
Intelligent Supporting Techniques for the Maintenance of
Constraint-based Configuration Systems12

Florian Reinfrank, Gerald Ninaus, Franz Wotawa, Alexander Felfernig
Institute for Software Technology

Graz University of Technology
Inffeldgasse 16b/II, 8010 Graz, Austria
{firstname.lastname}@ist.tugraz.at

Abstract. Constraint-based systems like knowledge-based recom-
mendation and configuration are well established technologies in
many different product areas like cars, computers, notebooks, and
financial services. Such systems reduce the number of valid products
and configurations regarding the customers’ preferences. The rela-
tionship between product variables and customer questions is rep-
resented by constraints. Nowadays, constraint-based configuration
systems represent volatile product assortments: Variables must be
adapted, new product features lead to new questions for the cus-
tomer, and / or the constraints must be updated. We call such sce-
narios maintenance tasks.

In complex constraint-based configuration systems the mainte-
nance task is time consuming and error prone. Previous research fo-
cused on the detection of conflicts, repair actions for the conflicts,
and redundant constraints. In this paper we give an overview about
these techniques and present new approaches like recommendation,
well-formedness violation, simulation, and knowledge base verifica-
tion for the support of knowledge engineers.

1 Introduction

In e-Commerce applications constraint-based configuration systems
are used to show which combinations of product variable assign-
ments can be combined and offered to potential customers. Due to
complex restrictions to adapt the product assortment regarding the
customers’ preferences, intelligent techniques can be used if the cus-
tomers’ preferences can not be fulfilled.

A knowledge engineer develops and maintains such knowledge
bases. Based on knowledge (for example, knowledge of bikes) from
domain experts, the engineer defines product variables and variable
domains (e.g., the domain of the product variable BikeType’ is
MountainBike, CityBike, and RacerBike), prepares additional
questions presented to potential customers (e.g., ‘What is the main
usage of the bike?’), and develops relationships (constraints) be-
tween questions and products (e.g., if the main usage of the bike is
everyday life then the bike should be of the type CityBike).

Such knowledge bases must be updated over time. For exam-
ple, in the last years bikes with an electric engine became popular.

1 We thank the anonymous reviewers for their helpful comments.
2 The work presented in this paper has been conducted within the scope

of the research project ICONE (Intelligent Assistance for Configuration
Knowledge Base Development and Maintenance) funded by the Austrian
Research Promotion Agency (827587).

The knowledge engineer has to extend the current knowledge base
with new product attributes (e.g., introducing a new product feature
eBike) and questions (e.g., ’Do you want an electric engine assis-
tance?’). In complex constraint-based configuration system updates
are time consuming and error prone because unexperienced knowl-
edge engineers have to adapt the knowledge base and unexpected
dependencies between constraints exist.

In this paper we show how we can support knowledge engineers
when they maintain a constraint-based configuration system. The
approaches can be used in many scenarios like knowledge-based
recommendation, knowledge-based configuration, or feature models.
Due to complex restrictions to adapt the product assortment regard-
ing the customers’ preferences, intelligent techniques can be used if
the preferences can not be fulfilled.

This paper is organized as follows. Section 2 gives an overview
about constraint-based configuration systems. It introduces a running
example and relevant definitions for this paper. Our new approaches
to support knowledge engineers in maintaining constraint-based con-
figuration systems are described in Section 3. A summary in Section
4 concludes this paper.

2 Related Work

In this Section we give an overview about constraint-based configu-
ration systems, introduce a running example for this paper and define
relevant terms which are necessary to explain the intelligent support-
ing techniques from Section 3.

For our constraint-based configuration system we use the con-
straint satisfaction problem (CSP) modeling technique [14]. A CSP
is a triple (V,D,C) and consists of a set of variables V and a set
of domains D where each domain dom(vi) represents all valid as-
signments for a variable vi, e.g., dom(vi) = {val1, . . . , valn}. The
set C contains all constraints which restrict the number of valid in-
stances of a constraint-based configuration system. Basically, a con-
straint consists of a set of assignments a for variables and relations
between them. The set A(ci) is the set of assignments a constraint ci
has. If a constraint contains only one assignment, we denote such
constraints unary constraint or assignment [13]. Furthermore, the
constraints can be divided into two different types. First, the set CKB

contains all constraints which describe the domain. For example, it is
not allowed to use mountain bike tires (T ireWidth > 50mm) for
racing bikes (BikeType = RacerBike), s.t. c = ¬(BikeType =
RacerBike ∧ T ireWidth > 50mm). Second, the committed cus-

31 Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria



tomers’ preferences are represented as constraints in the set CR.
The following example is denoted as a CSP and shows a bike

knowledge base. It contains variables which represent product
variables as well as customer requirements. The set CR contains an
example for customer requirements.

