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ABSTRACT
The current generation of Massive Open Online Courses (MOOCs)
operate under the assumption that good students will help poor
students, thus alleviating the burden on instructors and Teaching
Assistants (TAs) of having thousands of students to teach. In
practice, this may not be the case. In this paper, we examine so-
cial network graphs drawn from forum interactions in a MOOC
to identify natural student communities and characterize them
based on student performance and stated preferences. We exam-
ine the community structure of the entire course, students only,
and students minus low performers and hubs. The presence of
these communities and the fact that they are homogeneous with
respect to grade but not motivations has important implications
for planning in MOOCs.
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1. INTRODUCTION
The current generation of Massive Open Online Courses (MOOCs)
is designed to leverage student interactions to augment instruc-
tor guidance. The activity in courses on sites such as Coursera
and edX is centered around user forums that, while curated
and updated by instructors and TAs, are primarily constructed
by students. When planning and building these courses, it is
hoped that students will help one another through the course
and that interacting with stronger students will help to improve

the performance of weaker ones. It has not yet been shown,
however, that this type of support occurs in practice.

Prior research on social networks has shown that social groups,
even those that gather face-to-face, can fragment into disjoint
sub-communities [37]. This small-group separation, if it takes
place in an online course, can be considered negative or positive,
depending on one’s perspective. If poor students communi-
cate only with similarly-floundering peers, then they run the
risk of perpetuating misunderstandings and of missing insights
discussed by better-performing peers and teaching staff. An
instructor may wish to avoid this fragmentation to encourage
poor students to connect with better ones.

These enduring subgroups may be beneficial, however, by help-
ing students to form enduring supportive relationships. Research
by Li et al. has shown that such enduring relationships can
enhance students’ social commitment to a course [18]. We be-
lieve that this social commitment will in turn help to reduce
feelings of isolation and alienation among students in a course.
Eckles and Stradley [9] have shown that such isolation is a key
predictor of student dropout.

We have previously shown that students can form stable com-
munities and that those communities are homogeneous with
respect to performance [3]. However that work did not: show
whether these results are consistent with prior work on imme-
diate peer relationships; address the impact of hub students on
these results; or discuss whether students’ varying goals and
preferences motivate the community structure. Our goal in this
paper is to build upon our prior work by addressing these issues.
In the remainder of this paper we will survey prior educational
literature on community formation in traditional and online
classrooms. We will then build upon our prior work by exam-
ining the impact of hub users. And we will look at the impact
of user motivations on community formation.



2. RELATED WORK

2.1 MOOCs, Forums, & Student Performance
A survey of the literature on MOOCs shows the beginnings of a
research base generating an abundance of data that has not yet
been completely analyzed [19]. According to Seaton et al. [29],
most of the time students spend on a MOOC is spent in dis-
cussion forums, making them a rich and important data source.
Stahl et al. [30] illustrates how through this online interaction
students collaborate to create knowledge. Thus students’ forum
activity is good not only for the individual student posting con-
tent or receiving answers, but for the class as a whole. Huang et
al. [14] investigated the behavior of the highest-volume posters
in 44 MOOC-related forums. These “superposters” tended to
enroll in more courses and do better in those courses than the
average. Their activity also added to the overall volume of forum
content and they left fewer questions unanswered in the forums.
Huang et al. also found that these superposters did not suppress
the activity of less-active users. Rienties et al. [25] examined the
way in which user interaction in MOOCs is structured. They
found that allowing students to self-select collaborators is more
conducive to learning than randomly assigning partners. Further,
Van Dijk et al. [31] found that simple peer instruction is signif-
icantly less effective in the absence of a group discussion step,
pointing again to the importance of a class discussion forum.

More recently Rosé et al. [27] examined students’ evolving inter-
actions in MOOCs using a Mixed-Membership Stochastic Block
model which seeks to detect partially overlapping communities.
They found that the likelihood that students would drop out
of the course is strongly correlated with their community mem-
bership. Students who actively participated in forums early in
the course were less likely to drop out later. Furthermore, they
found one forum sub-community that was much more prone
to dropout than the rest of the class, suggesting that MOOC
communities are made up of students who behave in similar
ways. This community can in turn reflect or impact a student’s
level of motivation and their overall experience in a course much
like the“emotional contagion”model used in the Facebook mood
manipulation study by Kramer, Guillroy, and Hancock [16].

