
BOTS: Selecting Next-Steps from Player Traces in a Puzzle
Game

Drew Hicks
North Carolina State

University
911 Oval Drive

Raleigh, NC 27606
aghicks3@ncsu.edu

Yihuan Dong
North Carolina State

University
911 Oval Drive

Raleigh, NC 27606
ydong2@ncsu.edu

Rui Zhi
North Carolina State

University
911 Oval Drive

Raleigh, NC 27606
rzhi@ncsu.edu

Veronica Cateté
North Carolina State

University
911 Oval Drive

Raleigh, NC 27606
vmcatete@ncsu.edu

Tiffany Barnes
North Carolina State

University
911 Oval Drive

Raleigh, NC 27606
tmbarnes@ncsu.edu

ABSTRACT
In the field of Intelligent Tutoring Systems, data-driven meth-
ods for providing hints and feedback are becoming increas-
ingly popular. One such method, Hint Factory, builds an
interaction network out of observed player traces. This data
structure is used to select the most appropriate next step
from any previously observed state, which can then be used
to provide guidance to future players. However, this method
has previously been employed in systems in which each ac-
tion a player may take requires roughly similar effort; that
is, the“step cost” is constant no matter what action is taken.
We hope to apply similar methods to an interaction network
built from player traces in our game, BOTS; However, each
edge can represent a varied amount of effort on the part of
the student. Therefore, a different hint selection policy may
be needed. In this paper, we discuss the problems with our
current hint policy, assuming all edges are the same cost.
Then, we discuss potential alternative hint selection policies
we have considered.

Keywords
Hint Generation, Serious Games, Data Mining

1. INTRODUCTION
Data-driven methods for providing hints and feedback are
becoming increasingly popular, and are especially useful for
environments with user- or procedurally-generated content.
One such method, Hint Factory, builds an interaction net-
work out of observed player traces. An Interaction Network
is a complex network of student-tutor interactions, used to

model student behavior in tutors, and provide insight into
problem-solving strategies and misconceptions. This data
structure can be used to provide hints, by treating the Inter-
action Network similarly to a Markov Decision Process and
selecting the most appropriate next step from the requesting
user’s current state. This method has successfully been em-
ployed in systems in which each action a player may take is
of similar cost; for example in the Deep Thought logic tutor
each action is an application of a particular axiom. Applying
this method to an environment where actions are of differ-
ent costs, or outcomes are of varying value will require some
adaptations to be made. In this work, we discuss how we
will apply Hint Factory methods to an interaction network
built from player traces in a puzzle game, BOTS. In BOTS,
each “Action” is the set of changes made to the program
between each run. Therefore, using the current hint selec-
tion policy would result in very high-level hints comprising
a great number of changes to the student’s program. Since
this is undesirable, a different hint selection policy may be
needed.

2. DATA-DRIVEN HINTS AND FEEDBACK
In the ITS community, several methods have been proposed
for generating hints/feedback from previous observations of
users’ solutions or behavior. Rivers et al propose a data-
driven method to generate hints automatically for novice
programmers based on Hint Factory[8]. They present a
domain-independent algorithm, which automates hint gener-
ation. Their method relies on solution space, which utilizes
graph to represent the solution states. In solution space,
each node represents a candidate solution and each edge rep-
resents the action used to transfer from one state to another.
Due to the existence of multiple ways to solve a program-
ming problem, the size of the solution space is huge and thus
it is impractical to use. A Canonicalizing model is used to
reduce the size of the solution space. All states are trans-
formed to canonicalized abstract syntax trees (ASTs). If the
canonical form of two different states are identical, they can
be combined together. After simplifying the solution space,
hint generation is implemented. If the current state is in-

correct and not in the solution space, the path construction
algorithm will find an optimal goal state in the solution space
which is closest to current state. This algorithm uses change
vectors to denote the change between current state and goal
state. Once a better goal state is found during enumerat-
ing all possible changes, it returns the current combination
of change vectors. Each change vector can be applied to
current state and then form an intermediate state. The in-
termediate states are measured by desirability score, which
represents the value of the state. And then the path con-
struction algorithm generates optimal next states based on
the rank of the desirability scores of all the intermediate
states. Thus a new path can be formed and added to the
solution space, and appropriate hints can be generated.

