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Within Intelligent Data Analysis (IDA) research area there may be found several subareas such as 

Machine Learning/Statistics, Information Retrieval, Data Mining and lately Big Data and Cloud 

Computing. The exact boundaries between these research areas are not very clear and may mislead 

research efforts, each one having its own particularities in terms of input type and size, data processing 

methodologies and obtained output. As Data Mining makes intensive use of all these research subareas, 

it is mandatory to be aware of their subtle differences and, therefore, design and implement IDA systems 

that make research efforts sound and effective. The goal of this workshop is to gather research efforts 

that fall into any of the categories of subareas and have results into the application area of Education. 

The workshop is looking for contributions that provide experimental results in the area of 

EDM/Information Retrieval and are focused on data processing fundamentals from Machine 

Learning/Statistics perspective. From the practical point of view, the focus should be on presenting the 

details regarding what and how tools and technologies are used in order to obtain relevant data analysis 

engines.  

The integration of tools and technologies for building IDA processes is a key issue for developing 

applications that improve the effectiveness of the e-Learning platforms.  The EDM community will 

benefit from the discussions related to the advantages and drawbacks of various options in a practical 

context with experimental results, by improving the efficiency of building high quality software systems 

supporting the research efforts.  

The first step of developing an IDA application should focus on choosing the right tool or technology 

that fits the task requirements (e.g., input size, algorithm type, running time efficiency, scalability, etc.). 

The diversity of the available options is an indication of the necessity for a detailed analysis. From this 

point of view, the EDM community needs to be aware of success and failure attempts of many practical 

research efforts in order to provide the possibility of a proper future design choice. 

Existing tools and technologies implement in different ways recent advances on techniques from 

statistical/machine learning, information retrieval and data mining domains in terms of programming 

language (e.g., Java, C/C++, C#, R, etc.), toolkits (e.g., Weka, Apache Mahout, MLTK, Maple, Matlab, 

etc.) and implementation details that may have a great impact on running times, scalability, effectiveness 

or efficiency. 

This workshop brings together researchers from academia and industry practitioners with special 

interest in statistics/machine learning, information retrieval, data mining to (1) discuss current state of 

the art tools and technologies, (2) identify patterns for proper usage of various options for different tasks, 

and (3) lay out a vision regarding the modality in which tools and technologies will influence future 

applications. The organizers hope to obtain common background knowledge for integrating various tools 

and technologies in future EDM applications.    
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ABSTRACT
In these days WEKA has become one of the most impor-
tant data mining and machine learning tools. Despite the
fact that it incorporates many algorithms, on the classifica-
tion area there are still some unimplemented features. In
this paper we cover some of the missing features that may
be useful to researchers and developers when working with
decision tree classifiers. The rest of the paper presents the
design of a package compatible with the WEKA Package
Manager, which is now under development. The functional-
ities provided by the tool include instance loading, succes-
sor/predecessor computation and an alternative visualiza-
tion feature of an enhanced decision tree, using the J48 algo-
rithm. The paper presents how a new data mining/machine
learning classification algorithm can be adapted to be used
integrated in the workbench of WEKA.
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1. INTRODUCTION
Nowadays huge amounts of data can be gathered from many
research areas or industry applications. There is a certain
need for data mining or knowledge extraction [6] from data.
From this large amount of data, the data analysts gather
many variables/features and many machine learning tech-
niques are needed to face this situation. There are many
application domains such as medical, economics (i.e., mar-
keting, sales, etc.), engineering or in our case educational
research area [16] in which machine learning techniques can
be applied. Educational data mining is a growing domain
[4] in which a lot of work has been done.

Because the application domains are growing continuously,
the tools that support the machine learning processes must
live up to market standards providing good performances
and intuitive visualization techniques. In these days there
are many tools that deal with a wide variety of problems. In

order to be more explicit, we have tools like RapidMiner [12],
KEEL [2], WEKA, Knime [3] or Mahout [13]. RapidMiner
is a graphical drag and drop analytics platform, formerly
known as YALE, which provides an integrated environment
for data mining, machine learning, business and predictive
analytics. Keel is an application package of machine learning
software tools, specialized on the evaluation of evolutionary
algorithms. KNIME, the Konstanz Information Miner, is a
modular data exploration platform, provided as an Eclipse
plug-in, which offers a graphical workbench and various com-
ponents for data mining and machine learning. Mahout
is a highly scalable machine learning library based on the
Hadoop framework [18], an implementation of the MapRe-
duce programming model, which supports distributed pro-
cessing of large data sets across clusters of computers.

For our approach we choose WEKA because it has become
one of the most popular machine learning and data mining
workbenches and its success is due to its constant improve-
ment and development. Moreover, WEKA is a very popular
tool used in many research domains, widely adopted by the
educational data mining communities.

WEKA is developed in Java and encapsulates a collection of
algorithms that tackle many data mining or machine learn-
ing tasks like preprocessing, regression, clustering, associ-
ation rules, classification and also visualization techniques.
In some cases, these algorithms are referring only the basic
implementation.

One aspect that needs to be taken into consideration is that
WEKA has a package manager which simplifies the devel-
opers contribution process. There are two kind of packages
that can be installed in WEKA and used via the applica-
tion interface: official and unofficial packages. This is a very
important feature because if there is an algorithm that fits
your problem description and there is a package for it you
can just add it to the application and use it further. More-
over, you don’t need to be a programmer to do that, you
don’t need to write code, just install the package and then
use the algorithm like it had been there forever.

According to the real life experiences, many of the included
algorithms can hardly be used because of their lack of flexi-
bility. For example, in standard decision trees from WEKA
we can perform a classification process but we cannot access
a particular instance from the tree. Suppose that we have a
training data file and we create the tree model. When we try



to see where is the place of the instance “X” in the tree we
can’t do that in the application interface, neither when you
add the WEKA library in your code. This is a big drawback
because retrieving the leaf to which the instance belongs to
provides more information than retrieving its class. Usu-
ally, when performing a classification task, the data analyst
divides test instances into classes that have little meaning
from application domain of perspective.

In a real life scenario in a training dataset we may have a
large number of features describing the instances. A data
analyst should be able to parse a decision tree, see the rule
that derived to a specific decision and then draw very accu-
rate conclusions In this paper we will address classification
and visualization issues by adding new functionalities and
improving the decision tree visualization.

Several classification algorithms have been previously con-
tributed to WEKA but non of them is able to output a data
model that is loaded with instances. Based on the previous
statement it is clear that there aren’t WEKA visualization
techniques that are able to present the data in the model
in a efficient way and also, there are no available parsing
methods ready to implement such functionalities. Traversal
of leaves is another task that is missing and it is important
because instances from neighbour leaves have a high degree
of similarity and share many attributes with similar values.

One aspect that differs at WEKA from other similar soft-
ware regards its architecture that allows developers to con-
tribute in a productive way. All the work that needs to be
done refers to creating a specific folders layout, completing
a “description.props” file, adding the “.jar” file to the archive
and the build script.

2. RELATED WORK
WEKA is a open source machine learning library that allows
developers and researchers to contribute very easily. There
are more than twenty years since WEKA had it’s first re-
lease [9] and there were constant contributions added on it.
Not only machine learning algorithms were implemented, for
example, in 2005 a text data mining module was developed
[20]. An overview of the actual software was made in [8].

Several classifiers were developed and contributed as pack-
ages to WEKA. In 2007 a classifier that was build based
on a set of sub-samples was developed [14] and compared
to C4.5 [15] which have it’s implementation called J48 [11]
in WEKA. Other classifiers refers the “Alternating Decision
Trees Learning Algorithms” [7] which is a generalization of
the decision trees, voted decision trees and voted decision
stumps. This kind of classifiers are relatively easy to in-
terpret and the rules are usually smaller in size. Classical
decision trees, such as c4.5 were expanding nodes in a depth-
first order; an improvement came from “Best-first decision
trees” [17]which expands nodes in a best-first order. A pack-
age with these trees was contributed to WEKA.

Some other contributions refers libraries of algorithms that
can be accessed via WEKA. One of them is JCLEC [5] an
evolutionary computation framework which has been suc-
cessfully employed for developing several evolutionary algo-
rithms. Other environment for machine learning and data

mining knowledge discovery that was contributed to WEKA
is R [10]. This contribution was developed in order to in-
clude different sets of tools from both environments available
in a single unified system.

Also as related work we must take into consideration some
of the last algorithms development. In the last year it is
presented a new fast decision tree algorithm [19]. Based on
their experiments, the classifier outperforms C5.0 which is
the commercial implementation of C4.5.

3. SYSTEM DESIGN
The package is designed to be used both by developers, in
their Java applications, and researchers, using the WEKA
Explorer. At the moment of writing this paper the package
with the Advanced Classifier is still under development, of-
fering more functionalities as a tool for developers than in
the explorer view of WEKA.

Figure 1: Package Integration in WEKA

In Fig. 1 we present the main design of the algorithm and
how it can be used in WEKA. On the top of the figure
we have the classifier which can be divided in two main
modules: the algorithm and the visualization. As we can
see on the next level, both of the modules can be divided
further. All the functionalities are then installed in WEKA
via the package manager and then, in the explorer, we can
perform data analysis tasks using a model loaded with data
and it’s associated visualization techniques.

3.1 General Architecture
The packages is a zip archive, structured with respect to
the WEKA guidelines. That is, it unpacks to the current
directory and it contains: the source files, a folder with the
required libraries, a build script, a properties file required
by WEKA for installing and managing the package, and
the actual “.jar” file. A detailed structure of the package is
presented below.



<current directory>
+-AdvancedClassifier.jar
+-Description.props
+-build_package.xml
+-src
| +-main
| +-java
| +-resources
| | +-background_node.png
| | +-background_leaf.png
| | +-background_leaf_pressed.png
| | +-font_node.ttf
| | +-font_decision.ttf
| +-weka
| +-classifiers
| | +-trees
| | +-model
| | | +-AdvancedClassifierTree.java
| | | +-AdvancedClassifierTreeBaseNode.java
| | | +-AdvancedClassifierTreeNode.java
| | | +-AdvancedClassifierTreeLeaf.java
| | | +-BaseAttributeValidator.java
| | | +-NominalAttributeValidator.java
| | | +-NumericAttributeValidator.java
| | | +-Constants.java
| | +-AdvancedClassifier.java
| | +-WekaTextfileToXMLTextfile.java
| +-gui
| +-visualize
| +-plugins
| +-AdvancedClassifierTree.java
| +-AdvancedClassifierTreePanel.java
| +-BaseNodeView.java
| +-AdvancedClassifierTreeNodeView.java
| +-AdvancedClassifierTreeLeafView.java
| +-ConnectingLineView.java
+-lib
+-weka.jar
+-simple-xml.jar
+-rt.jar

Figure 2: Class Diagram

In Figure 2 is presented the system’s class diagram. This
diagram includes all the java packages from the project and
their relations. As we can see in the above mentioned fig-
ure, we have two type of classes: independent classes and
composed. Independent classes are gathered from the model
part of the Model-View-Controller architecture or just classes
that perform one time tasks like“WekaTextFileToXMLTextFile”
which is able to generate an XML based on the text file out-
putted by WEKA. On the other side, the composed classes
are dependent on each other and these relations are shared
across packages. One important class that is worth to be
mentioned is “AdvancedClassifierTreeLeaf.java” in which we
store the leaves of our tree along with rules that define the
leaf. Discussions about implementation of the packages are
more related to the software engineering research area and
beyond of the scope of this paper.

3.1.1 Design and Implementation of the Algorithm
The algorithm needs to generate custom rules (dependent
on the training dataset) for every leaf of the decision tree.
These rules are computed by tracing the path from the root
of the tree to the specified leaf. Each decision that leads to a
leaf is therefore translated into a rule that encapsulates the
name of the attribute and the value on which the decision
was made. For each type of attribute defined by WEKA, we
need to have a corresponding rule that matches that type.
For this purpose an abstract class has been created to act as
a base class for any of the custom rules. The name of this
class is “BaseAttributeValidator” and exposes the required
methods that a superclass needs to implement: a “clone”
method required by the workflow of the system and meth-
ods that validate if an instance or set of instances have the
required values of the attribute targeted by the rule. At
the moment, the only implemented rules are the ones that
handle “NOMINAL” and “NUMERIC” attribute types.

The rule that validates each nominal attribute is called“Nom-
inalAttributeValidator”and receives as parameters the name
of the targeted attribute and a string variable representing
the accepted value of the attribute. The rule that handles
the numeric attributes is called “NumericAttributeValida-
tor” and also receives the name of the attribute and either
a particular value or the boundaries of an interval.

In the following paragraphs, we present a brief overview
of the algorithm for which we adopt a straightforward ap-
proach.

Firstly, the algorithm retrieves instances from the “.arff” file
using the methods provided by WEKA. The next step is
applying the desired classification process. Currently the
only supported classifier is J48, but employing other decision
tree classifiers is foreseen as future work. Using the text
representation of the outputted model and a predefined set
of rules and tags, an XML is then generated. This is an
important step during the workflow because the structured
XML format allows us to obtain the base model for our
decision tree. The deserialization is done using a third-party
Java library(“Simple XML” [1]).