Yang et al. [36] also notes that unlike traditional courses stu-
dents can join MOOCs at different times and observed that
students who join a course early are more likely to be active
and connected in the forums, and less likely to drop out, than
those who join later. MOOCs also attract users with a range of
individual motivations. In a standard classroom setting students
are constrained by availability, convention, and goals. Few stu-
dents enroll in a traditional course without seeking to complete
it and to get formal credit for doing so. MOOCs by virtue of
their openness and flexibility attract a wide range of students
with unique personal motivations [10]. Some join the course
with the intent of completing it. Others may seek only to brush
up on existing knowledge, obtain specific skills, or just watch
the videos. These distinct motivations in turn lend themselves
to different in-class behaviors including assignment viewing and
forum access. The impact of user motivations in online courses
has been previously discussed by Wang et al. [32, 33]; we will
build upon that work here. Thus it is an open question whether
these motivations affect students’ community behaviors or not.

2.2 Communities, Hubs, & Peers
Kovanovic et al. [15] examined the relationship between social
network position or centrality, and social capital formation in
courses. Their work is specifically informed by the Community
of Inquiry (COI) framework. the COI framework is focused on
distance education and is particularly suited to online courses of
the type that we study here. The model views course behavior
through three presences which mediate performance: cognitive,
teaching, and social.

This social presence considers the nature and persistence of
student interactions and the extent to which they reinforce stu-
dents’ behaviors. In their analysis, the authors sought to test
whether network relationships, specifically students’ centrality
in their social graph, is related to their social performance as
measured by the nature and type of their interactions. To that
end, they examined a set of course logs taken from a series of
online courses offered within a public university. They found
that students’ position within their social graph was positively
correlated with the nature and type of their interactions, thus
indicating that central players also engaged in more useful social
interactions. They did not extend this work to groups, however,
focusing solely on individual hub students.

Other authors have also examined the relationship between
network centrality, neighbor relationships, network density, and
student performance factors. Eckles and Stradley [9] applied
network analysis to student attrition, finding that students with
strong social relationships with other students who drop out
are significantly more likely to drop out themselves. Rizzuto
et al. [26] studied the impact of social network density on stu-
dent performance. Network density is defined as the fraction
of possible edges that are present in a given graph. Thus it
is a measure of how “clique-like” the graph is. The authors
examined self-reported social networks for students in a large
traditional undergraduate psychology course. They found that
denser social networks were significantly correlated with per-
formance. However, a dominance analysis [1] showed that this
factor was less predictive than pure academic ability. These re-
sults serve to motivate a focus on the role of social relationships
in student behavior. Their analysis is complicated, however, by
their reliance on self-report data which will skew the strength
and recency of the reported relationships.

Fire et al. [11] studied student interaction in traditional class-
rooms, constructing a social network based on cooperation on
class assignments. Students were linked based on partnership on
group work as well as inferred cooperation based on assignment
submission times and IP addresses. The authors found that a
student’s grade was significantly correlated with the grade of
the student with the strongest links to that student in the social
network. We perform similar analysis in this paper to examine
whether the same correlation exists in MOOCs.

Online student interaction in blended courses has also been
linked to course performance. Dawson [8] extracted student
and instructor social networks from a blended course’s online
discussion forums and found that students in the 90th grade
percentile had larger social networks than those in the 10th
percentile. The study also found that high-performing students
primarily associated with other high-performing students and
were more likely to be connected to the course instructor, while
low-performing students tended to associate with other low-



performers. In a blended course, this effect may be offset by
face-to-face interaction not captured in the online social network,
but if the same separation happens in MOOC communities, low-
performing students are less likely to have other chances to learn
from high-performing ones.

