
Mining an Online Judge System to Support Introductory 
Computer Programming Teaching 

 
Rodrigo Elias Francisco 

Instituto Federal Goiano 
Campus Morrinhos 

Morrinhos – GO – Brazil 
+55 (64) 34137900 

rodrigo.francisco@ifgoiano.edu.br 

            
           Ana Paula Ambrosio 

Instituto de Informatica 
Universidade Federal de Goiás 

Goiânia – GO – Brazil 
+55 (62) 35211181 

apaula@inf.ufg.br 

 
ABSTRACT 
Computer programming is an activity which requires a set of 

cognitive processes that naturally develop through practice, 

writing algorithmic solutions. Students learn a lot from their 

mistakes, but for this they need feedback on their workouts. 

Marking students’ work outs is very time consuming, which often 

limits a teacher’s capacity to offer close guidance individually. 

The PROBOCA project aims to build a tool, based on the BOCA 

online judge, suited for the purpose of learning computer 

programming by practice. In addition to a problem database 

organized by theme and difficulty, the system provides 

functionalities to support the teacher in the classroom. One of the 

main endeavors is to develop a procedure for estimating the 

degree of difficulty of a certain problem. This “nominal” 

parameter may then be compared to the difficulty level as 

perceived by each student. The result is a valuable indicator of 

those students that are experiencing challenges. This paper 

presents the preliminary specification of PROBOCA´s 

architecture and functional requirements along with its current 

state of development. 

Keywords 

Online Judge; Computer Programming Education. 

1. INTRODUCTION 
The learning process of Computer Programming (CP) usually 

involves practicing the resolution to many problems. Students 

write code to implement algorithms that meet exercise 

requirements and teachers should review those codes and present 

their feedback to the students. As this is a time consuming task, 

some teachers are installing and using online judge systems as 

automatic reviewing and scoring tools. 

Online judge refers to software tools originally designed for 

programming competitions. They usually run on a server, and 

contestants access it online. Basically, its role is to present the 

contestant teams with a list of problems, to which they should 

respond by uploading program codes that satisfy the criteria of 

each problem. The tool then evaluates the answer code by using a 

set of predefined inputs and comparing the program results to 

predefined outputs. If the output of the answer code exactly 

matches the expected output for the corresponding input, the 

answer code is considered correct. Otherwise it is considered 

incorrect. No indication of where the program went wrong is 

given. Although helpful as a teaching assistant, these tools were 

not designed for use in a classroom and therefore lack some 

features that are important for academic management. 

The BOCA software [1] is an online judge system used in 

programming marathons in Brazil. It is freely available for 

institutions to download and install. This particular system allows 

teachers to register problems and to track their students’ work. 

However this system is neither easy to handle nor has an exercise 

database (DB), needed to facilitate the generation of problem lists.  

This project proposes to extend the BOCA online judge to make it 

more suitable for use in introductory programming teaching. The 

resulting system, called PROBOCA, complements the online 

judge functionality with features that improve its ease-of-use, 

enhancing teacher productivity and course effectiveness. 

One of the introduced features provides automatic classification of 

problem difficulty, based on submitted solutions and students’ 

evaluation of degree of difficulty encountered in solving a given 

problem. This will aid teachers while composing the exercise lists, 

allowing them to better gauge the list complexity. It also lets 

students organize the order of problems to solve, tackling the 

easier problems first before turning to more complex ones.  

Another additional feature is the production of student reports 

based on the submitted solutions and the students’ behavior while 

accessing the tool. Student evaluation of program difficulty, 

number of submissions for the same exercise, time between 

submissions, order of submissions, among other information 

gathered by the tool, reveal information about student behavior 

and his ease in solving the proposed problems. 

2. EXERCISES ON PROGRAMMING 

EDUCATION  
Aiming at automatic correction of program code and student 

monitoring and evaluation during the programming process, 

several initiatives have been developed. 

