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Abstract. Answer Set Programming (ASP) is a well-known declarative pro-
gramming language for knowledge representation and non-mono&asgoming.
ASP solvers are usually written in C/C++ with the aim of extremely optimiz-
ing their performance. Indeed, C/C++ allow for several low level opttins,
which however come at the price of a less portable implementation. This is a
problem for some real world use cases which do not actually requierteamely
efficient computation, but would benefit from a platform-independendteasily-
deployable implementation. Motivated by such use cases, we develosr, a
new ASP solver written in Java and extending the open source libradgin or-

der to process ASP programs with atomic heads. We also report oliraipagy
experiment assessing the performancevaisp, whose results are encouraging:
JWASPIs a good candidate as an alternative ASP solver for platform-independe
applications, which cannot rely on current ASP solvers.

1 Introduction

Answer Set Programming (ASP) [5] is a declarative programgnpiaradigm, which has
been proposed in the area of non-monotonic reasoning aitaggramming. The idea
of ASP is to represent a given computational problem by alpgigram whose answer
sets correspond to solutions, and then use a solver to find [tile The availability of
solvers has made possible the application of ASP for soleamgplex problems arising
in several areas [1, 6], including Al, knowledge represiémteand reasoning, databases,
bioinformatics. Recently ASP has been also used to solvardauof industry-level
applications [7, 21].

Answer set programming is computationally hard, and mo#&m solvers are usu-
ally based on one of two alternative approaches. The firdtexdfe approaches consists
in implementing a native algorithm by adapting SAT solvieghniques [22]. In par-
ticular, CDCL backtracking with learning, restarts, andftiot-driven heuristics is ex-
tended with ASP-specific propagation techniques such gsostipference via Clark’s
completion, and well-founded inference via source po#f28]. The second approach
resorts on rewriting techniques into SAT formulas, whicé tiren evaluated by an off
the shelf SAT solver [13].

ASP solvers, like SAT solvers, are developed having in ntied dften well-deserved)
goal of maximizing performance. For this reason, ASP sehaze usually written in
C/C++, a programming language that is suited for implenmgrgieveral low level opti-
mizations, but at the price of a reduced portability. This jgoblem for some real world
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use cases which do not actually require the highest availaiformance in computa-
tion, but would benefit from a platform-independent andlgadployable implemen-
tation. For example, the iTravel system [20] takes advantdgsome ASP-based web
services implemented as Java servlets interacting miith [16] via the DLV WRAP-
PERAPI [19]. Usually, Java servlets are easily exportable asVgéchives, which are
then deployable to different servers by simply copying ttehiaes. Such a simplicity
was not possible with the ASP-based web services becaueeedif versions obLv
were required for servers running different operatingesyst A similar issue also af-
fects the distribution oAsrPIDE [9], an IDE for ASP developed in Java which must
include different versions of an ASP solver for differeneagting systems. An ASP
solver implemented in Java would simplify the distributmihASPIDE, not preventing
the possibility to run other ASP solvers written in C/C++ dated.

If on the one hand Java provides all the means for implemgiatiplatform-inde-
pendent ASP solver, on the other hand the following questi@ave to be answered:
How much overhead is introduced? Is the performance of ansd8fr written in Java
acceptable when compared with state of the art ASP solveni¥afed by the needs
arising in different use cases, and in order to answer thesguestions, we developed
JWAsP(https://github. com dodaro/jwasp. gi t), a new ASP solver writ-
ten in JavaJwAspis based on the open source libramar4J [15]. In particularJwAsp
extendssAT4J in order to process ASP programs with atomic heads.

A preliminary experiment assessing the performancer@fsphas been conducted
on benchmarks from the previous ASP competitions [1, 6].drtipular, IWASP was
compared with the following state of the art ASP solvers:riagvecLAsP 3.1.1 [11]
andwaAsP [3]; the rewriting-based P2sAT endowed bycLUCOSE[4]; andLP2SAT en-
dowed bysAT4J[15]. The results are encouraging. In fact, evenihspcannot match
the performance af LASP, which is actually expected, it can compete with a prominent
rewriting-based ASP solver usir@.UCOSE Our experiment highlights thatvAaspis
a good candidate as an alternative ASP solver for platfoieppendent applications,
where conventional solvers cannot be used or might not béartably integrated.

2 Preliminaries

Syntax and semantics of propositional logic and propasicASP are briefly intro-
duced in this section.