2.3 Community Detection
One of the primary activities students engage in on forums
is question answering. Zhang et al. [38] conducted a social
network analysis on an online question-and-answer forum about
Java programming. Using vertex in-degree and out-degree, they
were able to identify a relatively small number of active users
who answered many questions. This allowed the researchers to
develop various algorithms for calculating a user’s Java expertise.
Dedicated question-and-answer forums are more structured than
MOOC forums, with question and answer posts identified, but a
similar approach might help identify which students in a MOOC
ask or answer the most questions.

Choo et al. [5] studied community detection in Amazon product-
review forums. Based on which users replied to each other most
often, they found communities of book and movie reviewers who
had similar tastes in these products. As in MOOC forums, users
did not declare any explicit social relationships represented in the
system, but they could still be grouped by implicit connections.

In the context of complex networks, a community structure is a
subgraph which is more densely connected internally than it is to
the rest of the network. We chose to apply the Girvan-Newman
edge-betweenness algorithm (GN) [13]. This algorithm takes as
input a weighted graph and a target number of communities.
It then ranks the edges in the graph by their edge-betweenness
value and removes the highest ranking edge. To calculate Edge-
betweenness we identify the shortest path p(a,b) between each
pair of nodes a and b in the graph. The edge-betweenness
of an arc is defined as the number of shortest paths that it
participates in. This is one of the centrality measures explored
by Kovanovic et al. above [15]. The algorithm then recalcu-
lates the edge-betweenness values and iterates until the desired
number of disjoint community subgraphs has been produced.
Thus the algorithm operates by iteratively finding and removing
the highest-value communications channel between communities
until the graph is fully segmented. For this analysis, we used
the iGraph library [7] implementation of G-N within R [24].

The strength of a candidate community can be estimated by
modularity. The modularity score of a given subgraph is defined
as a ratio of its intra-connectedness (edges within the subgraph)
to the inter-connectedness with the rest of the graph minus the
fraction of such edges expected if they were distributed at ran-
dom [13, 35]. A graph with a high modularity score represents
a dense sub-community within the graph.

3. DATA SET
This study used data collected from the“Big Data in Education”
MOOC hosted on the Coursera platform as one of the inaugural
courses offered by Columbia University [32]. It was created in
response to the increasing interest in the learning sciences and
educational technology communities in using EDM methods
with fine-grained log data. The overall goal of this course was
to enable students to apply each method to answer education
research questions and to drive intervention and improvement in
educational software and systems. The course covered roughly

the same material as a graduate-level course, Core Methods
in Educational Data Mining, at Teachers College Columbia
University. The MOOC spanned from October 24, 2013 to
December 26, 2013. The weekly course was composed of lecture
videos and 8 weekly assignments. Most of the videos contained
in-video quizzes (that did not count toward the final grade).

All of the weekly assignments were structured as numeric input
or multiple-choice questions. The assignments were graded au-
tomatically. In each assignment, students were asked to conduct
analyses on a data set provided to them and answer questions
about it. In order to receive a grade, students had to com-
plete this assignment within two weeks of its release with up
to three attempts for each assignment, and the best score out
of the three attempts was counted. The course had a total
enrollment of over 48,000, but a much smaller number actively
participated. 13,314 students watched at least one video, 1,242
students watched all the videos, 1,380 students completed at
least one assignment,and 778 made a post or comment in the
weekly discussion sections. Of those with posts, 426 completed
at least one class assignment. 638 students completed the online
course and received a certificate (meaning that some students
could earn a certificate without participating in forums at all).

In addition to the weekly assignments the students were sent
a survey that was designed to assess their personal motivations
for enrolling in the course. This survey consisted of 3 sets
of questions: MOOC-specific motivational items; two PALS
(Patterns of Adaptive Learning Survey) sub-scales [21], Aca-
demic Efficacy and Mastery-Goal Orientation; and an item
focused on confidence in course completion. It was distributed
to students through the course’s E-mail messaging system to
students who enrolled in the course prior to the official start
date. Data on whether participants successfully completed the
course was downloaded from the same course system after the
course concluded. The survey received 2,792 responses; 38% of
the participants were female and 62% of the participants were
male. All of the respondents were over 18 years of age.

