
Graph Grammar Induction via Evolutionary Computation

Linting Xue
Electrical Engineering

Department
North Carolina State

University
Raleigh, North Carolina,

U.S.A.
lxue3@ncsu.edu

Collin F.Lynch
Computer Science

Department
North Carolina State

University
Raleigh, North Carolina,

U.S.A.
cflynch@ncsu.edu

Min Chi
Computer Science

Department
North Carolina State

University
Raleigh, North Carolina,

U.S.A.
mchi@ncsu.edu

ABSTRACT
Augmented Graph Grammars provide a robust formalism
for representing and evaluating graph structures. With the
advent of robust graph libraries such as AGG, it has be-
come possible to use graph grammars to analyze realistic
data. Prior studies have shown that graph rules can be used
to evaluate student work and to identify empirically-valid
substructures using hand-authored rules. In this paper we
describe proposed work on the automatic induction of graph
grammars for student data using evolutionary computation
via the pyEC system.

Keywords
Augmented Graph Grammars, Graph Data, Evolutionary
Computation

1. INTRODUCTION
Graph Grammars are logical rule representations for graph
structures. They can be designed to encode classes of suit-
able graphs to recognize complex sub-features. They were
introduced by Rosenfeld and Pfaltz in 1969 as “Context-free
web grammars” [1]. Since then Graph grammars have been
applied to a wide range of areas, including pattern recogni-
tion [2, 3, 4]; visual programming languages [5]; biological
development [6]; classification of chemical compounds [7, 8];
and social network analysis [9, 10, 11]. Simple graph gram-
mars are, like string grammars, composed of a set of pro-
duction rules that map from one structure to another. In
this case the rules map from a simple subgraph, typically a
single node or arc, to a more complex structure. As with
string grammars the node and arc types are drawn from
finite alphabets. Despite their utility, however, graph gram-
mars are very difficult to construct. The data structures
required are complex [5]. Moreover, development of suitable
graph grammars generally requires considerable domain ex-
pertise. Most existing uses of graph grammars have relied
on hand-authored rules.

In this paper we describe our ongoing work on the automatic
induction of Augmented Graph Grammars via Evolutionary
Computation (EC). Our long-term goal in this work is to
develop automated techniques that can extract empirically-
valid graph rules which can, in turn, be used to classify
student-produced argument diagrams and to provide the ba-
sis for automated student guidance and evaluation. This will
build upon our prior on the evaluation of a-priori rules for
student arguments. We will begin with background material
on Augmented Graph Grammars and discuss prior work on
grammar induction. We will then present an overview of our
planned work.

2. AUGMENTED GRAPH GRAMMARS
& ARGUMENT DIAGRAMS

Classical graph grammars are designed to deal with fixed
graphs that are composed from a finite set of static node and
arc types. Augmented graph grammars are an extension of
simple graph grammars that allow for complex node and arc
types, optional substructures, and complex rule expressions
[12]. Rather than using a fixed alphabet of graph compo-
nents they are defined by a complex ontology that allows for
subsidiary types such as textual fields, access functions, and
directional information. They can also be used to evaluate
negated elements as well as quantified expressions. As such
they are better suited to rich graph data such as user-system
interaction logs and student-produced argument diagrams.

Augmented Graph Grammars have previously been used for
the detection of empirically-valid substructures in student-
produced argument diagrams [13, 14]. In that work a-priori
rules were used to represent key discussion features and ar-
gumentative flaws. Argument diagrams are graphical ar-
gument representations that reify key features of arguments
such as hypothesis statements, claims, and citations as nodes
and the supporting, opposing, and informational relation-
ships as arcs between them.

A sample diagram collected in that work is shown in Figure
1 The diagram includes a central research claim node, which
has a single text field indicating the content of the research
claim. A set of citation nodes are connected to the claim
node via a set of supporting, opposing and undefined arcs
colored with green, red and blue respectively. Each citation
node contains two fields: one for the citation information,
and the other for a summary of the cited work; each arc has
a single text field explaining why the relationship holds. At



Figure 1: A student-produced LASAD argument diagram representing an introductory argument.

the bottom of the diagram, there is a single isolated hypoth-
esis node that contains two text fields, one for a conditional
or IF field, and the other for conditional or THEN field. We
expect the induced graph grammars from a set of argument
diagrams can be used to evaluate the student thesis work.