Within this line of research, the study of Chaves et al [2] aims to 

explore resources of online judges looking to integrate them into 

the Moodle system. The goal is to provide a Virtual Learning 

Environment (VLE) with automatic evaluation feature, allowing 

the teacher to monitor students´ problem solving. The authors 

defined an architecture containing a module for integration with 

online judges (MOJO). The Integration Module integrated the 

VLE structure to URI Online Judge [3] and SPOJ Brazil [4]. 

In [5], the authors have developed a prototype intended to be an 

educational online judge. They argue that online judge tools are 

suited to competition and have few educational features. They 

also criticize the way online judges provide feedback to students 

only indicating whether the answer is right/wrong or if there were 

errors at compilation/runtime. Their project, called JOnline, aims 

to add the following didactic features: Presenting tips in 



Portuguese to fix compilation errors found in the submitted source 

code; presenting the test cases that generate erroneous results; 

organization of the problems by topic; difficulty level deduced 

from a poll conducted by the system and a resource for 

collaborative programming that allows two students to co-write 

one common code. 

Automatic generation of exercise lists based on user defined 

criteria requires the classification of problems according to these 

criteria. In [6], the authors conclude that there is a strong 

relationship between the difficulty of a problem and the total 

number of lines of code and amount of flow control in the 

program (IF, WHILE, FOR ...). New students have difficulty in 

reading and interpreting problem statements. This problem has 

been related to the difficulty in dealing with abstraction [9]. 

3. BOCA 
Designed for use in programming marathons, the BOCA online 

judge system has vocabulary and requirements contextualized by 

Competition and Teams. The main interest in this system is that it 

was designed to enable its users, the competitors, to interact with 

a set of problems. Figure 1 shows a use case diagram with the 

different functions provided by BOCA. Its software allows 

registration of problems for a given competition. That is done by 

submitting a PDF file stating the problem to be tackled and the 

files containing the input and output data sets for the 

corresponding test cases. The registered problems are associated 

with a single competition. If needed, to reuse the problems for 

another competition, the files must be inserted again. BOCA does 

not include a database to store the problems. 

 

 

  

Figure 1.  BOCA´s use case diagram  

In the system, colored balloons represent the points gained by the 

competitors. This feature is part of the programming marathons 

context where correctly answering a problem yields a balloon to 

its team. Besides allowing teams to monitor their submissions and 

the related results, BOCA also provides a screen displaying the 

teams ranking including the team’s overall score, and a list of the 

solved exercises using balloons to identify those successfully 

done. It also produces information on students’ interaction with 

the problems containing the time spent and the number of 

resolution attempts. 

BOCA has been used in CP introductory classes at our institute 

for some years, with good results. Using this system enhances the 

practice of problem solving by providing automatic feedback to 

students. We have observed that the number of problems solved 

by students using BOCA is significantly higher when compared to 

traditional exercise lists. The burden on the teacher is significantly 

reduced and the students get feedback. Teachers are then able to 

focus on helping the students that fail to solve the problems even 

after several attempts. This strategy allows students to tackle a 

larger number of exercises, thus increasing their potential to 

master cognitive skills required for programming. However, in 

spite of these advantages, some drawbacks were revealed. 

Looking at the process of reviewing students’ answers two issues 

were identified. First, the system assesses a submitted program by 

comparing its output, as generated by the student’s code in 

response to a given input data set, to the registered expected 

output. For the two outcomes to be identical, exact formatting of 

the program’s output is required. At the beginning students 

incurred in many errors just for using a slightly different format. 

This situation marks the problem’s result as wrong whereas the 

program’s logic maybe right, causing frustration among students 

as the system does not point out where the error is. Students, 

however, managed to adapt and began paying more attention to 

output formatting. Second, there is no cross-answers plagiarism 

identification, in other words no control over cheats. It was 

observed that some students simply copied their colleagues’ 

program and submitted them as their own, thus considered to have 

solved the problem without any real comprehension of the 

solution. 