The MOOC-specific items consisted of 10 questions drawn from
previous MOOC research studies (cf. [2, 22]) asking respondents
to rate their reasons for enrollment. These 10 items address
traits of MOOCs as a novel online learning platform. Specifically,
these 10 items included questions on both the learning content
and features of MOOCs as a new platform. Two PALS Survey
scales [21] measuring mastery-goal orientation and academic
efficacy were used to study standard motivational constructs.
PALS scales have been widely used to investigate the relation
between a learning environment and a student’s motivation (cf.
[6, 20, 28]). Altogether ten items with five under each scale
were included. The participants were asked to select a number
from 1 to 5 with 1 meaning least relevant and 5 most relevant.
Respondents were also asked to self-rate their confidence on a
scale of 1 to 10 as to whether they could complete the course
according to the pace set by the course instructor. All three
groups of items were domain-general.

4. METHODS
For our analysis, we extracted a social network from the online
forum associated with the course. We assigned a node to each
student, instructor, or TA in the course who added to it. Nodes
representing students were labeled with their final course grade
out of 100 points. The Coursera forums operate as standard



threaded forums. Course participants could start a new thread
with an initial post, add a post to an existing thread, and add
a comment or child element below an existing post. We added
a directed edge from the author of each post or comment to the
parent post and to all posts or comments that preceded it on
the thread based upon their timestamp. We made a conscious
decision to omit the textual content of the replies with the goal
of isolating the impact of the structure alone.

We thus treat each reply or followup in the graph as an implicit
social connection and thus a possible relationship. Such implicit
social relationships have been explored in the context of recom-
mender systems to detect strong communities of researchers [5].
This is, by design, a permissive definition that is based upon
the assumption that individuals generally add to a thread after
viewing the prior content within it and that individual threads
can be treated as group conversations with each reply being a
conscious statement for everyone who has already spoken. The
resulting network forms a multigraph with each edge represent-
ing a single implicit social interaction. We removed self loops
from this graph as they indicate general forum activity but
not any meaningful interaction with another person. We also
removed vertices with a degree of 0, and collapsed the parallel
edges to form a simple weighted graph for analysis.

In the analyses below we will focus on isolating student perfor-
mance and assessing the impact of the faculty and hub students.
We will therefore consider four classes of graphs: ALL the com-
plete graph; Student the graph with the instructor and TAs
removed; NoHub the graph with the instructor and hub users re-
moved; and Survey which includes only students who completed
the motivation survey. We will also consider versions of the above
graphs without students who obtained a score of 0, and without
the isolated individuals who connect with at most one other
person. As we will discuss below, a number of students received
a zero grade in the course. Because this is an at-will course, how-
ever, we cannot readily determine why these scores were obtained.
They may reflect a lack of engagement with the course, differen-
tial motivations for taking the course, a desire to see the course
materials without assignments, or genuinely poor performance.

4.1 Best-Friend Regression & Assortativity
Fire et al. [11] applied a similar social network approach to
traditional classrooms and found a correlation between a stu-
dent’s most highly connected neighbor (”best friend”) and the
student’s grade. The links in that graph included cooperation
on assignments as well as partnership on group assignments.
To examine whether the same correlation existed in a massive
online course in which students were less likely to know each
other beforehand and there were no group assignments, we
calculated each student’s best friend in the same manner and
performed a similar correlation.

The simple best friends analysis gives a straightforward mech-
anism for correlating individual students. However it is also
worthwhile to ask about students who are one-step removed
from their peers. Therefore we will also calculate the grade
assortativity (rG) of the graphs. Assortativity describes the cor-
relation of values between vertices and their neighbors [23]. The
assortativity metric r ranges between -1 and 1, and is essentially
the Pearson correlation between vertex and their neighbors [23].
A network with r=1 would have each vertex only sharing edges
with vertices of the same score. Likewise, if r=−1 vertices in

the network would only share edges with vertices of different
scores. Thus grade assortativity allows us to measure whether
individuals are not just connected directly to individuals with
similar scores but whether they correlate with individuals who
are one step removed.