The model obtained this way contains a list of nodes and
leaves with the following significance: each node corresponds
to a decision in the tree; the data stored in each object



(node) refers the information about the name of the ac-
tual attribute, operator and value on which the decision was
made; and the results to which making the decision leads (a
list of other nodes or an output leaf). Using this model and
the set of attributes provided by WEKA, the set of rules
is computed. This step is performed by parsing the model
from the first node (i.e., the root) to the last available leaf
and gradually composing the set of rules that defines each
leaf. The setup of the algorithm is finally completed with
the loading of the training dataset into the model.

The classifier and processed data can now be easily han-
dled and different operations can be applied. The method
currently implemented include basic per leaf manipulation
of instances, i.e. loading new instances into the model and
retrieving the part of the dataset contained in each leaf, as
well as predecessor and successor computation.

3.1.2 Visualization Plugin
For the visualization feature, a custom panel has been de-
signed to hold the components that build up the decision
tree and expose the data available in the leaves. The con-
tructor of the panel requires the decision tree model as a pa-
rameter, and takes care of adding the corresponding views
to the interface. In order to include this functionality in
WEKA, a specialized class that implements WEKA’s Tree-
VisualizePlugin interface has been created. After adding
the package through the Package Manager and selecting this
visualization option, a new JFrame that holds the custom
panel is displayed.

Figure 3: Sample from the Dataset

In Figure 3 we present a dataset sample. In order to validate
the classifier and it’s extra functionalities several tests have
been made but for this case study we used three attributes
and 788 instances. The feature called “userid” doesn’t pro-
vide any information gain but can be easily used for in-
stances localization in leaves. The attributes significance is
beyond the scope of this paper.

In Figure 4 is presented a screen-shot of the tree generated
based on the dataset from figure 3. Each node contains

Figure 4: Tree Sample

the name of the attribute, and each decision is printed on
top of the connecting line. Surely, each leaf can be clicked,
and the set of enclosed instances is displayed. As previ-
ously noted, there is still some work to be made to final-
ize the development of the package, and the visualization
tool needs to be included as well. Efforts will have to be
made toward providing the means to visualize and handle
the successors/predecessors, outliers and other relevant in-
formation.

4. CONCLUSIONS AND FUTURE WORK
In this paper we have presented the integration of a data
analysis tool in WEKA. This tool is important because brings
a new classifier to WEKA that aims to improve the classi-
fication procedures. Here, are also presented some imple-
menting procedures and details.

A workflow is also described and all the mechanism that is
used to bring new features for the users. One important
thing that needs to be mentioned is that the data load-
ing module opens new data analysis opportunities for re-
searchers.

As future work we plan to implement Other types of at-
tributes supported by WEKA like “DATE”, “String” and
“Relational”.
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ABSTRACT 

The field of educational data mining (EDM) has been slowly 

expanding to embrace various graph-based approaches to 

interpretation and analysis of educational data. However, there is 

a great wealth of software tools for graph creation, visualization, 

and analysis, both general-purpose and domain-specific, which 

may discourage EDM practitioners from finding a tool suitable for 

their graph-related problem. For this reason, we conducted a 

systematic mapping study on the usage of software tools for 

graphs in the EDM domain. By analysing papers from the 

proceedings of previous EDM conferences we tried to understand 

how and to what end graph tools were used, as well as whether 

researchers faced any particular challenges in those cases. In this 

paper, we compile studies that relied on graph tools and provide 

answers to the posed questions.   

Keywords 

Systematic Mapping Study, Graphs, Software Tools, Educational 

Data Mining. 

1. INTRODUCTION 
The field of educational data mining (EDM) has significantly 

expanded over the past two decades. It has attracted numerous 

researchers with various backgrounds around the common goal of 

understanding educational data through intelligent analysis and 

using the extracted knowledge to improve and facilitate learning, 

as well as educational process. In 2010, Romero and Ventura 

published a comprehensive overview of the field with 306 

references [26]. In this review, the authors identified 11 categories 

of educational tasks, two of which dealt with graph structures (for 

brevity these will be referred to as graphs): social network 

analysis (SNA) and developing concept maps. However, the 

authors noted that these two categories featured a lower number of 

papers (15 or less references collected). Somewhat different 

categories of work were presented in another review of EDM [2] 

but they did not include any explicit references to graphs.  

However, since that time, the interest in approaches and 

technologies utilizing graphs has increased within EDM. In 

addition to the results of a literature search on the topic, this could 

be also evidenced by the appearance of the Workshop on Graph-

Based Educational Data Mining (G-EDM)1 in 2014. As a result, 

software tools that help researchers or any other user group to 

utilize graphs or graph-based structures (for brevity these will be 

referred to as graph tools) are becoming a valuable resource for 

both the G-EDM and the broader EDM community. As graphs are 

only slowly gaining wider recognition in EDM, there could still 

be a lot of questions about which graph tools exist or what 

educational tasks might be supported by these tools. 

In an attempt to help EDM researchers discover more useful 

information about potentially suitable graph tools, we reviewed 

the papers presented at the past EDM conferences, selected those 

that mentioned any usage of graph tools, and extracted from them 

information about which graph tools the authors employed, what 

features of these tools were used, to what end the research in 

question was conducted, and if there were any particular 

challenges while using these tools. 

The present study may be classified as a secondary study since we 

base our approach on collecting other research works and 

assembling relevant information from them. Secondary studies 

might be more typical of medical and social sciences but there are 

proposed methodologies concerning secondary studies in software 

engineering as well [13]. Two kinds of secondary studies might be 

particularly important in this context: systematic review studies 

and systematic mapping studies [20]. In both cases, there is a clear 

methodology that is set to reduce bias when selecting other 

research works, which gives these secondary studies the quality of 

being systematic. Some of the differences pointed out by Petersen 

et al. [20] are that systematic reviews tend to focus on the quality 

of reviewed studies with the aim of identifying best practices, 

while systematic maps focus more on classification and thematic 

analysis but with less detailed evaluation of collected studies. 

Moreover, the same authors consider that the two study types 

form a continuum, which might complicate some attempts at 

categorization. 

We categorize the present study as a systematic mapping study. 

This classification is justified by the fact that: 

1. we employed a concrete methodology, 

2. we did not evaluate the quality of collected papers or 

the presented results, but 

3. we focused on identifying the employed graph tools and 

the manner in which these tools were used, with the aim 
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of providing an overview of the current practice of 

using graph tools within the EDM community 

However, we did not restrict our investigation to analysing 

exclusively titles, abstracts, or keywords, but went through the 

complete texts to find the necessary information. This aspect 

might better suit systematic reviews, but it does not change the 

principal goal or character of our study.  

The exact details of the employed methodology, including the 

research questions, sources of studies, and study selection criteria, 

are given in Section 2. Section 3 contains the answers to the 

research question, most importantly the list of identified graph 

tools and the trends in their usage in EDM. Section 4 covers the 

potential limitations of the present study. 

2. METHODOLOGY 
We mainly followed the guidelines given in [20] but also relied 

on the example of a mapping study presented in [21]. Given the 

specificity of our study and the posed research questions, there 

were some necessary deviations from the standard suggested 

procedure. The overall process of selecting papers and extracting 

information, together with the resolution methods for non-

standard cases, is presented and discussed in the following 

subsections. 

2.1 Overview 
The first step was defining research questions to be answered by 

the present study. The choice of research questions influenced the 

subsequent steps: conducting the search for papers, screening the 

papers, devising the classification scheme, extracting data, and 

creating a map.  

2.2 Research Questions 
We defined four principal research questions (RQ1-RQ4) 

concerning the use of graphs and graph tools in studies by EDM 

researchers: 

• RQ1: Which graph tools were directly employed by 

researchers in their studies? 

• RQ2: Which features of the employed graph tools were 

used by researchers? 

• RQ3: What was the overall purpose of the research that 

involved or relied on graph tools? 

• RQ4: What features did researchers consider to be 

missing or inadequate in the employed graph tools?  

2.3 Search for Papers 
We searched through all the papers that were published in the 

proceedings of the EDM conference series till this date, i.e., 

papers from the first EDM conference in 2008 to the latest, 

seventh, EDM conference in 2014. The latest EDM conference 

was special because it also included four workshops (G-EDM 

being one of them) for the first time. The papers from these 

workshops were also considered in our search. This amounted to 

eight relevant conference proceedings that represented the 

complete source of research works for our study: 

1. Proceedings of the 1st International Conference on 

Educational Data Mining 2008 (Montreal, Canada) 

2. Proceedings of the 2nd International Conference on 

Educational Data Mining 2009 (Cordoba, Spain) 

3. Proceedings of the 3rd International Conference on 

Educational Data Mining 2010 (Pittsburgh, 

Pennsylvania, USA) 

4. Proceedings of the 4th International Conference on 

Educational Data Mining 2011 (Eindhoven, 

Netherlands) 

5. Proceedings of the 5th International Conference on 

Educational Data Mining 2012 (Chania, Greece) 

6. Proceedings of the 6th International Conference on 

Educational Data Mining 2013 (Memphis, Tennessee, 

USA) 

7. Proceedings of the 7th International Conference on 

Educational Data Mining 2014 (London, UK) 

8. Extended Proceedings of the 7th International 

Conference on Educational Data Mining 2014 (London, 

UK), which included only the workshop papers 

All the proceedings are freely offered as PDF files by the 

International Society of Educational Data Mining2 and may be 

accessed through a dedicated web page.3 

The papers from these proceeding represented our Level 0 (L0) 

papers, i.e., the starting set of 494 papers. This set included 

different categories of papers: full (regular) papers, short papers, 

different subcategories of posters, as well as works from the 

young researcher track (YRT) or demos/interactive events. The 

starting set did not include abstracts of invited talks (keynotes), 

prefaces of proceedings, or workshop summaries. 

These papers were then searched and evaluated against our 

keyword criterion (KC), which led to a set of Level 1 (L1) papers. 

Our keyword string is of the form KC1 AND KC2 where KC1 

and KC2 are defined in the following manner: 

• KC1: graph OR subgraph OR clique 

• KC2: tool OR application OR software OR framework 

OR suite OR package OR toolkit OR environment OR 

editor 

The first part of the criterion (KC1) was defined to restrict the 

choice to papers that dealt with graphs, while the second part 

(KC2) served to narrow down the initial set of papers to those 

mentioning some kind of a tool or program in general. 

When evaluating KC on each L0 paper, we did a case-insensitive 

search for whole words only, whether in their singular form (as 

written in KC1 and KC2) or their plural form (except for the case 

of “software”). This search also included hyphenated forms that 

featured one of the keywords from KC, e.g., “sub-graph” was 

considered to match the “graph” keyword. 

As each proceedings file is a PDF document, we implemented a 

search in the Java programming language using the Apache 

PDFBox4 library for PDF manipulation in Java. However, when 

extracting content from some papers, i.e., page ranges of a 

proceedings file, we could not retrieve text in English that could 

be easily searched. This was most probably caused by the fact that 
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authors used different tools to produce camera ready versions in 

PDF, which were later integrated into a single PDF file. 

In these instances, usually one of the two main problems 

occurred: no valid text could be extracted or valid text was 

extracted but without spacing. In the case of invalid text, we had 

to perform optical character recognition (OCR) on the 

problematic page ranges. We used the OCR feature of PDF-

XChange Viewer,5 which was sufficient as confirmed by our 

manual inspection of the problematic page ranges (six problematic 

papers in total). In the case of missing spacing, we had to fine-

tune the extraction process using the capabilities of the PDFBox 

library. 

This PDF library proved adequate for our task because we had to 

search only through PDF files and could customize the text 

extraction process to solve the spacing problem. However, in the 

case of a more varied data source, a more advanced toolkit for 

content indexing and analysis would be needed. 

2.4 Screening of Papers 
EDM researchers used many of our keywords with several 

different meanings, e.g., a graph could denote a structure 

consisting of nodes and edges, which was the meaning that we 

looked for, or some form of a plot. In order to determine the final 

set of papers we performed a two-phase selection on L1 papers: 

1. We examined the portions of L1 papers that contained 

some KC1 keyword and eliminated papers that did not 

significantly deal with graphs (as structures) – this led 

to a set of Level 2 (L2) papers. 

2. We read each L2 paper and eliminated those that did not 

mention some use of graphs tools – this led to the final 

set of Level 3 (L3) papers. 

In the first phase of selection, we examined the sentences that 

contain KC1 keywords. If this proved insufficient to determine the 

nature or scope of use of the mentioned graphs, we read the whole 

paragraph, and sometimes even the paragraph before and the 

paragraph after. In these cases, we also checked the referenced 

figures, tables, or titles of the cited papers. If there were still any 

doubts, we consulted the paper’s title and abstract, as well as 

glanced over the figures looking for graph examples. If the 

authors did not use graphs in their presented study or just made a 

short comment about graphs giving an analogy or mentioning 

graphs in the context of related or future work, we did not select 

the paper for the next phase. 