2.1 Propositional Logic

Syntax.Let A be a fixed, countable set of (Boolean) variables, or (prdjoosil) atoms,
including L. A literal ¢ is either an atonu, or its negation—-a. A clauseis a set of
literals representing a disjunction, and a propositioloamiula ¢ is a set of clauses
representing a conjunction, i.e., only formulasconjunctive normal forn{CNF) are
considered here.

SemanticsAn interpretatior/ is a set of literals over atoms id \ {_L}. Intuitively, lit-
erals inI are true, literals whose complement id/iare false and the remaining literals

17



M.Alviano et al. JWASP: A New Java-Based ASP Solver

are undefined. An interpretatiahis total if there are no undefined literals, otherwise
I is partial. An interpretatiod is inconsistent if for an atom botha and—a are inlI.
Relationf= is inductively defined as follows: far € A, I = aif a € I, and] E —a

if —a € I, foraclause:, I | cif I = ¢ for somel € ¢; for a formulap, I = ¢ if

I cforallc € ¢. If I = thenl is amodelof ¢, I satisfiesp, andyp is true w.r.t.
I.If I = ¢ thenl is not a model ofp, I violatesy, andy is false w.r.t.I. Similar for
literals, and clauses. A formula is satisfiableif there is an interpretatiofi such that

I |= ¢; otherwisey is unsatisfiable

Example 1.Consider the following formula:
{a,=b}  {b,ma}  {-a}  {e}  {e, b}

¢ is satisfiable and the interpretatidér= {—a, —b, c} is a model. <

2.2 Answer Set Programming

Syntax. Let ~ denotenegation as failureA ~-literal (or just literal when clear from
the context) is either an atom (a positive literal), or amafweceded by- (a negative
literal). A logic program/T is a finite set of rules of the following form:

aebl,...,bk,ka+1,...,~bm (1)
wherem > 0, anda, b1, . . ., b, are atoms ind. For a ruler of the form (1), se{a} is
calledheadof r, and denoted{ (r); conjunctionby, . .., by, ~bg41, . . . , ~by, IS NamMed

bodyof r, and denoted(r); the set{by, ..., b, } and{bx41, ..., by} oOf positive and
negative literals inB(r) are denoted3™ (r) and B~ (r), respectively. Aconstraintis a
rule r such thatd (r) = {L}.

Semantics An interpretation/ is a set of~-literals over atoms itd \ { L}. Relationj=
is extended as follows: for a negative literal, I = ~a if ~a € I; for a conjunction
ly,....0, (n > 0)of literals, I = ¢y,...,¢, if I = ¢; forall i € [1..n]; for a rule
r, I Erif H(r)NnI # 0 wheneverl = B(r); foraprogramll, = ITif I = r
for all » € IT. The definition of a stable model is based on a notion of progieduct
[12]: Let IT be a normal logic program, andan interpretation. The reduct éf w.r.t.
I, denotedl1’, is obtained fromVT by deleting each rule such thatB—(r) N I # 0,
and removing negative literals in the remaining rules. Aeripretation/ is an answer
set forIl if I = IT and there is no total interpretatiohsuch that/ N A ¢ I N A and
J |= IT'. The set of all answer sets of a progrdfris denotedS M (IT). ProgramiT is
coherentif SM (IT) # 0; otherwise,IT is incoherent

Example 2.Consider the following progran:

a+c a <+ b,~e b+ a,~e
c < ~d d < ~c e <+ ~d
I ={a,~b,c,~d,e} is an answer set afl. <
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Fig. 1. Computation of an answer setiwASP.

3 Answer Set Computation inJWASP

In this section we first review the algorithms implementedwaspfor the computa-
tion of an answer set, and then we describe how these wererinepited by extending
SAT4J. The presentation is properly simplified to focus on the npainciples.

3.1 Main Algorithms

The main algorithm is depicted in Figure 1.

Preprocessing.The first step is a preprocessing of the input progédnthat is trans-
formed into a propositional formula called ti#ark’s completionof the program/7,
denoted”omp(IT). This step is performed since answer sets are supportedsiadg

A modelT of a programiT is supportedf eacha € I N.Ais supported, i.e., there exists
aruler € IT such thatH (r) = a, andB(r) C I. In more detail, given a rule € 11,
let auz,- denote a fresh atom, i.e., an atom not appearing elsewhereptnpletion of
IT consists of the following clauses:

- {—a,auz,,,...,auz, } for each atonu occurring inII, wherery, ..., r, are the
rules of IT whose head is;

- {H(r), ~auz, } and{auz, } UU,c p+ () 7@ U U,ep- () a for each ruler € I7;

— {—aux,, £} for eachr € II and( € B(r).
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After computing the Clark’s completio@'omp(II), the input is further simplified ap-
plying classical preprocessing techniques of SAT solg&;sahd then the nondetermin-
istic search takes place.