Several commonly studied classes of networks tend to have pat-
terns in their assortativity. Social networks tend to have high
assortativity, while biological and technological networks tend
to have negative values (dissortativity) [23]. In a homogeneous
course or one where students only form stratified communities
we would expect the assortativity to be very high while in a het-
erogeneous class with no distinct communities we would expect
it to be quite low.

4.2 Community Detection
The process of community detection we employed is briefly de-
scribed here [3]. As noted there we elected to ignore the edge
direction when making our graph. Our goal in doing so was to
focus on communities of learners who shared the same threads,
even when they were not directly replying to one-another. We
believe this to be a reasonable assumption given the role of class
forums as a knowledge-building environment in which students
exchange information with the group. Individuals who partic-
ipate in a thread generally review prior posts before submitting
their contribution and are likely to return to view the followups.
Homogeneity in this context would mean that students gathered
and communicated primarily with equally-performing peers and
thus that they did not consistently draw from better-performing
classmates and help lower-performing ones or that the at-will
communities served to homogenize performance, with the stu-
dents in a given cluster evening out over time.

While algorithms such as GN are useful for finding clusters they
do not, in and of themselves, determine the right number of
communities. Rather, when given a target number they will seek
to identify the best possible set of communities. In some imple-
mentations the algorithm can be applied to iteratively select the
maximum modularity value over a possible range. Determining
the correct number of communities to detect, however, is a
non-trivial task especially in large and densely connected graphs
where changes to smaller communities will have comparatively
small effects on the global modularity score. As a consequence
we cannot simply optimize for the best modularity score as we
would risk missing small but important communities [12].

Therefore, rather than select the clusterings based solely on
the highest modularity, we have opted to estimate the correct
number of clusters visually. To that end we plotted a series of
modularity curves over the set of graphs. For each graph G we
applied the GN algorithm iteratively to produce all clusters in
the range (2,|GN |). For each clustering, we then calculated the
global modularity score. We examined the resulting scores to
identify a crest where the modularity gain leveled off or began to
decrease thus indicating that future subdivisions added no mean-
ingful information or created schisms in existing high-quality
communities. This is a necessarily heuristic process that is sim-
ilar to the use of Scree plots in Exploratory Factor Analysis [4].
We define the number identified as the natural cluster number.

5. RESULTS AND DISCUSSION
Before removing self-loops and collapsing the edges, the network
contained 754 nodes and 49,896 edges. The final social network



contained 754 nodes and 17,004 edges. 751 of the participants
were students, with 1 instructor and 2 TAs. One individual was
incorrectly labeled as a student when they were acting as the
Chief Community TA. Since this person’s posts clearly indicated
that he or she was acting in a TA capacity with regard to the
forums, we relabeled him/her as a TA. Of the 751 students 304
obtained a zero grade in the course leaving 447 nonzero students.
215 of the 751 students responded to the motivation survey.

There were a total of 55,179 registered users, so the set of 754
forum participants is a small fraction of the entire course audi-
ence. However, forum users are not necessarily those who will
make an effort or succeed in the course. Forum users did not all
participate in the course, and some students who participated in
the course did not use the forums: 1,381 students in the course
got a grade greater than 0, and 934 of those did not post or
comment on the forums, while 304 of the 751 students who did
participate in the forums received a grade of 0. Clearly students
who go to the trouble of posting forum content are in some
respect making an effort in the course beyond those who don’t,
but this does not necessarily correspond to course success.

5.1 Best-Friend Regression & Assortativity
We followed Fire et al.’s methodology for identifying Best Friends
in a weighted graph and calculated a simple linear regression
over the pairs. This correlation did not include the instructor or
TAs in the analysis. We calculated the correlation between the
students’ grades to their best friends’ grades in the set using
Spearman’s Rank Correlation Coefficient (ρ) [34]. The two vari-
ables were strongly correlated, ρ(748)=0.44, p<0.001. However,
the correlation was also affected by the dense clusters of students
with 0 grades. After removing the 0 grade students we found
an additional moderate correlation, ρ(444)=0.29, p<0.001.