Figure 2 shows the BOCA code submission screen. It was 

modified to include the “level of difficulty” selection where the 

students evaluate how hard it was to solve that problem they are 

submitting. 

 

 

Figure 2.  BOCA’s submission functionality answers 

 

Regarding the class management functionality, it was noted that 

each installed instance of BOCA supports one active competition 

at a time, meaning a single class per instance. Thus, if a teacher 

wants to have several competitions running at the same time i.e. 

different groups doing the same or different sets of exercises, he 

must install multiple instances of BOCA. Each instance is 

independent. So even if two competitions are composed of the 

same problems (e.g. for different classes), these problems must be 

separately registered for each instance. As each competition is 

independent, the system does not group the results of the different 

competitions. This feature would be interesting in case of multiple 

exercise lists delivered to the same class. It should also be noted 

that the system is not trivial to install and manage, which ends up 

discouraging the teachers from adopting it. On top of that, the 

teacher needs to add each student to the system, which proves to 

be quite tedious, especially for large classes. To overcome this 

drawback, teachers have implemented programs that automatically 

generate registration ids and corresponding passwords based on 

student university registration number. As BOCA does not allow 



password modification, students often know other students 

password as they are generated following certain patterns. This 

facilitates copying other students’ solutions. 

This shows that, although BOCA has several advantages, there are 

problems that hinder the use of the system in the classroom. To 

solve this, beyond what has already been presented, we aim to 

tackle the following requirements: automatic generation of lists of 

problems based on subjects and level of difficulty, measurement 

of the student experience with problem solving by subject, and 

rank problems by levels of difficulty. We consider the last item is 

important for didactic purposes, not finding a technique or 

algorithm to use, this is the focus of this work. 

4. PROBOCA 
From an architectural viewpoint, the proposed system builds upon 

BOCA that is considered an internal component and offers its 

structure, PHP source code and PostgreSQL DB to be reused. 

In order to avoid further complication of the development process, 

the “Competitions and Teams” context is kept, with some 

adaptations. The terms “Competition” and “Team” are used to 

loosely indicate exercise list and student respectively. BOCA´s 

user interface allows for such extrapolation which is already in 

practice by the teachers who use this system in their classroom. 

Adapting BOCA to support CP teaching brought the need to 

introduce new functional requirements, as presented in the use 

case diagram in Figure 3. 

PROBOCA required some changes to the BOCA DB structure. It 

was necessary to modify the internal tables in order to link the 

stored problems to given course’s syllabus and certain difficulty 

levels as well as to include more detailed data about the students. 

Furthermore, the original competition-based structure will be 

altered to adapt it to the concept of multiple exercise lists. 

 

 

 

Figure 3. Use Case Diagram with New Requirements 

 

Following requirement R1, student registration is now done by the 

student himself using a token which is handed out by the teacher. 

Besides saving a password, other information is collected during 

registration that permits class wide statistical analysis. 

R2 was intended to simplify the task of competition generation, 

which is performed by the teacher. To achieve this goal, a 

database of problems was implemented. Currently, to generate a 

competition, as shown in figure 4, the user indicates three 

parameters, namely a difficulty level (1-easy; 2-medium; 3-

difficult); the desired component syllabus´ elements for the given 

problem set and finally the quantity of problems to compose the 

list. The system then analyzes which problems best fit the user-

defined parameters and generates a competition list, from among 

the problems available in its DB. The difficulty level for each 

problem is estimated automatically by the system based on data 

obtained from solutions submitted by students and other 

parameters as described in section 6. 

 

 

Figure 4. Generate problem lists\competitions 

 

R3’s purpose is to provide teachers with a report of every 

student´s experience level based on his interaction with the 

system. Using the collected data, it should be possible to present 

information about a student's experience regarding the syllabus 

elements addressed in each problem, thus allowing the teacher to 

detect where students show more difficulty. This requirement 

depends on R4, which measures the difficulty level of a given 

problem. A simple mechanism to measure the degree of difficulty 

of a given problem was developed and tested.  