Jin et al propose linkage graph to generate hints for pro-
gramming courses[4]. Linkage graph uses nodes to represent
program statements and direct edges to indicate ordered de-
pendencies of those statements. Jin’s approach applies ma-
trix to store linkage graph for computation. To generate
linkage matrix, first, they normalize variables in programs
by using instructor-provided variable specification file. After
variable normalization, they sort the statement with 3 steps:
(i) preprocessing, which breaks a single declaration for mul-
tiple variables (e.g. int a, b, c) into multiple declaration
statements (e.g. int a; int b; int c;); (ii) creating statement
sets according to variable dependencies, which put indepen-
dent statements into first set, put statements depend only
on statements in the first set into second set, put statements
depends only on statements in the first and second set into
third set, and so on; (iii) in-set statement sorting, during
which the statements are sorted in decreasing order within
set using their variable signatures. In hint generation, they
first generate linkage graphs with a set of correct solutions,
as the sources for hint generation. They also compose the
intermediate steps during program development into a large
linkage graph, and assign a reward value to each state and
the correct solution. Then, they apply value iteration to
create a Markov Decision Process (MDP). When a student
requires hint, tutor will generate a linkage graph for the par-
tial program and try to find the closest match in MDP. If
a match is found in MDP, the tutor would generate hint
with the next best state based on highest assigned value.
If a match is not found in current MDP, which means the
student is taking a different approach from existing correct
solutions, the tutor will try to modify those correct solutions
to fit student’s program and then provide hints.

Hint Factory[9] is an automatic hint generation technique
which uses Markov decision processes (MDPs) to generate
contextualized hints from past student data. It mainly con-
sists of two parts - Markov Decision Process (MDP) gener-
ator and hint provider. The MDP generator runs a process
to generate MDP values for all states seen in previous stu-
dents’ solutions. In this process, all the students’ solutions
are combined together to form a single graph. Each node
of the graph represents a state, and each edge represents an
action one student takes to transform from current state to
another state. Once the graph is built, the MDP generator
uses Bellman backup to assign values for all nodes. After up-
dating all values, a hint file is generated. The hint provider
uses hint file to provide hint. When a student asks for a hint
at a existing state, hint provider will retrieve current state

Figure 1: The BOTS interface. The robot’s program
is along the left side of the screen. The “toolbox” of
available commands is along the top of the screen.

information and check if hints are available for the state.
The action that leads to subsequent state with the highest
value is used to generate a hint sequence. A hint sequence
consists of four types of hints and are ordered from gen-
eral hint to detailed hint. Hint provider will then show hint
from top of the sequence to the student. Hint Factory has
been applied in logic tutors which helps students learn logic
proof. The result shows that the hint-generating function
could provide hints over 80% of the time.

3. BOTS
BOTS is a programming puzzle game designed to teach
fundamental ideas of programming and problem-solving to
novice computer users. The goal of the BOTS project is
to investigate how to best use community-authored content
within serious games and educational games. BOTS was
inspired by games like LightBot [10] and RoboRally [2], as
well as the success of Scratch and it’s online community [1]
[5]. In BOTS, players take on the role of programmers writ-
ing code to navigate a simple robot around a grid-based 3D
environment, as seen in Figure 1. The goal of each puzzle
is to press several switches within the environment, which
can be done by placing an object or the robot on them.
To program the robots, players will use simple graphical
pseudo-code, allowing them to move the robot, repeat sets
of commands using “for” or “while” loops, and re-use chunks
of code using functions. Within each puzzle, players’ scores
depend on the number of commands used, with lower scores
being preferable. In addition, each puzzle limits the maxi-
mum number of commands, as well as the number of times
each command can be used. For example, in the tutorial
levels, a user may only use the “Move Forward” instruction
10 times. Therefore, if a player wants to make the robot
walk down a long hallway, it will be more efficient to use a
loop to repeat a single “Move Forward” instruction, rather
than to simply use several “Move Forward” instructions one
after the other. These constraints are meant to encourage
players to re-use code and optimize their solutions.

