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Abstract. The fractional Fourier transforms (FrFTs) is one-parametric
family of unitary transformations {Fα}2πα=0. FrFTs found a lot of applica-
tions in signal and image processing. The identical and classical Fourier
transformations are both the special cases of the FrFTs. They corre-
spond to α = 0 (F0 = I) and α = π/2 (Fπ/2 = F), respectively. Up to
now, the fractional Fourier spectra Fαi = Fαi {f} , i = 1, 2, ...,M , has
been digitally computed using classical approach based on the fast dis-
crete Fourier transform. This method maps the N samples of the original
function f to the N samples of the set of spectra {Fαi}Mi=1 , which re-
quires MN (2 + log2N) multiplications and MN log2N additions. This
paper develops a new numerical algorithm, which requires 2MN multi-
plications and 3MN additions and which is based on the infinitesimal
Fourier transform.

Keywords: Fast fractional Fourier transform, infinitesimal Fourier trans-
form, Schrödinger operator, signal and image analysis

1 Introduction

The idea of fractional powers of the Fourier operator {Fa}4a=0 appeared in the
mathematical literature [1,2,3,4]. The idea is to consider the eigen-value decom-
position of the Fourier transform F in terms of the eigen-values λn = ejnπ/2

and eigen-functions in the form of the Hermite functions. The family of FrFT
{Fa}4a=0 is constructed by replacing the n-th eigen-value λn = ejnπ/2 by its
a-th power λan = ejnπa/2 for a between 0 and 4. This value is called the trans-

form order. There is the angle parameterization {Fα}2πα=0 , where α = πa/2
is a new angle parameter. Since this family depends on a single parameter,
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the fractional operators {Fa}4a=0 (or {Fα}2πα=0) form the Fourier-Hermite one-

parameter strongly continuous unitary multiplicative group FaFb = F
a⊕
4
b

(or

FαFβ = F
α⊕
2π
β

), where a⊕
4
b = (a+ b) mod4 (or α⊕

2π
β = (α+ β) mod2π) and

F0 = I. The identical and classical Fourier transformations are both the spe-
cial cases of the FrFTs. They correspond to α = 0 (F0 = I) and α = π/2
(Fπ/2 = F), respectively.

In 1980, Namias reinvented the fractional Fourier transform (FrFT) again
in his paper [6]. He used the FrFT in the context of quantum mechanics as a
way to solve certain problems involving quantum harmonic oscillators. He not
only stated the standard definition for the FrFT, but, additionally, developed
an operational calculus for this new transform. This approach was extended by
McBride and Kerr [7]. Then Mendlovic and Ozaktas introduced the FrFT into
the field of optics [8] in 1993. Afterwards, Lohmann [9] reinvented the FrFT
based on the Wigner-distribution function and opened the FrFT to bulk-optics
applications. It has been rediscovered in signal and image processing [10]. In
these cases, the FrFT allows us to extract time-frequency information from the
signal. A recent state of the art can be found in [11]. In the series of papers
[12,13,14,15,16], we developed a wide class of classical and quantum fractional
transforms.

In this paper, the infinitesimal Fourier transforms are introduced, and the
relationship of the fractional Fourier transform with the Schrödinger operator of
the quantum harmonic oscillator is discussed. Up to now, the fractional Fourier
spectra Fαi = Fαi {f} , i = 1, 2, ...,M, have been digitally computed using
classical approach based on the fast discrete Fourier transform. This method
maps the N samples of the original function f to the NM samples of the
set of spectra {Fαi}Mi=1 , which requires MN (2 + log2N) multiplications and
MN log2N additions. This paper develops a new numerical algorithm, which
requires 2MN multiplications and 3MN additions and which is based on the
infinitesimal Fourier transform.

2 Eigen-decomposition and Fractional Discrete
Transforms

Let F = [Fk (i)]
N−1
k,i=0 be an arbitrary discrete unitary (N × N)-transform, λn

and Ψn (t) n = 0, 1, . . . , N − 1 be its eigen-values and eigen-vectors, respectively.