In the second phase of selection, we kept only those papers that 

mention explicit use of a graph tool by the authors. In the cases 

when the actual use of a mentioned graph tool was not clear, the 

paper was selected if some of its figures contain a screenshot 

featuring the tool or a graph visualized using that tool. 

The term tool was considered rather broadly in the present study. 

We did not restrict the search only to well-rounded software 

applications, but also included libraries for various computer 

languages, and even computer languages or file formats that were 

used by researchers to manipulate graphs. By making this 

decision, we aimed to provide a greater breadth of information to 

researchers interested in applying graphs within their studies. 

                                                                 

5  http://www.tracker-software.com/product/pdf-xchange-viewer 

2.5 Classification Scheme 
The mode of tool usage was categorized in the following manner: 

1. CREATION (C) – the tool was developed by the paper 

authors and introduced in the paper; 

2. MODIFICATION (M) – the tool being modified, either 

through source code or by adding extensions/plugins; 

and. 

3. UTILIZATION (U) – the tool being utilized without 

modification. 

We also checked the distribution of the collected studies by the 

continent and the country corresponding to the authors’ 

affiliation. In cases when there were authors from different 

countries, we indicated the country of the majority of authors, or, 

if there was no majority then the country corresponding to the 

affiliation of the first author. 

2.6 Data Extraction and Map Creation 
Relevant data from L3 papers was extracted into a table that for 

each paper included the following information: author list, title, 

proceedings where it was published, page range within the 

proceedings, answers to the research question and classifications 

according to the scheme presented in the previous subsection. 

3. RESULTS AND DISCUSSION 
An overview of the paper selection process is given in Table 1. In 

each step, the number of relevant papers is significantly reduced. 

As expected, the required effort in paper analysis was inversely 

proportional to the number of selected papers. In the L1 step, the 

usage of the keyword criterion relatively quickly eliminated many 

papers. However, in subsequent steps, the selected papers had to 

be read, either partially (in the L2 step) or fully (in the L3 step). 

The set of L3 papers represents a selection of EDM studies that 

were used to identify the usage patterns concerning graph tools. 

The list of the selected papers is publicly available.6 

Table 1. The number of selected papers at each step 

Step Number of papers 

L0 – papers from EDM proceedings 494 

L1 – papers containing keywords 146 

L2 – papers mentioning graphs 82 

L3 – papers mentioning graph tools 27 

 

Most studies (15) are from North America: USA (14) and Canada 

(1). Europe is represented by 8 studies from 6 countries: Czech 

Republic (2), Spain (2), Germany (1), Ireland (1), Russia (1), and 

UK (1).  The remaining two continents represented are Asia 

(Japan only) and Australia, each providing 2 studies. This 

somewhat resembles the EDM community present at the EDM 

conferences and differs little from the structure of the EDM 

community as reported in 2009 [2]. 

 

3.1 Overview of Graph Tools 
In Table 2, we list 28 graph tools mentioned in the 27 selected 

papers.  
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Table 2. Overview of graph tools from the selected papers 

No Tool Usage Features Purpose Issues 

1 
<Untitled 

framework> 
C[1] 

argument database – retrieval and 

mining 
retrieve, analyse, and reuse arguments WIP 

2 
<Untitled  

tool> 
C[25] vis. and mine visit trails from WBESs discover student trails in WBESs / 

3 AGG Engine 
C[14], 

U[15] 

augmented graph grammar engine with 

recursive graph matching 

analyse student-produced argument 

diagrams 

inefficiency 

in some cases 

4 CASSI C[19] 
collect bullying data via web-form and 

use them  to form a social graph 
support classroom management / 

5 
CLOVER 

framework 
U[25] generate graph vis. (used in vis. in No. 2) / 

6 Cmate U[16] 
provide a list of concepts and linking 

words to  build a concept map 
tabletop concept mapping / 

7 D3.js U[17] program interactive graph vis. facilitate graph interpretation in EDA / 

8 DOT U[28] describe graphs (used in export in No. 14) / 

9 EDM Vis 
C[9], 

M[10] 
interactively vis. ITS log data 

understand student problem solving in 

ITSs 
WIP 

10 eJUNG lib. U[11] layout graphs (used in vis. in No. 14) / 

11 
FuzzyMiner 

(ProM) 
U[16] 

generate fuzzy models (of student 

collaboration processes) 

discover and analyse student strategies in 

tabletop collaboration 
/ 

12 Gephi U[7] vis. graphs 

identify similarities between LE course 

content  

(used together with No. 22) 

/ 

13 graphML U[30] 
describe graphs  

(of student resolution proofs) 

analyse student solutions of resolution 

proofs 
/ 

14 InVis 
C[11], 

M[12, 28] 
interactively vis. and edit ITS log data understand student interaction in ITSs WIP 

15 LeMo C[18] 
interactively vis. learning object 

networks 

understand how students perform and 

succeed with resources in LMSs and LPs 
/ 

16 
Meerkat-ED 

toolbox 
C[22] 

vis., monitor, and evaluate participation 

of students in discussion forums 

analyse student interaction and messages 

in discussion forums 
/ 

17 meud U[24] create diagrams (concept lattices) analyse choices of study programmes / 

18 Ora U[6] calculate SNA metrics 
study SNA metrics to improve student 

performance classifiers 
/ 

19 pajek U[3],[32] 
vis. networks and  calculate network 

measures 

use student social data to predict drop-

out and failure; understand growth of 

communities on SNSs 

/ 

20 R U[8] use scripts to vis. ELE interaction data 
explore ELE interaction data and 

improve ELEs 
WIP 

21 
R – igraph 

package 
U[5],[32] create, refine, vis., and analyse networks 

compare student problem solving-

approaches in ITSs; understand growth 

of communities on SNSs 

/ 

22 RapidMiner M[7] create an operator for graph generation 

identify similarities between LE course 

content  

(used together with No. 12) 

/ 

23 RSP C[4] discover issues in the ITS process support teachers through AT adaptation / 

24 
SEMILAR 

 toolkit 
C[27] semantic similarity methods for text 

assess student  natural language input in 

ITSs 
/ 

25 SketchMiner C[29] 
generate graphs for student symbolic 

drawings; compare and cluster drawings 
assess student symbolic drawings in ITSs / 

26 STG C[4] 
interactively vis. student interaction in 

ITSs 

understand student problem solving in 

ITSs 
/ 

27 TRADEM C[23] 
perform analysis on content corpus and 

generate a concept map in ITSs 

support development of instructional 

content in ITSs 
/ 

28 Visone U[31] vis. and analyse SNs, clique analysis analyse user relationships in WBATs / 



The rows (graph tools) are ordered alphabetically by the tool 

name (the “Tool” column), which represents the answer to RQ1. 

In general, we discovered a diverse list of infrequently used graph 

tools. The usage of the graph tools, which represents the answer to 

RQ2, is covered by the columns “Usage” and “Features”. In 

“Usage”, we listed the mode of usage (see Section 2.5) and the 

references to the papers mentioning the graph tool. In “Features”, 

we listed tool functionalities and capabilities that were created or 

employed by the researchers. The most often used feature was to 

visualize (vis.) graphs. The purpose of the selected studies, which 

represents the answer to RQ3, is given in the “Purpose” column. 

Researchers often analysed data from various interrelated systems: 

intelligent tutoring systems (ITSs) and adaptive tutorials (ATs), 

learning environments (LEs) including exploratory learning 

environments (ELEs), learning management systems (LMSs), 

learning portals (LPs), social network services (SNSs), web-based 

authoring tools (WBATs), and web-based educational systems 

(WBESs). Some frequent tasks were analysis of social networks 

(SNs) and exploratory data analysis (EDA). 

The issues that the researchers faced when using the tools, which 

represents the answer to RQ4, are listed in the “Issues” column. In 

the majority of the selected papers, the researchers did not discuss 

problems related to tool usage. The main exceptions are studies in 

which researcher presented their own tools and discussed missing 

or incomplete features that should be fully implemented in future 

– this was labelled as work in progress (WIP). 

4. POTENTIAL LIMITATIONS 
The findings might not be representative of the whole EDM 

community but only of the practitioners who presented their work 

at one of the EDM conferences. An important issue in the analysis 

was the lack of information about the used tools. There were 

various instances when researchers obviously used a graph tool, 

or at least it could be expected that they relied on such tools, but 

failed to report the information. 

Moreover, we used a somewhat “relaxed” definition of a graph 

tool. This allowed for the inclusion of both general-purpose tools 

for graph manipulation and domain-specific tools that were 

developed for educational domain but also utilize a graph-based 

structure. The primary motive behind this choice was to provide a 

list of graph tools potentially usable in a wider range of studies, as 

well as a list of tools that illustrates how graphs were implemented 

or used in a more specific problem.  The former tool category 

generally includes tools associated with the “U” usage (tools 

utilized without modification), while the latter tool category 

mostly covers tools associated with the “C” usage (new tools 

introduced by their authors). 

On the other hand, we excluded graph-based tools that could be 

labelled as data mining tools or causal modelling tools. For 

instance, some popular predictive and/or explanatory models 

(decision trees, random forests, and Bayesian networks) are 

graph-based, while causal modelling usually assumes creation or 

discovery of causal graphs. As these tools are more often featured 

in EDM studies, we assumed that EDM researchers are more 

familiar with their usage, so the focus of the present study is on 

other less frequently used graph tools. 

5. CONCLUSION 
We hope that the collected information about the usage of graph 

tools within the EDM community may prove valuable for 

researchers considering the use of graphs to solve educational 

problems. For future work, we plan to include other publication 

series, even those that are not solely devoted to the EDM research. 

The results of such an attempt could demonstrate whether EDM 

practitioners from other regions of the world are more represented 

in the graph-based research than indicated by the results of the 

present study. 
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ABSTRACT
Online education often deals with the problem related to the
high students’ dropout rate during a course in many areas.
There is huge amount of historical data about students in on-
line courses. Hence, a relevant problem on this context is to
examine those data, aiming at finding effective mechanisms
to understand student profiles, identifying those students
with characteristics to drop out at early stage in the course.
In this paper, we address this problem by proposing predic-
tive models to provide educational managers with the duty
to identify students whom are in the dropout bound. Four
classification algorithms with different classification meth-
ods were used during the evaluation, in order to find the
model with the highest accuracy in prediction the profile
of dropouts students. Data for model generation were ob-
tained from two data sources available from University. The
results showed the model generated by using SVM algorithm
as the most accurate among those selected, with 92.03% of
accuracy.

Keywords
Dropout, Distance Learning, Educational Data Mining, Learn-
ing Management Systems

1. INTRODUCTION
Every year, the registration marks in E-learning modality
has increased considerably, in 2013, 15.733 courses were of-
fered, in E-learning or semi-presence modality. Further-
more, the institutions are very optimistic, 82% of researched
places, believe that the amount of registration marks will
have a considerable expansion in 2015 [1], showing the E-
learning evolution and its importance as a tool for citizen’s
formation. The Learning Management Systems (LMS) [15]
can be considered one of factors that has had an important

role for popularization of this learning modality [1].

Despite the rapid growth of online courses, there has also
been rising concern over a number of problems. One issue
in particular that is difficult to ignore is that these online
courses also have high dropout rates. Specifically, in Brazil,
in 2013, according with the latest Censo, published by the E-
learning Brazilian Association (ABED), the dropout average
was about 19,06% [1].

Beyond the hard task on identifying the students who can
have possible risk of dropping out, the same dropout also
brings a huge damage to current financial and social re-
sources. Thus, the society also loses when they are poorly
managed, once the student fills the vacancy but he gives up
the course before the end.

Online education often deals with the problem related to the
high students’ dropout rate during a course in many areas.
There is huge amount of historical data about students in on-
line courses. Hence, a relevant problem on this context is to
examine those data, aiming at finding effective mechanisms
to understand student profiles, identifying those students
with characteristics to drop out at early stage in the course.

In this paper, we address this problem by proposing predic-
tive models to provide educational managers with the duty
of identifying students who are in the dropout bound. This
predictive model took in consideration academic elements
related with their performance at the initial disciplines of
the course. Data from System Information course at Fed-
eral University of Alagoas (UFAL) were used to build this
model, which uses a very known LMS, called Moodle.

A tool to support the pre-processing phase was used in order
to prepare data for application of Data Mining algorithms.
The Pentaho Data Integration [2] tool covers the extraction
areas, transformation and data load (ETL), making easier
the archive generation in the compatible format with the
data mining software adopted, called WEKA[5].

Therefore, for what was exposed above, it justifies the need-
ing of an investment to develop efficient prediction methods,
assessment and follow up of the students with dropout risk,



allowing a future scheduling and adoption of proactive mea-
sures aiming the decrease of the stated condition.

The rest of the paper is organized as follows. Section 2
presents some related work. Section 3 Environment for Con-
struction of predictive model. Afterwards, we present the
experiment settings in Section 4, and in Section 5 we dis-
cuss the results of the experiment. Section 6 presents some
concluding remarks and directions of future work.