For R3 to be reliable, it is necessary that a plagiarism 

identification strategy (R9) be also implemented in the system. 

R5 is aimed at associating a student to multiple competitions 

without the need to register each time. Thus, the data from 

different competitions can be associated to the student, allowing 

the integration of results obtained for the different lists presented 

to a given class. This requirement has a dependency upon R6, 

which aims to adapt BOCA to judge problems from several 

competitions. R7 is also related to R5, with the goal of allowing a 

student to participate in several competitions - analog to 

answering several problem lists. 

R8 aims to display the problems’ balloons, color coded to indicate 

the problem’s difficulty level. Currently, balloon colors are 

registered by the system administrator along with the problems 

and have no relation to difficulty or content, unless the 

classification and corresponding color attribution is done by the 

teacher when uploading the problems. 

 



5. IMPLEMENTATION 
 

The functionalities of detailing the student information and 

providing automatic generation of exercise lists are already 

implemented and tested. Requirement R4, estimating the difficulty 

level of a given problem, is currently in progress.  

Within this requirement, the first executed task was to create 74 

exercises using BOCA´s problem-registration functionality. These 

exercises cover the syllabus of the “Introduction to programming” 

course (CS1) and range from debutant programming instructions 

(Hello World style) up to coding with matrixes. The inserted 

problems populated an initial database to be used for testing, but 

additional problems are expected to be easily included. An 

estimated level of difficulty for each problem was supplied by the 

teacher inserting the problem in the database. 

To submit an answer, the student uploads one code file per 

problem solved. Along with the file upload, the student is asked to 

evaluate the problem´s difficulty, by indicating one of three 

choices: Easy, Medium or Difficult, based on his experience when 

solving the problem (Figure 4). 

Success was obtained in computing several parameters that are 

needed to calculate problem difficulty. They include different 

measures, such as counting the number of repetition and selection 

structures used in the solution and the number of topics involved 

in the problem. Problem topics were defined using the 

introductory programming course syllabus. They include, 

input/output; attribution; selection; repetition; vectors; strings; 

matrices and functions. In this list, topics appear in the order they 

are taught and therefore in increasing level of complexity for 

novel students. Since programming is incremental, more complex 

topics usually base upon lesser complex topics. Several tests have 

been conducted to define and validate the mathematical function 

that will calculate the difficulty of the problem, but this is still an 

open issue. 

Based on the calculated difficulty and the topics involved in the 

problem, colored balloons are associated to the problem. Different 

colors represent different topics, and within each topic, the level 

of difficulty is represented by the intensity of the color. For 

example, blue represents problems whose most complex topic is 

selection. Light blue balloons are associated to easy problems 

using selection. Medium blue balloons are associated to medium 

difficulty problems and dark blue balloons are associated to 

problems that demand more from students. 

The task of providing teachers with a report on student 

achievements (R3) has not been tackled yet. Ideas in this sense 

include: (1) comparing student’s perceived problem difficulty and 

mean problem difficulty. If students perceive problems as harder 

or easier than the mean this could indicate that they are at a lesser 

or higher level of programming competency; (2) comparing 

successive submission of the same problem. This may show if 

students adopt a trial-and-error approach; (3) mean time taken to 

solve problems; (4) mean number of submission per problem; (5) 

score when compared to the other students; among others.  

6. Estimating Problem Difficulty 
 

In a sense, “difficulty” expresses the lack of ability, or amount of 

skill/effort needed to accomplish something. Obviously, the 

perception of difficulty is an individual matter that is related to 

many aspects, including the time at which the question was posed. 

Nonetheless, this work investigates the possibility of 

characterizing a programming problem in a way such that 

calculated parameters may correlate to a determined “Difficulty-

level” as expressed by students.  

 In their work [6], Alvarez and Scott present the program control 

flow and number of lines of code as variables that correlate to the 

difficulty of a problem. The experiments undertaken in the current 

study corroborate this information. 