Figure 2 shows an a-priori rule that was defined as part
of that work. This rule is designed to identify a subgraph
where a single target node t is connected to two separate
citation nodes a and b such that: a is connected to t via an
opposing path; b is connected via a supporting path; and
there exists no comparison arc between a and b. The rules
in that study were implemented using AGG an augmented
graph grammar library built in Python [12]. AGG matches
the graphs using recursive stack-based algorithm. The code
first matches the ground nodes at the top-level of the class
(t, a, & b). It then tests for the recursive productions O,
and S, before finally testing for the negated comparison arc
c. This rule does not make use of the full range of potential
capacity for Augmented Graph Grammars. However it is
illustrative of the type of rules we plan to induce here, rules
that generalize beyond basic types and draw on existing pro-
duction classes but not, at least in the immediate term, use
complex textual elements or functional features.

3. GRAMMAR INDUCTION
Graph and relational data has grown increasingly prevalent
and graph analysis algorithms have been applied in a wide
range of domains from social network analysis [15] to bioin-
formatics [16]. Most of this work falls into one of two cate-
gories of algorithms: frequent subgraph matching, and graph
compression.

A number of algorithms have been developed to discover fre-
quent subgraphs. These include the gSpan algorithm devel-
oped by Yan and Han [17]; the AGM algorithm developed by
Inokuchi et al [18]; and the FSG algorithm developed by Ku-
ramochi and Karypis which is based on the previous Apriori

t

a b

O S

¬ c

(ParedWcomp)


t.Tpye = “claim′′or“hypothesis′′

a.Type = “Citation′′

b.Type = “Citation′′

c.Type = “Comparison′′


Figure 2: A simple augmented graph grammar rule
that detects compared counterarguments. The rule
shows a two citation nodes (a, & b) that have oppos-
ing relationships with a shared claim node (t) and do
not have a comparison arc (c) drawn between them.
The arcs S and O represent recursive supporting
and opposing path.

algorithm [19]. They are based upon controlled graph walks
coupled with indexing. While these algorithms are effective,
particularly on smaller graphs, with low vertex degree they
can also overfit simpler graph structures and they do not
scale well to larger, denser graph data [20].

The SUBDUE system takes a greedy-compression approach
to graph mining. SUBDUE searches for candidate sub-
graphs that can best compress the input graphs by replacing
a candidate subgraph with a single vertex. Then nodes and
arcs are added to the vertices to form new candidate sub-
graphs. The process is recursive and relies on the Minimum-
Description-Length (MDL) principle to evaluate the candi-
dates. SUBDUE has been applied successfully to extract
structure from visual programming [5], web search [21], and



analyzing user behaviors in games [22].

While these methods are successful they have practical and
theoretical limitations. Both classes of approaches are lim-
ited to static graphs composed from a finite alphabet of node
and arc types. The frequent subgraph approaches are based
upon iterative graph walks and can be computationally ex-
pensive and are limited to finding exact matches. They do
not generalize beyond the exact graphs matched nor do they
allow for recursive typing. SUBDUE, by contrast is a greedy
algorithm that finds the single most descriptive grammar
and does not allow for weighted matches.

For our present purposes, however, our goal is to identify
multiple heirarchical classes of the type shown in Figure 2
that can: generalize beyond exact node and arc types; can
draw on recursive rule productions; and can be weighted
based upon the graph quality. Moreover our long-term goal
with this work is to explore graph rule induction mechanisms
that can be expanded to include textual rules and complex
constraints. For that reason we have elected to apply evo-
lutionary computation. This is a general-purpose machine
learning mechanism that can be tunes to explore a range of
possible induction mechanisms.

4. METHODS

4.1 Evolutionary Computation
Evolutionary Computation (EC) is a general class of ma-
chine learning and optimization methods that are inspired
by the process of Darwinian evolution through natural se-
lection [23] such as Genetic Algorithms [24] or Genetic Pro-
gramming [25]. EC algorithms begin with a population of
randomly generated candidate solutions such as snippets of
random code, strings representing a target function, or for-
mal rules. Each of these solutions is ranked by a fitness
function that is used to evaluate the quality of the individu-
als. These functions can be defined by absolute measures of
success such as a suite of test cases, or by relative measures
such as a competition between chess-playing systems.

