ and κc

′
∆ that are admissible with respect to this knowledge base. We discuss the

two ranking functions, especially how they are generated inductively from the above
knowledge base, later in the paper.

3 Overview of Systems P, Z, and QC

As described in [7], System P represents the confluence of a number of different semantic
criteria. One feature of System P that is of interest here is its connection with the
following consequence relation (cf. [2]):

Improbability-Sum Preservation: (ψ1|φ1), ..., (ψn|φn) |=i.s.p. (ξ|χ) iff for all probabil-
ity functions, P , over the appropriate language: I(ξ|χ) ≤ Σn

i=1 I(ψi|φi), where I(ψ|φ),
the improbability of ψ given φ, is defined as 1− P (ψ|φ).

As Adams [2] demonstrated, the following calculus (denoted by `P ) is correct and
complete for |=i.s.p.:
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(REF) (reflexivity) `P (ψ|φ)
(LLE) (left logical equivalence) if |= (φ→ ψ)∧(ψ → φ), then (χ|φ) `P (χ|ψ)
(RW) (right weakening) if |= φ→ ψ, then (φ|χ) `P (ψ|χ)
(CC) (cautious cut) (ψ|φ), (χ|ψ∧φ) `P (χ|φ)
(CM) (cautious monotony) (ψ|φ), (χ|φ) `P (χ|ψ∧φ)
(AND) (φ|χ), (ψ|χ) `P (φ∧ψ|χ)
(OR) (χ|φ), (χ|ψ) `P (χ|ψ∨φ)

System P also has a semantics expressible in terms of ranking functions. In particular,
∆ `P (ψ|φ) if and only if every ranking function that is admissible for ∆ accepts
(ψ|φ) [1,13]. Apart from being characterized by reasonable (if mininal) principles, and
plausible semantic theories, empirical studies show that human reasoning makes use of
the principles of System P (c.f. [17,11]), which renders the study of System P especially
worthwhile.

Inference by System Z [16] is based upon the unique ranking function κZ∆, among
the admissible ranking functions for (consistent) ∆ = {(ψ1|φ1), . . . , (ψn|φn)}, that
minimizes the rank of each world in the set of possible worlds Ω∆ defined over the
propositional atoms appearing in ∆. This is achieved by forming an ordered partition
(∆0, ...,∆m) of ∆, where each ∆i is the maximal subset of

⋃m
j=i∆j that is tolerated

by
⋃m
j=i∆j (where a conditional, (ψ|φ), is tolerated by a set of conditionals, ∆, iff

∃ω: ω |= φψ and ∀(ψi|φi) ∈ ∆: ω |= φi → ψi). Due to maximality, such partitions are
unique for every ∆. Given the respective partition, κZ∆ is defined as the OCF that assigns
the value 0 to a world, ω, if no elment of ∆ falsified at ω, and otherwise assigns the
value i+ 1, where i is index of the rightmost element of (∆0, ...,∆m) that contains a
conditional falsified by ω. Table 1 (above) presents κZ∆ for the knowledge base described
in Example 1. Inference by System Z is characterized by the relation `Z , which is
defined in terms of the conditionals accepted by κZ∆:

∆ `Z (ψ|φ) iff κZ∆ |= (ψ|φ). (System Z)

By adding the rule Monotony, i.e., (ψ|φ) implies (ψ|φ ∧ χ), to System Z (or merely
to System P), we obtain System QC. We here follow [19], and implement System QC by
reasoning with conditionals as if they were material implications, and define System QC
as follows:

∆ `QC (ψ|φ) iff { φi → ψi | (ψi|φi) ∈ ∆ } |= φ→ ψ (System QC)

4 System MinC

System MinC is defined in terms of ranking functions known as c-representations [8,9].
A c-representation assigns an individual impact value κ−i ∈ N0 to each conditional
(ψi|φi) ∈ ∆. Using these impact values, a ranking function, κc∆, is defined, where each
world ω is assigned the rank κc∆(ω), which is the sum of the impacts of the conditionals
falsified by ω:

κc∆(ω) =
∑

i:ω|=φiψi

κ−i . (1)
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The impacts of the conditionals are chosen so that κc∆ |= ∆, which is the case if

κ−i > min
ω|=ψiφi

{ ∑

j:ω|=φjψj

i 6=j

κ−j

}
− min
ω|=ψiφi

{ ∑

j:ω|=φjψj

i 6=j

κ−j

}
. (2)

Entailment with respect to a c-representation is defined, as usual, via the OCF κc∆.

κc∆ |= (ψ|φ) iff κc∆(φψ) < κc∆(φψ). (3)

Example 2. We illustrate c-representations with the penguin example (Example 1).
Table 1 shows the verification/falsification behaviour of the worlds and the conditionals
in this example, where (2) gives us:

κ−1 = min{κ−2 , κ−2 + κ−4 , 0, κ
−
4 } −min{0, κ−4 , 0, κ−4 }

κ−2 = min{κ−1 , κ−1 + κ−4 , κ
−
3 , κ

−
3 } −min{0, κ−4 , κ−3 , κ−3 }

κ−2 = min{κ−2 , κ−2 + κ−4 , κ
−
1 , κ

−
1 + κ−4 } −min{κ−2 , κ−2 , 0, 0}

κ−1 = min{κ−2 , κ−1 , 0, κ−1 } −min{κ−2 , κ−1 , 0, κ−1 }

This can be solved via the minimal solution κ−1 = 1, κ−2 = 2, κ−3 = 2, κ−4 = 1 , which,
with (1) gives us the c-representation κc

′
∆ shown in Table 1.

The defining system (2) is a system of inequalities. The system defines a schema for
all c-representations of a given knowledge base ∆ rather than a unique ranking function
for ∆. To apply the method of c-representations to define a system of conditional
infererence, we introduced an algorythm for selecting a unique c-representation for
each knowledge base. We call the resulting system “MinC” (minimal c-representation).
Following the idea of System Z being the pareto-minimal ranking function admissible to
a knowledge base ∆, we define System MinC via a minimal c-representation that assigns
the smallest possible rank to each world. Since there are no straightforward criteria for
identifying a unique minimal c-representation, we opted for the following hierarchy of
criteria (cf. [15]):

(a) minimising the combined rank
∑
ω∈Ω κ(ω),

(b) minimising the maximal rank maxω∈Ω{κ(ω)},
(c) minimising the combined impacts

∑n
i=1 κ

−
i , and

(d) minimising the maximal impact max1≤i≤n{κ−i }.

Most of the time, these criteria, in this order, select a minimal c-representation within
one or two steps.

To determine our designated minimal c-representation, we order c-representations by
(a), the ones indistinguishable by (a) are then ordered by (b), the ones indistinguishable
by (b) are then ordered by (c), followed by (d). Since ordering by (a) through (d)
does not always yield a unique minimal c-representation, we implemented a practical
measure for identifying our designated c-representation as that c-representation having
the lexicographically smallest vector (κ−1 , ..., κ

−
n ) among the minimal solutions ordered

by (a) though (d). To distinguish this uinque c-representation from the general κc∆, we
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call the c-representation that is chosen according to the preceding tests, for respective ∆,
κc

′
∆, and define a corresponding inference system as follows:

∆ `MinC (ψ|φ) iff κc
′
∆ |= (ψ|φ). (System MinC)

Note that while their is no known axiomatic characterization of `MinC or `Z , both
satisfy all of the principles that characterize `P . In addition, both `MinC and `Z satisfy
rational monotony [12]: from (ψ|φ) and the non-validity of (χ|φ) infer (ψ|φχ).

5 Exceptionality and subclass inheritance

A principal difference between System Z and System MinC is that the latter, and not the
former, permits inheritance inference in the case of exceptional subclasses. This fact is
illustrated by the ranking functions κZ∆(ω) and κc

′
∆(ω) of Table 1, concering Example 1.

In this case, System minC permits the conclusion that (w|p), whiles System Z does not.
Prima Facie, this behavior speaks in favor of System MinC. Indeed, the range of possible
inheritance inferences to exceptional subclasses is very broad – broader than generally
recognized – and encompasses many inferences that are generally, and correctly, regarded
as reasonable. As a consequence, it appears that abandoning inheritance inference to
exceptional subclasses, as a default, would forsake too much, i.e., too many reasonable
inferences. Systems that do abandon these inferences are described of having a Drowning
Problem [4].

The fact that a prohibition of inheritance inference to exceptional subclasses would
forsake too much can be seen by considering a range of typical inheritance inferences,
where the relevant subclass represents a small proportion of the respective superclass.
For example, suppose it is given that (f |b) (birds are usually able to fly), and we
would like to infer (f |jb) (j-birds are usually able to fly). Assume that we possess no
special information regarding the class j, save that j corresponds to a relatively small
(or improbable) subclass of b. In that case, we are in a position to conclude that j is
exceptional relative to b, since we are in a position to accept (j|b). But it is clear that
the proposed inference should be permitted. Indeed, the proposed inference is no less
reasonable than the most reasonable instances of inheritance reasoning. Moreover, the
fact that j corresponds to a small subclass of b does not speak against the inference. The
latter point is particularly important when we consider cases of classical direct inference,
where inheritance reasoning is used in order to draw a conclusion about a particular
individual (see [18,3]).

6 Experiments

We here extend the experiments conducted in [19], with the aim of evaluating the
performance of System MinC in comparison to System Z. To make the search space
manageable, we restricted the experiments to an alphabet Σ = {A,B,C,D} with a
language L∧ restricted to conjunctions of literals. The language of conditionals (L∧|L∧)
is further restricted so that no variable may appear in both the antecedent and the
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consequent of a conditional. This means that (b|a) and (cd|ab) are in (L∧|L∧), but
(bcd|ab) is not.

To generate a stochastic environment, we randomly assigned values from the real-
valued interval [0, 1] to the probabilities: (a|>),(b|ȧ), (c|ȧḃ), and (d|ȧḃċ) with ȧ ∈
{a, a}, ḃ ∈ {b, b}, and ċ ∈ {c, c}. We then generated the probability distribution
P : Ω → [0, 1] by the so called “chain rule”. Based on this distribution, four conditionals
(ψ|φ) with P (ψ|φ) ≥ mp (the minimum probability of the conditionals in the knowledge
base for the respective simulation) were chosen randomly from (L∧|L∧). Given this
knowledge base ∆, the sets of all entailed conditionals CX(∆) = {(ψ|φ)|(ψ|φ) ∈
(L∧|L∧), ∆ `X (ψ|φ)}, for X ∈ {P,Z,MinC,QC}, were computed. The restriction of
our simulations to cases where the systems are provided with four premise conditionals
expressed within (L∧|L∧) partly limits the scope of our results. For some explanation
concerning why these limitations are not so significant, see [24].

The accuracy of the inferences drawn by the four systems was assessed by treating
the systems as asserting that the probability of the inferred conditional was at least the
sum of the improbabilities of the premises upon which the inference was based. This
amounts to treating the systems as licensing inference to inferred lower probability
bounds. According to the present assumption, the precise bound licensed by a respective
system, X , relative to a given knowledge base, ∆, and a probability function, P , is as
follows, where ∆′ ranges over the subsets of ∆ such that ∆′ `X (ψ|φ):

X(ψ|φ) = max
∆′⊆∆

{
1−

∑

(ψi|φi)∈∆′

(1− P (ψi|φi))
}
. (4)

While the present assumption is ‘correct’ in the case of System P, it may lead to
overestimation when applied to the other three systems. Precisely, we say that inference
made by a system counts as an overestimation, whenever X(ψ|φ) > P (ψ|φ). For the
moment, we will proceed as if it is reasonable to evaluate the accuracy of inferred
conditionals in the present manner, bearing in mind that any charge of “overestimation”
is based on the assumption that it is correct to propogate lower probability bounds in the
manner of improbability sums. In the conclusion of the paper, when we consider what to
make of our experminental results, we will briefly revisit this assumption.

Beyond attending to cases where a respective system overestimates respective condi-
tional probabilities, our interest is in comparing the accuracy of the bounds licenced by
the Systems Z and MinC. Unfortunately, there are no established and uncontroversial
measures for scoring the accuracy of lower probability bounds. For this reason, we
report the results of a scoring method that has a principled motivation and is pertinent to
assessing accuracy, namely, the advantage-compared-to-guessing measure (ACG) [19]:

ACG(X(ψ|φ), P ) =
1

3
− |P (ψ|φ)−X(ψ|φ)|. (ACG)

The idea behind this measure derives from the fact that the mean difference between
two random choices of real values r and s from the unit interval is, provably, 1

3 . This
means that the ‘strategy’ of setting lower probability bounds by randomly choosing
numbers in [0, 1] is expected to yield an ACG score of zero, on average (assuming that the
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true probabilities are also selected randomly from [0, 1]). Reporting ACG scores, rather
than the linear distance of inferred bounds from the true probabilities, has heuristic value,
since the measure assigns positive scores to judgments that are ‘better than guessing’,
and negative scores to judgments that are ‘worse than guessing’. Given the appearance
of X in the calculation of ACG scores, we once again observe that our proposed
evaluation assumes that it is correct to propogate lower probability bounds in the manner
of improbability sums.

7 Experimental results

The results presented here, regarding systems P, Z, and QC, are similar to those presented
in [19]. The results of this paper are novel inasmuch they permit a comparison of the
performance of Systems Z and MinC. All tested systems do satisfy certain quality criteria,
as noted in Sections 3 and 4, and hence the inferences drawn are sensible with respect to
those criteria.

Table 2 presents the number of inferences made by each of the four systems over the
course of 5,000 simulations, for each of the listed values of mp (the minimum probability
of the conditionals in the knowledge base). Table 2 illustrates that System MinC permits
more inferences than System Z, while both systems permit quite a few more inferences
than System P, and far fewer inferences than System QC. It may also be observed that
the difference between the number of System MinC and System Z inferences decreases
with increases in the value of mp. Indeed, if we exclude those inferences that are
made by System P, then we see that System MinC licenses about 10% more inferences
than System Z, when mp = 0.5. At mp = 0.99, System MinC licenses about 5% more
inferences than System Z. At present, we cannot say whether the behavior of System Z
and System MinC converge as mp goes to 1.