2. RELATED WORK
Several studies have been conducted in order to find out the
reasons of high dropout indices in online courses. Among
them, Xenos [18] makes a review of the Open University stu-
dents enrolled in a computing course. In this studies, five ac-
ceptable reasons, that might have caused the dropout, were
identified: Professional (62,1%), Academic (46%), Family
(17,8%), Health Issues (9,5%), Personal Issues (8,9%). Ac-
cording to Barroso and Falcão (2004) [6] the motivational
conditions to the dropout are classified in three groups: i)
Economic - Impossibility of remaining in the course because
of socio-economics issues; ii) Vocational - The student is not
identified with the chosen course. iii) Institutional - Fail-
ure on initial disciplines, previous shortcomings of earlier
contents, inadequacy with the learning methods.

Manhães et al.[14] present a novel architecture that uses
EDM techniques to predict and identify those who are at
dropout risk. The paper shows initial experimental results
using real world data about of three undergraduate engi-
neering courses of one the largest Brazilian public university.
According to the experiments, the classifier Naive Bayes pre-
sented the highest true positive rate for all datasets used in
the experiments.

A model for predicting students’ performance levels is pro-
posed by Erkan Er [9]. Three machine learning algorithms
were employed: instance-based learning Classifier, Decision
Tree and Naive Bayes. The overall goal of the study is to
propose a method for accurate prediction of at-risk students
in an online course. Specifically, data logs of LMS, called
METU-Online, were used to identify at-risk students and
successful students at various stages during the course. The
experiment were realized in two phases: testing and train-
ing. These phases were conducted at three steps which cor-
respond to different stages in a semester. At each step, the
number of attributes in the dataset had been increased and
all attributes were included at final stage. The important
characteristic of the dataset was that it only contained time-
varying attributes rather than time-invariant attributes such
as gender or age. According to the author, these data did
not have significant impact on overall results.

Dekker [8] in your paper presents a data mining case study
demonstrating the effectiveness of several classification tech-
niques and the cost-sensitive learning approach on the dataset
from the Electrical Engineering department of Eindhoven
University of Technology. Was compared two decision tree
algorithms, a Bayesian classifier, a logistic model, a rule-
based learner and the Random Forest. Was also considered
the OneR classifier as a baseline and as an indicator of the
predictive power of particular attributes. The experimental
results show that rather simple classifiers give a useful result

with accuracies between 75 and 80% that is hard to beat
with other more sophisticated models. We demonstrated
that cost-sensitive learning does help to bias classification
errors towards preferring false positives to false negatives.
We believe that the authors could get better results by mak-
ing some adjustments to the parameters of the algorithms.

Jaroslav [7], aims to research to develop a method to clas-
sify students at risk of dropout throughout the course. Using
personal data of students enriched with data related to so-
cial behaviours, Jaroklav uses dimensionality reduction tech-
niques and various algorithms in order to find which of the
best results managing to get the accuracy rates of up to
93.51%, however the best rates are presented at the end of
the course. Whereas the goal is to identify early on dropout,
the study would be more relevant if the best results were ob-
tained results at the beginning of the course.

In summary, several studies investigating the application of
EDM techniques to predict and identify students who are
at risk dropout. However, those works share similarities:
(i) identify and compare algorithm performance in order to
find the most relevant EDM techniques to solve the prob-
lem or (ii) identify the relevant attributes associated with
the problem. Some works use past time-invariant student
records (demographic and pre-university student data). In
this study, contribution to those presented in this section,
makes the junction between two different systems, gathering
a larger number of attributes, variables and time invariant.
Besides being concerned with the identification and compar-
ison of algorithms, identify the attributes of great relevance
and solve the problem the predict in more antecedence the
likely to dropout students.

3. ENVIRONMENT FOR CONSTRUCTION
OF PREDICTIVE MODEL

This subsection presents an environment for construction
for a predictive model for supporting educators in the task
of identifying prospective students with dropout profiles in
online courses. The environment is depicted in Figure 1.

Figure 1: Environment for Construction of predic-
tive model

The proposed environment in this work is composed by three
layers: Data source, Model development and Model. The
data sources are located in the first layer. Data about all



students enrolled at the University are stored in two data
sources: The first one contains students’ personal data, for
example: age, gender, income, marital status and grades
from the academic control system used by the University.
Information related with frequency of access, participation,
use of the tools available, and grades of students related
the activities proposed within the environment are kept in
second data source.

In the second layer, the pre-processing [11] activity over the
data is initiated. Sequential steps are executed in this layer
in order to prepare them to data mining process. In the
original data some information can not be properly repre-
sented in a expected format by data mining algorithm, data
redundancy or even data with some kind of noise. These
problems can produce misleading results or make the algo-
rithm execution becomes computationally more expensive.

This layer is divided into the following stages: data extrac-
tion, data cleaning, data transformation, data selection and
the choice of algorithm that best fits the model. Just below,
will be displayed briefly each step of this layer.

Data extraction: The extraction phase establishes the con-
nection with the data source and performs the extraction of
the data.

Data cleaning: This routine tries to fill missing values, smooth
out noise while identifying outliers, and correct data incon-
sistencies.

Data transformation: In this step, data are transformed and
consolidated into appropriate forms for mining by perform-
ing summary or aggregation operations. Sometimes, data
transformation and consolidation are performed before the
data selection process, particularly in the case of data ware-
housing. Data reduction may also be performed to obtain a
smaller representation of the original data without sacrific-
ing its integrity.

Data selection: In this step, relevant data to the analysis
task are retrieved from the database.

Choice of algorithm: An algorithm to respond with quality
in terms of accuracy, which has students elusive profile, was
considered the algorithm that best applies to the model.

Finally, the last layer is the presentation of the model. This
layer is able to post-processing the result obtained in the
lower layer and presenting it to the end-user of a most un-
derstandable way.

4. EXPERIMENT SETTINGS
The main objective of this present research is to build a
predictive model for supporting educators in the hard task
of identifying prospective students with dropout profiles in
online courses, using Educational Data Mining (EDM) tech-
niques [16]. This section is organized as follows: Section 4.1
describes the issue which drives our assessment. Section 4.2
shows which data were selected for to the data group uti-
lized in the experiment and which algorithms were chosen for
data mining execution. Section 4.3 indicates the employed
tools during the execution of experiment. Finally, Section

4.4 shows every step in experiment execution, including data
consolidation, data preprocessing and algorithms execution.

4.1 Planning
The research question that we would like to answer is:

RQ.Is our predictive model able to early identify the stu-
dents with dropout risk?

In order to answer this question, EDM techniques with four
different classification methods were used, aiming to get a
predictive model which answers us with quality in precise
ways which students have a dropout profile, taking in consid-
eration only data about the initial disciplines of a specified
course.

4.2 Subject Selection
4.2.1 Data Selection

The Federal University of Alagoas offers graduation courses,
postgraduate courses and E-learning courses. In the on line
courses, there are more than 1800 registered students[4].

An E-learning course is usually partitioned in semesters,
where different disciplines are taught along these semesters.
Each semester usually has five disciplines per semester, and
each discipline has a duration between five to seven weeks.
Anonymous data, from the Information Systems E-learning
course, were selected from this environment, relative to first
semester in 2013. Data of one discipline (Algorithm and
Data Structure I), chosen based on its relevance, were anal-
ysed. Such discipline has about 162 students enrolled.

4.2.2 Machine Learning Algorithms Selection
In this work to predict student dropouts, four machine learn-
ing algorithms were used, using different classification meth-
ods. The methods used were: simple probabilistic classifier
based on the application of Bayes’ theorem, decision tree,
support vector’s machine and multilayer neural network.

These techniques have been successfully applied to solve var-
ious classification problems and function in two phases: (i)
training and (ii) testing phase. During the training phase
each technique is presented with a set of example data pairs
(X, Y), where X represents the input and Y the respective
output of each pair [13]. In this study, Y can receive one
of the following values, “approved” or “reproved”, that cor-
responds the student situation in discipline.

4.3 Instrumentation
The Pentaho Data Integration [2] tool was chosen to realize
all preprocessing steps on selected data. Pentaho is a open-
source software, developed in Java, which covers extraction
areas, transform and load of the data [2], making easier the
creation of an model able to : (i) extract information from
data sources, (ii) attributes selection, (iii) data discretization
and (iv) file generation in a compatible format with the data
mining software.

For execution of selected classification algorithms (see Sec-
tion 4.2.2), the data mining tool Weka was selected. Such al-
gorithms are implemented on Weka software as NaiveBayes
(NB), J48 (AD), SMO (SVM), MultilayerPerceptron (RN)



[17] respectively. Weka is a software of open code which con-
tains a machine learning algorithms group to data’s mining
task [5].

Some features were taken in consideration for Weka [10]
adoption, such as: ease of acquisition, facility and availabil-
ity to directly download from the developer page with no
operation cost; Attendance of several algorithms versions
set in data mining and availability of statistical resources to
compare results among algorithms.

4.4 Operation
The evaluation of experiment was executed on HP Probook
2.6 GHz Core-I5 with 8Gb of memory, running Windows
8.1.

4.4.1 Data’s Preprocessing
Real-world data tend to be dirty, incomplete, and inconsis-
tent. Data preprocessing techniques can improve data qual-
ity, thereby helping to improve the accuracy and efficiency
of the subsequent mining process [11].

Currently, the data is spread in two main data sources:
LMS Moodle, utilized by the University as assistance on E-
learning teaching, including data which show the access fre-
quency, student’s participation using the available tools, as
well as the student’s success level related to proposed activi-
ties. Meanwhile, student’s personal files as age, sex, marital
status, salary and disciplines grades are kept in the Aca-
demic Control System (ACS), which is a Software designed
to keep the academic control of the whole University [4].

Aiming to reunite a major data group and work only with
relevant data to the research question that we want to an-
swer, we decided to perform consolidation of these two data
source in a unique major data source, keeping their integrity
and ensuring that only relevant information will be used dur-
ing data mining algorithms execution.

Careful integration can help reduce and avoid redundancies
and inconsistencies in the resulting data set. This can help
improve the accuracy and speed of the data mining pro-
cess [11].

To maintain the integrity and reliability between data, a
mandatory attribute, with unique value and present between
in both data sources, was chosen. Thus, the CPF attribute
was chosen to make data unification between the two se-
lected data sources, once it permits the unique identification
among selected students.

In order to facilitate algorithms execution and comprehen-
sion of results,predicting the dropout in an early stage of
the study. In order to achieve a high rate of accuracy and
minimum of false negatives, i.e. students that have not been
recognized to be in danger of dropout. Some attributes were
transformed, as we can seen below:

• The corresponding attributes related with discipline
grades were discretized in a five-group-value (A,B,C,D
e E), depending on the discipline’s achieved grades.

The student with a grade higher or equal 9, was allo-
cated for “A” group. Those ones who had their grades
between 8,99 and 7 were allocated for “B” group. the
“C” students are those that had a grade between 6,99
and 5, and those who had grades under 5,99 stayed at
“D” group and finally those that doesn’t have a grade
associated were allocated in ”E” group.

• Every student was labelled as approved or reproved
based on the situation informed by the academics reg-
isters. The final score of each discipline is composed by
two tests, if the student did not succeed in obtaining
the minimum average, he will be leaded to the final
reassessment and final test.

• In the“City”attribute, some inconsistencies were found,
where different data about the same city were regis-
tered in database. For instance, the instances of Ouro
Branco and Ouro Branco/AL are related to same
city. This problem was totally solved, with application
of techniques for grouping attributes.

• The attribute “age” had to be calculated. For this, the
student’s birth date, registered in database, was taken
in consideration.

When all the attributes were used the accuracy was low.
That is why we utilized feature selection methods to re-
duce the dimensionality of the student data extracted from
dataset. We improved the pre-processing method the data.

In order to preserve reliability of attributes for classification
after the reduction. We use InfoGainAttributeEval algo-
rithm that builds a rank of the best attributes considering
the extent of information gain based on the concept of en-
tropy.

After this procedure, we reduced the set of attributes from
17 to 13 most relevant. The list of the refined set of at-
tributes in relevance ordercan be found in Table 1.

Table 1: Selected Attributes
Attributes Description

AB1 First Evaluation Grade
Blog Post count and blog view

Forum Post count and forum views
Access Access Count in LMS
Assign Sent files count e viewed
City City

Message Count of sent messages
Wiki Post count and wiki view

Glossary Post count and glossary view
Civil status Civil status

Gender Gender
Salary Salary
Status Status on discipline

Taking in consideration that the main objective is to predict
student’s final situation with the earlier advance as possible
inside the given discipline, to this study we will only use
data until the moment of the first test.



The Figure 2 presents all the executed stages, during the
preprocessing phase, in order to generate a compatible file
with the mining software.

4.4.2 Algorithms Execution
The k-fold method was applied to make a assessment the
model generalization capacity, with k=10 (10-fold cross val-
idation). The cross validation method, consists in splitting
of the model in k subgroups mutually exclusive and with the
same size, from these subgroups, one subgroup is selected for
test and the remaining k-1’s are utilized for training. The
average error rate of each training subgroup can be used as
an estimate of the classifier’s error rate. When Weka imple-
ments the cross validation, it trains the classifier k times to
calculate the average error rate and finally, leads the build
classifier back utilizing the model as a training group. Thus,
the average error rate provides a better solution in terms of
classifier’s error accuracy reliability [12].