Once the individuals have been ranked a new generation of
individuals is produced through a combination of crossover
and mutation operations. Crossover operations combine two
or more parents to produce one or more candidate children.
In Genetic Algorithms where the candidate solutions are rep-
resented as strings this can be accomplished by splitting two
parents at a given index and then exchanging the substrings
to produce novel children. In Genetic Programming the par-
ents exchange blocks of code, functions, or subtrees. Muta-
tion operations alter randomly-selected parts of a candidate
solution by swapping out one symbol or instruction for an-
other, adding new sub-solutions, or deleting components.
This process of ranking and regeneration will iterate until
a target performance threshold is reached or a maximum
number of generations has passed.

EC methods are highly general algorithms that can be read-
ily adapted to novel domains by selecting an appropriate
solution representation and modification operations. Thus,
in contrast to more specific methods such as SUBDUE, the
EC algorithm allows us to tune the inductive bias of our
search and to explore alternative ways of traversing the so-

lution space. Therefore it is well suited to our present needs.
This flexibility is costly, however, as EC is far more compu-
tationally expensive than more specialized algorithms, and
applications of EC can require a great deal of tuning for
each use. In the subsections below we will describe the fit-
ness function and the operators that we will use in this work.
For this work we will rely on pyEC a general purpose evo-
lutionary computation engine that we have developed [26].

4.2 Dataset
Our initial analysis will be based upon a corpus of expert
graded student produced argument diagrams and essays pre-
viously described in [13, 14]. That dataset was collected as
part of a study on students’ use of argument diagrams for
writing that was conducted at the University of Pittsburgh
in 2011. For that study we selected a set of students in an
undergraduate-level course on Psychological Research Meth-
ods. As part of the course the students were tasked with
planning and executing an empirical research study and then
drafting a written report. The students were permitted to
work individually or in teams. This report was structured as
a standard empirical workshop paper. Prior to drafting the
report the students were tasked with diagramming the ar-
gument that they planned to make using LASAD an online
tool for argument diagramming and annotation.

Subsequent to this data collection process the diagrams and
essays were graded by an experienced TA using a set of par-
allel grading rubrics. These rubrics focused on the quality of
the arguments in the diagrams and essays and were used to
demonstrate that the structure and quality of the diagrams
can be used to predict the students’ subsequent essay per-
formance. These grades will be used as the weighting metric
for the diagrams and will be correlated with performance as
part of the fitness function we describe below. After comple-
tion of the data collection, grading, and testing phases and
accounting for student dropout and incomplete assignments
we collected 105 graded diagram-essay pairs 74 of which were
authored by teams.

4.3 Solution Representation
For the purposes of our present experiments we will use a
restricted solution representation that relies on a subset of
the augmented graph grammar formalism exemplified by the
rule shown in Figure 2. This will include only element types
and recursive productions. In future work we plan to sup-
port the induction of more complex rules defined by multiple
graph classes, novel productions, and expressions. However
for the present study we will focus on the simple case of
individual classes coupled with predefined productions.

4.4 Fitness Function
We plan to use the frequency correlation metric previously
employed in [13, 14]. In that study the authors assessed the
empirical validity of a set of a-priori diagram rules. The
validity of each individual rule was assessed by testing the
correlation between the frequency of the class in the existing
graph and the graph grade. The strength of that correlation
was estimated using Spearman’s ρ a non-parametic measure
of correlation [27]. In that work the authors demonstrated
that the a-priori rule frequency was correlated with stu-
dents’ subsequent essay grades and showed that the frequen-
cies could be used to predict students’ future performance.



4.5 Mutation
Our mutation operator will draw on the predefined graph
ontology to make atomic changes to an existing graph class.
The change will be one of the following operations:

Change Node change an existing node’s type.

Change Arc Change an existing arc’s type or orientation.

Delete Node Delete a node and its associated arcs.

Delete Arc Delete an existing arc.

Add Node Add a novel node with a specified type.

Add Arc Add an arc between existing nodes or add with
new nodes.

4.6 Crossover
By design the crossover operation should, like genetic crossover,
be conservative. Two very similar parents should produce
similar offspring. Crossover operations should therefore pre-
serve good building blocks and sub-solutions or introns through
random behavior [25]. Arbitrary graph alignment and crossover
is a challenging problem that risks causing unsustainable
changes on each iteration. We therefore treat graph crossover
as a matrix problem.