Every inference licensed by System P is included in each of the other systems. On
the other hand, it has been demonstrated that the set of inferences licensed by a minimal
c-representation does not generally include those licensed by System Z, and similarly
the set of inferences licensed by System Z does not generally include those licensed by
a minimal c-representation [10]. Our experiments expand upon this finding, showing
that although there are inferences that are licensed by System Z that are not licensed by
System MinC, such inferences are rare. Indeed, in addition to licensing more conclusions
than System Z, the set of conclusions licensed by System MinC frequently includes the
set of conclusions licensed by System Z, as presented in the right most column of Tbl 2.

Example 3. To show that System Z and System MinC are different in general we
use an Example from [10]. By applying System Z and System MinC to the knowl-
dege base ∆ = {(a|b), (a|c), (b|c), (d|b)}, we obtain that ((cb ∨ cb) ∧ ad) `Z cb and
((cb ∨ cb) ∧ ad) 0MinC cb, whereas cbd `MinC a and cbd 0Z a.

Table 3 shows that both System Z and MinC are somewhat prone to overestimation,
which characterizes the majority of System Z and MinC inferences when the value of
mp is high. Table 3 also shows that the inferences made by System MinC tend to be
less accurate than those of System Z, as measured by the ACG measure. This fact is
partially obscured by the fact that the sets of inferences made by systems Z and MinC
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Table 2. Total number of inferred conditionals.

mp
Number of inferred conditionals Cases where

P Z MinC QC |Z ∩MinC| |Z\MinC| |MinC\Z| Z⊆MinC

0.5 65 777 258 400 278 366 612 815 257 671 729 20 695 4 535
0.6 51 368 232 926 249 612 508 811 232 404 522 17 208 4 627
0.7 39 354 206 108 218 756 423 102 205 783 325 12 973 4 744
0.8 29 899 175 412 184 751 338 832 175 201 211 9 550 4 813
0.9 24 296 133 602 139 197 218 434 133 566 36 5 631 4 965

0.99 20 690 74 368 76 000 92 904 74 368 0 1 632 5 000

Table 3. Aggregate ACG scores and number of overestimations.

mp
Aggregate ACG scores Overestimations

P Z MinC QC Z MinC QC

0.5 9 413.7 31 385.6 33 019.9 33 880.1 94 512 106 767 368 061
0.6 10 556.5 32 564.0 33 852.3 24 691.5 98 270 109 754 329 044
0.7 10 078.2 30 887.3 31 715.8 15 609.1 101 240 110 764 294 497
0.8 8 973.8 27 711.8 28 144.2 7 497.0 100 573 108 520 255 494
0.9 7 888.6 22 808.0 22 823.5 8 987.9 90 520 95 958 174 652
0.99 6 893.0 19 076.3 19 324.0 16 015.8 56 659 58 291 75 195

both include the inferences made by System P, and by the fact that the set of System Z
inferences is ‘practically’ included in the set of System MinC inferences. In order to
present a clearer picture, Table 4 presents the average ACG score earned for individual
inferences made by System P, inferences made by System Z that were not made by
System P (Z\P), inferences made by System MinC that were not made by System Z
(MinC\Z), and inferences made by System QC that were not made by System MinC
(QC\MinC). Here we see that inferences proper to System MinC (MinC\Z) earned
positive ACG across all values of mp, as with the inferences proper to System Z (Z\P),
and unlike the inferences proper to System QC (QC\MinC).

Finally, since one of our primary concerns was to assess the reasonableness of
inheritance inference in the case of exceptional subclasses, we compared the accuracy
of the inheritance inferences licensed by System Z (which only involve unexceptional
subclasses) with the accuracy of the inheritance inferences licensed by System MinC
(which may involve exceptional subclasses). As a means of assessment, we counted
an inference to a conditional (ψ|φ) as inferred by inheritance from a given premise set
if and only if (i) (ψ|φ) was neither a member of the premise set nor inferred from the
premise set by System P, and (ii) some conditional (ψ|ξ) was also inferred, where φ |= ξ
and ξ 6|= φ. Information regarding such inferences is recorded in Table 5. Here we see
that inheritance inferences make up the majority of the inferences licensed by Systems Z
and MinC that are not also licensed by System P, ranging from just over 75% of the total
inferences, for mp = 0.5, to just over 50% of the total inferences, for mp = 0.99. It also
follows from results of Table 5 that the accuracy of the inheritance inferences licensed
by System Z, as measured the average ACG scores per inference, is nearly identical to
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Table 4. Mean ACG scores per inference.

mp P Z\P MinC\Z QC\MinC

0.5 0.143 0.114 0.082 0.003
0.6 0.206 0.121 0.077 −0.035
0.7 0.256 0.125 0.066 −0.079
0.8 0.300 0.129 0.046 −0.134
0.9 0.325 0.136 0.003 −0.175

0.99 0.333 0.227 0.152 −0.196

Table 5. Number of inheritance inferences and their aggregate ACG scores.

mp
Number of inferences Aggregate ACG scores

Z MinC QC Z MinC QC

0.5 145 763 163 532 384 009 15 827.1 17 276.2 20 253.2
0.6 134 338 149 252 314 733 16 587.1 17 749.1 15 043.7
0.7 120 407 131 738 259 069 16 103.8 16 867.5 10 200.4
0.8 102 610 111 088 204 322 14 992.7 15 395.3 6 017.1
0.9 72 671 77 896 120 005 11 752.3 11 770.0 6 291.0

0.99 27 021 28 649 35 261 6 758.9 7 006.0 6 315.4

the accuracy of the non-inheritance inferences among Z\P. Similarly, the accuracy of
the inheritance inferences licensed by System MinC, and not by System Z, is nearly
identical to the accuracy of the non-inheritance inferences among MinC\Z.

In summary, the results of our simulations are as follows (where accuracy claims
assume the correctness of probability propogation by improbability sums):

1. System MinC licensed significantly more inferences than System Z, with a decreas-
ing margin proportional to the value of mp.

2. While neither System Z nor System MinC strictly includes the other (as shown
in [10]), the set of System Z inferences was a subset of the set of System MinC
inferences within a vast majority of our simulations.

3. The accuracy of inferences licensed by System MinC was somewhat less than the
accuracy of inferences drawn by System Z. We also observed that the accuracy of
System MinC inferences tended to decrease with increasing values of mp (excluding
the case where mp = 0.99, whose exceptionality is discussed at length in [19, § 2.5]).

4. The accuracy of the inheritance inferences licensed by System Z was nearly identical
to that of the other inferences licensed by System Z that were not licensed by Sys-
tem P. Similarly, the accuracy of the inheritance inferences licensed by System MinC
was nearly identical to that of the other inferences licensed by System MinC that
were not licensed by System Z.

8 Conclusion

Our results show that for practical purposes, System MinC represents a stronger system
of inference than System Z. Our results also show that inference by System MinC (and
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inheritance for exceptional subclasses, as licensed by System MinC) is more risky than
inference by System Z. These results accord with existing theoretical analyses of the
systems studied here [12,14,10]. Indeed, as measured by the type of monotony that
characterize the systems, we see that inferential strength increases as we proceed from
System P to Systems Z and MinC, and finally to System QC: cautious monotony holds
for System P, rational monotony holds for Systems Z and MinC, and “full” monotony
holds for System QC. As measured by the type of subclass inheritance supported by
the systems, we see that inferential strength increases as we proceed from System P
to System Z to System MinC and finally to System QC: no inheritance inference is
permitted in System P, inheritance inference in the case of unexceptional subclasses is
permitted in System Z, defeasible inheritance for exceptional subclasses is permitted in
System MinC, and unrestricted inheritance inference is permitted in System QC. Our
experimental results show that increasing inferential strength, as described, comes at the
risk of decreased accuracy. Assuming the risk associated with such inferential strength
is too high in the case of System QC (as argued in [19,22,23]), the question remains of
whether inference by System MinC should be favored over inference by System Z.

While inference by System MinC carries greater risk than inference by System Z,
the same claim can be made in comparing inference by System Z to inference by System
P. In the latter case, the riskiness of inference by System Z appears to be small enough,
so that inference by System Z should be preferred to inference by System P (as argued
in [19,22,23]), or better: One should perform the inferences licensed by System Z in
addition to those licensed by System P. Assuming such arguments are cogent in the
case of System Z, are similar arguments cogent in the case of System MinC? In other
words, should one perform the inferences licensed by System MinC in addition to those
licensed by System Z? While we grant that the risks (of overestimation and inaccurate
judgment) are greater in the case of System MinC (in comparison to System Z), we
also observe that inference by System MinC generally yields positive accuracy scores
according to the ACG measure, in the case where probability propogation is determined
by improbability sums.

In addition to evaluating the performance of System MinC, we were keen to evaluate
the accuracy of inheritance inference in the case of exceptional subclasses. In Section 5,
we offered conceptual reasons for rejecting a blanket prohibition of such inferences.
Our argument there proceeded from the fact that the class of inheritance inferences to
exceptional subclasses is very broad and encompasses many inferences that are generally,
and correctly (we maintain), regarded as reasonable. Of course, we do not endorse the
wholesale adoption of all inheritance inferences, which would be tantamount to reasoning
in accordance with System QC. Our hope is rather that there is some systematic way to
move beyond System Z, and a blanket prohibition of inheritance inference in the case
of exceptional subclasses. Our motivation for evaluating the performance of System
MinC experimentally was to determine whether inference by System MinC might serve
as an appropriate means of moving beyond System Z. As things stand (and for the
reasons adduced in the preceding paragraphs), we think that inference by System MinC
represents a promising option.

Finally, it should be mentioned, once again, that the overestimations and accuracy
scores attributed to the studied systems are premised on treating the systems as inferring
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lower probability bounds in accordance with (4), above. We think that application of (4)
is reasonable, since such inferences are valid (i.e., guarenteed to be truth preserving)
for System P, and the other systems represent incremental strengthenings of System P.
Moreover, the fact that such inferences are invalid in the case of Systems Z, MinC, and
QC, is not a decisive objection to the proposed application of (4), since these three
systems all license inheritance inference, for which there is never a guarantee that
high premise probability is preserved (i.e., ∀φ, ψ, χ, r: (r < 1 and φ 2 χ) ⇒ (∃P :
P (ψ|φ) = r and P (ψ|φ ∧ χ) = 0). Nevertheless, while applying (4) yields a plausible
means of evaluating the four systems, there are certainly possible alternatives. Exploring
such alternatives is an object of present and future research.
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Abstract. We present LogAG, an algebraic language for reasoning about
graded propositions. LogAG is algebraic in that it is a language of only
terms, some of which denote propositions. Both propositions and their
grades are taken as individuals in the LogAG ontology. Thus, the lan-
guage includes terms denoting graded propositions, grades of proposi-
tions, grading propositions, and graded grading propositions in an arbi-
trary compositional structure. In this paper, we present the syntax and
semantics of LogAG, defining an infinite sequence of graded logical con-
sequence relations, each corresponding to accepting graded propositions
at some nesting depth. We show the utility of LogAG in default rea-
soning, reasoning about information provided by a chain of sources with
varying degrees of trust, and representing the dilemma one is in when
facing paradoxical liar-like sentences.

1 Introduction

Graded, or weighted, logics have witnessed increased attention and interest over
the years, which may be attested by the sheer length of the bibliography of a
recent comprehensive survey [1]. Whether the interest is in modelling uncertain
beliefs [2, 3, for instance], reasoning with vague predicates [4, 5, for instance],
revising a logical theory [6], or jumping to default conclusions [7], weighted
logics are always an obvious resort. To demonstrate the variety of phenomena
falling under the rubric of weighted logics, we present three problems (two of
which are classical) that we shall carefully revisit in Section 4.

The Case of Opus and Tweety. Tweety is a bird and Opus is a penguin.
You believe that penguins are birds. In the absence of other information,
you would like to jump to the conclusion that Tweety flies and Opus does
not. How do you do so gracefully and without succumbing to absurdity?

The Case of Superman. You open the Daily Planet and read a report by Lois
Lane claiming that Superman was seen in downtown Metropolis at noon. You
happen to have seen Clark Kent at his office at noon, and you have always
had a feeling that Superman is Clark Kent. What should you believe about
the whereabouts of Superman if you trust your perception very much, you
trust Lois Lane’s honesty, you only mildly trust the Daily Planet, and you
still have your doubts about whether Superman is indeed Clark Kent?
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The Case of the Liar. The first sentence of the paragraph titled “The Case
of the Liar” in this paper is not true. Having read the previous sentence,
should you believe it or not? (cf. [8].)

Weighted logics have something to say about each of the above cases (or,
at least, so we claim). In this report, we present the syntax and semantics of
a family of logical languages, LogAG, for reasoning about graded propositions
and, in Section 4, we demonstrate how the above cases are treated within LogAG
theories. While most of the weighted logics we are aware of employ some form
of non-classical, possible-worlds, semantics, basically assigning some notion of
grade to possible worlds or truth values, LogAG is a non-modal logic, with
classical notions of worlds and truth values. This is not to say that LogAG is a
common classical logic—it surely is not—but it is closer in spirit to classical non-
monotonic logics in artificial intelligence [9, 7, for example].3 In such formalisms,
as in LogAG, there is a classical logical consequence relation on top of which we
define a non-classical relation which is more restrictive, selecting only a subset
of the classical models. We achieve this by taking the algebraic, rather than the
modal, route.

