
Integrating an Advanced Classifier in WEKA

Paul Ştefan Popescu
Deparment of Computers and

Information Technology
Bvd. Decebal no. 107

Craiova, Romania
sppopescu@gmail.com

Mihai Mocanu
Deparment of Computers and

Information Technology
Bvd. Decebal no. 107

Craiova, Romania
mocanu@software.ucv.ro

Marian Cristian Mihăescu
Deparment of Computers and

Information Technology
Bvd. Decebal no. 107

Craiova, Romania
mihaescu@software.ucv.ro

ABSTRACT
In these days WEKA has become one of the most impor-
tant data mining and machine learning tools. Despite the
fact that it incorporates many algorithms, on the classifica-
tion area there are still some unimplemented features. In
this paper we cover some of the missing features that may
be useful to researchers and developers when working with
decision tree classifiers. The rest of the paper presents the
design of a package compatible with the WEKA Package
Manager, which is now under development. The functional-
ities provided by the tool include instance loading, succes-
sor/predecessor computation and an alternative visualiza-
tion feature of an enhanced decision tree, using the J48 algo-
rithm. The paper presents how a new data mining/machine
learning classification algorithm can be adapted to be used
integrated in the workbench of WEKA.

Keywords
Classifier, J48, WEKA, Machine learning, Data Mining

1. INTRODUCTION
Nowadays huge amounts of data can be gathered from many
research areas or industry applications. There is a certain
need for data mining or knowledge extraction [6] from data.
From this large amount of data, the data analysts gather
many variables/features and many machine learning tech-
niques are needed to face this situation. There are many
application domains such as medical, economics (i.e., mar-
keting, sales, etc.), engineering or in our case educational
research area [16] in which machine learning techniques can
be applied. Educational data mining is a growing domain
[4] in which a lot of work has been done.

Because the application domains are growing continuously,
the tools that support the machine learning processes must
live up to market standards providing good performances
and intuitive visualization techniques. In these days there
are many tools that deal with a wide variety of problems. In

order to be more explicit, we have tools like RapidMiner [12],
KEEL [2], WEKA, Knime [3] or Mahout [13]. RapidMiner
is a graphical drag and drop analytics platform, formerly
known as YALE, which provides an integrated environment
for data mining, machine learning, business and predictive
analytics. Keel is an application package of machine learning
software tools, specialized on the evaluation of evolutionary
algorithms. KNIME, the Konstanz Information Miner, is a
modular data exploration platform, provided as an Eclipse
plug-in, which offers a graphical workbench and various com-
ponents for data mining and machine learning. Mahout
is a highly scalable machine learning library based on the
Hadoop framework [18], an implementation of the MapRe-
duce programming model, which supports distributed pro-
cessing of large data sets across clusters of computers.

For our approach we choose WEKA because it has become
one of the most popular machine learning and data mining
workbenches and its success is due to its constant improve-
ment and development. Moreover, WEKA is a very popular
tool used in many research domains, widely adopted by the
educational data mining communities.

WEKA is developed in Java and encapsulates a collection of
algorithms that tackle many data mining or machine learn-
ing tasks like preprocessing, regression, clustering, associ-
ation rules, classification and also visualization techniques.
In some cases, these algorithms are referring only the basic
implementation.

One aspect that needs to be taken into consideration is that
WEKA has a package manager which simplifies the devel-
opers contribution process. There are two kind of packages
that can be installed in WEKA and used via the applica-
tion interface: official and unofficial packages. This is a very
important feature because if there is an algorithm that fits
your problem description and there is a package for it you
can just add it to the application and use it further. More-
over, you don’t need to be a programmer to do that, you
don’t need to write code, just install the package and then
use the algorithm like it had been there forever.

According to the real life experiences, many of the included
algorithms can hardly be used because of their lack of flexi-
bility. For example, in standard decision trees from WEKA
we can perform a classification process but we cannot access
a particular instance from the tree. Suppose that we have a
training data file and we create the tree model. When we try

to see where is the place of the instance “X” in the tree we
can’t do that in the application interface, neither when you
add the WEKA library in your code. This is a big drawback
because retrieving the leaf to which the instance belongs to
provides more information than retrieving its class. Usu-
ally, when performing a classification task, the data analyst
divides test instances into classes that have little meaning
from application domain of perspective.

In a real life scenario in a training dataset we may have a
large number of features describing the instances. A data
analyst should be able to parse a decision tree, see the rule
that derived to a specific decision and then draw very accu-
rate conclusions In this paper we will address classification
and visualization issues by adding new functionalities and
improving the decision tree visualization.