For each pair of parent classes we will define a pair of di-
agonal matricies of the type illustrated in Figure 3. The
letter indicies on the top and right indicate nodes while the
numerical indicies internally indicate arcs, and the ∅ symbol
indicates that no arc is present. The matricies are gener-
ated in a canonical order based upon the order in which the
nodes were added to the class. Thus on each iteration of the
crossover process the corresponding elements will obtain the
same index. As a consequence good subsolutions will obtain
the same location and will tend to be preserved over time.

Once a set of parent matricies has been generated we then
generate two child matricies of the same size as the parents
and then randomly select the node and arc members. In the
example shown in figures 3 and 4 the parents have nodes
{A,B,C,D} and {E,F,G} while the children have {E,B,G,D}
and {A,F,C}. Thus we align the nodes in canonical order
and, for each node pair, we flip a coin to decide where they
are copied. If one parent is larger than the other than any
additional nodes, in this case D, will be copied to the larger
child. We then perform a comparable exchange process for
the arcs. Each arc or potential arc is defined uniquely in the
matricies by its endpoints. We thus align the lists of arcs
in a comparable manner and then decide randomly which
arc, or empty arc, to copy. As with the nodes, extra arcs
from the larger parent, in this case 3,5, and one ∅ are copied
directly into the larger of the two children.

5. FUTURE WORK
In this paper we presented a method for the induction of
augmented graph grammars through evolutionary computa-
tion. We are presently applying this work to the automatic
induction of empirically-valid rules for student-produced ar-
gument diagrams. This work will serve to extend our prior
efforts on the use of augmented graph grammars for student

B C D

1 ∅ 3 A

4 5 B

∅ C

F G

7 ∅ E

∅ F

Figure 3: Canonical matricies for crossover parents.

B G D

1 ∅ 3 E

∅ 5 B

∅ G

F C

7 ∅ A

4 F

Figure 4: Canonical matricies for crossover children.

grading and feedback. This work represents an improve-
ment over prior graph grammar induction algorithms which
are limited to classical graph grammars and greedy extrac-
tion. This work also represents an extension for evolution-
ary computation by shifting it into a new domain. As part
of this work we also plan to explore additional extensions to
the standard evolutionary computation algorithm to address
problems of over-fitting such as χ2 reduction.

6. REFERENCES
[1] John L Pfaltz and Azriel Rosenfeld. Web grammars.

In Proceedings of the 1st international joint conference
on Artificial intelligence, pages 609–619. Morgan
Kaufmann Publishers Inc., 1969.

[2] John L Pfaltz. Web grammars and picture description.
Computer Graphics and Image Processing,
1(2):193–220, 1972.

[3] Horst Bunke. Attributed programmed graph
grammars and their application to schematic diagram
interpretation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 4(6):574–582, 1982.

[4] Michihiro Kuramochi and George Karypis. Finding
frequent patterns in a large sparse graph*. Data
mining and knowledge discovery, 11(3):243–271, 2005.

[5] Keven Ates, Jacek Kukluk, Lawrence Holder, Diane
Cook, and Kang Zhang. Graph grammar induction on
structural data for visual programming. In Tools with
Artificial Intelligence, 2006. ICTAI’06. 18th IEEE
International Conference on, pages 232–242. IEEE,
2006.



[6] Francesc Rosselló and Gabriel Valiente. Graph
transformation in molecular biology. In Formal
Methods in Software and Systems Modeling, pages
116–133. Springer, 2005.

[7] Luc Dehaspe, Hannu Toivonen, and Ross D King.
Finding frequent substructures in chemical
compounds. In KDD, volume 98, page 1998, 1998.

[8] Stefan Kramer, Luc De Raedt, and Christoph Helma.
Molecular feature mining in hiv data. In Proceedings
of the seventh ACM SIGKDD international conference
on Knowledge discovery and data mining, pages
136–143. ACM, 2001.

[9] Wenke Lee and Salvatore J Stolfo. A framework for
constructing features and models for intrusion
detection systems. ACM transactions on Information
and system security (TiSSEC), 3(4):227–261, 2000.