LogAG is algebraic in the sense that it only contains terms, algebraically
constructed from function symbols. No sentences are included in a LogAG lan-
guage; instead, there are terms of a distinguished syntactic type that are taken
to denote propositions. LogAG is a variant of LogAB [10] and LogAS [11], which
are algebraic languages for reasoning about, respectively, beliefs and temporal
phenomena. The inclusion of propositions in the ontology, though non-standard,
has been suggested by several authors [12–15, for example]. (See [10] and [15] for
a thorough defense of this position.) In the LogAG ontology, propositions are
structured in a Boolean algebra, giving us, almost for free, all standard truth
conditions and standard notions of consequence and validity. In addition, we also
admit grades as first-class individuals in the ontology. Thus, we combine propo-
sitions and grades to construct propositions about graded propositions, which,
recursively, are themselves gradable. This yields a language that is on one hand
quite expressive and, on the other hand, intuitive and very similar in syntax to
first-order logic.4

2 LogAG Languages

LogAG is a class of many-sorted languages that share a common core of logical
symbols and differ in a signature of non-logical symbols. In what follows, we
identify a sort σ with the set of symbols of sort σ. A LogAG language is a set of
terms partitioned into three base syntactic sorts, σP , σD and σI . Intuitively, σP

3 But it is neither second-order like circumscriptive theories [9] nor dependent on
special default rules like default logic [7].

4 While multi-modal logics such as those presented in [16] and [17] may be used to
express graded grading propositions, the grades themselves are embedded in the
modal operators and are not amenable to reasoning and quantification.
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is the set of terms denoting propositions, σD is the set of terms denoting grades
of propositions, and σI is the set of terms denoting anything else.

As is customary in many-sorted languages, an alphabet of LogAG is made up
of a set of syncategorematic punctuation symbols and a set of denoting symbols
each from a set σ = {σP , σD, σI} ∪ {τ1 −→ τ2|τ1 ∈ {σP , σD, σI} and τ2 ∈ σ}
of syntactic sorts. Intuitively, τ1 −→ τ2 is the syntactic sort of function symbols
that take a single argument of sort σP , σD, or σI and produce a functional term
of sort τ2. Given the restriction of the first argument of function symbols to base
sorts, LogAG is, in a sense, a first-order language.

A LogAG alphabet is a union of four disjoint sets: Ω ∪ Ξ ∪ Σ ∪ Λ. The set
Ω, the signature of the language, is a non-empty, countable set of constant and
function symbols. Each symbol in the signature has a designated syntactic type
from σ. The set Ξ = {xi, di, pi}i∈N is a countably infinite set of variables, where
xi ∈ σI , di ∈ σD, and pi ∈ σP , for i ∈ N. Σ is a set of syncategorematic symbols,
including the comma, various matching pairs of brackets and parentheses, and
the symbol ∀. The set Λ is the set of logical symbols of LogAG, defined as the
union of the following sets.

1. {¬} ⊆ σP −→ σP
2. {∧,∨} ⊆ σP −→ σP −→ σP
3. {≺, .=} ⊆ σD −→ σD −→ σP
4. {G} ⊆ σP −→ σD −→ σP

A LogAG language with signature Ω is denoted by LΩ. It is the smallest set of
terms formed according to the following rules; as usual, terms involving ⇒, ⇔,
and ∃ may be introduced as abbreviations in the standard way.

– Ξ ⊂ LΩ

– c ∈ LΩ, where c ∈ Ω is a constant symbol.
– f(t1, . . . , tn) ∈ LΩ, where f ∈ Ω is of sort τ1 −→ . . . −→ τn −→ τ (n > 0)

and ti is of sort τi.
– {¬t1, (t1∧t2), (t1∨t2),∀x(t1),G(t1, t2), t3 ≺ t4, t3 .

= t4} ⊂ LΩ; where t1, t2 ∈
σP ; t3, t4 ∈ σD; and x ∈ Ξ.

The basic ingredient of the LogAG semantic apparatus is the notion of a
LogAG structure.

Definition 1. A LogAG structure is a quintuple S = 〈D,A, g, <, e〉, where

– D, the domain of discourse, is a set with two disjoint, non-empty, countable
subsets P and G.

– A = 〈P,+, ·,−,⊥,>〉 is a complete (closed under arbitrary products and
sums), non-degenerate (> 6= ⊥) Boolean algebra [18].

– g : P × G −→ P.
– <: G×G −→ P satisfies the following properties for every distinct g1, g2, g3 ∈
G:
O1. g1 < g2 = −(g2 < g1).
O2. [(g1 < g2) · (g2 < g3)] + g1 < g3 = g1 < g3.
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O3. g1 < g1 = ⊥.

O4.
∑

g∈G
g1 < g =

∑

g∈G
g < g1 = >.

– e : G × G −→ {⊥,>}, where, for every g1, g2 ∈ G, e(g1, g2) = >, if g1 = g2,
and e(g1, g2) = ⊥, otherwise.

Intuitively, the domain D is partitioned into three cells: (i) a set of proposi-
tions P, structured as a Boolean algebra; (ii) a set of grades G, and (iii) a set
of individuals P ∪ G. These stand in correspondence to the syntactic sorts of
LogAG. In what follows, we let DσP = P, DσD = G, and DσI = P ∪ G. g is a
function which maps a proposition p and a grade g to the proposition that p is a
proposition of grade g. By refraining from imposing any constraints on g (other
than functionality), we are admitting virtually any intuitive interpretation of
grading. Properties O1–O4 require propositions in the range of < to give rise
to an irreflexive linear order on G which is serial in both directions. Similarly,
the rigid definition of e gives rise to the identity relation on G.

Definition 2. A valuation V of a LogAG language LΩ is a triple 〈S,VΩ,VΞ〉,
where

– S = 〈D,A, g, <, e〉 is a LogAG structure;
– VΩ is a function that assigns to each constant of sort τ in Ω an element of
Dτ , and to each function symbol f ∈ Ω of sort τ1 −→ . . . −→ τn −→ τ an

n-adic function VΩ(f) :
n×
i=1

Dτi −→ Dτ ; and

– VΞ : Ξ −→ D is a variable assignment, where, for every i ∈ N, vΞ(pi) ∈ DσP ,
vΞ(di) ∈ DσD , and vΞ(xi) ∈ DσI .

In what follows, for a valuation V = 〈S,VΩ,VΞ〉 with x ∈ Ξ of sort τ and a ∈ Dτ ,
V[a/x] = 〈S,VΩ,VΞ[a/x]〉, where VΞ[a/x](x) = a, and VΞ[a/x](y) = VΞ(y) for
every y 6= x.

Definition 3. Let LΩ be a LogAG language and let V be a valuation of LΩ. An
interpretation of the terms of LΩ is given by a function [[·]]V :

– [[x]]V = VΞ(x), for x ∈ Ξ
– [[c]]V = VΩ(c), for a constant c ∈ Ω
– [[f(t1, . . . , tn)]]V = VΩ(f)([[t1]]V , . . . , [[tn]]V), for an n-adic (n ≥ 1) function

symbol f ∈ Ω
– [[(t1 ∧ t2)]]V = [[t1]]V · [[t2]]V

– [[(t1 ∨ t2)]]V = [[t1]]V + [[t2]]V

– [[¬t]]V = −[[t]]V

– [[∀x(t)]]V =
∏
a∈Dτ [[t]]V[a/x]

– [[G(t1, t2)]]V = g([[t1]]V , [[t2]]V)
– [[t1 ≺ t2]]V = [[t1]]V < [[t2]]V

– [[t1
.
= t2]]V = e([[t1]]V , [[t2]]V)
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In LogAG, logical consequence is defined in pure algebraic terms without allud-
ing to the notion of truth. This is achieved using the natural partial order ≤
associated with A [18], where, for p1, p2 ∈ P, p1 ≤ p2 =def p1 · p2 = p1.

Definition 4. Let LΩ be a LogAG language. For every φ ∈ σP and Γ ⊆ σP ,
φ is a logical consequence of Γ, denoted Γ |= φ, if, for every LΩ valuation V,∏

γ∈Γ

[[γ]]V ≤ [[φ]]V .

In [10], it is shown that |= has the distinctive properties of classical Tarskian
logical consequence and that it satisfies a counterpart of the deduction theorem.

3 Graded Filters

In what follows, for every p ∈ P and g ∈ G, we say that g(p, g) grades p and that
g(p, g) is a grading proposition. Moreover, if g(p, g) ∈ Q ⊆ P, we say that p is
graded in Q. We define the set of p graders in Q to be the set G(p,Q) = {q|q ∈ Q
and q grades p}. Throughout, we assume a LogAG structure S = 〈D,A, g, <, e〉.

According to Definition 4, the set of logical consequences of a set Γ of σP -
terms corresponds to the filter F ([[Γ]]) generated by the set [[Γ ]] of denotations
of members of Γ [18]. In order to accommodate a richer, non-classical set of
consequences which includes some acceptable propositions graded in [[Γ]], we
need a more liberal notion of graded filters.

3.1 Embedding and Chains

In order to develop the notion of a graded filter, we need to sharpen our intuitions
about the nesting structure of propositions graded in a given set.

Definition 5. A proposition p ∈ P is embedded in Q ⊆ P if (i) p ∈ Q or (ii) for
some g ∈ G, g(p, g) is embedded in Q. Henceforth, let E(Q) = {p|p is embedded
in Q}.

Definition 6. For Q ⊆ P, let δQ : E(Q) −→ N, where

1. if p ∈ Q, then δQ(p) = 0; and

2. if p /∈ Q, then δQ(p) = e+ 1, where e = minq∈G(p,E(Q)){δQ(q)}.

δQ(p) is referred to as the degree of embedding of p in Q.

In the sequel, we let En(Q) = {p ∈ E(Q) | δQ(p) ≤ n}, for every n ∈ N.

Definition 7. A grading chain of p ∈ P is a finite sequence 〈q0, q1, . . . , qn〉 of
grading propositions such that qn grades p and qi grades qi+1, for 0 ≤ i < n.
〈q0, q1, . . . , qn〉 is a grading chain if it is a grading chain of some p ∈ P.
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A grading chain C2 = 〈q0, q1, . . . , qn〉 extends a grading chain C1 if C1 is a
grading chain of q0. The grading chain C1 �C2 is said to be an extension of C1

(where � denotes sequence concatenation).
We say that C is a grading chain in Q, if every proposition in C is in Q. Given

that we impose no special restrictions on the function g and the proposition
algebra, grading chains in a set Q may, in general, be quite counter-intuitive.
Hence, we need to introduce some especially interesting sets of propositions.

Definition 8. Let Q ⊆ P.

1. A grading chain is well-founded if all its extensions are well-founded. Q is
well-founded if every grading chain in Q is well-founded.

2. A grading chain 〈q0, q1, . . . , qn〉 is acyclic if, for every 0 ≤ i, j ≤ n, qi = qj
only if i = j. Q is acyclic if every grading chain in Q is acyclic.

3. Q is depth-bounded if there is some d ∈ N such that every grading chain in
Q has at most d distinct grading propositions.

4. Q is fan-out-bounded if there is some fout ∈ N such that every grading
proposition in Q grades at most fout propositions.

5. Q is fan-in bounded if there is some fin ∈ N where |G(p,Q)| ≤ fin, for every
p ∈ Q.

6. Q is non-explosive if for every R ⊆ Q, if R has finitely-many grading propo-
sitions, then so does F (R).

Given the above notions, if p ∈ E(Q), then a grading chain C of p in Q is a
longest grading chain of p in Q if

1. C is acyclic; and
2. if C extends a grading chain C ′, then C ′ � C is not acyclic.

Proposition 1. 5 Let Q ⊆ P.

1. If P is depth-bounded, then it is not acyclic.
2. If Q is depth-bounded and acyclic, then Q is well-founded.
3. If E(Q) is depth-bounded, then there is some n ∈ N such that δQ(p) ≤ n, for

every p ∈ E(Q).
4. If P is fan-out-bounded and Q is non-explosive with finitely-many grading

propositions, then En(F (Q)) has finitely-many grading propositions, for ev-
ery n ∈ N. Further, if E(F (Q)) is depth-bounded, then it has finitely-many
grading propositions.

5. If Q is depth-bounded, then every graded p ∈ Q has a longest grading chain
in Q. Further, if Q is fan-in-bounded, then every graded p ∈ Q has finitely-
many longest grading chains in Q.

Note that, for the existence of longest grading chains, it suffices to have a
single, bounded grading chain of p.

5 Proofs of observations and propositions are omitted for space limitations. A longer
version of the paper includes all the proofs.
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3.2 Telescoping

The key to defining graded filters is the intuition that the set of consequences of a
proposition set Q may be further enriched by telescoping Q and accepting some
of the propositions embedded therein. For this, we need to define (i) the process of
telescoping, which is a step-wise process that considers propositions at increasing
degrees of embedding, and (ii) a criterion for accepting embedded propositions
which, as should be expected, depends on the grades of said propositions.

Definition 9. Let S be a LogAG structure with a depth- and fan-out-bounded
P. A telescoping structure for S is a quadruple T = 〈T ,O,⊗,⊕〉, where

– T ⊆ P;
– O is an ultrafilter of the subalgebra induced by Range(<) (see [18]);
– ⊗ :

⋃∞
i=1 Gi −→ G; and

– ⊕ :
⋃∞
i=1 Gi −→ G is commutative in the sense that ⊕(t) = ⊕(π(t)), where

π(t) is any permutation of the tuple t.

Definition 10. Let ⊗ :
⋃∞
i=1 Gi −→ G, and let C = 〈q0, q1, . . . , qn〉 be a grading

chain of p ∈ P. The fused ⊗-grade of p with respect to C is the grade f⊗(p, C) =
⊗(〈g0, . . . , gn〉), where qi = g(qi+1, gi), for 0 ≤ i < n, and qn = g(p, gn).

Definition 11. Let T be a telescoping structure. If p ∈ Q, for a fan-in-bounded
Q ⊂ P, then the T-fused grade of p in Q is defined as

fT(p,Q) =
⊕
〈f⊗(p, Ck)〉nk=1

where 〈Ck〉nk=1 is a permutation of the set of longest grading chains of p in Q.6

Recasting the familiar notion of a kernel of a belief base [19] into the context
of LogAG structures, we say that a kernel of Q ⊆ P is a subset-minimal X ⊆ Q
such that F (X ) is improper (6= P). Let Q� ⊥ be the set of Q kernels.