In addition to the guided tutorial mode, BOTS also con-

tains an extensive “Free Play” mode, with a wide selection
of puzzles created by other players. The game, in line with
the “Flow of Inspiration” principles outlined by Alexander
Repenning [7], provides multiple ways for players to share
knowledge through authoring and modifying content. Play-
ers are able to create their own puzzles to share with their
peers, and can play and evaluate friends’ puzzles, improv-
ing on past solutions. Features such as peer-authored hints
for difficult puzzles, and a collaborative filtering approach
to rating are planned next steps for the game’s online ele-
ment. We hope to create an environment where players can
continually challenge their peers to find consistently better
solutions for increasingly difficult problems.

User-generated content supports replayability and a sense
of a community for a serious game. We believe that user-
created puzzles could improve interest, encouraging students
to return to the game to solidify their mastery of old skills
and potentially helping them pick up new ones.

4. ANALYSIS
4.1 Dataset
Data for the BOTS studies has come from a middle school
computer science enrichment program called SPARCS. In
this program, the students attend class on Saturday for 4
hours where computer science undergraduates teach them
about computational thinking and programming. Students
attend a total of 7 sessions, each on a different topic, ranging
from security and encryption to game design. The students
all attend the same magnet middle school. The demograph-
ics for this club are 74.2% male, 25.8% female, 36.7% African
American, and 23.3% Hispanic. The student’s grade distri-
bution is 58% 6th grade, 36% 7th grade and 6% 8th grade.

From these sessions, we collected gameplay data for 20 tu-
torial puzzles as well as 13 user-created puzzles, With this
data, we created an Interaction Network in order to be able
to provide hints and feedback for future students [3]. How-
ever, using program edits as states, the interaction networks
produced were very sparse. In order to be better able to
relate similar actions, we produced another interaction net-
work using program output as our state definition [6].

4.2 States and Transitions
Based on the data collected, we can divide the set of ob-
served states into classes. First among these is the start state
in which the problem begins. By definition, every player’s
path must begin at this state. Next is the set of goal states
in which all buttons on the stage are pressed. These are
reported by the game as correct solutions. Any complete
solution, by definition, ends at one such state. Among states
which are neither start nor goal states, there are three im-
portant classifications: Intermediate states (states a robot
moves through during a correct solution), mistake states
(states a robot does not move through during a correct so-
lution), and error states (states which result from illegal
output, like attempting to move the robot out-of-bounds).
Based on these types of states, we classified our hints based
on the transitions they represented.

4.2.1 Subgoal Transition

Error

a

c

e

b

d

f

Figure 2: Several generated hints for a simple puz-
zle. The blue icon represents the robot. The ’X’ icon
represents a goal. Shaded boxes are boxes placed on
goals, while unshaded boxes are not on goals. Hint
F in this figure depicts the start and most common
goal state of the puzzle.

(start/intermediate) → (intermediate/goal) These transitions
occur when a student moves the robot to an intermediate
state rather than directly to the goal. Since players run
their programs to produce output, we speculate that these
may represent subgoals such asmoving a box onto a specific
switch. After accomplishing that task, the user then ap-
pends to their program, moving towards a new objective,
until they reach a goal state. Hint B in Figure 2 shows a
hint generated from such a transition.