Several classification algorithms have been previously con-
tributed to WEKA but non of them is able to output a data
model that is loaded with instances. Based on the previous
statement it is clear that there aren’t WEKA visualization
techniques that are able to present the data in the model
in a efficient way and also, there are no available parsing
methods ready to implement such functionalities. Traversal
of leaves is another task that is missing and it is important
because instances from neighbour leaves have a high degree
of similarity and share many attributes with similar values.

One aspect that differs at WEKA from other similar soft-
ware regards its architecture that allows developers to con-
tribute in a productive way. All the work that needs to be
done refers to creating a specific folders layout, completing
a “description.props” file, adding the “.jar” file to the archive
and the build script.

2. RELATED WORK
WEKA is a open source machine learning library that allows
developers and researchers to contribute very easily. There
are more than twenty years since WEKA had it’s first re-
lease [9] and there were constant contributions added on it.
Not only machine learning algorithms were implemented, for
example, in 2005 a text data mining module was developed
[20]. An overview of the actual software was made in [8].

Several classifiers were developed and contributed as pack-
ages to WEKA. In 2007 a classifier that was build based
on a set of sub-samples was developed [14] and compared
to C4.5 [15] which have it’s implementation called J48 [11]
in WEKA. Other classifiers refers the “Alternating Decision
Trees Learning Algorithms” [7] which is a generalization of
the decision trees, voted decision trees and voted decision
stumps. This kind of classifiers are relatively easy to in-
terpret and the rules are usually smaller in size. Classical
decision trees, such as c4.5 were expanding nodes in a depth-
first order; an improvement came from “Best-first decision
trees” [17]which expands nodes in a best-first order. A pack-
age with these trees was contributed to WEKA.

Some other contributions refers libraries of algorithms that
can be accessed via WEKA. One of them is JCLEC [5] an
evolutionary computation framework which has been suc-
cessfully employed for developing several evolutionary algo-
rithms. Other environment for machine learning and data

mining knowledge discovery that was contributed to WEKA
is R [10]. This contribution was developed in order to in-
clude different sets of tools from both environments available
in a single unified system.

Also as related work we must take into consideration some
of the last algorithms development. In the last year it is
presented a new fast decision tree algorithm [19]. Based on
their experiments, the classifier outperforms C5.0 which is
the commercial implementation of C4.5.

3. SYSTEM DESIGN
The package is designed to be used both by developers, in
their Java applications, and researchers, using the WEKA
Explorer. At the moment of writing this paper the package
with the Advanced Classifier is still under development, of-
fering more functionalities as a tool for developers than in
the explorer view of WEKA.

Figure 1: Package Integration in WEKA

In Fig. 1 we present the main design of the algorithm and
how it can be used in WEKA. On the top of the figure
we have the classifier which can be divided in two main
modules: the algorithm and the visualization. As we can
see on the next level, both of the modules can be divided
further. All the functionalities are then installed in WEKA
via the package manager and then, in the explorer, we can
perform data analysis tasks using a model loaded with data
and it’s associated visualization techniques.

3.1 General Architecture
The packages is a zip archive, structured with respect to
the WEKA guidelines. That is, it unpacks to the current
directory and it contains: the source files, a folder with the
required libraries, a build script, a properties file required
by WEKA for installing and managing the package, and
the actual “.jar” file. A detailed structure of the package is
presented below.

<current directory>
+-AdvancedClassifier.jar
+-Description.props
+-build_package.xml
+-src
| +-main
| +-java
| +-resources
| | +-background_node.png
| | +-background_leaf.png
| | +-background_leaf_pressed.png
| | +-font_node.ttf
| | +-font_decision.ttf
| +-weka
| +-classifiers
| | +-trees
| | +-model
| | | +-AdvancedClassifierTree.java
| | | +-AdvancedClassifierTreeBaseNode.java
| | | +-AdvancedClassifierTreeNode.java
| | | +-AdvancedClassifierTreeLeaf.java
| | | +-BaseAttributeValidator.java
| | | +-NominalAttributeValidator.java
| | | +-NumericAttributeValidator.java
| | | +-Constants.java
| | +-AdvancedClassifier.java
| | +-WekaTextfileToXMLTextfile.java
| +-gui
| +-visualize
| +-plugins
| +-AdvancedClassifierTree.java
| +-AdvancedClassifierTreePanel.java
| +-BaseNodeView.java
| +-AdvancedClassifierTreeNodeView.java
| +-AdvancedClassifierTreeLeafView.java
| +-ConnectingLineView.java
+-lib
+-weka.jar
+-simple-xml.jar
+-rt.jar