In order to get the best results of the algorithms without
losing generalization, some parameters of SVM algorithms
were adjusted.

The first parameter was set the parameter “C”. This pa-
rameter is for the soft margin cost function, which controls
the influence of each individual support vector; this process
involves trading error penalty for stability [3].

The default kernel used by Weka tool is the polynomial we
changed to the Gaussian setting the parameters Gamma.
Gamma is the free parameter of the Gaussian radial basis
function [3].

After several adjustments to the values of the two parame-
ters mentioned above, which showed the best results in term
of accuracy and lower false positive rate, was C = 9.0 and
Gamma = 0.06 parameter.

For comparison of results related to selected algorithms, we
used Weka Experiment Environment (WEE). The WEE al-
lows the selection of one or more algorithms available in the
tool as well as analyse the results, in order to identify, if a
classifier is, statistically, better than the other. In this ex-
periment, the cross validation method, with the parameter
“k=10” [5], is used in order to calculate the difference on
the results in each one of the algorithms related to a chosen
standard algorithm (baseline).

5. RESULTS AND DISCUSSIONS
In this section, the results of the experiment, described in
Section 4, are analyzed.

The WEE tool calculated the average accuracy of each clas-
sifier. Table 2 shows the result of each algorithms execu-
tion. The accuracy represents the percentage of the test
group instance which are correctly classified by the model
built during training phases. If the built model has a high
accuracy, the classifier is treated as efficient and can be put
into production [11].

Comparing the results among the four algorithms, we can
verify that the accuracy oscillates around 85.5 to 92.03%.
Furthermore, a classifier which has a high error rate to false

Table 2: Accuracy and rates
Classifiers NB AD SVM RN
Accuracy 85.50 86.46 92.03 90.86

True Positives 0.76 0.77 0.88 0.85
False Negatives 0.24 0.23 0.12 0.15
True Negatives 0.89 0.91 0.94 0.93
False Positives 0.11 0.09 0.06 0.07

positives is not suitable to our solution. In this case, we have
considered the algorithm which has the lower false positive
rates.

As we can see on table 2 the algorithm SVM presented a low
false positive rate and better accuracy. Therefore, only the
best algorithm was considered to our solution. The Naive
Bayes classifier had the worst result in terms of accuracy
and a high false positive rate. The other ones had an error
average of 8%, and then, we end up with 8% of the students
with dropout risk not so correctly classified.

5.1 Research Question
As can be seen in table 2, in our experiment, the SVM al-
gorithm obtained 92% of accuracy. According to Han J. et
al. [11] if the accuracy of the classifier is considered accept-
able, the classifier can be used to classify future data tuples
for which the class label is not known. Thus, the results
are pointing to the viability of model able to early identify
a possible student’s dropout, based on their failures in the
initial disciplines.

5.2 Statistical Significance Comparision
We often need compare different learning schemes on the
same problem to see which is the better one to use. This
is a job for a statistical device known as the t-test, or Stu-
dent’s t-test. A more sensitive version of the t-test known
as a paired t-test it was used. [17]. Using this value and de-
sired significance level (5%), consequently one can say that
these classifiers with a certain degree of confidence (100 -
significance level) are significantly different or not. By using
the t-test paired in the four algorithms, performed via Weka
analysis tool, observed that the SVM algorithm is signifi-
cantly respectful of others.

5.3 Threats to validity
The experiment has taken in consideration data from the In-
formation System course and the Data Structure Algorithm
discipline. However, the aforementioned discipline was cho-
sen, based on its importance in the context of Information
System course.

6. CONCLUSION AND FUTURE WORK
Understand the reasons behind the dropout in E-learning
education and identify in which aspects can be improved is
a challenge to the E-learning. One factor, which has been
pointed as influencer of students’ dropout, is the academic
element related with their performance at the initial disci-
plines of the course.

This research has addressed dropout problem by proposing
predictive models to provide educational managers with the
duty to identify students whom are in the dropout bound.



Figure 2: Steps Data Preprocessing

The adopted approach allowed us to perform predictions
at an initial discipline phase. The preliminaries results has
shown that prediction model to identify students with dropout
profiles is feasible. These predictions can be very useful to
educators, supporting them in developing special activities
for these potential students, during the teaching-learning
process.

As an immediate future work, some outstanding points still
should be regarded to the study’s improvement, as apply the
same model in different institution databases with different
teaching methods and courses, including new factors related
to dropout as: professional, vocational and family data, ex-
ecute some settings in algorithms’ parameters in order to
have the best achievements. Furthermore, a integrated soft-
ware to LMS, to provide this feedback to educators, will be
developed using this built model.
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ABSTRACT 
In this paper, we present the results of automatic age detection 
based on very short texts as about 100 words per author. Instead 
of widely used n-grams, only text readability features are used in 
current study. Training datasets presented two age groups - 
children and teens up to age 16 and adults 20 years and older. 
Logistic Regression, Support Vector Machines, C4.5, k-Nearest 
Neighbor, Naïve Bayes, and Adaboost algorithms were used to 
build models. All together ten different models were evaluated 
and compared. Model generated by Support Vector Machine with 
Adaboost yield to f-score 0.94, Logistic regression to 0.93. A 
prototype age detection application was built using the best 
model. 
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1. INTRODUCTION 
One important class of information in user modeling is related to 
user age. Any adaptive technology can use age prediction data. In 
educational context automatic tutoring systems and 
recommendation systems, can benefit on age detection.  

Automatic age detection has also utilities in crime prevention. 
With widespread of social media, people can register accounts 
with false age information about themselves. Younger people 
might pretend to be older in order to get access to sites that are 
otherwise restricted to them. In the same time older people might 
pretend to be younger in order to communicate with youngster. As 
we can imagine, this kind of false information might lead to 
serious threats, as for instance pedophilia or other criminal 
activities. 

But besides serious crime prevention, automatic age detection can 
by used by educators as indirect plagiarism detector. While there 
are effective plagiarism detection systems, they do not work when 
parents are doing pupils homework or students are using 
somebody else’s original work, which is not published anywhere. 
There are closed communities where students can buy 
homework’s for any topic.  

Full scale authorship profiling is not an option here, because large 
amount of author texts is needed. Some authors [1] argue, that at 
least 10000 words per author is needed, other that 5000 [2]. But if 
we think about business purpose of this kind of age detector, 
especially when the purpose is to avoid some criminal acts, then 
there is no time to collect large amount of text written by 
particular user.  

When automatic age detection studies fallow authorship profiling 
conventions then it is related to second problem – the features, 
widely used in authorship profiling, are semantic features. 
Probability that some sequence of words, even a single word, 

occur in short text is too low and particular word characterizes 
better the context [3] than author. Some authors use character n-
grams frequencies to profile users, but again, if we speak about 
texts that are only about 100 words long, these features can also 
be very context dependent.  

Semantic features are related to third problem - they are costly. 
Using part of speech tagging systems to categorize words and/or 
large feature sets for pattern matching, takes time and space. If our 
goal is to perform age detection fast and online then it is better to 
have few features that can be extracted instantly on client side.  

In order to avoid all three previously mentioned shortcomings, we 
propose other set of features. We call them readability features, 
because they are previously used to evaluate texts readability. 
Texts readability indexes are developed already before 
computerized text processing, so for example Gunning Fog index 
[4] takes into account complex (or difficult) words, those 
containing 3 or more syllables and average number of words per 
sentence. If sentence is too long and there are many difficult 
words, the text is considered not easy to read and more education 
is needed to understand this kind of text. Gunning Fog index is 
calculated with a formula (1) below: 
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We suppose that authors reading skills and writing skills are 
correlated and by analyzing author’s text readability, we can infer 
his/her education level, which at least to the particular age is 
correlated with actual age of an author. As readability indexes 
work reliably on texts with about 100 words, these are good 
candidates for our task with short texts.  

As a baseline we used n-gram features in pre testing. Comparing 
readability features with n-gram features, we found that with 
wider age gap between young and adult groups, readability 
features making better classifiers if using short texts [5]. Now we 
continue this work with larger dataset and with readability 
features only. 

Using best fitting model, we created an online prototype age 
detector. 

Section 2 of this paper surveys the literature on age prediction. In 
Section 3 we present our data, features, used machine learning 
algorithms, and validation. In Section 4 we present our 
classification results and prototype application. We conclude this 
paper in Section 5 by summarizing and discussing our study.  

2. RELATED WORKS 
In this section we review related works on age- and other author-
specific profiling. There are no studies that dealing particularly 
with effect of text sizes in context of age detection. In previous 
section we mentioned that by literature for authorship profiling 
5000 to 10000 words per author is needed [1,2]. Luyckx and 



Daelemans [6] reported a dramatic decrease of the performance of 
the text categorization, when reducing the number of words per 
text fragment to 100. As authorship profiling and authors age 
prediction is not the same task, we focus on works that dealing 
particularly with user age.  

The best-known age based classification results are reported by 
Jenny Tam and Craig H. Martell [7]. They used age groups 13-19, 
20-29, 30-39, 40-49 and 50-59. All age groups were in different 
size. As features word and character n-grams were used. 
Additionally they used emoticons, number of capital letters and 
number of tokens per post as features. SVM model trained on 
youngest age group against all others yield to f-score 0,996. 
Moreover this result seems remarkable, while no age gap between 
two classes was used.    

However we have to address to some limitations of their work that 
might explain high f-scores. Namely they used unbalanced data 
set (465 versus 1263 in training data set and 116 versus 316 in 
test set). Unfortunately their report gave only one f-score value, 
but no confusion matrices, ROC or Kappa statistics. We argue, 
that with unbalanced data sets, single f-score value is not 
sufficient to characterize the models accuracy. In such test set – 
116 teenagers versus 316 adults - the f-score 0.85 (or 0.42 
depending of what is considered positive result) will simply be 
achieved by model that always classifies all cases as adults. Also, 
it is not clear if reported f-score is weighted average of two 
classes’ f-scores or presenting only one class f-score. Secondly it 
is not clear if given f-score was result of averaging cross 
validation results. 

It is worth of mentioning, that Jane Lin [8], used the same dataset 
two years earlier in her postgraduate thesis supervised by the 
Craig Martell, and she achieved more modest results. Her best 
average f-score in teens versus adult’s classification with SVM 
model was 0.786 as compared to Tam’s and Martell reported 
0.996. But besides averaged f-scores, Jane Lin also reported 
lowest and highest f-scores, and some of her highest f-scores were 
indeed 0.996 as reported in Tam and Martell paper.  

Peersman et al [9] used large sample 10,000 per class and 
extracted up to 50,000 features based on word and character n-
grams. Report states, that they used posts average of 12,2 tokens. 
Unfortunately it is not clear if they combined several short posts 
from the same author, or used single short message as a unique 
instance in feature extraction. They tested three datasets with 
different age groups –11-15 versus 16+, 11-15 versus 18+ and 11-
15 versus 25+. Also experimentations carried out with number of 
features, and training set sizes. Best SVM model and with largest 
age gap, largest dataset and largest number of features yield to f-
score 0.88. 

Santosh, et al [10,11] used word n-grams as content-based 
features and POS n-grams as style based features. They tested 
three age groups 13-17, 23-27, and 33-47. Using SVM and kNN 
models, best classifiers achieved 66% accuracy. 

Marquart [12] tested five age groups 18-24, 25-34, 35-49, 50-64, 
and 65-xx. Used dataset was unbalanced and not stratified. He 
also used some of the text readability features as we did in current 
study. Besides of readability features, he used word n-grams, 
HTML tags, and emoticons. Additionally he used different tools 
for feature extraction like psycholinguistic database, sentiment 
strength tool, linguistic inquiry word count tool, and spelling and 
grammatical error checker. Combining all these features, his 
model yield to modest accuracy of 48,3%. 

Dong Nguyen and Carolyn P. Rose [13] used linear regression to 
predict author age. They used large dataset with 17947 authors 
with average text length of 11101 words. They used as features 
word unigrams and POS unigrams and bigrams. Text was tagged 
using the Stanford POS tagger. Additionally they used linguistic 
inquiry word count tool to extract features. Their best regression 
model had r2 value 0.551 with mean absolute error 6.7.  

As we can see, most of previous studies are using similar features, 
word and character n-grams. Additionally special techniques were 
used like POS tagging, Spell Checker, and Linguistic inquiry 
word count tool to categorize words. While text features extracted 
by this equipment are important, they are costly to implement in 
real life online systems. Similarly large feature sets up to 50,000 
features, most of which are word n-grams, means megabytes of 
data. Ideally this kind of detector could work using client browser 
resources (JavaScript), and all feature extraction routines and 
models have to be as small as possible. 
 
Summarizing previous work in the following table (1), we don’t 
list all possible features. So for example features that are 
generated using POS tagging or features generated some word 
databases are all listed here as word n-grams. Last column gives f-
score or the accuracy (with %) according to what characteristic 
was given in paper.  Most of papers reported many different 
results, and we list in this summary table only the best result. 