Definition 12. For a telescoping structure T = 〈T ,O,⊗,⊕〉 and a fan-in-
bounded Q ⊆ P, if X ⊆ Q, then p ∈ X survives X in T if

1. p ∈ T ; or
2. G(p,Q) 6= ∅ and there is some q ∈ X , with G(q,Q) 6= ∅, such that

(fT(q,Q) < fT(p,Q)) ∈ O.

The set of kernel survivors of Q in T is the set

κ(Q,T) = {p ∈ Q| if p ∈ X ∈ Q� ⊥ then p survives X given T}.

Observation 1 If F (T ) is proper, then F (κ(Q,T)) is proper.

Definition 13. Let Q, T ⊆ P. We say that p is supported in Q given T if

6 Note that T-fusion is well-defined given the fan-in-boundedness of Q and the final
clause of Proposition 1.
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1. p ∈ F (T ); or
2. there is a grading chain 〈q0, q1, . . . , qn〉 of p in Q with q0 ∈ F (R) where every

member of R is supported in Q.

The set of propositions supported in Q given T is denoted by ς(Q, T ).

The following simple observation will prove useful later.

Observation 2 ς(Q, T ) = F (T ) ∪G, for some set G of propositions graded in
Q.

Definition 14. Let T be a telescoping structure for S. If Q ⊂ P such that
E1(F (Q)) is fan-in-bounded, then the T-induced telescoping of Q is given by
τT(Q) = ς(κ(E1(F (Q)),T), T )

Proposition 2. For a telescoping structure T, τT is a function from fan-in-
bounded sets in 2P to sets in 2P .

It may be shown that if Q is non-explosive with finitely-many grading propo-
sitions, then τT(Q) is defined, for every telescoping structure T. On the other
hand, if F (Q) is improper, then τT(Q) is undefined. In what follows, provided
that the right-hand side is defined, let

τnT(Q) =

{
Q if n = 0
τT(τn−1

T (Q)) otherwise

Definition 15. Let T be a telescoping structure. We refer to F (τnT(T )) as a
degree n(∈ N) graded filter of T, denoted Fn(T).

Unfortunately, even with a finite and fan-in-bounded T , the existence of a
fixed-point for graded filters is not secured. (Check Example 3 in Section 4.) We
can only prove a weaker property for a special class of telescoping structures.

Theorem 1. Let T be a telescoping structure where T is finite. There is some
n ∈ N such that if Fi(T) is defined and Fi(T) ∩ Range(g) = τ i(T) ∩ Range(g)
for every i ≤ n, then for every j ∈ N, there is some k ≤ n such that Fn+j(T) =
Fk(T).

A fixed-point is guaranteed if, under the same conditions in Theorem 1, we
happen to stumble upon a maximal graded filter in the following sense.

Corollary 1. If, in Theorem 1, Fn(T) = F (E(T )) for some n < 2|E(T )| + 1,
then Fn+k(T) = Fn(T), for every k ∈ N.

Telescoping can never generate an inconsistent theory if the top theory is con-
sistent.

Theorem 2. If T is a telescoping structure where F (T ) is proper, then, if de-
fined, Fn(T) is proper, for every n ∈ N.
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4 LogAG Theories

Given the definition of a LogAG structure, we impose some reasonable con-
straints on which sets of LogAG terms qualify as LogAG theories. A LogAG
theory is a finite set T ⊆ σP such that E ∪O ⊆ T, where

– E is the smallest set containing the following terms:
1. ∀d[d

.
= d]

2. ∀d1, d2[d1
.
= d2 ⇒ d2

.
= d1]

3. ∀d1, d2, d3[(d1
.
= d2 ∧ d2

.
= d3)⇒ d1

.
= d3]

4. ∀p, d1, d2[(d1
.
= d2 ∧G(p, d1))⇒ G(p, d2)]

and
– O is the smallest set containing the following terms:

1. ∀d1, d2[¬(d1 ≺ d2)⇔ (d2 ≺ d1 ∨ d2
.
= d1)]

2. ∀d1, d2, d3[(d1 ≺ d2 ∧ d2 ≺ d3)⇒ d1 ≺ d3]

Given a LogAG theory T and a valuation V = 〈S,VΩ,VΞ〉, let V(T) = {[[φ]]V | φ ∈
T}). Further, for a LogAG structure S, an S grading canon is a triple C =
〈⊗,⊕, n〉 where n ∈ N and ⊗ and ⊕ are as indicated in Definition 9.

Definition 16. Let T be a LogAG theory and V = 〈S,VΩ,VΞ〉 a valuation,
where S has a set P which is depth- and fan-out-bounded, for some LogAG
language LΩ. For every φ ∈ σP and S grading canon C = 〈⊗,⊕, n〉, φ is a

graded consequence of T with respect to C, denoted T |'C φ, if Fn(T) is defined
and [[φ]]V ∈ Fn(T), for every telescoping structure T = 〈V(T),O,⊗,⊕〉 for S,
where O extends F (V(T) ∩Range(<)).7

It should be clear that |'C , where C = 〈⊗,⊕, n〉, reduces to |= if n = 0 or if
F (E(V(T))) does not contain any grading propositions. Further, for n > 0, no
φ is a graded consequence of T with respect to C if F (V(T)) is not proper. In

what follows, let TC = {φ | T |'C φ}. When we are considering a set of canons
which only differ in the value of n, we write Tn instead of TC .

Unlike |=, |'C is, in general, non-monotonic. (In the sequel, we interpret
grades by the rational numbers, with their natural order remaining implicit.)

Example 1 (Opus and Tweety). We can represent the case of Opus and Tweety
from Section 1 using a LogAG theory TOT1 = E∪O∪ΓOT1, where ΓOT1 is made
up of the following terms.

1. ∀x[Bird(x)⇒ G(Flies(x), 5)]
2. ∀x[Penguin(x)⇒ G(¬Flies(x), 10)]
3. ∀x[Penguin(x)⇒ Bird(x)]
4. Penguin(Opus)
5. Bird(Tweety)

Figure 1 displays the relevant graded consequences of TOT1 with respect to
a series of canons, with 0 ≤ n ≤ 2. Upon telescoping to n = 1, we believe

7 An ultrafilter U extends a filter F , if F ⊆ U .
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n = 0 0.1. TOT1

0.2. Bird(Opus)
0.3. G(Flies(Tweety), 5)
0.4. G(Flies(Opus), 5)
0.5. G(¬Flies(Opus), 10)

n = 1 1.1. T0
OT1

1.2. F lies(Tweety)
1.3. ¬Flies(Opus)

Fig. 1. Graded consequences of the LogAG theory TOT1 from Example 1

that Tweety flies and Opus does not fly. The embedded proposition that Opus
flies does not survive telescoping since we trust that Opus does not fly, being a
penguin, more than we trust that it flies, being a bird. T1

OT1 is a fixed point. Now,
consider the theory TOT2 = E ∪ O ∪ ΓOT2, where ΓOT2 is similar to ΓOT1, but
with propositions (1) and (2) replaced by “G(∀x[Bird(x) ⇒ Flies(x), 5)” and
“G(∀x[Penguin(x)⇒ ¬Flies(x), 10)”, respectively. Thus, we trade the “de re”
representation of TOT1 for the “de dicto” representation in TOT2. This change
results in a change in the fixed point that we reach. In T1

OT2, as in T1
OT1, we

end up believing that Opus does not fly. Unlike T1
OT1 however, we give up our

belief in the proposition that birds fly and, hence, cannot conclude that Tweety
flies. ut

Example 1 showcases the use of graded propositions in default reasoning.
The following example illustrates the utility of nested grading.

Example 2 (Superman). Recalling the case of Superman from Section 1, we can
describe the situation using LogAG in at least two theories. Consider the theory
TSM1 = E ∪O ∪ ΓSM1, where ΓSM1 is made up of the following terms.

1. ∀p[Source(p, LL)⇒ G(p, 11)]
2. ∀p[Source(p,DP )⇒ G(p, 4)]
3. ∀p[Perceive(p)⇒ G(p, 15)]
4. ∀l, t[G(At(KC, l, t)⇔ At(SM, l, t), 10.5)]
5. ∀l1, l2, t, x[(Disjoint(l1, l2) ∧At(x, l1, t))⇒ ¬At(x, l2, t)]
6. Perceive(Source(Source(At(SM,DT, 12 : 00), LL), DP ))
7. Perceive(At(KC,Office, 12 : 00))
8. Disjoint(Office,DT )

Figure 2 displays relevant members of TnSM1 with respect to a series of canons,
with ⊗ = mean and ⊕ = max, and with 0 ≤ n ≤ 3. Note that, for 1 ≤ n ≤ 2, we
trust the proposition that Superman was at the office at noon (1.6). However,
upon telescoping to n = 3, we lose our trust in said proposition, since we trust
what Lois Lane says more than we trust our belief in the identity of Superman
and Clark Kent (1.3).

Alternatively, consider the theory TSM2 = E∪O∪ΓSM2, where ΓSM2 is made
up of the following terms.

1. G(G(G(At(SM,DT, 12 : 00), 11), 4), 15)
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n = 0 0.1. TSM1

0.2. G(Source(Source(At(SM,MDT, 12 : 00), LL), DP ), 15)
0.3. G(At(KC,Office, 12 : 00)⇔ At(SM,Office, 12 : 00), 10.5)
0.4. G(At(KC,Office, 12 : 00), 15)

n = 1 1.1. T0
SM1

1.2. Source(Source(At(SM,DT, 12 : 00), LL), DP )
1.3. At(KC,Office, 12 : 00)⇔ At(SM,Office, 12 : 00)
1.4. At(KC,Office, 12 : 00)
1.5. G(Source(At(SM,DT, 12 : 00), LL), 4)
1.6. At(SM,Office, 12 : 00)

n = 2 2.1. T1
SM1

2.2. Source(At(SM,DT, 12 : 00), LL)
2.3. G(At(SM,DT, 12 : 00), 11)

n = 3 3.1. Everything at n = 2 except 1.3, 1.6, and anything they support
3.2. At(SM,DT, 12 : 00)

Fig. 2. Graded consequences of the LogAG theory TSM1 from Example 2

2. G(At(KC,Office, 12 : 00), 15)
3. ∀l, t[G(At(KC, l, t)⇔ At(SM, l, t), 10.5)]
4. ∀l1, l2, t, x[(Disjoint(l1, l2) ∧At(x, l1, t))⇒ ¬At(x, l2, t)]
5. Disjoint(Office,DT )

Figure 3 displays the different consequences with respect to the same canons
employed with TSM1. In this case, we get a different fixed point; we end up (at
n = 2) believing that Superman was at the office at noon, contrary to what has
been reported by Lois Lane in the Daily Planet. The reason is that, due to the
nesting of grading propositions, the fused grade of “AT (SM,DT, 12 : 00)” is
now only 10 (which is less than 10.5, the grade of (1.4)), being pulled down by
the low grade attributed to the Daily Planet. ut

n = 0 0.1. TSM2

0.2. G(At(KC,Office, 12 : 00)⇔ At(SM,Office, 12 : 00), 10.5)

n = 1 1.1. T0
SM2

1.2. G(G(At(SM,DT, 12 : 00), 11), 4)
1.3. At(KC,Office, 12 : 00)
1.4. At(KC,Office, 12 : 00)⇔ At(SM,Office, 12 : 00)
1.5. At(SM,Office, 12 : 00)
1.6. ¬At(SM,DT, 12 : 00)

n = 2 2.1. T1
SM2

2.2. G(At(SM,DT, 12 : 00), 11)

n = 3 3.1. T2
SM2

Fig. 3. Graded consequences of the LogAG theory TSM2 from Example 2
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n = 0 0.1. TL

n = 1 1.1. T0
L

1.2. φ
1.3. G(¬φ, 5)

n = 2 2.1. T0
L

Fig. 4. Graded consequences of the LogAG theory TL from Example 3

Finally, we revisit the pathological case of the liar.

Example 3 (The Liar). Consider the theory TL = E∪O∪{G(φ, 5), φ⇔ G(¬φ, 5)}.
This is the closest we can get, within LogAG, to the case of the liar from Sec-
tion 1; given the non-degeneracy of the Boolean algebra, we can never have the
situation where [[φ]]V = −[[φ]]V (cf. [10]). Figure 4 shows what happens as n
increases, given any grading canon. In such a problematic situation, we never
reach a fixed point, indefinitely iterating through T0

L and T1
L. But this is just

as well, for it fairly captures the dilemma one is in when encountering liar-like
sentences. While this is similar in spirit, but not identical, to the treatment of
the liar paradox within the revision theory of truth (RTT) [20], RTT tackles the
liar paradox head-on, not via the more tame version expressible in LogAG. (Also
see [21] for a treatment of the liar paradox within a fuzzy logical framework.)

ut

5 Conclusion

Notwithstanding the abundance of weighted logics in the literature, it is our
conviction that LogAG provides an interesting alternative. While it has a non-
classical semantics, LogAG is arguably intuitive, expressive, and quite similar in
syntax to first-order logic. We hope to have demonstrated the utility of LogAG
in default reasoning, reasoning with information reported through a chain of
sources, and even reasoning with paradoxical propositions. A careful examination
of how LogAG relates to other graded logics and non-monotonic formalisms is
called for. On a first pass, we believe that LogAG subsumes possibilistic logic
[2], circumscription [9], and default theories with at most one justification per
default (which includes normal defaults) [7]. We are currently working on the
implementation of a proof theory for LogAG based on a reason maintenance
system (cf. [22]). The primary objective we have in mind is prioritized belief
revision based on graded propositions.
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A.1 Proof of Theorem 1

To prove Theorem 1, we need the following result.
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Lemma 1. If T is a telescoping structure then, for every n ∈ N, if Fi(T) is
defined and Fi(T)∩Range(g) = τ i(T)∩Range(g) for every i ≤ n, then Fn(T) =
F (Q), for some Q ⊆ E(T ) and Fn(T) ∩Range(g) ⊆ En(T ).