Let U =

[
Ψ0(i)|Ψ1(i)|

...|ΨN−1(i)

]
be the matrix of the F-transform eigen-vectors.

Then U−1·F·U = Diag {λn}. Hence, we have the following eigen-decomposition:
F = [Fk(i)] = U ·Λ ·U−1 = U ·Diag {λn} ·U−1.
Definition 1. [12]. For an arbitrary real numbers a0, . . . , aN−1, we introduce
the multi-parametric F-transform

F (a0,...,aN−1) := U
{
diag

(
λa00 , . . . , λ

aN−1

N−1
)}

U−1. (1)
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If a0 = . . . = aN−1 ≡ a then this transform is called fractional F-transform
[12,13,14,15,16]. For this transform we have

Fa := U
{
diag

(
λa0 , . . . , λ

a
N−1

)}
U−1 = UΛaU−1. (2)

The zero-th-order fractional F-transform is equal to the identity transform: F0 =
UΛ0U−1 = UU−1 = I , and the first-order fractional Fourier transform operator
F1 = F is equal to the initial F-transform F1 = UΛU−1.

The families
{
F(α0,...,αN−1)

}
(α0,...,αN−1)∈RN

and {Fa}a∈R form multi- and

one-parameter continuous unitary groups, respectively, with multiplication rules

F (a0,...,aN−1)F (b0,...,bN−1) = F (a0+b0,...,aN−1+bN−1) and FaFb = Fa+b.
Indeed, FaFb = UΛaU−1 ·UΛbU−1 = UΛa+bU−1 = Fa+b and

F (a0,...,aN−1)F (b0,...,bN−1) =

= U
{
diag

(
λa00 , . . . , λ

aN−1

N−1
)}

U−1 ·U
{

diag
(
λb00 , . . . , λ

bN−1

N−1

)}
U−1 =

= U
{

diag
(
λa0+b00 , . . . , λ

aN−1+bN−1

N−1

)}
U−1 = F (a0+b0,...,aN−1+bN−1).

Let F = [Fk (i)]
N−1
k,i=0 be a discrete Fourier (N × N)-transform (DFT), then

λn = ejπn/2 ∈ {±1,±j} , where j =
√
−1 and {Ψn (t)}N−1n=0 are the Kravchuk

polynomials.

Definition 2. The multi-parametric and fractional DFT are

F (a0,...,aN−1) := U
{

diag
(
ejπ0a0/2, ejπ1a1/2, . . . , ejπ(N−1)aN−1/2

)}
U−1,

Fa := U
{

diag
(
ejπna/2

)}
U−1

and

F (α0,...,αN−1) := U
{

diag
(
ej0α0 , ej1α1 , . . . , ej(N−1)αN−1

)}
U−1,

Fα := U
{
diag

(
ejnα

)}
U−1

in a- and α-parameterizations, respectively, where α = πa/2.

The parameters (a0, . . . , aN−1) and a can be any real values. However, the
operators F (a0,...,aN−1) and Fa are periodic in each parameter with period 4 since

F4 = I. Hence, F (a0,...,aN−1)F (b0,...,bN−1 = F
(a0⊕

4
b0,...,aN−1⊕

4
bN−1)

and FaFb =

F
a⊕
4
b

, where ai⊕
4
bi = (ai + bi) mod4, ∀i = 0, 1, ..., N − 1. Therefore, the ranges

of (a0, . . . , aN−1) and a are (Z/4Z)
N

= [0, 4]
N

= [−2, 2]
N

and Z/4Z = [0, 4] =
[−2, 2], respectively.