Thus the significant correlation between best-friend grade and
grade holds over the transition from the traditional classroom to
a MOOC. This suggests that students in a MOOC, excluding the
many who drop out or do not submit assignments, behave sim-
ilarly to those in a traditional classroom in this respect. These
results are also consistent with our calculations for assortativity.
There we found a small assortative trend for the grades as shown
in Table 1. These values reflect that a student was frequently
communicating with students who in turn communicated with
students at a similar performance level. This in turn supports our
belief that homogeneous communities may be found. As Table
1 also illustrates, the zero-score students contribute substan-
tially to the assortativity correlation as well with the correlation
dropping by as much as a third when they were removed.

Table 1: The grade assortativity for each network.

Users Zeros V E rG

All Yes 754 17004 0.29
All No 447 5678 0.20
Students Yes 751 15989 0.32
Students No 447 5678 0.20
Non-Hub Yes 716 9441 0.37
Non-Hub No 422 3119 0.24

Figure 1: Modularity for each number of clusters,
including students with zeros.

Figure 2: Modularity for each number of clusters,
excluding students with zeros.

5.2 Community Structure
The modularity curves for the graphs both with and without
zero-score students are shown in Figures 1 and 2. We exam-
ined these plots to select the natural cluster numbers which are
shown in Table 2. As the values illustrate the instructor, TAs,
and hub students have a disproportionate impact on the graph
structure. The largest hub student in our graph connects to
444 out of 447 students in the network. The graph with all
users had lower modularity and required more clusters than the
graphs with only students or only non-hubs (see Table 2), with

Table 2: Graph sizes and natural number of clusters
for each graph.

Users Zeros V E Clusters

All Yes 754 17004 212
All No 447 5678 173
Students Yes 751 15989 184
Students No 447 5678 169
Non-Hub Yes 716 9441 79
Non-Hub No 422 3119 52
Survey Yes 215 1679 58



Figure 3: View of the student communities with edges of frequency <2 removed. The Student network with (left)
and without (right) hub-students, with each vertex representing a student and grade represented as color.

the non-hub graph having the highest modularity. This suggests
that non-hub students formed more isolated communities, while
teaching staff and hubs communicated across these communities
and connected them.

This largely consistent with the intent of the forums and the
active role played by the instructor and TAs in monitoring and
replying to all relevant posts in the forums. It is particularly in-
teresting how closely the curves for the ALL and Student graphs
mirror one another. This may indicate that the hub students are
also those that followed the instructor and TAs closely, thus giv-
ing them isomorphic relationships, or it may indicate that they
are more connected than even the instructors and thus came to
bind the forums together on their own. This impact is further
illustrated by the cluster plots shown in Figure 3. Here the ab-
sence of the hub students results in a noticeable thinning of the
graph which in turn highlights the frequency of communication
that can be attributed to this, comparatively small, group.

The difference between the full plots and those with zero values
are also notable as the zero grade students were clearly a major
factor in community formation. A direct examination of the
user graph showed that many of the zero students were only
connected to other zero students or were not connected at all.
This is also highlighted in Figure 3. In both graphs the bulk of
the zero score students are clustered in a tight network of com-
munities on the left-hand side. That super-community consists
primarily of zero score students communicating with other zero-
score students, a structure we have nick-named the ‘deathball.’

5.3 Student Performance & Motivation
As the color coding in Figure 3 illustrates, the students did
cluster by performance. Table 3 shows the average grade and

Table 3: Grade statistics by community, selected
to show examples of more and less homogeneous
communities.

Members Average Grade Standard Deviation

118 21.62 36.58
41 22.00 32.45
34 25.41 40.44
31 56.13 47.69
20 49.05 45.64
16 12.44 31.13
14 88.43 22.47
12 96.08 6.36
11 96.45 7.38
4 3.00 6.00
4 8.50 9.81
4 4.25 8.50
4 96.25 3.50

standard deviation for a small selection of the communities in
the ALL reply network including zero-grades, hub students,
and teaching staff. Several of the communities, particularly
the larger ones, do show a blend of good and poor students,
with a high standard deviation. However many if not most of
the communities are more homogeneous with good and poor
students sharing a community with similarly-performing peers.
These clusters have markedly lower standard deviation.