Table 1. Summary of previous work 
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Nguyen (2011)  x   17947* 11101 0 55.1% 

Marquardt (2014) x x  x 7746 N/a 0 47.3% 

Peersman (2011)  x x  20000 12.2** 9 0.917 

Lin (2007)  x  x 1728* 343 0 0.786 

Tam & Martell (2009)  x x x 1728* 343 0 0.996*** 

Santosh (2014)  x   236600* 335 5 66% 

This Study x    500 93 4 0.94 

*unbalanced datasets 

**12.2 words was reported average message length, but it is not clear if 
only one message per user was used or user text was composed form many 
messages. 

***not enough data about this result 

3. METHODOLOGY 
3.1 Sample & Data 
We collected short written texts in average 93 words long from 
different social media sources like Facebook, Blog comments, and 
Internet forums. Additionally we used short essay answers from 
school online feedback systems and e-learning systems, and e-
mails. No topic specific categorization was made. All authors 
were identified and their age fall between 9 and 46 years. Most 
authors in our dataset were unique, but we used multiple texts 
from the same author only in case, when the texts were written in 



different age. All texts in the collections were written in the same 
language (Estonian). We chose balanced and stratified datasets 
with 500 records and with different 4-year age gaps.  

3.2 Features 
In current study we used in our training dataset different 
readability features of a text. Readability features are quantitative 
data about texts, as for instance an average number of characters 
in the word, syllables in the word, words in the sentences, 
commas in the sentence and the relative frequency of the words 
with 1, 2,.., n syllable. All together 14 different features were 
extracted from each text plus classification variable (to which age 
class text author belongs). 

In all features we used only numeric data and normalized the 
values using other quantitative characteristics of the text.  

Used Feature set with explanations is presented in Table 2: 

Table 2. Used features with calculation formulas and 
explanations 

Feature Explanation 

Average number of 
Characters in Word 

rdsInTextNumberOfWo

TextaractersInNumberOfCh
=  

We excluded all white space characters when 
counting number of all characters in text 

Average number of 
Words in Sentence extntencesInTNumberOfSe

rdsInTextNumberOfWo
=  

Complex Words to 
all Words ratio rdsInTextNumberOfWo

InTextmplexWordsNumberOfCo
=  

Complex word is loan from Cunning Fog Index, 
where it means words with 3 or more syllables. As 
Cunning Fog index was designed for English, and 
Estonian language has as average more syllables 
per word, we raised the number of syllables 
according to this difference to five. Additionally 
we count the word complex if it has 13 or more 
characters. 

Average number of 
Complex Words in 
Sentence 

extntencesInTNumberOfSe

InTextmplexWordsNumberOfCo
=  

Average number of 
Syllables per Word rdsInTextNumberOfWo

extllablesInTNumberOfSy
=  

Average number of 
Commas per 
Sentence 

extntencesInTNumberOfSe

mmasInTextNumberOfCo
=  

One Syllable Words 
to all Words ratio rdsInTextNumberOfWo

TextsyllableInrdsWithNumberOfWo 1
=  

Similarly as 
previous feature, 
we extracted 7 
features for words 
containing 2, 3, 4 
to 8 and more 
syllables. 

rdsInTextNumberOfWo

TextSyllableInNrdsWithNumberOfWo −
=

_  

Novel syllable counting algorithm was designed 
for Estonian language, which is only few lines 
length and does not include any word matching 
techniques 

 

3.3 Data Preprocessing 
We stored all the digitalized texts in the local machine as separate 
files for each example. A local program was created to extract all 
previously listed 14 features from each text file. It opened all files 
one by one; extracted features form each file, and stored these 
values in a row of a comma-separated file. In the end of every row 
it stored data about the age group. A new and simpler algorithm 
was created for syllable counting. Other analogues algorithms for 
Estonian language are intended to exact division of the word to 
syllables, but in our case we are only interested on exact number 
of syllables. As it turns out, syllable counting is possible without 
knowing exactly where one syllable begins or ends.  

In order to illustrate our new syllable counting algorithm, we give 
some examples about syllables and related rules in Estonian 
language. For instance the word rebane (fox) has 3 syllables: re – 
ba – ne. In cases like this we can apply one general rule – when 
single consonant is between vowels, then new syllable begins with 
that consonant.  

When in the middle of word two or more consecutive consonants 
occur, then usually the next syllable begins with last of those 
consonants. For instance the word kärbes (fly) – is split as kär-
bes, and kärbsed (flies) is split as kärb-sed. The problem is that 
this and previous rule does not apply to compound words. So for 
example, the word demokraatia (democracy) is split before two 
consecutive consonants as de-mo-kraa-tia.  

Our syllable counting algorithm deals with this problem by 
ignoring all consecutive consonants. We set syllable counter on 
zero and start comparing two consecutive characters in the word, 
first and second character, then second and third and so on. 
General rule is, that we count a new syllable, when the tested pair 
of characters is vowel fallowed by consonant. The exception to 
this rule is the last character. When the last character is vowel, 
then one more syllable is counted.  

Implemented syllable counting algorithm as well as other 
automatic feature extraction procedures can be seen in section 4.3 
and in the source code of the prototype application. 

3.4 Machine Learning Algorithms and Tools 
For classification we tested six popular machine-learning 
algorithms: 

• Logistic regression 

• Support Vector Machine 

• C4.5 

• k-nearest neighbor classifier 

• Naive Bayes 

• AdaBoost. 

Motivation of choosing those algorithms is based on literature 
[14,15]. The suitability of listed algorithms for given data types 
and for given binary classification task was also taken in to 
account. Last algorithm in the list – Adaboost – is actually not 
classification algorithm itself, but an ensemble algorithm, which is 
intended for use with other classifying algorithms, in order to 
make a weak classifier stronger. In our task we used Java 
implementations of listed algorithms that are available in freeware 
data analysis package Weka [16]. 



3.5 Validation 
For evaluation we used 10 fold cross validation on all models. It 
means that we partitioned our data to 10 even sized and random 
parts, and then using one part for validation and other 9 as 
training dataset. We did so 10 times and then averaged validation 
results.  

3.6 Calculation of final f-scores 
Our classification results are given as weighted average f-scores. 
F-score is a harmonic mean between precision and recall. Here is 
given an example how it is calculated. Let suppose we have a 
dataset presenting 100 teenagers and 100 adults. And our model 
classifies the results as in fallowing Table 3: 

Table 3. Example illustrating calculation of f-scores 

Classified as => teenagers adults 

teenagers 88 12 

adults 30 70 

 

When classifying teenagers, we have 88 true positives (teenagers 
classified as teenagers) and 30 false positives (adults classified as 
teenagers). We also have 12 false negatives (teenagers classified 
as not teenagers) and 70 true negatives (adults classified as not 
teenagers). In following calculations we use abbreviations: TP = 
true positive; FP = false positive; TN = true negative; FN = false 
negative. 

 Positive predictive value or precision for teenagers’ class is 
calculated by formula 2. 

746.0
3088

88
=

+
=

+
=

FPTP

TP
precision   (2) 

 Recall or sensitivity is the rate of correctly classified instances 
(true positives) to all actual instances in predicted class. 
Calculation of recall is given by formula 3. 

88.0
1288

88
=

+
=

+
=

FNTP

TP
recall    (3) 

F-score is harmonic mean between precision and recall and it is 
calculated by formula 4. 

FNFPTP

TP

recallprecision

recallprecision
scoref

++
=

+

×
×=−

2

2
2  (4) 

Using data in our example the f-score for teenager class will be 
0.807, but if we do the same calculations for adult class then the  
f-score will be 0.769.  

Presenting our results, we use a single f-score value, which is an 
average of both classes’ f-score values. 

4. RESULTS 
4.1 Classification 
Classification effect was related to placement of age separation 
gaps in our training datasets. We generated 8 different datasets by 
placing 4-year separation gap in eight different places. We 
generated models for all datasets, and present the best models’ f-
scores on figure 1. As we can see, our classification was most 
effective, when the age separation gap was placed to 16-19 years.  
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Figure 1. Effect of the position of separtion gap 

With a best separation gap (16-19) between classes, Logistic 
regression model classified 93,12% of cases right, and Support 
Vector Machines generated model classified 91,74% of cases. 
Using Adaboost algorithm combined with classifier generated by 
Support Vector Machine yield to 94.03% correct classification 
and f-score 0.94. Classification models built by other algorithms 
performed less effectively as we can see in Table 4.  

Results in fallowing table are divided in to two blocks. In the left 
side there are the results of the models generated by listed 
algorithms. In the right side there are the results of the models 
generated by Adaboost algorithm and the same algorithm listed in 
the row. 

Table 4. Averaged F-scores of different models 

 F-score 

  Using Adaboost 

Logistic Regression 0.93 0.93 

SVM (standardized) 0.92 0.94 

KNN  (k = 4) 0.86 0.86 

Naïve Bayes 0.79 0.84 

C4.5 0.75 0.84 

 

As we can see in the table above, the best performers were 
classifiers generated by Logistic Regression algorithm and 
Support Vector Machine (with standardized data). In the right 
section of the table, where the effect of Adaboost algorithm is 
presented, we can see that Adaboost here cannot improve results 
with Logistic regression classifier, and kNN, but it improves 
results of SVM, Naïve Bayes and most significantly on C4.5. As 
Adaboost is intended to build strong classifiers out of weak 
classifiers, than the biggest effect on C4.5 is expectable. Two best 
performing classifiers remained still the same after using 
Adaboost, but now Support Vector Machine outperformed 
Logistic Regression by 0.91 percent points. 

4.2 Features with highest impact 
As there is relatively small set of readability features, we did not 
used any special feature selection techniques before generating 
models, and evaluating features on the basis of SVM model with 
standardized data. The strongest indicator of an age is the average 
number of words in sentence. Older people tend to write longer 
sentences. They also are using longer words. Average number of 
characters per word is in the second place in feature ranking. Best 



predictors of younger age group are frequent use of short words 
with one or two syllables.  

In following Table (5), coefficients of standardized SVM model 
are presented. 

Table 5. Features with highest impact in standardized SVM 
model 

Coefficient Feature 

1.3639 Words in sentence 

0.8399 Characters in word 

0.258 Complex words in sentence 

-0.2713 Ratio of words with 4 syllables 

-0.3894 Commas per sentence 

-0.7451 Ratio of words with 1 syllable 

-0.762 Ratio of words with 2 syllables 

4.3 Prototype Application 
As the difference between performance of models generated by 
Adaboost with SVM and Logistic Regression is not significant, 
but as from the point of view of implementation, models without 
Adaboost are simpler, we decided to implement in our prototype 
application Logistic Regression model, which performed best 
without using Adaboost.1 We implemented feature extraction 
routines and classification function in client-side JavaScript. Our 
prototype application uses written natural language text as an 
input, extracts features in exactly the same way we extracted 
features for our training dataset and predicts author’s age class 
(Fig. 2.). 

 

Figure 2. Application design 

 

Our feature extraction procedure (Figure 3.) consists 3 stages: 

1. Text input is split to sentences, and to words, and all 
excess white space chars are removed. Some simple 
features, number of characters, number of words, 
number of sentences, are also calculated in this stage. 

2. In second stage syllables in words are counted. 

3. All calculated characteristics are normalized using other 
characteristics of the same text. For example number of 
characters in text divided to number of words in text. 

                                                                 
1 http://www.tlu.ee/~pentel/age_detector/ 

 

Figure 3. Feature Extractor 

A new and simpler algorithm (5) was created for syllable 
counting. Other analogues algorithms for Estonian language are 
intended to exact division of the word to syllables, but in our case 
we are only interested on exact number of syllables. As it turns 
out, syllable counting is possible without knowing exactly where 
one syllable begins or ends. Unfortunately this is true only for 
Estonian (and maybe some other similar) language. 

function number_of_syllables(w){      (5) 

v="aeiouõäöü"; /* all vowels in Estonian lang. */ 

counter=0;   

w=w.split('');/* creates char array of word */ 

wl=w.length; /* number of char’s in word */ 

  for(i=0; i < wl - 1; i++){ 

   if(v.indexOf(w[i])!=-1 && v.indexOf(w[i+1])==-1)  

      counter++; 

 /*  

if char is vowel and next char is not, then count a  
syllable (there are some exceptions to this rule, w hich 
are easy to program).  

*/ 

   } 

  if( v.indexOf(w[wl-1]) != -1) counter++; 

// if last char in the word is vowel, count new syl lable  

  return counter; 

} 

 



Implemented syllable counting algorithm as well as other 
automatic feature extraction procedures can be seen in the source 
code of the prototype application.2 

Finally we created simple web interface, where everybody can test 
prediction by his/her free input or by copy-paste. As our classifier 
was trained on Estonian language, sample Estonian texts are 
provided on website for both age groups (Fig. 4.). 