In the case of α-parameterization, we have αi⊕
2π
βi = (αi + βi) mod2π, ∀i =

0, 1, ..., N−1. So, the ranges of (α0, . . . , αN−1) and α are (Z/2πZ)
N

= [0, 2π]
N

=

[−π, π]
N

and Z/2πZ = [0, 2π] = [−π, π], respectively.
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3 Canonical FrFT

The continuous Fourier transform is a unitary operator F that maps square-
integrable functions on square-integrable ones and is represented on these func-
tions f(x) by the well-known integral

F (y) = (Ff) (y) =
1√
2π

∫

x∈R
f(x)e−jyxdx. (3)

Relevant properties are that the square
(
F2f

)
(x) = f(−x) is the inversion

operator, and that its fourth power
(
F4f

)
(x) = f(x) is the identity. Hence,

F3 = F−1. Thus, the operator F generates a cyclic group of the order 4. In
1961, Bargmann extended the Fourier transform in his paper [5] where he gave
definition of the FrFT that was based on the Hermite polynomials as an integral
transformation. If Hn (x) is a Hermite polynomial of order n, where Hn (x) =

(−1)
n
ex

2 dn

dxn e
x2

, then for n ∈ N0, functions Ψn(x) = 1√
2nn!

√
π
Hn(x)e−x

2/2 are

the eigen-functions of the Fourier transform

F [Ψn (x)] =
1

2π

∫ +∞

−∞
Ψn (x) e2πjyxdx = λnΨn (y) = e−j

π
2 nΨn (y)

with λn = jn = e−j
π
2 n being the eigen-value corresponding to the n-th eigen-

function. According to Bargmann, the fractional Fourier transform Fα = [Kα (x, y)]
is defined through its eigen-functions as

Kα (x, y) := U
{
diag

(
e−jαn

)}
U−1 =

∞∑

n=0

e−jαnΨn (x)Ψn (y) . (4)

Hence,

Kα (x, y) :=
∞∑

n=0

e−jαnΨn (x)Ψn (y) = e−(x2+y2)
∞∑

n=0

e−jαnHn(x)Hn(y)

2nn!
√
π

=

=
1√

π
√

1− e−2jα
· exp

{
2xye−jα − e−2jα

(
x2 + y2

)

1− e−2jα

}
exp

{
−
(
x2 + y2

)

2

}
,

(5)
where Kα (x, y) is the kernel of the FrFT. In the last step we used the Mehler
formula [19]

∞∑

n=0

e−jαnHn(x)Hn(y)

2nn!
√
π

=
1√

π
√

1− e−2jα
exp

{
2xye−jα − e−2jα

(
x2 + y2

)

1− e−2jα

}
.

Expression (5) can be rewritten as

Kα(x, y) =

√
1− j cotα

2π
exp

{
j

2 sinα

[
(x2 + y2) cosα− 2xy

]}
,
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where α 6= πZ (or a 6= 2Z). Obviously, functions Ψn(x) are eigen-functions of
the fractional Fourier transform Fα [Ψn(x)] = ejnαΨn(x) corresponding to the
n-th eigen-values ejnα, n = 0, 1, 2, . . .. The FrFT Fα is a unitary operator that
maps square-integrable functions f(x) on square-integrable ones

Fα(y) = (Fαf) (y) =

∫

x∈R
f(x)Kα(x, y)dx =

=
e−

j
2 (π2 α̂−α)

√
2π |sinα|

∫

R

f(x) exp

{
j

2 sinα

[(
x2 + y2

)
cosα− 2xy

]}
dx.

There exist several algorithms for fast calculation of spectrum of the frac-
tional Fourier transform Fα(y). But all of them are based on the following trans-
form of the FrFT:

Fα(y) = (Fαf) (y) =
e−

j
2 (π2 α̂−α)ejy

2 cosα
2 sinα√

2π |sinα|

∫

R

[
f(x)ej

x2

2 cotα
]
e−jxydx =

= Aα(y) · F {f(x) ·Bα(x)} (y),

where Aα(y) = e
− j

2 (π2 α̂−α)ejy
2 cosα

2 sinα√
2π|sinα|

, Bα(x) = ej
x2

2 cotα.

Let us introduce the uniform discretization of the angle parameter α on M
discrete values {α0, α1, ..., αi, αi+1, ..., αM−1} , where αi+1 = αi+∆α, αi = i∆α
and ∆α = 2π/M.