Proof. We prove the lemma by induction on n. For n = 0, F0(T ) = F (T ), where
T ⊆ E(T ). Further, F0(T )∩Range(g) = τ0(T)∩Range((g)) = T ∩Range(g) ⊆
E0(T ). Now assume that the statement holds for some k ∈ N. By the induction
hypothesis, Fk(T) ∩ Range(g) ⊆ Ek(T ). Therefore, all propositions graded in
E1(Fk(T)) are in Ek+1(T ). Moreover, E1(Fk(T)) ∩ Range(g) ⊆ Ek+1(T ). By
Observation 2, τk+1

T (T ) = τT(Fk(T)) = ς(κ(E1(Fk(T))),T), T ) = F (T ) ∪ G,
where G is a set of propositions graded in κ(E1(Fk(T))). By Definition 12,
κ(E1(Fk(T))) ⊆ E1(Fk(T)). Hence, G ⊆ Ek+1(T ). Thus, Fk+1(T) = F ([F (T ) ∪
G]) = F (T ∪ G), where T ∪ G ⊆ E(T ). Moreover, Fk+1(T) ∩ Range(g) =
τk+1(T) ∩Range(g) ⊆ Ek+1(T ). ut

We now proceed to proving the theorem. By Definition 9 and Clause 4 of
Proposition 1, E(T ) has finitely-many grading propositions. In fact, since T is
finite, then E(T ) is finite. Let b = |E(T )|. Now, taking n = 2b+1, suppose that,
for every i ≤ 2b + 1, Fi(T) is defined and Fi(T)∩Range(g) = τ i(T)∩Range(g).
By Lemma 1, Fi(T) = F (Qi), for some Qi ⊆ E(T ). Since there are only 2b

subsets of E(T ), then Fn(T) = Fj(T), for some j ≤ 2b. Further, by Proposition
2, for every j ∈ N, there is some k ≤ n such that Fn+j(T) = Fk(T). ut

A.2 Proof of Corollary 1

We prove the case of k = 1 and the result follows by the same argument for all
k ∈ N.

Fn+1(T)
= F (ς(κ(E1(Fn(T)),T)), T ) (Definitions 14 and 15)
= F (ς(κ(E1(F (E(T ))))))
= F (ς(κ(F (E(T ))))) (Definition of E and the assumption of Theorem 1)
= F (ς(F (E(T )))) (Since F (E(T )) is proper given that Fn+1(T)

is defined)
= F (F (E(T ))) (Since every p ∈ F (E(T )) is supported given that

F (E(T )) = Fn(T) and Definitions 14 and 15)
= F (E(T ))

ut

A.3 Proof of Theorem 2

For n = 0, the statement is trivial, since F0(T) = F (T ). Otherwise, the statement
follows directly from Observation 1 since, by Definition 15, Fk+1(T) = F (K),
for some K ⊆ κ(E1(Fk(T)),T). ut
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Abstract. Abstract argumentation frameworks (AFs) are one of the
central formalisms in AI; equipped with a wide range of semantics, they
have proven useful in several application domains. We contribute to the
systematic analysis of semantics for AFs by connecting two recent lines
of research – the work on input/output frameworks and the study of the
expressiveness of semantics. We do so by considering the following ques-
tion: given a function describing an input/output behaviour by mapping
extensions (resp. labellings) to sets of extensions (resp. labellings), is
there an AF with designated input and output arguments realizing this
function under a given semantics? For the major semantics we give exact
characterizations of the functions which are realizable in this manner.

1 Introduction

Dung’s argumentation frameworks (afs) have been extensively investigated,
mainly because they represent an abstract model unifying a large variety of
specific formalisms ranging from nonmonotonic reasoning to logic programming
and game theory [9]. After the development and analysis of different semantics
[13, 6, 2], recent attention has been drawn to their expressive power, i.e. deter-
mining which sets of extensions [10] and labellings [11] can be enforced in a single
af under a given semantics. Such results have recently been facilitated in order
to express AGM-based revision in the context of abstract argumentation [8].

In [1], it has been shown that an af can be viewed as a set of partial in-
teracting sub-frameworks each characterized by an input/output behavior, i.e.
a semantics-dependent function which maps each labelling of the “input” ar-
guments (the external arguments affecting the sub-framework) into the set of
labellings prescribed for the “output” arguments (the arguments of the sub-
framework affecting the external ones). It turns out that under the major seman-
tics, i.e. complete, grounded, stable and (under some mild conditions) preferred
semantics, sub-frameworks with the same input/output behavior can be safely
exchanged, i.e. replacing a sub-framework with an equivalent one does not affect
the justification status of the invariant arguments: semantics of this kind are
called transparent [1].

? This research has been supported by the Austrian Science Fund (FWF) through
projects I1102 and P25521.
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Then, somewhat resembling functional completeness of a specific set of logic
gates, a natural question concerns the expressive power of transparent semantics
in the context of an interacting sub-framework: given a so-called I/O specifica-
tion, i.e. a function describing an input/output behaviour by mapping extensions
(resp. labellings) to sets of extensions (resp. labellings), is there an af with
designated input and output arguments realizing this function under a given
semantics? In this paper, we answer this question as follows:

– For the stable, preferred, semi-stable, stage, complete, ideal, and grounded
semantics we exactly characterize all realizable two-valued I/O specifications.

– For the preferred and grounded labellings we exactly characterize all realiz-
able three-valued I/O specifications.

Answering this question is essential in many aspects. First, it adds to the
analysis and comparison of semantics (see e.g. [5, 3]), by providing an absolute
characterization of their functional expressiveness, which holds independently
of how the abstract argumentation framework is instantiated. Second, it lays
foundations towards a theory of dynamic and modular argumentation. More
specifically, a functional characterization provides a common ground for dif-
ferent representations of the same sub-framework, e.g. to devise a summarized
version of a sub-framework, or to give an argumentation-based view of the same
framework at different levels of abstraction, as in metalevel argumentation [12].
One may also translate a different formalism to an af or vice versa, or provide
an argument-free representation of a given af for human/computer interaction
issues: in all of these cases, it is important to know whether an input/output be-
havior is realizable under a given argumentation semantics. Finally, our results
are important in the dynamic setting of strategic argumentation, where a player
may exploit the fact that for some set of arguments certain labellings are achiev-
able (or non achievable) independently of the labelling of other arguments, or
more generally she/he may exploit knowledge on the set of realizable dependen-
cies. For example, an agent may desire to achieve some goal, i.e., ensure that a
certain argument is justified. Considering arguments brought up by other agents
as input arguments, our results enable to verify whether the goal is achievable
and provide one particular way for the agent to bring up further arguments in
order to succeed.

The paper is organized as follows. After providing the necessary background
in Section 2, Section 3 introduces the notion of I/O-gadget to represent a sub-
framework, and tackles the above problem with extension-based two-valued spec-
ifications. Labelling-based three-valued specifications are investigated in Sec-
tion 4 and Section 5 concludes the paper.

2 Background

We assume a countably infinite domain of arguments A. An argumentation
framework (af) is a pair F = (A,R) where A ⊆ A and R ⊆ A× A. We assume
that A is non-empty and finite. For an af F = (A,R) and a set of arguments
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S ⊆ A, we define S+
F = {a ∈ A | ∃s ∈ S : (s, a) ∈ R}, S⊕F = S ∪ S+

F , and
S−F = {a ∈ A | ∃s ∈ S : (a, s) ∈ R}.

Given F = (A,R), a set S ⊆ A is conflict-free (in F ), if there are no ar-
guments a, b ∈ S : (a, b) ∈ R. An argument a ∈ A is defended (in F ) by a set
S ⊆ A if ∀b ∈ A : (b, a) ∈ R ⇒ b ∈ S+

F . A set S ⊆ A is admissible (in F ) if it
is conflict-free and defends all of its elements. We denote the set of conflict-free
and admissible sets in F as cf(F ) and ad(F ), respectively.

An extension-based semantics σ associates to any F = (A,R) the (possibly
empty) set σ(F ) including subsets of A called σ-extensions. In this paper we focus
on complete, grounded, preferred, ideal, stable, stage and semi-stable semantics,
with extensions defined as follows:

– S ∈ co(F ) iff S ∈ ad(F ) and a ∈ S for all a ∈ A defended by S;
– S ∈ gr(F ) iff S is the least element in co(F );
– S ∈ pr(F ) iff S ∈ ad(F ) and @T ∈ ad(F ) s.t. T ⊃ S;
– S ∈ id(F ) iff S ∈ ad(F ), S ⊆ ⋂ pr(F ) and @T ∈ ad(F ) s.t. T ⊆ ⋂ pr(F ) and
T ⊃ S;

– S ∈ st(F ) iff S ∈ cf(F ) and S⊕F = A;
– S ∈ sg(F ) iff S ∈ cf(F ) and @T ∈ cf(F ) s.t. T⊕F ⊃ S⊕F ;
– S ∈ se(F ) iff S ∈ ad(F ) and @T ∈ ad(F ) s.t. T⊕F ⊃ S⊕F .

Given F = (A,R) and a set O ⊆ A, the restriction of σ(F ) to O, denoted as
σ(F )|O, is the set {E ∩O | E ∈ σ(F )}.

Given a set of arguments A, a labelling L is a function assigning each ar-
gument a ∈ A exactly one label among t, f and u, i.e. L : A 7→ {t, f, u}. If
the arguments A = {a1, . . . , an} are ordered, then we denote a labelling of A
as a sequence of labels, e.g. the labelling tuf of arguments {a1, a2, a3} maps a1
to t, a2 to u, and a3 to f. We denote the set of all possible labellings of A as
L(A). Likewise, given an af F , we denote the set of all possible labellings of
(the arguments of) F as L(F ). Given a labelling L and an argument a, L(a)
denotes the labelling of a wrt. L; finally in(L), out(L), and undec(L) denotes the
arguments labeled to t, f, and u by L, respectively.

Definition 1. Given a set of arguments A and labellings L1, L2 thereof, L1 v
L2 iff in(L1) ⊆ in(L2) and out(L1) ⊆ out(L2). Moreover we call L1 and L2

– comparable if L1 v L2 or L2 v L1

– compatible if in(L1) ∩ out(L2) = out(L1) ∩ in(L2) = ∅
Note that if L1 and L2 are comparable then they are also compatible.
An argumentation semantics can be defined in terms of labellings rather than

of extensions, i.e. the labelling-based version of a semantics σ associates to F a
set Lσ(F ) ⊆ L(F ), where any labelling L ∈ Lσ(F ) corresponds to an extension
S ∈ σ(F ) as follows: an argument a ∈ A is labeled to t iff a ∈ S, is labeled
to f iff a ∈ S+

F , is labeled to u if neither of the above conditions holds. Given
F and a set O ⊆ A, the restriction of Lσ(F ) to O, denoted as Lσ(F )|O, is the
set {L ∩ (O × {t, f, u}) | L ∈ Lσ(F )}. The following well-known result can be
deduced e.g. from the semantics account given in [7].

Proposition 1. For an af F , Lpr(F ) = maxv(Lco(F )).
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3 Extension-based I/O-gadgets

An I/O-gadget represents a (partial) af where two sets of arguments are identi-
fied as input and output arguments, respectively, with the restriction that input
arguments do not have any ingoing attacks.

Definition 2. Given a set of input arguments I ⊆ A and a set of output argu-
ments O ⊆ A with I ∩ O = ∅, an I/O-gadget is an af F = (A,R) such that
I,O ⊆ A and I−F = ∅.

The injection of a set J ⊆ I to F simulates the input J in the way that all
arguments in J are accepted (none of them has ingoing attacks since F is an
I/O-gadget) and all arguments in (I \ J) are rejected (each of them is attacked
by the newly introduced argument z, which has no ingoing attacks).

Definition 3. Given an I/O-gadget F = (A,R) and a set of arguments J ⊆ I,
the injection of J to F is the af .(F, J) = (A ∪ {z}, R ∪ {(z, i) | i ∈ (I \ J)}),
where z is a newly introduced argument.

An I/O-specification describes a desired input/output behaviour by assigning
to each set of input arguments a set of sets of output arguments.

Definition 4. A two-valued3 I/O-specification consists of two sets I,O ⊆ A

and a total function f : 2I 7→ 22
O

.

In order for an I/O-gadget F to satisfy f, the injection of each J ⊆ I to
F must have f(J) as its σ-extensions restricted to the output arguments. So,
informally, with input J applied the set of outputs under σ should be exactly
f(J).

Definition 5. Given I,O ⊆ A, a semantics σ and an I/O-specification f, the
I/O-gadget F satisfies f under σ iff ∀J ⊆ I : σ(.(F, J))|O = f(J).

The question we want to address is which conditions f must fulfill to be satis-
fiable by some I/O-gadget and how an I/O-gadget doing so can be constructed.

Definition 6. Given an I/O-specification f, let Y = {yi | i ∈ I} and X = {xSJ |
J ⊆ I, S ∈ f(J)}. The canonical I/O-gadget is defined as

C(f) = (I ∪O ∪ Y ∪X ∪ {w},
{(i, yi) | i ∈ I}∪
{(yi, xSJ ) | xSJ ∈ X, i ∈ J}∪
{(i, xSJ ) | xSJ ∈ X, i ∈ (I \ J)}∪
{(x1, x2) | x1, x2 ∈ X,x1 6= x2}∪
{(xi, w) | xi ∈ X} ∪ {(w,w)}∪
{(xSJ , o) | J ⊆ I, S ∈ f(J), o ∈ (O \ S)}).

3 In the following we omit this specification.
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Intuitively, xSJ shall enforce output S for input J . Moreover, w ensures that
any stable extension of (an injection to) C(f) must contain an argument in X.