CDCL Algorithm. The main ASP solving algorithm is similar to the CDCL proceslu
of SAT solvers. In the beginning a partial interpretatibiis set to). Function unit
propagation extends with those literals that can be deterministically inferré@this
function returns false if an inconsistency (or conflict) &etted, true otherwise. When
an inconsistency is detected, the algorithm analyzes g@Bistent interpretation and
learns a clause using tHeUIP learning scheme [18]. The learned clause models the
inconsistency in order to avoid exploring the same searahdbr several times. Then,
the algorithm unrolls choices until consistency lofs restored, and the computation
resumes by propagating the consequences of the clauseddarthe conflict analysis.
If the consistency cannot be restored, the algorithm testeBreturningNCOHERENT.
When no inconsistency is detected, the well founded propagédetailed in the fol-
lowing) checks whethef is unfounded-freeln casel is not unfounded-free a clause
is added tacComp(II) and unit propagation is invoked. Ifis unfounded-free and the
interpretation/ is total then the algorithm terminates returnibfgHERENTand/ is an
answer set of/. Otherwise, an undefined literal, séyis chosen according to some
heuristic criterion. The computation then proceeds/an {¢}. Unit propagation and
well founded propagation are described in more detail ifaHewing.

Propagation rules.Jwasrimplements two deterministic inference rules for prunimg t
search space during answer set computation. These prapagales are namednit
andwell founded Unit propagation is applied first. It returns false if andnsistency
arises. Otherwise, well founded propagation is appliedl idended propagation may
learn an implicit clause i, in which case unit propagation is applied on the new
clause. More in details, unit propagation is as in SAT savAn undefined literaf is
inferred by unit propagation if there is a clausthat can be satisfied only iy i.e.,c

is such that € cis undefined and all literals ia\ {¢} are false w.r.tI. Concerning
well founded propagation, we must first introduce the notiban unfounded set. A
set X of atoms isunfoundedif for each ruler such thatH(r) N X # 0, at least
one of the following conditions is satisfied: (i) a litetak B(r) is false w.r.t.I; (ii)
BT(r) N X # (. Intuitively, atoms inX can have support only by themselves. Well
founded propagation checks whether the interpretatiotaimman unfounded séf. In
this case, it learns a clause forcing falsity of an atorXirClauses for other atoms i
will be learned on subsequent calls to the function, unlass@nsistency arises during
unit propagation. In case of inconsistencies, indeed, tifi@unded sek is recomputed.

3.2 Implementation

The implementation of a modern and efficient ASP solver meguhe implementation
of at least three modules. The first module is the parser obangt ASP program.
The second module computes the Clark’s completion. The thiodule implements
the CDCL backtracking algorithm extended by applying weliided propagation as
presented in Section 3.1. Concerning the pamsessPaccepts as input normal ground
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programs expressed in the numeric formatcaiNnGo [10]. The Clark’s completion is
computed after the whole program has been parsed. The tloddilmis implemented
by Jwaspexploiting the open source Java libraayT4J [15]. In particular,SAT4J pro-
vides an implementation of the base CDCL algorithimvasp extends this algorithm
by modifying the propagate function afat4J, which in our solver includes the well
founded inference rule. In particular, specific data stmes and the algorithm for com-
puting unfounded sets are introducedwaspPwhich are not provided bgaTt4J.

4 Experiment

The performance afwaspwas compared witltLAsP 3.1.1 and.P2SAT [13]. CLASP

is a native state of the art ASP solver, while2sSAT is an ASP solver based on a rewrit-
ing of the ASP program into a SAT formula that is evaluatecigisi SAT solver. Two
variants ofLP2SAT were considered, namely2GLucoseandLP2SAT4J, which use
GLUCOSE [4] and sAT4J [15] as SAT solver, respectively. All the ASP solvers use
GRINGO [10] as grounder. The experiment concerns a comparisoneogahvers on
publicly available benchmarks used in the 3rd and 4th ASPpetitions [1, 6]. The
experiment was run on a four core Intel Xeon CPU X3430 2.4 Giith 16 GB of
physical RAM, and operating system Debian Linux. Time andnwoy limits were set
to 600 seconds and 15 GB, respectively. Performance wasunegiagsing the tools
pyrunlim and pyrunnet t ps: // gi t hub. coni al vi ano/ pyt hon).