An examination of the grade distribution for each of the clusters
showed that the scores within each cluster were non-normal.
Therefore we opted to apply the Kruskal-Wallis (KW) test to
assess the correlation between cluster membership and perfor-



Table 4: Kruskal-Wallis test of student grade by
community, for each graph.

Users Zeros Chi-Squared df p-value

All Yes 349.0273 211 < 0.005
All No 216.1534 172 < 0.02
Students Yes 202.0814 78 < 0.005
Students No 80.93076 51 < 0.005
Non-Hub Yes 309.8525 183 < 0.005
Non-Hub No 218.9603 168 < 0.01
Survey Yes 99.99840 577 < 0.005

mance. The KW test is a nonparametric rank-based analogue
to the common Analysis of Variance [17]. Here we tested grade
by community number with the community being treated as a
categorical variable. The results of this comparison are shown
in Table 4. As that illustrates, cluster membership was a sig-
nificant predictor of student performance for all of the graphs
with the non-zero graphs having markedly lower p-values than
those with zero students included. These results are consistent
with our hypothesis that students would form clusters of equal-
performers and we find that those results hold even when the
highly-connected instructors, TAs and hub students are included.

We performed a similar KW analysis for the questions on the
motivation survey and for a binary variable indicating whether
or not the student completed the survey at all. For this analysis
we evaluated the clusters on all of the graphs. We found no
significant relationship between the community structure on
any of the graphs and the survey question results or the survey
completion variable. Thus while the clusters may be driven by
separate factors they are not reflected in the survey content.

6. CONCLUSIONS AND FUTURE WORK
Our goal in this paper was to expand upon our prior community
detection work with the goal of aligning that work with prior
research on peer impacts, notably the work of Fire et al. [11].
We also sought to examine the impact of hub students and
student motivations on our prior results.

To that end we performed a novel community clustering analysis
of student performance data and forum communications taken
from a single well-structured MOOC. As part of this analysis we
described a novel heuristic method for selecting natural numbers
of clusters, and replicated the results of prior studies of both
immediate neighbors and second-order assortativity.

Consistent with prior work, we found that students’ grades
were significantly correlated with their most closely associated
peers in the new networks. We also found that this correlation
extended out to their second-order neighborhood. This is consis-
tent with our prior work showing that students form stable user
communities that are homogeneous by performance. We found
that those results were stable even if instructors, hub players,
students with 0 scores, and students who did not fill out the sur-
vey were removed from consideration. This suggests that either
the students are forming communities that are homogeneous or
that the effect of those individual and network features on the
communities and on performance is minimal.

We also found that community membership was not a significant
predictor of whether students would complete the motivation
survey or of students’ motivations. We were surprised by the
fact that even when we focused solely on individuals who had
completed the survey, the students did not connect by stated
goals. This suggests to us that the students are more likely
coalescing around the pragmatic needs of the class or conceptual
challenges rather than on the winding paths that brought them
there. One limitation of this work is that by relying on the
forum data we were focused solely on the comparatively small
proportion of enrolled students (6%) who actively participated
in the forums. This group is, by definition a smaller set of more
actively-involved participants.

In addition to addressing our primary questions this study also
raised a number of open issues for further exploration. Firstly,
this work focused solely on the final course structure, grades, and
motivations. We have not yet addressed whether these commu-
nities are stable over time or how they might change as students
drop in our out. Secondly, while we ruled out motivations as a
basis for the community this work we were not able to identify
what mechanisms do support the communities. And finally this
study raises the question of generality and whether or not these
results can be applied to MOOCs offered on different topics or
whether the results apply to traditional and blended courses.

In subsequent studies we plan to examine both the evolution of
the networks over time as well as additional demographic data
with the goal of assessing both the stability of these networks
and the role of other potential latent factors. We will also
examine other potential clustering mechanisms that control for
other user features such as frequency of involvement and thread
structure. We also plan to examine other similar datasets to
determine if these features transition across classes and class
types. We believe that these results may change somewhat once
students can coordinate face to face far more easily than online.
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