The following theorem shows that any I/O-specification is satisfiable under
stable semantics.

Theorem 1. Every I/O-specification f is satisfied by C(f) under st.

Proof. Let I,O ⊆ A and f be an arbitrary I/O-specification. We have to show
that st(.(C(f), J))|O = f(J) holds for any J ⊆ I. Consider such a J ⊆ I.

First let S ∈ f(J). We show that E = {z}∪J ∪{yi | i ∈ (I \J)}∪{xSJ}∪S ∈
st(.(C(f), J)), thus S ∈ st(.(C(f), J))|O. E is conflict-free in .(C(f), J) since z
only attacks the arguments (I \ J), an yi with i ∈ (I \ J) is only attacked by
i /∈ E, xSJ is only attacked by other x ∈ X, i ∈ (I \ J) and yj with j ∈ J , and
arguments in S are only attacked by arguments from X but not from xSJ . E is
stable in .(C(f), J) since xSJ attacks w, all other x ∈ X and all o ∈ (O \ S); z
attacks all i ∈ (I \ J); each yj with j ∈ J is attacked by j.

It remains to show that there is no S′ ∈ st(.(C(f), J))|O with S′ /∈ f(J).
Towards a contradiction assume there is some S′ ∈ st(.(C(f), J))|O with S′ /∈
f(J). Hence there must be some E′ ∈ st(.(C(f), J)) with S′ ⊂ E′. Since w attacks
itself, w /∈ E′, thus by construction of C(f) there must be some xS

′
J′ ∈ (X ∩ E′)

attacking w, and xS
′

J′ must attack all o ∈ (O\S′). Since S′ /∈ f(J) by assumption,
it must hold that J ′ 6= J . Now note that z ∈ E′ and j ∈ E′ for all j ∈ J , since
they are not attacked by construction of .(C(f), J). Now if J ′ ⊂ J then there is
some j ∈ (J \J ′) attacking xS

′
J′ , a contradiction to conflict-freeness of E′. On the

other hand if J ′ 6⊆ J there is some j′ ∈ (J ′ \J) which is attacked by z. Therefore
also yj′ ∈ E′, which attacks xS

′
J′ , again a contradiction. ut

As to stage, preferred and semi-stable semantics, any I/O-specification is
satisfiable, provided that a (possibly empty) output is prescribed for any input.

Proposition 2. Every I/O-specification f such that ∀J ⊆ I, f(J) 6= ∅ is satisfied
by C(f) under σ ∈ {sg, pr, se}.

Proof (Sketch). Note that ∀J ⊆ I, stable, preferred, stage and semi-stable ex-
tensions coincide in .(C(f), J), thus the result follows from Theorem 1. ut

Theorem 2. An I/O-specification f is satisfiable under σ ∈ {sg, pr, se} iff ∀J ⊆
I, f(J) 6= ∅.

Proof. ⇐: by Proposition 2.
⇒: Follows directly by the fact that in any af, particularly in any injection of
some extension to an I/O-gadget, a σ-extension always exists. ut

Example 1. Consider the I/O-specification f with I = {i, j} and O = {o, p, q}
defined as follows: f(∅) = {∅}; f({i}) = {{o, q}}; f({j}) = {{o, p, q}, {p, q}}; and
f({i, j}) = {{o, p, q}, {o, p}}. The canonical I/O-gadget C(f) is depicted below4

(without the dotted part):

4 Argument names such as x
{c,d}
{a,b} are abbreviated by xcd

ab.
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Let σ be a semantics in {st, sg, se, pr}. One can verify that for every possible
input J ⊆ I, the injection of J to C(f), has exactly f(J) as σ-extensions restricted
to O. As an example let J = {j}. .(C(f), {j}) adds the argument z attacking

i to C(f). Now σ(.(C(f), {j})) = {{z, j, yi, x{p,q}{j} , p, q}, {z, j, yi, x{o,p,q}{j} , o, p, q}},
hence σ(.(C(f), {j}))|O = {{p, q}, {o, p, q}} = f({j}).

Also for complete, grounded and ideal semantics we are able to identify a
necessary and sufficient condition for satisfiability. While we show sufficiency of
these conditions in more detail, their necessity is by the well-known facts that
the intersection of all complete extensions is always a complete extension too
and ideal and grounded semantics always yield exactly one extension.

Definition 7. An I/O-specification f is closed iff for each J ⊆ I it holds that
f(J) 6= ∅ and

⋂
f(J) ∈ f(J).

Proposition 3. Every closed I/O-specification f is satisfied by C(f) under co.

Proof. Let J ⊆ I and S = f(J). By construction of .(C(f), J), E∗ = {z} ∪ J ∪
{yi | i ∈ (I \ J)} is contained in all complete extensions, while the elements of
(I \ J) ∪ {yi | i ∈ J} are attacked by E∗ and thus by all complete extensions.
All xS

′
J′ with J ′ 6= J are attacked by J or some yi with i ∈ (I \ J), thus they are

attacked by E∗, while all xSJ with S ∈ S attack each other and the other attacks
they receive come from elements attacked by E∗ in turn. Two cases can then
be distinguished. If |S| = 1 then by construction of .(C(f), J) there is just one
xSJ defended by E∗, thus the only complete extension is E∗ ∪ {xSJ} ∪ S. If, on
the other hand, |S| > 1, any xSJ with S ∈ S can be included, giving rise to the
complete extension E∗ ∪ {xSJ} ∪ S, or none of xSJ can be included, giving rise to
the complete extension E∗ ∪⋂S since an xSJ attacks all o ∈ (O \S). Taking into
account that

⋂
S ∈ S, in both cases we have that co(.(F, J))|O = f(J). ut

Theorem 3. An I/O-specification f is satisfiable under co iff f is closed.

Proposition 4. Every I/O-specification f with |f(J)| = 1 for each J ⊆ I is
satisfied by C(f) under gr and id.

Proof (Sketch). This follows the same idea as the proof of Proposition 3. Since
|f(J)| = 1, .(C(f), J) has only one complete extension for each J ⊆ I, which is
also grounded and ideal. ut
Theorem 4. An I/O-specification f is satisfiable under gr and id iff |f(J)| = 1
for each J ⊆ I.
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4 Labelling-based I/O-gadgets

In the previous section we have dealt with I/O-specifications mapping extensions
to sets of extensions. In general, there are two reasons why an argument does
not belong to an extension, i.e. either because it is attacked by the extension or
because it is undecided due to insufficient justification. This distinction impacts
on the justification status of arguments, since attacks from undecided arguments
can prevent attacked arguments to belong to an extension, while attacks from
out arguments are ineffective. In order to take into account this distinction, we
first provide a labelling-based counterpart of the notions introduced in Section 3.

Definition 8. A 3-valued I/O-specification consists of two sets I,O ⊆ A and
a total function f : L(I) 7→ 2L(O).

Definition 9. Given an I/O-gadget F = (A,R) and a labelling L of I, the
labelling-injection of L to F is the af I(F,L) = (A ∪ {z}, R ∪ {(z, a) | L(a) =
f} ∪ {(b, b) | L(b) = u}), where z is a newly introduced argument.

Definition 10. Given I,O ⊆ A, a semantics σ and a 3-valued I/O-specification
f, the I/O-gadget F satisfies f under σ iff ∀L ∈ L(I) : Lσ(I(F,L))|O = f(L).

By definition of stable labellings it is clear that in order to be satisfied under
st, a 3-valued I/O-specification must only be non-empty for labellings with each
argument labeled to t or f.

Theorem 5. A 3-valued I/O-specification f is satisfiable under st iff for each
L ∈ L(I) it holds that

– if ∃i ∈ I : L(i) = u then f(L) = ∅, and
– otherwise K(o) 6= u for all K ∈ f(L) and o ∈ O.

Proof. ⇒: If ∃i ∈ I : L(i) = u then for any I/O-gadget F , I(F,L) contains a
self-attacking argument otherwise unattacked, hence Lst(I(F,L)) = ∅. In the
other case, by definition of stable extension it is clear that each o ∈ O must be
labelled either t or f by any stable labelling.
⇐: Follows from Theorem 1. If ∃i ∈ I : L(i) = u then st(I(C(f), L)) = ∅,
otherwise the labelling-injection coincides with the normal injection. ut

In order to characterize those 3-valued I/O-specifications which are satisfi-
able under the other semantics we need the concept of monotonicity.

Definition 11. A 3-valued I/O-specification f is monotonic iff for all L1 and
L2 such that L1 v L2 it holds that ∀K1 ∈ f(L1)∃K2 ∈ f(L2) : K1 v K2.

The intuitive meaning of monotonicity is the following: if K1 is an output for
input L1, then for every input which is more informative than L1 there must be
an output more informative than K1. First a rather obvious observation:

Proposition 5. For every 3-valued I/O-specification f which is satisfiable under
gr, |f(L)| = 1 for all L ∈ L(I).
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The following was shown in Proposition 7 of [1] for complete semantics.

Proposition 6. Every 3-valued I/O-specification which is satisfiable under {gr,
pr} is monotonic.

Proof (Sketch). Let f be a 3-valued I/O-specification and suppose it is satisfied
by the I/O-gadget F under gr. Moreover let L1 v L2 be labellings of I. Proposi-
tion 7 of [1] says that ∀K2 ∈ Lco(I(F,L2))|O ∃K1 ∈ Lco(I(F,L1))|O : K1 v K2

and ∀K1 ∈ Lco(I(F,L1))|O ∃K2 ∈ Lco(I(F,L2))|O : K1 v K2. By the facts
that |f(L1)|=|f(L2)|=1 (cf. Proposition 5) and Lpr(F ) = maxv(Lco(F )) for each
AF F (cf. Proposition 1), the result follows for gr and pr, respectively. ut

In Propositions 5 and 6 we have given necessary conditions for 3-valued I/O-
specifications to be satisfiable under gr and pr. In the following we show that
these conditions are also sufficient in the sense that we can find a satisfying
I/O-gadget. The constructions of these I/O-gadgets will depend on the given
3-valued I/O-specification and on the semantics, but they will share the same
input and output part. The semantics-specific part, denoted by Xσ

f and Rσf in
the following definition, will be given later.

Definition 12. Given a 3-valued I/O-specification f we define I ′ = {i′ | i ∈ I},
O′ = {o′ | o ∈ O}, RI = {(i, i′) | i ∈ I} and RO = {(o′, o′), (o′, o) | o ∈ O}. The
3-valued canonical I/O-gadget for semantics σ is defined as

Dσ
f = (I ∪ I ′ ∪Xσ

f ∪O′ ∪O,RI ∪Rσf ∪RO).

with Rσf ⊆ ((I ∪ I ′)×Xσ
f ) ∪ (Xσ

f ×Xσ
f ) ∪ (Xσ

f × (O′ ∪O)).

Now we turn to the semantics-specific constructions. For grounded semantics
we need the concept of determining input labellings. An input labelling L is
determining for output argument o if L is a minimal (w.r.t. v) input labelling
where o gets a concrete value (t or f) according to f.

With abuse of notation, in the following we may identify a set including a
single labelling with the labelling itself.

Definition 13. Given a 3-valued I/O-specification f with |f(L)| = 1 for all
L ∈ L(I) and an argument o ∈ O, a labelling L of I is determining for o, if
f(L)(o) 6= u and ∀L′ v L : f(L′)(o) = u. We denote the set of labellings which
are determining for o as df(o).

Example 2. Let f be the following 3-valued I/O-specification with I = {i1, i2}
and O = {o1, o2}: f(uu) = {uu}; f(tu) = {tu}; f(ut) = {ut}; f(uf) = {uf};
f(fu) = {uu}; f(tt) = {tt}; f(tf) = {tf}; f(ft) = {ut}; and f(ff) = {tf} We
have the following sets of determining labellings: df(o1) = {tu, ff} and df(o2) =
{ut, uf}. Consider, for instance, the input labelling ff. We have f(ff) = tf. In
order to check if ff is determining for o1 we have to look at all input labellings
being less committed than ff. Now we observe f(uf) = uf, f(fu) = f(uu) = uu.
In all of these desired output labellings o1 has value u, so ff is determining for
o1. On the other hand ff is not determining for o2, since f(uf)(o2) = f.
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Definition 14. Given a 3-valued I/O-specification f with |f(L)=1| for all L ∈
L(I), the gr-specific part of Dgr

f is given by

Xgr
f ={xLo | o ∈ O,L ∈ df(o)}, and

Rgr
f ={(i, xLo ) | xLo ∈ Xgr

f , L(i) = f} ∪ {(i′, xLo ) | xLo ∈ Xgr
f , L(i) = t}∪

{(xLo , o′) | xLo ∈ Xgr
f , f(L)(o) = t} ∪ {(xLo , o) | xLo ∈ Xgr

f , f(L)(o) = f}.

For every o ∈ O and each labelling L which is determining for o, there is
the argument xLo . This argument can be labelled t if L is the labelling of I and
intuitively enforces the labelling of o to be as given by f(L) .

The next results, requiring two preliminary lemmata, characterize satisfiabil-
ity of grounded semantics.

Lemma 1. Let f be a 3-valued I/O-specification which is monotonic and s.t.
|f(L)| = 1 for each L ∈ L(I). Let o ∈ O and L,L′ ∈ L(I) such that f(L)(o) = t

and f(L′)(o) = f. Then L and L′ are not compatible.

Lemma 2. Given a 3-valued I/O-specification f which is monotonic and s.t.
|f(L)| = 1 for each L ∈ L(I), let o ∈ O and L,L′ ∈ L(I) such that L is
determining for o. Then Lgr(I(Dgr

f , L
′))(xLo ) is

– t iff L v L′;
– f iff L and L′ are not compatible; and
– u iff L 6v L′ but L and L′ are compatible.

Proposition 7. Every 3-valued I/O-specification f which is monotonic and s.t.
|f(L)| = 1 for each L ∈ L(I), is satisfied by Dgr

f under gr.