The set of M spectra {Fα0 (y) , Fα1 (y) , ..., FαM−1 (y)} can be computed by
applying the following sequence of steps for all {α0, α1, ..., αM−1}:

1. Compute products f(x)Bαk(x), which require N multiplications.
2. Compute the Fast Fourier Transform (N log2N multiplications and addi-

tions).
3. Multiply the result by Aα(y) (N multiplications).
This numerical algorithm requiresMN log2N additions andMN (2 + log2N)

multiplications.

4 Infinitesimal Fourier Transform

In order to construct fast multi-parametric F-transform and fractional Fourier
transform algorithms we turn our attention to notion of a semigroup and its
generator (infinitesimal operator). Let L2(R,C) be a space of complex-valued
functions (signals), and let Op(L2) be the Banach algebra of all bounded linear
operators on L2(R,C) endowed with the operator norm. A family {U(α)}α∈R ⊂
Op(L2) is called the Hermite group on L2(R,C) if it satisfies the Abel functional
equations U(α + β) = U(α)U(β), α, β ∈ R and U(0) = I, and the orbit
maps α → Fα = U(α) {f} are continuous from R into L2(R,C) for every
f ∈ L2(R,C).
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Definition 3. The infinitesimal generator A(0) of the group {U(α)}α∈R and
the infinitesimal transform U(dα) are defined as follows [18,19]:

A(0) =
∂U(α)

∂α

∣∣∣∣
α=0

, U(dα) = I + dU(0) = I + A(0)dα.

Obviously,

U(α0 + dα) = U(α0) + dU(α0) = U(α0) +
∂U(α)

∂α

∣∣∣∣
α0

dα =

= U(α0) + A(α0)dα.

But

U(α0 + dα) = U(dα0)U(α0) = [I + dU(0)] U(α0) =

= U(α0) +
∂U(α)

∂α

∣∣∣∣
α=0

U(α0)dα =

= U(α0) + A(0)U(α0)dα = [I + A(0)] U(α0)dα.

Hence, A(α0) = A(0)U(α0) and Fα0+dα(y) =
[
I + A(0)

]
Fα0(y)dα.

Define now the linear operator H = 1
2

(
d2

dx2 − x2 + 1
)

. It is known that

HΨn(x) =
1

2

(
d2

dx2
− x2 + 1

)
Ψn(x) = nΨn(x). (6)

From (4) and (6) we have

j
∂

∂α
Fα(y)

∣∣∣∣
α=0

= j
∂

∂α
{FαF} (y)

∣∣∣∣
α=0

=
∞∑

n=0

nΨn(y)

∫

R

Ψn(x)f(x)dx,

HFα(x) =
∞∑

n=0

nΨn(y)

∫

R

Ψn(x)f(x)dx.

Therefore, j ∂F
α(x)
∂α = HFα(y), ∂F

α(x)
Fα(x) = −jH∂α. The solution of this equa-

tion is given by Fα(x) =
{
e−jαHF

}
and Fα = e−jαH = e

−jα
[

1
2

(
d2

dx2
−x2+1

)]
.

Obviously,

Fα+dα = FdαFα ' (I + dFα) exp [−jαH] =

=

(
I +

∂Fα
∂α

dα

)
exp (−jαH) = (I− jHdα) exp (−jαH) ,

where the operator

Fdα = (I− jHdα) = I− j 1

2

(
d2

dx2
− x2 + 1

)
dα (7)

24



is called the infinitesimal Fourier transform or the generator of the fractional
Fourier transforms [17,18].

Let us introduce operators (Mxf) (x) := xf(x) and (MyF ) (y) := yF (y).
Using the Fourier transform (3), the first of ones may be written as Mx =

F−1
(
j ddy

)
F . Obviously, x2 = M2

x = −F1

(
d2

dy2

)
F . Then

Fdα = I− j 1

2

(
d2

dx2
+ F−1

(
d2

dy2

)
F + 1

)
dα.