Also, other works [7, 8] show the need to deal with abstraction to 

solve problems. A highly abstract problem is one that implies a 

greater level of generalization. Thus, a problem that involves 

many different topics can become more abstract and hence more 

difficult. It is fairly safe to assume that in order to measure the 

difficulty of a problem, it is necessary to make a detailed analysis 

of the topics that are addressed within the problem. That 

proposition helps in formulating the hypothesis below. 

6.1 Problem Difficulty Mechanism 
 

On one hand, the survey of the student´s opinion of the submitted 

problem’s difficulty provided the first estimate. For each of the 74 

registered exercises, this information was stored, along with the 

respective answer in the DB. Although information was collected 

for all students, statistics were calculated only considering those 

that completed at least 95% of the exercises (70 out of 74). This 

excluded students that dropped out the course in order to prevent 

their partial answers from skewing the results. After filtering, the 

mean difficulty “Mean_Dif” was then calculated for each exercise 

based on the answers of the resulting 62 students. “Median_Dif” 

and “Mode_Dif” were also calculated. 

In addition, C source code was written to correctly workout each 

of the registered problems. A PHP program was also developed in 

order to analyze the programs´ internal structures and to extract 

some measures from each program. The measures include 

counting:  

• Lines of code, represented by variable N_LC; 

• Repetition structures used in the solution, N_RP; 

• Selection structures, N_SL; 

• Edges in a graph that represents the algorithm, N_EDG; 

• Edges in a graph that represent repetition structures in 

the algorithm, N_EDG_RP; 

• Height of a tree, with each sub-block of internally 

nested code representing a node, MX_HT and 

• Number of topics involved in the problem, N_TPC. 

This last count was obtained manually. 

 

To verify if a combination of variables obtained better results, the 

following formulae were also tested against the Mean_Dif 

variable to verify their correlation. Table 2 shows the results. 

Mean_Dif correlated positively with all measured variables, being 

the best correlation associated to f4, r = .76, p = .000, that 

improves on the individual correlations with N_TPC (number of 

topics) and MX_HT (maximum tree height). 

 

 



Table 1. Correlation between measured variables and student 

evaluation 

 Median_

Dif 

Mean

_Dif 

Mode_

Dif 

N_RP 

(Repetitions) 

Pearson Correlation 

Sig. (2-tailed) 

N 

.49 

.000 

74 

.52 

.000 

74 

.44 

.000 

74 

N_SL 

(Selections) 

Pearson Correlation 

Sig. (2-tailed) 

N 

.16 

.171 

74 

.34 

.003 

74 

.19 

.108 

74 

N_LC 

(Lines of 

Code) 

Pearson Correlation 

Sig. (2-tailed) 

N 

.44 

.000 

74 

.62 

.000 

74 

.45 

.000 

74 

N_TPC 

(Topics) 

Pearson Correlation 

Sig. (2-tailed) 

N  

.57 

.000 

74 

.69 

.000 

74 

.59 

.000 

74 

N_EDG 

(Edges) 

Pearson Correlation 

Sig. (2-tailed) 

N 

.42 

.000 

74 

.58 

.000 

74 

.41 

.000 

74 

MX_HT 

(Tree Height) 

Pearson Correlation 

Sig. (2-tailed) 

N 

.52 

.000 

74 

.67 

.000 

74 

.56 

.000 

74 

N_EDG_RP 

(Rep. Edges) 

 

Pearson Correlation 

Sig. (2-tailed) 

N 

.53 

.000 

74 

.60 

.000 

74 

.51 

.000 

74 

 

f1 = N_RP+N_SL+N_LC+N_TPC+N_EDG+MX_HT+N_EDG_RP 

                                                      7 

f2 = N_EDG . 0.3 + MX_HT . 1.4 + N_EDG_RP . 1.4 + N_LC . 0.2 

f3 = N_TPC+MX_HT+N_LC + N_EDG_RP+N_EDG+N_RP + N_SL 

                          3                                                  8 

f4 = N_TPC + MX_HT 

                    2 

Table 2 shows the results. Mean_Dif correlated positively with all 

measured variables, being the best correlation associated to f4, r = 

.76, p= .000, that improves on the individual correlations with 

N_TPC and MX_HT. 