Table 1 summarizes the number of solved instances and thag@/eunning time
in seconds for each solver. In particular, the first colunports the considered bench-
marks; the remaining columns report the number of solvedimtes within the time-out
(solved), and the running time averaged over solved ins&ftime). The first obser-
vation is thattwaspoutperforms the rewriting-base®#2sat4J. In fact, swaspsolved
17 more instances tharP2sAT4J and it is in general faster. The advantagerehsp
is obtained in 3 different benchmarks, namely KnightTouaz&iGeneration, and Num-
berlink, whereswaspsolves 5, 7, and 3 more instances th&2sAT4J. Once the SAT
solver backhand is replaced by ucoSE a clear improvement of performance is mea-
sured.LP2GLUCOSE s clearly faster (it solves 20 instances more) tha@saT4J. In

Table 1. Solved instances and average running time.

LP2SAT4J JWASP LR2GLUCOSE WASP CLASP

Track # sol. avgt sol. avgt sol. avgt sol. avgt sol. avgt

GraphColouring 30 8 47.45 7 31.07 14 124.02 866.15 13 129.98
HanoiTower 30 2712080 26166.57 30 1041 3033.83 28 53.18
KnightTour 10 2 67.66 7 52.03 3 24.37 8 439 10 57.95
Labyrinth 30 1422234 1715844 18 151.70 2672.64 26 48.05
MazeGeneration 10 333246 10 5.06 4 164.15 10 3.10 10 1.04
Numberlink 10 4 98.05 7 7.67 5 164.67 812.71 8 791
SokobanDecision 10 6 46.57 7 6142 10 59.34 99215 10 42091
Total 130 64 133.72 8110050 84 82.45 994475 105 52.48
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this case, since the rewriting technique is the same, tferéifce of performance is due
to the fact thaGLucosEoutperformsLP2sAT4J. The performance gap between C++
and Java implementations can be observed also by comparisg and JWASP. In
particular,wAsP solves 18 more instances thawasp. The differences are noticeable
in Labyrinth wherewasp solves 9 more instances thawAsp. Similar considerations
hold by comparingcLAsP and JWASP. In fact, the former is in general faster solving
24 more instances than the latter. Finally, it is importamdte thatwasPris basically
comparable in performance witlP2GLUCOSE(the latter solves only 3 instances more
than the former). An in-depth analysis shows thanspris faster in KnightTour and
MazeGeneration solving 4 and 6 instances more tlR2GLUCOSE respectively. On
the contraryLP2GLUCOSEIs faster tharmwaspPin GraphColouring, HanoiTower, and
SokobanDecision. We observe that the main advantagave$pr over LP2GLUCOSE

is registered (as expected) in the benchmarks in which thefeeended propagation
(implemented natively bywasp) is applied, such as KnightTour and MazeGeneration.

5 Discussion

During recent years, ASP has obtained growing interesesfficient implementations
were available. For reason of efficiency, most of the mode®® Aolver are imple-
mented in C++. To the best of our knowledge, the only previava-based ASP solver
wasJSMODELS[14], which is not developed anymormsMoODELSwas based oeBMOD-

ELs featuring the DPLL algorithm and lookahead heuristicsnram abstract point of
view, JWASPis more similar to modern ASP solvers, likanspP[2, 3] andcLASP[11].

In fact, all the three solvers are based on CDCL algorithmsamdce pointers for the
computation of unfounded sets. Howewvaraspis implemented in Java and thus itis a
cross-platform and more portable implementation. An aliive to the development of

a native solver is to rewrite the input program into a CNF folanas done by the family
of solversLP2sAT [13]. This alternative approach can be applied to obtairva-based
solver by endowing P2sSAT with a Java-based SAT solver such s@sr4J. This ap-
proach is less efficient tharwasrin the experimental analysis reported in this paper. It
is worth noting that, botbwaspPandLpP2sAT apply the Clark’s completion [17]. Thus,
the main difference betweemwaspandLP2SAT4J consists of the native computation
of unfounded set ofwAask, which is obtained by using an algorithm based on source
pointers introduced bgMODELS[23].

In this paper we reported on the new Java-based ASP solvesp built on the
top of the SAT solversaT4J. The new solver was compared with both C++ and Java-
based approaches. In our experimewtAsp outperforms the Java-based alternative
LP2SAT4), and it is competitive with P2GLUCOSE However, as expectedwASPis in
general slower than the native solvers. This confirms thati@plementations are usu-
ally much faster than Java-based approaches as also n¢1&dl.iRuture work concerns
the extension ofwAspfor handling optimization constructs and cautious reaspni
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