Proof. Consider some input labelling L. We have to show Lgr(I(Dgr
f , L))|O =

f(L). To this end let o ∈ O.
Assume f(L)(o) = u. Then, since f is monotonic, f(L′)(o) = u for all L′ v L.

Therefore, there is no L′ v L with L′ ∈ df(o). By Lemma 2 we get that for all

L′′ ∈ df(o) it holds that Lgr(I(Dgr
f , L))(xL

′′
o ) 6= t. Since such xL

′′
o are the only

potential attackers of o and o′, Lgr(I(Dgr
f , L))(o) = u.

Next assume f(L)(o) = t. Then there is some L′ v L with L′ ∈ df(o) and

f(L′)(o) = t. By Lemma 2 we get Lgr(I(Dgr
f , L))(xL

′
o ) = t. Moreover, xL

′
o attacks

o′, hence Lgr(I(Dgr
f ,K))(o′) = f. Towards a contradiction assume there is some

xL
′′

o attacking o with Lgr(I(Dgr
f , L))(xL

′′
o ) ∈ {t, u}. Then, by Lemma 2, L′′ and

L are compatible. However, by construction of Dgr
f , f(L′′)(o) = f, f(L)(o) = t

and, by Lemma 1 L′′ and L are not compatible.
Finally assume f(L)(o) = f. Then there is some L′ v L with L′ ∈ df(o)

and f(L′)(o) = f. By Lemma 2 we get Lgr(I(Dgr
f , L))(xL

′
o ) = t. Moreover, xL

′
o

attacks o, hence Lgr(I(Dgr
f , L))(o) = f. ut

Example 3. Again consider the 3-valued I/O-specification f from Example 2. We
have seen the determining labellings there. The I/O-gadget Dgr

f is depicted be-

low. Consider for example the labelling-injection of fu to Dgr
f , which is indicated
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by the dotted part of the figure. We get Lgr(I(Dgr
f , fu))|O = uu, satisfying the

I/O-specification. One can check that this holds for all possible labelling-injec-
tions, hence Dgr

f satisfies f under the grounded semantics.

z i1 i′1 i′2 i2

xtu
o1 xut

o2 xuf
o2 xff

o1

o1 o′1 o′2 o2

Theorem 6. A 3-valued I/O-specification f is satisfiable under gr iff f is mono-
tonic and for each L ∈ L(I), |f(L)| = 1.

Definition 15. Given a 3-valued I/O-specification f, the pr-specific part of Dpr
f

is given by

Xpr
f ={xLK | L ∈ L(I),K ∈ f(L)}, and

Rpr
f ={(i, xLK) | xLK ∈ Xpr

f , L(i) = f} ∪ {(i′, xLK) | xLK ∈ Xpr
f , L(i) = t}∪

{(xLK , o′) | xLK ∈ Xpr
f ,K(o) = t} ∪ {(xLK , o) | xLK ∈ Xpr

f ,K(o) = f}∪
{(xLK , xL

′
K′) | ¬(L@L′∧KvK ′) ∧ ¬(LAL′∧KwK ′)}.

Every input-output-combination is represented by an argument in Dpr
f . We

first show a technical lemma, giving sufficient conditions on the labelling-status
of the arguments in Xpr

f to get the desired labelling of the output arguments.

Lemma 3. Given a 3-valued I/O-specification f and an input labelling L ∈
L(I). The following holds for each preferred labelling P of I(Dpr

f , L): If P (xLK) =

t and for all xL
′

K′ ∈ Xpr
f , K ′ A K ⇒ P (xL

′
K′) 6= t and (K ′ 6v K ∧K 6v K ′) ⇒

P (xL
′

K′) = f, then P |O = K.

We proceed by showing that Dpr satisfies every monotonic function under
the preferred semantics.

Proposition 8. Every 3-valued I/O-specification f which is monotonic is sat-
isfied by Dpr

f under pr.

Proof. Consider an arbitrary input labelling L ∈ L(I). We have to show that
Lpr(I(Dpr

f , L))|O = f(L).

Similar to Lemma 2 one can check that those xL
′

K′ ∈ Xpr
f with L w L′ are

the only arguments in Xpr
f which can be t in a preferred labelling of I(Dpr

f , L).

Now the arguments xLK with K ∈ f(L) form a clique in I(Dpr
f , L). Moreover

each of these xLK defends itself, hence there is a preferred labelling of I(Dpr
f , L)

for each K ∈ f(L) identified by xLK . Let PK be the preferred labelling with
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PK(xLK) = t where K ∈ f(L). All xL
′

K′ with K ′ 6vK ∧K ′ 6wK are attacked by xKL ,

hence PK(xL
′

K′) = f. Assume K ′ A K. If L′ 6A L, then xL
′

K′ is again attacked by

xKL and PK(xL
′

K′) = f. If L′ A L, PK(xL
′

K′) 6= t since it is attacked by some i or
i′ (i ∈ I) which is u in PK . Therefore, by Lemma 3, PK |O = K.

It remains to show that there is no other preferred labelling besides these
PK with K ∈ f(L). Towards a contradiction, assume that there is a preferred
labelling P ′ where no xLK with K ∈ f(L) is t. By our initial considerations, those

xL
′

K′ with L′ @ L are the only x-arguments which can be t in P ′. It cannot be
the case that none of them is t, since P ′ would not be preferred. Then there is at
least an xL

′
K′ which is t in P ′, with L′ @ L, and without loss of generality we can

assume that there is no xL
′′

K′′ which is t and L′ @ L′′. Now, since f is monotonic
there has to be a K ∈ f(L) such that K ′ v K. We prove that no x-argument
attacking xLK is t in P ′.

First, the only x-arguments that can be t are those xL
′′

K′′ with L′′ @ L. Note

that, according to Definition 15, xL
′

K′ does not attack xLK , since L′ @ L∧K ′ v K.

If an attacker xL
′′

K′′ is attacked in turn by xL
′

K′ then it is f, otherwise either
L′′ @ L′ ∧K ′′ v K ′ or L′ @ L′′ ∧K ′ v K ′′. The first case is impossible, since we
would have L′′ @ L ∧K ′′ v K, entailing that xL

′′
K′′ does not attack xLK . In the

other case, by the assumption on xL
′

K′ it holds that xL
′′

K′′ is not t.
Now, xLK defends itself against all x-arguments and none of them is t, more-

over by construction of I(Dpr
f , L), all attackers from I and I ′ are f. But then,

consider the labelling P ′′ obtained from P ′ by assigning to xLK the label t, and
by assigning to all the attackers of xLK the label f. P ′′ is admissible and P ′ v P ′′,
contradicting the maximality of P ′. ut
Theorem 7. A 3-valued I/O-specification f is satisfiable under pr iff f is mono-
tonic.

As to remaining semantics, note that Propositions 7 and 8 apply to ideal
and semi-stable semantics, respectively, since for each L the grounded labelling
of I(Dgr

f , L) coincides with the ideal labelling, and the preferred labellings of

I(Dpr
f , L) coincide with semi-stable labellings. However, this does not allow to

derive a complete characterization, since there are non-monotonic 3-valued I/O-
specifications, satisfiable by ideal and semi-stable semantics, respectively.

5 Conclusions

To the best of our knowledge, this is the first characterization of the input/output
expressive power of argumentation semantics. In [10], expressiveness has been
studied as the capability of enforcing sets of extensions. The problem faced in
this paper differs in two aspects: on the one hand, we have to enforce a set of
extensions for any input rather than a single set of extensions, on the other
hand we can exploit non-output arguments that are not seen outside a sub-
framework. Moreover we also consider labellings besides extensions. A labelling-
based investigation exploiting hidden arguments is carried out in [11], but still
in the context of an ordinary af rather than an I/O-gadget.
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We restricted our considerations to total I/O-specifications, where the output
is defined for each input. One can also think of situations where we do not care
about the output for some inputs, i.e. the interest lies in the satisfiability of a
partial function. We did not tackle these issues here, but plan to do so as part
of future work.

Further future work includes the 3-valued I/O-characterization of complete
semantics, being the only transparent semantics [1] for which this was left open.
Moreover, the investigation of further semantics such as CF2 [4] would be of
interest. Another issue is the construction of I/O-gadgets from compact I/O-
specifications where the function is not explicitly stated but, for instance, de-
scribed as a Boolean (or three-valued) circuit. We conjecture that I/O-gadgets
can then be composed from simple building blocks along the lines of the given
circuit. A related question in this direction is the identification of minimal I/O-
gadgets satisfying a given specification.
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Abstract.  The  well  known  Aristotelian  syllogistic  system  consists  of  256
moods. We have found earlier that 136 moods are distinct in terms of equal
truth  ratios  that  range  in  τ=[0,1].  The  truth  ratio  of  a  particular  mood  is
calculated by relating the number of true and false syllogistic cases the mood
matches. A mood with truth ratio is a fuzzy-syllogistic mood. The introduction
of  (n-1)  fuzzy existential  quantifiers  extends  the  system to  fuzzy-syllogistic
systems n�, 1<n, of which every fuzzy-syllogistic mood can be interpreted as a
vague inference with a generic truth ratio that is determined by its syllogistic
structure. We experimentally introduce the logic of a fuzzy-syllogistic ontology
reasoner that is based on the fuzzy-syllogistic systems n . We further introduce�
a new concept, the relative truth ratio  rτ=[0,1] that is calculated based on the
cardinalities of the syllogistic cases.

Keywords. Syllogistic reasoning; fuzzy logic; approximate reasoning.

1 INTRODUCTION

Multi-valued logics were initially introduced by Łukasiewicz [10], as an extension
to propositional logic. After Zadeh generalised multi-valued logics within fuzzy logic
[19], he discussed syllogistic reasoning with fuzzy quantifiers in the context of fuzzy
logic [20]. However, this initial fuzzification of syllogistic moods was experimentally
applied on only a few true moods and did not systematically cover all moods. The
first systematic application of multi-valued logics on syllogisms were intermediate
quantifiers and their reflection on the square of opposition  [14]. However only set-
theoretic representation of moods as syllogistic cases allow 64analysing the fuzzy-
syllogistic systems n  � mathematically exactly, such as by calculating truth ratios of
moods  [6] and their algorithmic usage in fuzzy inferencing  [7]. Here we present a
sample application of n  for fuzzy-syllogistic ontology reasoning.�

Learning  from  scratch  can  be  modelled  probabilistically,  as  objects  and  their
relationships need to be first synthesised from a statistically significant number of
perceived instances of similar objects. This leads to probabilistic ontologies [4], [15],
[11], in which attributes of objects may be synthesised also as objects.

There are more probabilistic ontology reasoners than fuzzy or possibilistic ones
and most of them reason with probabilist ontologies [8]. Several ontology reasoners
employ  possibilistic  logic  and  reason  with  fuzzy  ontologies.  The  most  popular
reasoning logic being hyper-tableau, for instance in HermiT [12]. Other experimental
reasoning  logics  are  also  interesting  to  analyse,  such  as  fuzzy  rough  sets  and
Łukasiewicz logic [3] in FuzzyDL [1], Zadeh and Gödel fuzzy operators in DeLorean
[2], Mamdani inference in HyFOM [18] or possibilistic logic in KAON [15]. Fuzzy-
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syllogistic reasoning (FSR) can be seen as a generalisation of both, fuzzy-logical and
possibilistic reasoners.

A fuzzy-syllogistic  ontology  (FSO)  extends  the  concept  of  ontology with  the
quantities  that  led  to  the  ontological  concepts.  A  FSO  is  usually  generated
probabilistically, but does not preserve any probabilities like probabilistic ontologies
[11] or  probabilistic  logic  networks  [5] do.  A FSO can  be  a  fully  connected  and
bidirectional graph.

Several generic reasoning logics are discussed in the literature, like probabilistic,
non-monotonic or  non-axiomatic reasoning  [17].  Fuzzy-syllogistic  reasoning in  its
basic form [21] is possibilistic, monotonic and axiomatic.

Syllogistic  reasoning  reduced  to  the  proportional  inference  rules  deduction,
induction  and  abduction  are  employed  in  the  Non-Axiomatic  Reasoning  System
(NARS)  [16]. Whereas FSR uses the original syllogistic moods and their fuzzified
extensions [22].

There is one implementation mentioned in the literature that is close to the concept
of  syllogistic  cases:  Syllogistic  Epistemic  REAsoner  (SEREA)  implements  poly-
syllogisms  and  generalised  quantifiers  that  are  associated  with  combinations  of
distinct spaces, which are mapped onto some interval arithmetic. Reasoning is then
performed with concrete quantities, determined with the interval arithmetic [13].

First  the fuzzy-syllogistic systems  n  are discussed,�  thereafter  fuzzy-syllogistic
reasoning  is  introduced,  followed by its  sample  application  on  a  fuzzy-syllogistic
ontology and the introduction of relative truth ratios rτ.

2 FUZZY-SYLLOGISTIC SYSTEMS

The  fuzzy-syllogistic  systems  n ,  with  1<n  fuzzy  quantifiers,  extend  the  well�
known Aristotelian syllogisms with fuzzy-logical concepts, like truth ratio for every
mood and fuzzy quantifiers or in general fuzzy sets. We discuss first the systems n�
and introduce them further below as the basic reasoning logic of FSR.