4.2.2 Correction Transition
(error/mistake) → (intermediate/goal) This transition oc-
curs when a student makes and then corrects a mistake.
These are especially useful because we can offer hints based
on the type of mistake. Hints D and E in Figure 2 show hints
built from this type of transition; however, hint E shows a
case where a student resolved the mistake in a suboptimal
way.

4.2.3 Simple Solution Transition
(start) → (goal) This occurs when a student enters an entire,
correct program, and solves the puzzle in one attempt. This
makes such transitions not particularly useful for generating
hints, other than showing a potential solution state of the
puzzle. Hint F in Figure 2 shows this type of transition.

4.2.4 Rethinking Transition
(intermediate) → (intermediate/goal) This transition occurs
when rather than appending to the program as in a subgoal
transition, the user deletes part or all of their program, then
moving towards a new goal. As a result, the first state is
unrelated to the next state the player reaches. Offering this
state as a hint would likely not help guide a different user.
Hint A in Figure 2 shows an example of this. Finding and
recognizing these is an important direction for future work.

4.2.5 Error Transition
(start/intermediate) → (mistake/error) This corresponds to
a program which walks the robot out of bounds, into an
object, or other similar errors. While we disregarded these
as hints, this type of transition may still be useful. In such
a case, the last legal output before the error could be a
valuable state. Hint C in Figure 2 is one such case.

4.3 Next Steps
While this approach was able to help us identify interest-
ing transitions, as well as significantly reduce the sparseness
of the Interaction Network by merging states with similar
output, we violate several assumptions of the Hint Factory
technique by using user compilation as an action. Essen-
tially, the cost of an action can vary widely. In the most
extreme examples, the best next state selected by Hint Fac-
tory will simply be the goal state.

4.4 Current Hint Policy
Our current hint selection policy is the same as the one used
in the logic tutor Deep Thought with a few exceptions [9].
We combine all student solution paths into a single graph,
mapping identical states to one another (comparing either
the programs or the output). Then, we calculate a fitness
value for each node. We assign a large positive value (100)
to each goal state, a low value for dead-end states (0) and
a step cost for each step taken (1). Setting a non-zero cost
on actions biases us towards shorter solutions. We then
calculate fitness values V (s) for each state s, where R(s) is
the initial fitness value for the state, γ is a discount factor,
and P (s, s′) is the observed frequency with which users in
state s go to state s′ next, via taking the action a. The
equation for determining the fitness value of a state is as
follows:

V (s) := R(s) + γmax
a

∑
s′

Pa(s, s′)V (s′) (1)

However, in our current representation there is only one
available action from any state: “run.” Different players us-
ing this action will change their programs in different ways
between runs, so it is not useful to aggregate across all the
possible resulting states. Instead, we want to consider each
resulting state on its own. As a result, we use a simplified
version of the above, essentially considering each possible
resulting state s′ as the definite result of its own action:

V (s) := R(s) + γmax
s′
P (s, s′)V (s′) (2)

Since the action “run” can encompass many changes, select-
ing the s′ which maximizes the value may not always be the
best choice for a hint. The difference between s and s′ can
be quite large, and this is usually the case when an expert
user solves the problem in one try, forming an edge directly
between the “start” state and “goal” state. These and other
“short-circuits” make it difficult to assess which of the child
nodes would be best to offer as a hint by simply using the
calculated fitness value.

Figure 3: This subgraph shows a short-circuit where
a player bypasses a chain of several steps.

Another problem which arises from this state representation
is seen in Hints C and E above. These hints show states
where a student traveled from a state to a worse state before
ultimately solving the problem. Since we limit our search for
hintable states to the immediate child states of s in s′, we are
unable to escape from such a situation if the path containing
the error is the best or only observable path to the goal.