 

Table 2. Correlation of student perceived difficulty and 

developed formulae 

  Mean_Dif 

 

f1 

Pearson Correlation 

Sig. (2-tailed) 

N 

 .66 

 .000 

 74 

 

f2 

Pearson Correlation 

Sig. (2-tailed) 

N 

 .68 

 .000 

 74 

 

f3 

Pearson Correlation 

Sig. (2-tailed) 

N 

 .67 

 .000 

 74 

 

f

4 

Pearson Correlation 

Sig. (2-tailed) 

N 

 .76 

 .000 

 74 

 

We also verified correlations between teacher evaluations of the 

problems’ difficulty. For this we asked five teachers to read each 

problem and attribute a level of difficulty in the range 1-5. Since 

we had only five evaluations we chose to work with the median 

difficulty obtained (Median_Prof_Dif).  

Correlating this variable to the measured variables we obtained 

the results presented in table 3. Best correlations were obtained 

with N_RP and N_EDG_RP, r = .62, p = .000, both related to the 

number of repetition structures found in the solution codes. 

Table 3. Correlation between measured variables and teacher 

evaluation 

 Median_Prof_Dif 

N_RP 

(Repetitions) 

Pearson Correlation 

Sig. (2-tailed) 

N 

 .62 

 .000 

 74 

N_SL 

(Selections) 

Pearson Correlation 

Sig. (2-tailed) 

N 

 .20 

 .093 

 74 

N_LC 

(Lines of Code) 

Pearson Correlation 

Sig. (2-tailed) 

N 

 .56 

 .000 

 74 

N_TPC 

(Topics) 

Pearson Correlation 

Sig. (2-tailed) 

N 

 .50 

 .000 

 74 

N_EDG 

(Edges) 

Pearson Correlation 

Sig. (2-tailed) 

N 

 .53 

 .000 

 74 

MX_HT 

(Tree Height) 

Pearson Correlation 

Sig. (2-tailed) 

N 

 .50 

 .000 

 74 

N_EDG_RP 

(Rep. Edges) 

 

Pearson Correlation 

Sig. (2-tailed) 

N 

 .62 

 .000 

 74 

 

Table 4 correlates the teacher defined difficulty with the proposed 

formulae defined above. Positive correlation was found with all 

formulae, being the best correlation associated to f2, r = .63, 

p=.000. Furthermore, a positive correlation was found between 

the teacher defined difficulty and mean student perceived 

difficulty, r = .69, p = .000. 

 

Table 4. Correlation of teacher defined difficulty and 

developed formulae 
  Mean_Dif 

 

f1 

Pearson Correlation 

Sig. (2-tailed) 

N 

 .59 

 .000 

 74 

 

f2 

Pearson Correlation 

Sig. (2-tailed) 

N 

 .63 

 .000 

 74 

 

f3 

r* 
Pearson Correlation 

Sig. (2-tailed) 

N 

 .59 

 .000 

 74 

 

f4 

Pearson Correlation 

Sig. (2-tailed) 

N 

 .55 

 .000 

 74 

 

Although student perceived difficulty and teacher defined 

difficulty are correlated, there are differences that can be verified 

by the correlations found with the measured variables and 

proposed formulae. This could be explained by the fact that 

students evaluate difficulty based on the knowledge they have 

when developing the solution. As they do not know what comes 

ahead, they cannot base their evaluation on the overall knowledge 

of programming. Teachers on the other hand, have this overall 

view of the domain and evaluate difficulty accordingly. It must be 

observed that the teachers that did the evaluation are new to 

teaching and have not yet acquired a more critical understanding 

of the difficulties students encounter when learning to program. 

After developing algorithmic reasoning, people tend to forget how 

they thought before, and find that many concepts are obvious 

when in fact, for beginners, they are not. 