 

Figure 4. Prototype application at 
http://www.tlu.ee/~pentel/age_detector/ 

 

5. DISCUSSION & CONCLUSIONS 
Automatic user age detection is a task of growing importance in 
cyber-safety and criminal investigations. One of the user profiling 
problems here is related to amount of text needed to perform 
reliable prediction. Usually large training data sets are used to 
make such classification models, and also longer texts are needed 
to make assumptions about author’s age. In this paper we tested 
novel set of features for authors age based classification of very 
short texts. Used features, formerly known as text readability 
features, that are used by different readability formulas, as 
Gunning Fog, and others, proved to be suitable for automatic age 
detection procedure. Comparing different classification algorithms 
we found that Logistic Regression and Support Vector Machines 
created best models with our data and features, giving both over 
90% classification accuracy. 

While this study has generated encouraging results, it has some 
limitations. As different readability indexes measure how many 
years of education is needed to understand the text, we can not 
assume that peoples reading, or in our case writing, skills will 
continuously improve during the whole life. For most people, the 
writing skill level developed in high school will not improve 
further and therefore it is impossible to discriminate between 25 
and 30 years old using only those features as we did in current 
study. But these readability features might be still very useful in 
discriminating between younger age groups, as for instance 7-9, 
10-11, 12-13. The other possible utility of similar approach is to 
use it for predicting education level of an adult author.  
 
In order to increase the reliability of results, future studies should 
also include a larger sample. The value of our work is to present 
suitability of a simple feature set for age based classification of 
short texts. And we anticipate a more systematic and in-depth 
study in the near future. 

                                                                 
2  http://www.tlu.ee/~pentel/age_detector/source_code.txt 
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ABSTRACT 
Computer programming is an activity which requires a set of 

cognitive processes that naturally develop through practice, 

writing algorithmic solutions. Students learn a lot from their 

mistakes, but for this they need feedback on their workouts. 

Marking students’ work outs is very time consuming, which often 

limits a teacher’s capacity to offer close guidance individually. 

The PROBOCA project aims to build a tool, based on the BOCA 

online judge, suited for the purpose of learning computer 

programming by practice. In addition to a problem database 

organized by theme and difficulty, the system provides 

functionalities to support the teacher in the classroom. One of the 

main endeavors is to develop a procedure for estimating the 

degree of difficulty of a certain problem. This “nominal” 

parameter may then be compared to the difficulty level as 

perceived by each student. The result is a valuable indicator of 

those students that are experiencing challenges. This paper 

presents the preliminary specification of PROBOCA´s 

architecture and functional requirements along with its current 

state of development. 

Keywords 

Online Judge; Computer Programming Education. 

1. INTRODUCTION 
The learning process of Computer Programming (CP) usually 

involves practicing the resolution to many problems. Students 

write code to implement algorithms that meet exercise 

requirements and teachers should review those codes and present 

their feedback to the students. As this is a time consuming task, 

some teachers are installing and using online judge systems as 

automatic reviewing and scoring tools. 

Online judge refers to software tools originally designed for 

programming competitions. They usually run on a server, and 

contestants access it online. Basically, its role is to present the 

contestant teams with a list of problems, to which they should 

respond by uploading program codes that satisfy the criteria of 

each problem. The tool then evaluates the answer code by using a 

set of predefined inputs and comparing the program results to 

predefined outputs. If the output of the answer code exactly 

matches the expected output for the corresponding input, the 

answer code is considered correct. Otherwise it is considered 

incorrect. No indication of where the program went wrong is 

given. Although helpful as a teaching assistant, these tools were 

not designed for use in a classroom and therefore lack some 

features that are important for academic management. 

The BOCA software [1] is an online judge system used in 

programming marathons in Brazil. It is freely available for 

institutions to download and install. This particular system allows 

teachers to register problems and to track their students’ work. 

However this system is neither easy to handle nor has an exercise 

database (DB), needed to facilitate the generation of problem lists.  

This project proposes to extend the BOCA online judge to make it 

more suitable for use in introductory programming teaching. The 

resulting system, called PROBOCA, complements the online 

judge functionality with features that improve its ease-of-use, 

enhancing teacher productivity and course effectiveness. 

One of the introduced features provides automatic classification of 

problem difficulty, based on submitted solutions and students’ 

evaluation of degree of difficulty encountered in solving a given 

problem. This will aid teachers while composing the exercise lists, 

allowing them to better gauge the list complexity. It also lets 

students organize the order of problems to solve, tackling the 

easier problems first before turning to more complex ones.  

Another additional feature is the production of student reports 

based on the submitted solutions and the students’ behavior while 

accessing the tool. Student evaluation of program difficulty, 

number of submissions for the same exercise, time between 

submissions, order of submissions, among other information 

gathered by the tool, reveal information about student behavior 

and his ease in solving the proposed problems. 

2. EXERCISES ON PROGRAMMING 

EDUCATION  
Aiming at automatic correction of program code and student 

monitoring and evaluation during the programming process, 

several initiatives have been developed. 

Within this line of research, the study of Chaves et al [2] aims to 

explore resources of online judges looking to integrate them into 

the Moodle system. The goal is to provide a Virtual Learning 

Environment (VLE) with automatic evaluation feature, allowing 

the teacher to monitor students´ problem solving. The authors 

defined an architecture containing a module for integration with 

online judges (MOJO). The Integration Module integrated the 

VLE structure to URI Online Judge [3] and SPOJ Brazil [4]. 

In [5], the authors have developed a prototype intended to be an 

educational online judge. They argue that online judge tools are 

suited to competition and have few educational features. They 

also criticize the way online judges provide feedback to students 

only indicating whether the answer is right/wrong or if there were 

errors at compilation/runtime. Their project, called JOnline, aims 

to add the following didactic features: Presenting tips in 



Portuguese to fix compilation errors found in the submitted source 

code; presenting the test cases that generate erroneous results; 

organization of the problems by topic; difficulty level deduced 

from a poll conducted by the system and a resource for 

collaborative programming that allows two students to co-write 

one common code. 

Automatic generation of exercise lists based on user defined 

criteria requires the classification of problems according to these 

criteria. In [6], the authors conclude that there is a strong 

relationship between the difficulty of a problem and the total 

number of lines of code and amount of flow control in the 

program (IF, WHILE, FOR ...). New students have difficulty in 

reading and interpreting problem statements. This problem has 

been related to the difficulty in dealing with abstraction [9]. 

3. BOCA 
Designed for use in programming marathons, the BOCA online 

judge system has vocabulary and requirements contextualized by 

Competition and Teams. The main interest in this system is that it 

was designed to enable its users, the competitors, to interact with 

a set of problems. Figure 1 shows a use case diagram with the 

different functions provided by BOCA. Its software allows 

registration of problems for a given competition. That is done by 

submitting a PDF file stating the problem to be tackled and the 

files containing the input and output data sets for the 

corresponding test cases. The registered problems are associated 

with a single competition. If needed, to reuse the problems for 

another competition, the files must be inserted again. BOCA does 

not include a database to store the problems. 

 

 

  

Figure 1.  BOCA´s use case diagram  

In the system, colored balloons represent the points gained by the 

competitors. This feature is part of the programming marathons 

context where correctly answering a problem yields a balloon to 

its team. Besides allowing teams to monitor their submissions and 

the related results, BOCA also provides a screen displaying the 

teams ranking including the team’s overall score, and a list of the 

solved exercises using balloons to identify those successfully 

done. It also produces information on students’ interaction with 

the problems containing the time spent and the number of 

resolution attempts. 

BOCA has been used in CP introductory classes at our institute 

for some years, with good results. Using this system enhances the 

practice of problem solving by providing automatic feedback to 

students. We have observed that the number of problems solved 

by students using BOCA is significantly higher when compared to 

traditional exercise lists. The burden on the teacher is significantly 

reduced and the students get feedback. Teachers are then able to 

focus on helping the students that fail to solve the problems even 

after several attempts. This strategy allows students to tackle a 

larger number of exercises, thus increasing their potential to 

master cognitive skills required for programming. However, in 

spite of these advantages, some drawbacks were revealed. 

Looking at the process of reviewing students’ answers two issues 

were identified. First, the system assesses a submitted program by 

comparing its output, as generated by the student’s code in 

response to a given input data set, to the registered expected 

output. For the two outcomes to be identical, exact formatting of 

the program’s output is required. At the beginning students 

incurred in many errors just for using a slightly different format. 

This situation marks the problem’s result as wrong whereas the 

program’s logic maybe right, causing frustration among students 

as the system does not point out where the error is. Students, 

however, managed to adapt and began paying more attention to 

output formatting. Second, there is no cross-answers plagiarism 

identification, in other words no control over cheats. It was 

observed that some students simply copied their colleagues’ 

program and submitted them as their own, thus considered to have 

solved the problem without any real comprehension of the 

solution. 

Figure 2 shows the BOCA code submission screen. It was 

modified to include the “level of difficulty” selection where the 

students evaluate how hard it was to solve that problem they are 

submitting. 

 

 

Figure 2.  BOCA’s submission functionality answers 

 

Regarding the class management functionality, it was noted that 

each installed instance of BOCA supports one active competition 

at a time, meaning a single class per instance. Thus, if a teacher 

wants to have several competitions running at the same time i.e. 

different groups doing the same or different sets of exercises, he 

must install multiple instances of BOCA. Each instance is 

independent. So even if two competitions are composed of the 

same problems (e.g. for different classes), these problems must be 

separately registered for each instance. As each competition is 

independent, the system does not group the results of the different 

competitions. This feature would be interesting in case of multiple 

exercise lists delivered to the same class. It should also be noted 

that the system is not trivial to install and manage, which ends up 

discouraging the teachers from adopting it. On top of that, the 

teacher needs to add each student to the system, which proves to 

be quite tedious, especially for large classes. To overcome this 

drawback, teachers have implemented programs that automatically 

generate registration ids and corresponding passwords based on 

student university registration number. As BOCA does not allow 



password modification, students often know other students 

password as they are generated following certain patterns. This 

facilitates copying other students’ solutions. 

This shows that, although BOCA has several advantages, there are 

problems that hinder the use of the system in the classroom. To 

solve this, beyond what has already been presented, we aim to 

tackle the following requirements: automatic generation of lists of 

problems based on subjects and level of difficulty, measurement 

of the student experience with problem solving by subject, and 

rank problems by levels of difficulty. We consider the last item is 

important for didactic purposes, not finding a technique or 

algorithm to use, this is the focus of this work. 

4. PROBOCA 
From an architectural viewpoint, the proposed system builds upon 

BOCA that is considered an internal component and offers its 

structure, PHP source code and PostgreSQL DB to be reused. 

In order to avoid further complication of the development process, 

the “Competitions and Teams” context is kept, with some 

adaptations. The terms “Competition” and “Team” are used to 

loosely indicate exercise list and student respectively. BOCA´s 

user interface allows for such extrapolation which is already in 

practice by the teachers who use this system in their classroom. 

Adapting BOCA to support CP teaching brought the need to 

introduce new functional requirements, as presented in the use 

case diagram in Figure 3. 

PROBOCA required some changes to the BOCA DB structure. It 

was necessary to modify the internal tables in order to link the 

stored problems to given course’s syllabus and certain difficulty 

levels as well as to include more detailed data about the students. 

Furthermore, the original competition-based structure will be 

altered to adapt it to the concept of multiple exercise lists. 

 

 

 

Figure 3. Use Case Diagram with New Requirements 

 

Following requirement R1, student registration is now done by the 

student himself using a token which is handed out by the teacher. 

Besides saving a password, other information is collected during 

registration that permits class wide statistical analysis. 

R2 was intended to simplify the task of competition generation, 

which is performed by the teacher. To achieve this goal, a 

database of problems was implemented. Currently, to generate a 

competition, as shown in figure 4, the user indicates three 

parameters, namely a difficulty level (1-easy; 2-medium; 3-

difficult); the desired component syllabus´ elements for the given 

problem set and finally the quantity of problems to compose the 

list. The system then analyzes which problems best fit the user-

defined parameters and generates a competition list, from among 

the problems available in its DB. The difficulty level for each 

problem is estimated automatically by the system based on data 

obtained from solutions submitted by students and other 

parameters as described in section 6. 

 

 

Figure 4. Generate problem lists\competitions 

 

R3’s purpose is to provide teachers with a report of every 

student´s experience level based on his interaction with the 

system. Using the collected data, it should be possible to present 

information about a student's experience regarding the syllabus 

elements addressed in each problem, thus allowing the teacher to 

detect where students show more difficulty. This requirement 

depends on R4, which measures the difficulty level of a given 

problem. A simple mechanism to measure the degree of difficulty 

of a given problem was developed and tested.  

For R3 to be reliable, it is necessary that a plagiarism 

identification strategy (R9) be also implemented in the system. 

R5 is aimed at associating a student to multiple competitions 

without the need to register each time. Thus, the data from 

different competitions can be associated to the student, allowing 

the integration of results obtained for the different lists presented 

to a given class. This requirement has a dependency upon R6, 

which aims to adapt BOCA to judge problems from several 

competitions. R7 is also related to R5, with the goal of allowing a 

student to participate in several competitions - analog to 

answering several problem lists. 