Discretization of x-domain with the interval discretization ∆x is equal to the
periodization of y-domain

d2

dx2
+ F−1

(
d2

dy2

)
F + 1 −→ D∆x

[
d2

dx2

]
+ F−1

(
P2π/∆x

[
d2

dy2

])
F + 1.

Discretization of y-domain with the interval discretization ∆y is equal to the
periodization of x-domain

D∆x

[
d2

dx2

]
+ F−1

(
P2π/∆x

[
d2

dy2

])
F + 1 −→

−→ P2π/∆yD∆x

[
d2

dx2

]
+ F−1

(
P2π/∆xD∆y

[
d2

dy2

])
F + 1.

An approximation for the second derivative can be given by the second order
central difference operator

d2

dx2
f(x) ≈ f(n	

N
1)− 2f(n) +F (n⊕

N
1),

d2

dy2
F (y) ≈ F (k	

N
1)− 2F (k) +F (k⊕

N
1),

where N = 2π/∆x∆y. On the other hand,

F−1
(
d2

dy2
F (y)

)
F ≈ F−1

[
F (k	

N
1)− 2F (k) + F (k⊕

N
1)

]
F =

=
(
f(n)e−j

2π
N n − 2f(n) + f(n)ej

2π
N n
)

= 2f(n)

(
cos

2π

N
n− 1

)
.

These allow one to give the approximation for H = 1
2

(
d2

dx2 − x2 + 1
)

as follows:

Hf(x) =

[
1

2

(
d2

dx2
− x2 + 1

)]
f(x) ≈

≈ 1

2

{[
f(n	

N
1)− 2f(n) + f(n⊕

N
1)

]
+ 2f(n)

(
cos

2π

N
n− 1

)
+ f(n)

}
=

= −
[
cos

2π

N
n− 3/2

]
f(n) +

1

2

[
f(n	

N
1) + f(n⊕

N
1)

]
.
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In the N -diagonal basis we have

Fdαf(x) ≈




f(0)
f(1)
f(2)
f(3)

...
f(N − 1)




+ j∆α×

×




−1/2 1/2 . . . 1/2
1/2 cos(1Ω)− 3/2 1/2 . . .
. 1/2 cos(2Ω)− 3/2 1/2 . .
. . 1/2 cos(3Ω)− 3/2 1/2 .

. . . 1/2
. . . 1/2

1/2 . . . 1/2 −1/2







f(0)
f(1)
f(2)
f(3)

...
f(N − 1)



,

(8)
where Ω = 2π/N .

Let us introduce the uniform discretization of the angle parameter α on M
discrete values {α0, α1, ..., αi, αi+1, ..., αM−1} , where αi+1 = αi+∆α, αi = i∆α
and ∆α = 2π/M. Then

Fαi+1(y) = Fαi+∆α(y) ≈ Fαi(k) + j∆α×

×
{[

cos
2π

N
k − 3/2

]
Fαi(k) +

1

2

[
Fαi(k	

N
1) + Fαi(k⊕

N
+ 1)

]}
. (9)

It is easy to see that this algorithm requires only 2MN multiplications and
3MN additions vs. MN (2 + log2N) multiplications and MN log2N additions

in the classical algorithm. In (8), we used O(h2) approximation
(
d2

dx2 f
)

(k) ≈
(f(k − 1)− 2f(k) + f(k + 1)) . More fine approximations O(h2k) also can be
used [19].

5 Conclusions

In this work, we introduce a new algorithm of computing for Fractional Fourier
transforms based on the infinitesimal Fourier transform. It requires 2MN multi-
plications and 3MN additions vs.MN (2 + log2N) multiplications andMN log2N
additions in the classical algorithm. Presented algorithm can be utilized for fast
computation in most applications of signal and image processing. We have pre-
sented a definition of the infinitesimal Fourier transform that exactly satisfies
the properties of the Schrodinger Equation for quantum harmonic oscillator.
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