[10] Calvin Ko. Logic induction of valid behavior
specifications for intrusion detection. In Proceedings of
the IEEE Symposium on Security and Privacy. (S&P
2000), pages 142–153. IEEE, 2000.

[11] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast
algorithms for mining association rules. In Proceedings
of the 20th International Conference on very large
data bases, VLDB, volume 1215, pages 487–499, 1994.

[12] Collin F Lynch. Agg: Augmented graph grammars for
complex heterogeneous data. In Proceedings of the
first international workshop on Graph-Based
Educational Data Mining (GEDM 2014).

[13] Collin F. Lynch and Kevin D. Ashley. Empirically
valid rules for ill-defined domains. In John Stamper
and Zachary Pardos, editors, Proceedings of The 7th

International Conference on Educational Data Mining
(EDM 2014). International Educational Datamining
Society IEDMS, 2014.

[14] Collin F. Lynch, Kevin D. Ashley, and Min Chi. Can
diagrams predict essay grades? In Stefan
Trausan-Matu, Kristy Elizabeth Boyer, Martha E.
Crosby, and Kitty Panourgia, editors, Intelligent
Tutoring Systems, Lecture Notes in Computer Science,
pages 260–265. Springer, 2014.

[15] Sherry E. Marcus, Melanie Moy, and Thayne Coffman.
Social network analysis. In Diane J. Cook and
Lawrence B. Holder, editors, Mining Graph Data,
chapter 17, pages 443–468. John Wiley & Sons, 2006.

[16] Chang Hun You, Lawrence B. Holder, and Diane J.
Cook. Dynamic graph-based relational learning of
temporal patterns in biological networks changing over
time. In Hamid R. Arabnia, Mary Qu Yang, and
Jack Y. Yang, editors, BIOCOMP, pages 984–990.

CSREA Press, 2008.

[17] Xifeng Yan and Jiawei Han. gspan: Graph-based
substructure pattern mining. In Proceedings of the
IEEE International Conference on Data Mining
(ICDM 2002), pages 721–724. IEEE, 2002.

[18] Akihiro Inokuchi, Takashi Washio, and Hiroshi
Motoda. An apriori-based algorithm for mining
frequent substructures from graph data. In Principles
of Data Mining and Knowledge Discovery, pages
13–23. Springer, 2000.

[19] Michihiro Kuramochi and George Karypis. Frequent
subgraph discovery. In Proceedings IEEE International
Conference on Data Mining. (ICDM 2001), pages
313–320. IEEE, 2001.

[20] MICHIHIRO Kuramochi and George Karypis. Finding
topological frequent patterns from graph datasets.
Mining Graph Data, pages 117–158, 2006.

[21] Nitish Manocha, Diane J Cook, and Lawrence B
Holder. Cover story: structural web search using a
graph-based discovery system. Intelligence,
12(1):20–29, 2001.

[22] Diane J. Cook, Lawrence B. Holder, and G. Michael
Youngblood. Graph-based analysis of human transfer
learning using a game testbed. IEEE Trans. on
Knowl. and Data Eng., 19:1465–1478, November 2007.

[23] Charles Darwin. On the Origin of Species by Means of
Natural Selection, or the Preservation of Favoured
Races in the Struggle for Life. John Murray:
Albermarle Street: London, United Kingdom, 6
edition, 1872.

[24] Melanie Mitchell. An Introduction to Genetic
Algorithms. MIT Press: Cambridge, Massachusetts,
1999.

[25] Wolfgang Banzhaf. Genetic programming: an
introduction on the automatic evolution of computer
programs and its applications. Morgan Kaufmann
Publishers ; Heidelburg : Dpunkt-verlag; San
Francisco, California, 1998.

[26] Collin F. Lynch, Kevin D. Ashley, Niels Pinkwart, and
Vincent Aleven. Argument graph classification with
genetic programming and c4.5. In Ryan
Shaun Joazeiro de Baker, Tiffany Barnes, and
Joseph E. Beck, editors, The 1st International
Conference on Educational Data Mining, Montreal,
Québec, Canada, June 20-21, 2008. Proceedings, pages
137–146, 2008.

[27] Wikipedia. Spearman’s rank correlation coefficient —
wikipedia, the free encyclopedia, 2013. [Online;
accessed 27-February-2013].