R8 aims to display the problems’ balloons, color coded to indicate 

the problem’s difficulty level. Currently, balloon colors are 

registered by the system administrator along with the problems 

and have no relation to difficulty or content, unless the 

classification and corresponding color attribution is done by the 

teacher when uploading the problems. 

 



5. IMPLEMENTATION 
 

The functionalities of detailing the student information and 

providing automatic generation of exercise lists are already 

implemented and tested. Requirement R4, estimating the difficulty 

level of a given problem, is currently in progress.  

Within this requirement, the first executed task was to create 74 

exercises using BOCA´s problem-registration functionality. These 

exercises cover the syllabus of the “Introduction to programming” 

course (CS1) and range from debutant programming instructions 

(Hello World style) up to coding with matrixes. The inserted 

problems populated an initial database to be used for testing, but 

additional problems are expected to be easily included. An 

estimated level of difficulty for each problem was supplied by the 

teacher inserting the problem in the database. 

To submit an answer, the student uploads one code file per 

problem solved. Along with the file upload, the student is asked to 

evaluate the problem´s difficulty, by indicating one of three 

choices: Easy, Medium or Difficult, based on his experience when 

solving the problem (Figure 4). 

Success was obtained in computing several parameters that are 

needed to calculate problem difficulty. They include different 

measures, such as counting the number of repetition and selection 

structures used in the solution and the number of topics involved 

in the problem. Problem topics were defined using the 

introductory programming course syllabus. They include, 

input/output; attribution; selection; repetition; vectors; strings; 

matrices and functions. In this list, topics appear in the order they 

are taught and therefore in increasing level of complexity for 

novel students. Since programming is incremental, more complex 

topics usually base upon lesser complex topics. Several tests have 

been conducted to define and validate the mathematical function 

that will calculate the difficulty of the problem, but this is still an 

open issue. 

Based on the calculated difficulty and the topics involved in the 

problem, colored balloons are associated to the problem. Different 

colors represent different topics, and within each topic, the level 

of difficulty is represented by the intensity of the color. For 

example, blue represents problems whose most complex topic is 

selection. Light blue balloons are associated to easy problems 

using selection. Medium blue balloons are associated to medium 

difficulty problems and dark blue balloons are associated to 

problems that demand more from students. 

The task of providing teachers with a report on student 

achievements (R3) has not been tackled yet. Ideas in this sense 

include: (1) comparing student’s perceived problem difficulty and 

mean problem difficulty. If students perceive problems as harder 

or easier than the mean this could indicate that they are at a lesser 

or higher level of programming competency; (2) comparing 

successive submission of the same problem. This may show if 

students adopt a trial-and-error approach; (3) mean time taken to 

solve problems; (4) mean number of submission per problem; (5) 

score when compared to the other students; among others.  

6. Estimating Problem Difficulty 
 

In a sense, “difficulty” expresses the lack of ability, or amount of 

skill/effort needed to accomplish something. Obviously, the 

perception of difficulty is an individual matter that is related to 

many aspects, including the time at which the question was posed. 

Nonetheless, this work investigates the possibility of 

characterizing a programming problem in a way such that 

calculated parameters may correlate to a determined “Difficulty-

level” as expressed by students.  

 In their work [6], Alvarez and Scott present the program control 

flow and number of lines of code as variables that correlate to the 

difficulty of a problem. The experiments undertaken in the current 

study corroborate this information. 

Also, other works [7, 8] show the need to deal with abstraction to 

solve problems. A highly abstract problem is one that implies a 

greater level of generalization. Thus, a problem that involves 

many different topics can become more abstract and hence more 

difficult. It is fairly safe to assume that in order to measure the 

difficulty of a problem, it is necessary to make a detailed analysis 

of the topics that are addressed within the problem. That 

proposition helps in formulating the hypothesis below. 

6.1 Problem Difficulty Mechanism 
 

On one hand, the survey of the student´s opinion of the submitted 

problem’s difficulty provided the first estimate. For each of the 74 

registered exercises, this information was stored, along with the 

respective answer in the DB. Although information was collected 

for all students, statistics were calculated only considering those 

that completed at least 95% of the exercises (70 out of 74). This 

excluded students that dropped out the course in order to prevent 

their partial answers from skewing the results. After filtering, the 

mean difficulty “Mean_Dif” was then calculated for each exercise 

based on the answers of the resulting 62 students. “Median_Dif” 

and “Mode_Dif” were also calculated. 

In addition, C source code was written to correctly workout each 

of the registered problems. A PHP program was also developed in 

order to analyze the programs´ internal structures and to extract 

some measures from each program. The measures include 

counting:  

• Lines of code, represented by variable N_LC; 

• Repetition structures used in the solution, N_RP; 

• Selection structures, N_SL; 

• Edges in a graph that represents the algorithm, N_EDG; 

• Edges in a graph that represent repetition structures in 

the algorithm, N_EDG_RP; 

• Height of a tree, with each sub-block of internally 

nested code representing a node, MX_HT and 

• Number of topics involved in the problem, N_TPC. 

This last count was obtained manually. 

 

To verify if a combination of variables obtained better results, the 

following formulae were also tested against the Mean_Dif 

variable to verify their correlation. Table 2 shows the results. 

Mean_Dif correlated positively with all measured variables, being 

the best correlation associated to f4, r = .76, p = .000, that 

improves on the individual correlations with N_TPC (number of 

topics) and MX_HT (maximum tree height). 

 

 



Table 1. Correlation between measured variables and student 

evaluation 

 Median_

Dif 

Mean

_Dif 

Mode_

Dif 

N_RP 

(Repetitions) 

Pearson Correlation 

Sig. (2-tailed) 

N 

.49 

.000 

74 

.52 

.000 

74 

.44 

.000 

74 

N_SL 

(Selections) 

Pearson Correlation 

Sig. (2-tailed) 

N 

.16 

.171 

74 

.34 

.003 

74 

.19 

.108 

74 

N_LC 

(Lines of 

Code) 

Pearson Correlation 

Sig. (2-tailed) 

N 

.44 

.000 

74 

.62 

.000 

74 

.45 

.000 

74 

N_TPC 

(Topics) 

Pearson Correlation 

Sig. (2-tailed) 

N  

.57 

.000 

74 

.69 

.000 

74 

.59 

.000 

74 

N_EDG 

(Edges) 

Pearson Correlation 

Sig. (2-tailed) 

N 

.42 

.000 

74 

.58 

.000 

74 

.41 

.000 

74 

MX_HT 

(Tree Height) 

Pearson Correlation 

Sig. (2-tailed) 

N 

.52 

.000 

74 

.67 

.000 

74 

.56 

.000 

74 

N_EDG_RP 

(Rep. Edges) 

 

Pearson Correlation 

Sig. (2-tailed) 

N 

.53 

.000 

74 

.60 

.000 

74 

.51 

.000 

74 

 

f1 = N_RP+N_SL+N_LC+N_TPC+N_EDG+MX_HT+N_EDG_RP 

                                                      7 

f2 = N_EDG . 0.3 + MX_HT . 1.4 + N_EDG_RP . 1.4 + N_LC . 0.2 

f3 = N_TPC+MX_HT+N_LC + N_EDG_RP+N_EDG+N_RP + N_SL 

                          3                                                  8 

f4 = N_TPC + MX_HT 

                    2 

Table 2 shows the results. Mean_Dif correlated positively with all 

measured variables, being the best correlation associated to f4, r = 

.76, p= .000, that improves on the individual correlations with 

N_TPC and MX_HT. 

 

Table 2. Correlation of student perceived difficulty and 

developed formulae 

  Mean_Dif 

 

f1 

Pearson Correlation 

Sig. (2-tailed) 

N 

 .66 

 .000 

 74 

 

f2 

Pearson Correlation 

Sig. (2-tailed) 

N 

 .68 

 .000 

 74 

 

f3 

Pearson Correlation 

Sig. (2-tailed) 

N 

 .67 

 .000 

 74 

 

f

4 

Pearson Correlation 

Sig. (2-tailed) 

N 

 .76 

 .000 

 74 

 

We also verified correlations between teacher evaluations of the 

problems’ difficulty. For this we asked five teachers to read each 

problem and attribute a level of difficulty in the range 1-5. Since 

we had only five evaluations we chose to work with the median 

difficulty obtained (Median_Prof_Dif).  

Correlating this variable to the measured variables we obtained 

the results presented in table 3. Best correlations were obtained 

with N_RP and N_EDG_RP, r = .62, p = .000, both related to the 

number of repetition structures found in the solution codes. 

Table 3. Correlation between measured variables and teacher 

evaluation 

 Median_Prof_Dif 

N_RP 

(Repetitions) 

Pearson Correlation 

Sig. (2-tailed) 

N 

 .62 

 .000 

 74 

N_SL 

(Selections) 

Pearson Correlation 

Sig. (2-tailed) 

N 

 .20 

 .093 

 74 

N_LC 

(Lines of Code) 

Pearson Correlation 

Sig. (2-tailed) 

N 

 .56 

 .000 

 74 

N_TPC 

(Topics) 

Pearson Correlation 

Sig. (2-tailed) 

N 

 .50 

 .000 

 74 

N_EDG 

(Edges) 

Pearson Correlation 

Sig. (2-tailed) 

N 

 .53 

 .000 

 74 

MX_HT 

(Tree Height) 

Pearson Correlation 

Sig. (2-tailed) 

N 

 .50 

 .000 

 74 

N_EDG_RP 

(Rep. Edges) 

 

Pearson Correlation 

Sig. (2-tailed) 

N 

 .62 

 .000 

 74 

 

Table 4 correlates the teacher defined difficulty with the proposed 

formulae defined above. Positive correlation was found with all 

formulae, being the best correlation associated to f2, r = .63, 

p=.000. Furthermore, a positive correlation was found between 

the teacher defined difficulty and mean student perceived 

difficulty, r = .69, p = .000. 

 

Table 4. Correlation of teacher defined difficulty and 

developed formulae 
  Mean_Dif 

 

f1 

Pearson Correlation 

Sig. (2-tailed) 

N 

 .59 

 .000 

 74 

 

f2 

Pearson Correlation 

Sig. (2-tailed) 

N 

 .63 

 .000 

 74 

 

f3 

r* 
Pearson Correlation 

Sig. (2-tailed) 

N 

 .59 

 .000 

 74 

 

f4 

Pearson Correlation 

Sig. (2-tailed) 

N 

 .55 

 .000 

 74 

 

Although student perceived difficulty and teacher defined 

difficulty are correlated, there are differences that can be verified 

by the correlations found with the measured variables and 

proposed formulae. This could be explained by the fact that 

students evaluate difficulty based on the knowledge they have 

when developing the solution. As they do not know what comes 

ahead, they cannot base their evaluation on the overall knowledge 

of programming. Teachers on the other hand, have this overall 

view of the domain and evaluate difficulty accordingly. It must be 

observed that the teachers that did the evaluation are new to 

teaching and have not yet acquired a more critical understanding 

of the difficulties students encounter when learning to program. 

After developing algorithmic reasoning, people tend to forget how 

they thought before, and find that many concepts are obvious 

when in fact, for beginners, they are not. 



7. CONCLUSION 
 

PROBOCA is a system under development whose goal is to adapt 

the BOCA software for use in teaching programming. While 

BOCA itself was developed for programming marathons, it is 

already in use, as a support tool, in programming introductory 

courses. As a learning aid, BOCA has several limitations, 

especially relative to class administration and student monitoring. 

In addition, as a system specifically developed for competitions, it 

lacks mechanisms that facilitate the creation of exercise lists, such 

as a question bank, and analysis of student performance. 

PROBOCA supports the persistence of problems registered by 

teachers in the database and provides greater access to students’ 

related information. Unlike other “Online Judge” systems that are 

available exclusively online and are managed by their creators, 

PROBOCA can be downloaded and installed by the teacher, 

giving the teacher control over the problems stored in the 

database. Since teachers are responsible for introducing the 

problems, this solution has the additional advantage that it is 

language free, i.e., it is not limited to teachers and students that 

speak the language in which the problem specifications were 

written as is the case of online systems administered by third 

parties. 

In addition to implementing an environment that facilitates the use 

of BOCA in teaching programming, PROBOCA also aims to 

provide teachers and students with information that will help 

students in their learning process. One of the important features of 

PROBOCA is an automatic evaluation of problem difficulty. This 

gives students direction in the path to follow when choosing 

which exercises to solve first, allowing them to solve easier 

exercises before more complex ones, diminishing student 

frustration at not solving problems. It also allows teachers to 

better gauge the level of difficulty of exercise lists. As shown by 

the collected data, teacher and student evaluation regarding 

problem difficulty do not match, and this may lead to distortions 

when teaching programming. Future work could include 

developing a system that will automatically suggest problems to 

students based on their performance and calculated problem 

difficulty. 

This work shows the approach being taken to calculate the 

difficulty of the problems. This approach differs from others by 

treating the algorithms submitted by students in the form of 

graphs and trees to identify properties that could be correlated 

with the difficulty of problems. For this, data mining using 

correlations was undertaken. 

Part of the system has already been implemented, and has been 

successfully used in the classroom. The success of these tasks 

shows the feasibility of the project and encourages further work. 
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