7. CONCLUSION 
 

PROBOCA is a system under development whose goal is to adapt 

the BOCA software for use in teaching programming. While 

BOCA itself was developed for programming marathons, it is 

already in use, as a support tool, in programming introductory 

courses. As a learning aid, BOCA has several limitations, 

especially relative to class administration and student monitoring. 

In addition, as a system specifically developed for competitions, it 

lacks mechanisms that facilitate the creation of exercise lists, such 

as a question bank, and analysis of student performance. 

PROBOCA supports the persistence of problems registered by 

teachers in the database and provides greater access to students’ 

related information. Unlike other “Online Judge” systems that are 

available exclusively online and are managed by their creators, 

PROBOCA can be downloaded and installed by the teacher, 

giving the teacher control over the problems stored in the 

database. Since teachers are responsible for introducing the 

problems, this solution has the additional advantage that it is 

language free, i.e., it is not limited to teachers and students that 

speak the language in which the problem specifications were 

written as is the case of online systems administered by third 

parties. 

In addition to implementing an environment that facilitates the use 

of BOCA in teaching programming, PROBOCA also aims to 

provide teachers and students with information that will help 

students in their learning process. One of the important features of 

PROBOCA is an automatic evaluation of problem difficulty. This 

gives students direction in the path to follow when choosing 

which exercises to solve first, allowing them to solve easier 

exercises before more complex ones, diminishing student 

frustration at not solving problems. It also allows teachers to 

better gauge the level of difficulty of exercise lists. As shown by 

the collected data, teacher and student evaluation regarding 

problem difficulty do not match, and this may lead to distortions 

when teaching programming. Future work could include 

developing a system that will automatically suggest problems to 

students based on their performance and calculated problem 

difficulty. 

This work shows the approach being taken to calculate the 

difficulty of the problems. This approach differs from others by 

treating the algorithms submitted by students in the form of 

graphs and trees to identify properties that could be correlated 

with the difficulty of problems. For this, data mining using 

correlations was undertaken. 

Part of the system has already been implemented, and has been 

successfully used in the classroom. The success of these tasks 

shows the feasibility of the project and encourages further work. 

 

 

 

 

 

 

 

 

 

REFERENCES 
 

[1] BOCA. BOCA Online Contest Administrator. Available in 

<http://www.ime. usp.br/~cassio/boca/> Access on March 

20th, 2015 

[2] Chaves, J. O. et al. Uma Ferramenta de Auxílio ao Processo 

de Ensino Aprendizagem para Disciplinas de Programação 

de Computadores (2013). TISE 2013 

[3] URI. URI Online Judge. Available in <http:// 

www.urionlinejudge.com.br/> Access on May 20th, 2014. 

[4] SPOJ. SPOJ Brasil. Available in 

<http://br.spoj.com/embed/info/> Access on May 20th, 2014. 

[5] Santos, J. C. S., Ribeiro, A. R. L. JOnline - proposta 

preliminar de um juiz online didático para o ensino de 

programação  (2007). SBIE 2011. 

[6] Alvarez, A. and Scott, T. A. (2010). Using student surveys in 

determining the difficulty of programming assignments. 

Journal of Computing Sciences in Colleges, 26(2):157–163. 

[7] Gomes, A. et al. (2008). Aprendizagem de programação de 

computadores: dificuldades e ferramentas de suporte. 

Revista Portuguesa de Pedagogia. 42(2). 

[8] Mendonça, A. et al. Difficulties in solving ill-defined 

problems: A case study with introductory computer 

programming students. In Frontiers in Education 

Conference, 2009. FIE’09. 39th IEEE, pages 1–6. IEEE. 

[9] Mendonça, A., de Oliveira, C., Guerrero, D., and Costa, E. 

(2009). Difficulties in solving ill-defined problems: A case 

study with introductory computer programming students. In 

Frontiers in Education Conference, 2009. FIE’09. 39th 

IEEE, pages 1–6. IEEE. 