Figure 2: Class Diagram

In Figure 2 is presented the system’s class diagram. This
diagram includes all the java packages from the project and
their relations. As we can see in the above mentioned fig-
ure, we have two type of classes: independent classes and
composed. Independent classes are gathered from the model
part of the Model-View-Controller architecture or just classes
that perform one time tasks like“WekaTextFileToXMLTextFile”
which is able to generate an XML based on the text file out-
putted by WEKA. On the other side, the composed classes
are dependent on each other and these relations are shared
across packages. One important class that is worth to be
mentioned is “AdvancedClassifierTreeLeaf.java” in which we
store the leaves of our tree along with rules that define the
leaf. Discussions about implementation of the packages are
more related to the software engineering research area and
beyond of the scope of this paper.

3.1.1 Design and Implementation of the Algorithm
The algorithm needs to generate custom rules (dependent
on the training dataset) for every leaf of the decision tree.
These rules are computed by tracing the path from the root
of the tree to the specified leaf. Each decision that leads to a
leaf is therefore translated into a rule that encapsulates the
name of the attribute and the value on which the decision
was made. For each type of attribute defined by WEKA, we
need to have a corresponding rule that matches that type.
For this purpose an abstract class has been created to act as
a base class for any of the custom rules. The name of this
class is “BaseAttributeValidator” and exposes the required
methods that a superclass needs to implement: a “clone”
method required by the workflow of the system and meth-
ods that validate if an instance or set of instances have the
required values of the attribute targeted by the rule. At
the moment, the only implemented rules are the ones that
handle “NOMINAL” and “NUMERIC” attribute types.

The rule that validates each nominal attribute is called“Nom-
inalAttributeValidator”and receives as parameters the name
of the targeted attribute and a string variable representing
the accepted value of the attribute. The rule that handles
the numeric attributes is called “NumericAttributeValida-
tor” and also receives the name of the attribute and either
a particular value or the boundaries of an interval.

In the following paragraphs, we present a brief overview
of the algorithm for which we adopt a straightforward ap-
proach.

Firstly, the algorithm retrieves instances from the “.arff” file
using the methods provided by WEKA. The next step is
applying the desired classification process. Currently the
only supported classifier is J48, but employing other decision
tree classifiers is foreseen as future work. Using the text
representation of the outputted model and a predefined set
of rules and tags, an XML is then generated. This is an
important step during the workflow because the structured
XML format allows us to obtain the base model for our
decision tree. The deserialization is done using a third-party
Java library(“Simple XML” [1]).

The model obtained this way contains a list of nodes and
leaves with the following significance: each node corresponds
to a decision in the tree; the data stored in each object

(node) refers the information about the name of the ac-
tual attribute, operator and value on which the decision was
made; and the results to which making the decision leads (a
list of other nodes or an output leaf). Using this model and
the set of attributes provided by WEKA, the set of rules
is computed. This step is performed by parsing the model
from the first node (i.e., the root) to the last available leaf
and gradually composing the set of rules that defines each
leaf. The setup of the algorithm is finally completed with
the loading of the training dataset into the model.

The classifier and processed data can now be easily han-
dled and different operations can be applied. The method
currently implemented include basic per leaf manipulation
of instances, i.e. loading new instances into the model and
retrieving the part of the dataset contained in each leaf, as
well as predecessor and successor computation.

3.1.2 Visualization Plugin
For the visualization feature, a custom panel has been de-
signed to hold the components that build up the decision
tree and expose the data available in the leaves. The con-
tructor of the panel requires the decision tree model as a pa-
rameter, and takes care of adding the corresponding views
to the interface. In order to include this functionality in
WEKA, a specialized class that implements WEKA’s Tree-
VisualizePlugin interface has been created. After adding
the package through the Package Manager and selecting this
visualization option, a new JFrame that holds the custom
panel is displayed.

Figure 3: Sample from the Dataset

In Figure 3 we present a dataset sample. In order to validate
the classifier and it’s extra functionalities several tests have
been made but for this case study we used three attributes
and 788 instances. The feature called “userid” doesn’t pro-
vide any information gain but can be easily used for in-
stances localization in leaves. The attributes significance is
beyond the scope of this paper.