4.5 Proposed Hint Policies
One potential modification of the hint policy involves ana-
lyzing the programs/output on the nodes, using some dis-
tance metric δ(s, s′). This measurement would be used in
addition to the state’s independent fitness value R(s) which
takes into account distance from a goal, but is irrespective
of the distance from any previous state. For example in the
short-circuit example above, using “difference in number of
lines of code” as a distance metric we could take into ac-
count how far the “Goal” state is from the “Start” state, and
potentially choose a nearer state as a hint. This also helps
correct for small error-correction steps in player solutions;
if the change between the current state and the target hint
state is very small, we may want to consider hinting toward
the next step instead, or a different solution path altogether.

V (s) := R(s) + γmax
a

∑
s′

δ(s, s′)P (s, s′)V (s′) (3)

One potential downside to this approach is that it requires
somewhat more knowledge of the domain to be built into the
model. If the distance metric used is inaccurate or flawed,
there may be cases where we choose a very suboptimal hint.
using difference in lines of code as our distance metric, the
change between a state where a player is using no functions
and a state where the user writes existing code into a func-
tion may be very small. Hints selected in these cases might
guide students away from desired outcomes in our game.

Another problem we need to resolve with our current hint
policy, as discussed above, is the case where the best or
only path to a goal from a given state s has an error as
a direct child s′. One method of resolving this could be,
instead of offering s′ as a hint, continuing to ask for next-
step hints from s′ until some s′ is a hintable, non-error state.
This solution requires no additional knowledge of the game
domain, however it’s possible that the hint produced will
be very far from s, or that we may skip over important
information about how to resolve the error or misconception

that led the student into state s in the first place.

Other modifications to the hint selection policy may produce
better results than these. We hope to look into as many
possible modifications as we can, seeing which modifications
produce the most suitable hints on our current dataset be-
fore settling on an implementation for the live version of the
game.

5. ACKNOWLEDGMENTS
Thanks to the additional developers who have worked on this
project or helped with our outreach activities so far, includ-
ing Aaron Quidley, Trevor Brennan, Irena Rindos, Vincent
Bugica, Victoria Cooper, Dustin Culler, Shaun Pickford,
Antoine Campbell, and Javier Olaya. This material is based
upon work supported by the National Science Foundation
Graduate Research Fellowship under Grant No. 0900860
and Grant No. 1252376.

6. REFERENCES
[1] I. F. de Kereki. Scratch: Applications in computer

science 1. In Frontiers in Education Conference, 2008.
FIE 2008. 38th Annual, pages T3B–7. IEEE, 2008.

[2] R. Garfield. Roborally. [Board Game], 1994.

[3] A. Hicks, B. Peddycord III, and T. Barnes. Building
games to learn from their players: Generating hints in
a serious game. In Intelligent Tutoring Systems, pages
312–317. Springer, 2014.

[4] W. Jin, T. Barnes, J. Stamper, M. J. Eagle, M. W.
Johnson, and L. Lehmann. Program representation for
automatic hint generation for a data-driven novice
programming tutor. In Intelligent Tutoring Systems,
pages 304–309. Springer, 2012.

[5] D. J. Malan and H. H. Leitner. Scratch for budding
computer scientists. ACM SIGCSE Bulletin,
39(1):223–227, 2007.

[6] B. Peddycord III, A. Hicks, and T. Barnes.
Generating hints for programming problems using
intermediate output.

[7] A. Repenning, A. Basawapatna, and K. H. Koh.
Making university education more like middle school
computer club: facilitating the flow of inspiration. In
Proceedings of the 14th Western Canadian Conference
on Computing Education, pages 9–16. ACM, 2009.

[8] K. Rivers and K. R. Koedinger. Automating hint
generation with solution space path construction. In
Intelligent Tutoring Systems, pages 329–339. Springer,
2014.

[9] J. Stamper, T. Barnes, L. Lehmann, and M. Croy.
The hint factory: Automatic generation of
contextualized help for existing computer aided
instruction. In Proceedings of the 9th International
Conference on Intelligent Tutoring Systems Young
Researchers Track, pages 71–78, 2008.

[10] D. Yaroslavski. LightBot. [Video Game], 2008.