2.1 Aristotelian Syllogistic System �
The Aristotelian syllogistic system � consists of inclusive existential quantifiers

ψ, ie I includes A and O includes E as one possible case:

Universal affirmative: All S are P: ψ=A: {x| x P-S  x∉ ∧ ∈P∩S}

Universal negative: All S are not P: ψ=E: {x| x∈S-P  ∧ x P-S}∉

Inclusive existential affirmative: Some S are P: ψ=I: A  {x| (x S-P  ∪ ∉ ∧ x P-S ∉ ∧
x∈P∩S)  (x S-P  x∨ ∉ ∧ ∈P∩S)}

Inclusive existential negative: Some S are not P: ψ=O: E  {x| (x∪ ∈S-P  ∧ x P-S∉
 x P∩S)  (x∧ ∉ ∨ ∈S-P  x P∩S)}∧ ∉

A  categorical  syllogism  ψ1ψ2ψ3F  is  an  inference  schema  that  concludes  a
quantified  proposition  Φ3=Sψ3P  from  the  transitive  relationship  of  two  given
quantified proportions Φ1={Mψ1P, Pψ1M} and Φ2={Sψ2M, Mψ2S}:

ψ1ψ2ψ3F = (Φ1={Mψ1P, Pψ1M}, Φ2={Sψ2M, Mψ2S}, Φ3=Sψ3P)
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where F={1,  2,  3,  4} identifies  the four possible combinations of  Φ1 with  Φ2,
namely  syllogistic  figures.  Every  figure  produces  43=64  moods  and  the  whole
syllogistic system  has 4x64=256 moods. �

2.2 Syllogistic­Cases
Syllogistic cases are an elementary concept of the fuzzy-syllogistic systems  n�,

for calculating truth ratios [6] of the moods algorithmically [7].
For  three  sets,  7  distinct  spaces  δi,  i=[1,7]  are  possible,  which  can  be  easily

identified in a Venn diagram (Table 1). There are in total j=96 distinct combinations of
the  spaces  Δj=δ1δ2δ3δ4δ5δ6δ7,  j=[1,96]  [22],  which  constitute  the  universal  set  of
syllogistic moods. Out of this universe, we determine for every mood true and false
matching space combinations (Fig 1).

2.3 Fuzzy­Syllogistic Moods
We  extend  the  ancient  binary  truth  classification  of  moods,  to  a  fuzzy

classification with truth values in [0,1]. For this purpose, first the above set-theoretical
definitions of the quantifiers of a particular mood are compared against the set of all
syllogistic cases Δj, j=[1,96], in order to identify true and false matching cases:

True syllogistic cases: Λt = j=1∪96Δj (Φ∈ Δ
1∩ΦΔ

2) →Δj Φ∈ Δ
3

False syllogistic cases: Λf = j=1∪96Δj (Φ∈ Δ
1∩ΦΔ

2) → Δj∉ΦΔ
3

where Λt and Λf is the set of all true and false matching cases of a particular mood,
respectively (Fig 1) and ΦΔ is a proposition in terms of syllogistic cases. For instance,
the two premisses Φ1 and Φ2 of the mood IAI4 of the syllogistic system �, match the
10 syllogistic cases Λt = {Δ4, Δ19, Δ67, Δ24, Δ43, Δ46, Δ68, Δ74, Δ48, Δ76}, which are all true
for the conclusion Φ3 as well. Thus the mood has no false cases Λf = Ø.

The truth ratio of a mood is then calculated by relating the amounts of the two sets
Λt and Λf with each other. Consequently the truth ratio becomes either more true or
more false τ ∈ {τf, τt}:

More true: τt ∈ {|Λf|<|Λt| → 1-|Λf|/(|Λt|+|Λf|)} = [0.545,1]

More false: τf ∈ {|Λt|<|Λf| → |Λt|/(|Λt|+|Λf|)} = [0,0.454]

Table 1: Binary coding of the 7 possible distinct spaces for three sets.

Syllogistic Case Δ95

Binary code Δj=
δ1δ2δ3δ4δ5δ6δ7

* Venn Diagram Space Diagram+

Δ96=1111110#

δ1         δ2         δ3         δ4        δ5         δ6         δ7

*Binary coding of all possible distinct space combinations Δj, j=[1,96] that can be generated for three sets.
#δi=0: space i is empty; δi=1: space i is not empty; i=[1,7].
+Every circle of a space diagram represents exactly one distinct sub-set of M  ∪ P  ∪ S.

P

M S S­M­P P­S­M M P­S∩M S­P∩ S P­M∩ M S P∩ ∩M­S­P
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where |Λt| and |Λf| are the numbers of true and false syllogistic cases, respectively.
A fuzzy-syllogistic mood is then defined by assigning an Aristotelian mood ψ1ψ2ψ3F
the structurally fixed truth ratio τ:

Fuzzy-syllogistic mood: (ψ1ψ2ψ3F, τ)

The truth ratio identifies the degree of truth of a particular mood, which we will
associate  further  below  in  fuzzy-syllogistic  reasoning  with  generic  vagueness  of
inferencing with that mood.

The analysis of the Aristotelian syllogistic system  with these concepts reveals�
several interesting properties, like  has 136 distinct moods, 25 true moods τ=1, of �
which 11 are distinct, and 25 false moods τ=0, of which 11 are distinct, and that  is �
almost point-symmetric on syllogistic cases and truth ratios of the moods [22], [9].

2.4 Fuzzy­Syllogistic System 2�

In the fuzzy-syllogistic system (FSS) 2 ,�  the universal cases A and E are excluded
from the existential quantifiers I and O, respectively:

Exclusive existential affirmative: Some S butNotAll are P: ψ=I: {x| (x S-P ∉ ∧
x P-S  x∉ ∧ ∈P∩S)  (x S-P  x∨ ∉ ∧ ∈P∩S)}

Exclusive existential negative: Some S butNotAll are not P: ψ=O: {x| (x∈S-P ∧
x P-S  x P∩S)  (x∉ ∧ ∉ ∨ ∈S-P  x P∩S)}∧ ∉

For instance the mood IAI4 of �, becomes 2/1IA1I4 in 2 . Because of � the exclusive
existential quantifier  2/1I, the case Δ46 is no more matched by of the first premiss Φ1

and the conclusion Φ3 becomes false for the case Δ19 (Fig 1).

true: Δ4
*=δ4δ6δ7         false: Δ19=δ2δ6δ7      true: Δ67=δ1δ2δ7

true: Δ24=δ2δ4δ6δ7          true: Δ43=δ1δ6δ7      true: Δ68=δ1δ2δ6δ7

true: Δ74=δ1δ2δ4δ7         true: Δ48=δ1δ4δ6δ7      true: Δ76=δ1δ2δ4δ6δ7
* A full list of all syllogistic cases Δj, j=[1,96], can be found elsewhere [22].

Fig 1. 9 syllogistic cases Δj of the mood 2/1IA1I4 of the fuzzy-syllogistic systems 2�.
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The analysis of the FSS 2  shows that  � 2  has 70 distinct moods, 11�  true moods
τ=1, of which 5 are distinct, and 40 false moods τ=0, of which 13 are distinct, and that
2  is not point-symmetric � [22], [9].

2.5 Fuzzy­Syllogistic System n�

By using (n-1) fuzzy-existential quantifiers, the total number of fuzzy-syllogistic
moods of the FSS  n  � increases to (2n)3. The sample mood IAI4 of  can now be �
generalised  to  n/k1IAk2I4,  1<n,  0<k1,k2<n  of  n .  � n/k1IAk2I4  consists  of  (n-1)2 fuzzy-
moods, all having the very same 9 syllogistic cases (Fig 1).

Same linguistic terms used in different FSSs do not necessarily equal each other.
For instance, "most" may have different value ranges in the FSSs 3 , � 4 , � 5 , � 6� and
therefore are in general not equal 3/2I≠4/3I≠5/3I≠6/4I, respectively. Likewise for "half" in
4  and � 6  the quantifiers may not exactly equal � 4/2I≠6/3I, respectively (Table 2).

3 FUZZY-SYLLOGISTIC ONTOLOGY

A fuzzy-syllogistic ontology (FSO) consists of concepts, their relationships and
assertions on them, whereby all quantities are given with fuzzy-quantifications:

Fuzzy-syllogistic ontology: FSO=k(C, R, A)

where C is the set of all concepts, R is the set of all directed relationships between
the concepts and A is the set of all assertions. A FSO may be specified top-down or
may  be  transformed  from  any  existing  ontology,  provided  that  all  quantities  are
determined systematically, in compliance with one of the FSSs k , � 1<k≤n, (Table 2).
In a bottom-up approach, a FSO may be learned from given domain data.

3.1 Learning Fuzzy Quantifiers
Although  existing  learning  approaches  generate  ontological  concepts  and  their

relationships through probabilistic analysis of the data  [4],  [15],  [11], the quantities
that actually imply the concepts and relationships, are not preserved in the ontology
[8]. Therefore we sketch here briefly how to learn such quantities of a FSO.

For any directly connected triple concept relationship of the FSO, seven distinct
relationships are possible (Table 1). The quantity of every such relationship has to be
stored with the FSO. Since the relationships may be bi-directional or a concept may

Table 2. Value ranges of affirmative quantifiers of various fuzzy-syllogistic systems n�

Syllogistic System Quantifier ψ*

Aristotelian � A=all I=some (including A)

Fuzzy

2� A=all 2/1I=some (excluding A)
3� A=all 3/2I=most 3/1I=several
4� A=all 4/3I=most 4/2I=half 4/1I=several
5� A=all 5/4I=many 5/3I=most 5/2I=several 5/1I=few
6� A=all 6/5I=many 6/4I=most 6/3I=half 6/2I=several 6/1I=few
n� A=all n/n-1I ... n/1I

* Column breadths are not drawn proportional to the overall value range and to the other quantifiers.
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be involved in multiple triple relationships (Fig 2), the quantities of all these cases
need to be stored too.

The objective of learning a FSO=k(C, R, A) is, to update the FSO against changing
domain data and to determined the most appropriate FSS k� out of n , 1<k� ≤n.

3.2 Relative truth ratio
Relative truth ratios are calculated from the exact quantities of all syllogistic cases

of a particular mood, rather than from just the amount of the cases:

Relative true: rτt = λf<λt → λf/(λf+λt)

Relative false: rτf = λt<λf → λt/(λt+λf)

where λt =  j=1∑|Λt| |Δt
j|  and λf =  j=1∑|Λf| |Δf

j|  is  the  total  number  of  elements
accumulated over all true and false syllogistic cases, respectively. Where |Λt| and |Λf|
is the number of true and false cases of the mood, respectively. Accordingly, we can
re-define a fuzzy-syllogistic mood with relative truth ratio rτ:

Fuzzy-syllogistic mood with relative truth ratio: (ψ1ψ2ψ3F, rτ)

The structural truth ratio τ of a particular mood represents the generic vagueness
of the mood and is constant, whereas the relative truth ratio rτ adjusts τ by weighting
every case of the mood with its actual quantity.

4 FUZZY-SYLLOGISTIC REASONING

The  fuzzy-syllogistic  systems  ,  � 2  and  � 6� are  currently  implemented
experimentally as  the  reasoning  logic  of  the fuzzy-syllogistic  reasoner  (FSR),  for
reasoning over FSOs [21]. Our objective is to generalise the logic of the reasoner to
n� and to use it as a cognitive primitive for modelling other cognitive concepts within
a cognitive architecture. We now sketch the algorithmic design of the FSR.

6�: (6/4I1I1I1, 40/47=0.851) 6�: (6/5I1I1I2, 40/48=0.833)
Φ1: Most bicycles are good for children Φ1: Many children have bicycles
Φ2: Few sports are good for bicycles Φ2: Few sports are good for bicycles
Φ3: Few sports are good for children Φ3: Few sports are good for children

Fig 2. Sample fuzzy-syllogistic ontology with affirmative relationships and the best matching
fuzzy-syllogistic moods from the syllogistic figures 1 and 2.
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4.1 Reasoning Algorithm
FSR is concerned with identifying for any given concept c∈C, all possible triple

concept relationships  r∈R, r={M,P,S}, of the given FSO=k(C, R, A) and to reason
with the most appropriate fuzzy-syllogistic moods of its FSS k�. Whereby associated
assertions a∈A may be used for exemplifying a particular reasoning.

For instance, for  the concept c=Bicycle, multiple triple relationships r={Bicycle,
Child, Sports} exist in the sample FSO=6(C, R, A) (Fig 2). The reasoner iterates for
the FSSs  k ,  k=[2,n],  and for  their  moods, in order to match the moods with the�
closest fuzzy-syllogistic quantities of relationships r. The reasoner determines the FSS
k=6 and the mood 6/k1IAk2I4, 0<k1,k2<6 as best matches for this example.

In the below example with , I in Φ � 3 may include A and therefore is less true.
Whereas in 3 , � 3/1I in Φ3 is still too general. The best matching quantifiers are found in
6� (Fig 3).

�: (IAI3, 10/10=1.0)
Φ1: Some bicycles are good for children
Φ2: All bicycles are good for sports
Φ3: Some sports are good for children

3�: (3/2IA1I3, 6/6=1.0)
Φ1: Most bicycles are good for children
Φ2: All bicycles are good for sports
Φ3: Several sports are good for children

5 CONCLUSION

The  FSSs  ,  � 2 ,  � 6  were  introduced  as  the  fundamental  logic  of  the  fuzzy-�
syllogistic  reasoner  (FSR)  and  its  usage  was  exemplified  on  a  sample  fuzzy-
syllogistic  ontology (FSO).  The  relative  truth  ratio  rτ  of  a  mood was  introduced,
which adapts the structural truth ratio τ of the mood to the amount of elements of its
syllogistic cases. FSR with FSOs is a generic possibilistic reasoning approach, since
the employed reasoning logic n  is generic.�

We are currently implementing a sample educational application that extends an
existing probabilist ontology learning tool and generates a FSO=k(C, R, A) for a given

6�: (6/4IA1I3, 6/6=1.0) 6�: (6/5IA1I4, 8/9=0.888)
Φ1: Most bicycles are good for children Φ1: Many children have bicycles
Φ2: All bicycles are good for sports Φ2: All bicycles are good for sports
Φ3: Few sports are good for children Φ3: Few sports are good for children

Fig 3. Sample fuzzy-syllogistic ontology with affirmative relationships and the best matching
fuzzy-syllogistic moods from the syllogistic figures 3 and 4.
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domain. For a user-chosen concept C from the ontology FSO, FSR is then used to
reason with all associated quantities R and present the user all associated scenarios A.
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