In Figure 4 is presented a screen-shot of the tree generated
based on the dataset from figure 3. Each node contains

Figure 4: Tree Sample

the name of the attribute, and each decision is printed on
top of the connecting line. Surely, each leaf can be clicked,
and the set of enclosed instances is displayed. As previ-
ously noted, there is still some work to be made to final-
ize the development of the package, and the visualization
tool needs to be included as well. Efforts will have to be
made toward providing the means to visualize and handle
the successors/predecessors, outliers and other relevant in-
formation.

4. CONCLUSIONS AND FUTURE WORK
In this paper we have presented the integration of a data
analysis tool in WEKA. This tool is important because brings
a new classifier to WEKA that aims to improve the classi-
fication procedures. Here, are also presented some imple-
menting procedures and details.

A workflow is also described and all the mechanism that is
used to bring new features for the users. One important
thing that needs to be mentioned is that the data load-
ing module opens new data analysis opportunities for re-
searchers.

As future work we plan to implement Other types of at-
tributes supported by WEKA like “DATE”, “String” and
“Relational”.

5. REFERENCES
[1] Simple xml. http://simple.sourceforge.net.

[2] J. Alcalá-Fdez, L. Sánchez, S. Garćıa, M. del Jesus,
S. Ventura, J. Garrell, J. Otero, C. Romero,
J. Bacardit, V. Rivas, J. FernÃ ↪andez, and F. Herrera.
Keel: a software tool to assess evolutionary algorithms
for data mining problems. Soft Computing,
13(3):307–318, 2009.

[3] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel,
T. Kötter, T. Meinl, P. Ohl, K. Thiel, and
B. Wiswedel. Knime - the konstanz information miner:
Version 2.0 and beyond. SIGKDD Explor. Newsl.,
11(1):26–31, Nov. 2009.

[4] R. Campagni, D. Merlini, R. Sprugnoli, and M. C.
Verri. Data mining models for student careers. Expert
Systems with Applications, (0):–, 2015.

[5] A. Cano, J. M. Luna, J. L. Olmo, and S. Ventura.
Jclec meets weka! In E. Corchado, M. Kurzynski, and
M. Wozniak, editors, HAIS (1), volume 6678 of
Lecture Notes in Computer Science, pages 388–395.
Springer, 2011.

[6] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. The
kdd process for extracting useful knowledge from
volumes of data. Commun. ACM, 39(11):27–34, Nov.
1996.

[7] Y. Freund and L. Mason. The alternating decision tree
learning algorithm. In Proceedings of the Sixteenth
International Conference on Machine Learning, ICML
’99, pages 124–133, San Francisco, CA, USA, 1999.
Morgan Kaufmann Publishers Inc.

[8] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The weka data
mining software: An update. SIGKDD Explor. Newsl.,
11(1):10–18, Nov. 2009.

[9] G. Holmes, A. Donkin, and I. H. Witten. Weka: a
machine learning workbench. pages 357–361, August
1994.

[10] K. Hornik, C. Buchta, and A. Zeileis. Open-source
machine learning: R meets weka. Computational
Statistics, 24(2):225–232, 2009.

[11] W.-Y. Loh. Classification and Regression Tree
Methods. John Wiley & Sons, Ltd, 2008.

[12] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and
T. Euler. Yale: Rapid prototyping for complex data
mining tasks. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’06, pages 935–940,
New York, NY, USA, 2006. ACM.

[13] S. Owen, R. Anil, T. Dunning, and E. Friedman.
Mahout in Action. Manning Publications Co.,
Greenwich, CT, USA, 2011.

[14] J. M. Pérez, J. Muguerza, O. Arbelaitz,
I. Gurrutxaga, and J. I. Mart́ın. Combining multiple
class distribution modified subsamples in a single tree.
Pattern Recognition Letters, 28(4):414–422, 2007.

[15] J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1993.

[16] C. Romero and S. Ventura. Educational data mining:
A survey from 1995 to 2005. Expert Systems with
Applications, 33(1):135 – 146, 2007.

[17] H. Shi. Best-first decision tree learning. Technical
report, University of Waikato, 2007.

[18] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The hadoop distributed file system. In Mass Storage
Systems and Technologies (MSST), 2010 IEEE 26th
Symposium on, pages 1–10. IEEE, 2010.

[19] S.-G. P. V. Purdila. Fast decision tree algorithm.
Advances in Electrical and Computer Engineering,
14(1):65–68, 2014.

[20] I. H. Witten, G. W. Paynter, E. Frank, C. Gutwin,
and C. G. Nevill-Manning. Kea: Practical automatic
keyphrase extraction. In Proceedings of the Fourth
ACM Conference on Digital Libraries, DL ’99, pages
254–255, New York, NY, USA, 1999. ACM.