V = {BikeType, FrameSize, eBike, T ireWidth, UniCycle,
Usage}

D = {
dom(BikeType) = {MountainBike, CityBike,

RacerBike},
dom(FrameSize) = {40cm, 50cm, 60cm},
dom(eBike) = {true, false},
dom(T ireWidth) = {23mm, 37mm, 57mm},
dom(UniCycle) = {true, false},
dom(Usage) = {Competition, EverydayLife,

HillClimbing}
}
CKB = {

c0 := BikeType = MountainBike→ T ireWidth >
37mm ∧ FrameSize ≥ 50cm;

c1 := BikeType = RacerBike→ T ireWidth =
23mm ∧ FrameSize = 60cm;

c2 := BikeType = CityBike→ T ireWidth =
37mm ∧ FrameSize ≥ 50cm;

c3 := ¬(BikeType 6= CityBike ∧ eBike = true);
c4 := Usage = EverydayLife→ BikeType =

CityBike;
c5 := Usage = HillClimbing → BikeType =

MountainBike;
c6 := Usage = Competition→ BikeType =

RacerBike ∧ FrameSize = 60cm;
c7 := eBike = true→ T ireWidth = 37mm;
c8 := UniCycle = false;

}
CR = {

c9 : FrameSize = 50cm;
c10 : Usage = Competition;
c11 : eBike = true;

}
C = CKB ∪ CR

The example contains some anomalies in terms of conflicts, redun-
dancies and well-formedness violations. Figure 1 gives an overview
of different types of anomalies. In the following, we list definitions
to define the anomalies.
The constraint set C restricts the set of valid instances. While CKB

remains stable during a user session she can add her preferences in
the set CR. An instance is given, if at least one customer preference
is added to CR. Definition 1 introduces the term ’instance’.

Definition 1 ’Instance’: An instance is given if at least one con-
straint in the set CR, s.t. CR 6= ∅.

In a complete instance all variables in the knowledge base have at
least one assignment. Definition 2 introduces the definition for a
complete instance.

Definition 2 ’Complete Instance’: An instance is complete iff all
product variables have an assignment, such that ∀v∈V v 6= ∅.

Instances can either fulfill all constraints in a constraint set C (con-
sistent) or not (inconsistent). Definition 3 defines the term ’consistent
instance’.

Figure 1. Different types of anomalies.

Definition 3 ’Consistent Instance’: An instance (complete or in-
complete) is consistent, if no constraint in C is violated.

In constraint-based configuration systems it can happen, that the sys-
tem can not offer consistent instances to a user (anomaly) because it
is not possible to satisfy all constraints (see Definition 3). Such a ’no
solution could be found’ dilemma is caused by at least one conflict
between a) the constraints in the knowledge base CKB and the cus-
tomer requirements CR or b) within the set CKB itself. Definition 4
introduces a formal representation of a conflict.

Definition 4 ’Conflict’: A conflict is a set of constraints CS ⊆
{CKB ∪CR} which can not be fulfilled by the CSP, s.t. CS is incon-
sistent.

If we have an inconsistency in our knowledge base, we can say that
CKB ∪CR is always a conflict set. To have a more detailed informa-
tion about the inconsistency, we introduce the term ’minimal conflict’
which is described in Definition 5.

Definition 5 ’Minimal Conflict’: A minimal conflict CS is a conflict
(see Definition 4) and the set CS only contains constraints which are
responsible for the conflict, s.t. @c∈CSCS \ {c} is inconsistent.

When we focus on the set CR and say, that CKB is consistent, our ex-
ample contains two minimal conflict sets. CS1 = {c9, c10} because
it is not possible to have a bike for competition with a frame size of
50cm and CS2 = {c10, c11} because bikes used for competition
do not support eBikes. The example shows that a knowledge base
can have more than one conflict. In such cases we can help users to
resolve the conflicts with diagnosis. A diagnosis ∆ is a set of con-
straints. The removal of the set ∆ from CR leads to a consistent
knowledge base, formally described in Definition 6.

Definition 6 ’Diagnosis’: A diagnosis ∆ is a set of constraints ∆ ⊆
CR∪CKB . When removing the set ∆ from CR∪CKB , the knowledge
base will be consistent, s.t. CR ∪ CKB \∆ is consistent.

Assuming that CKB is consistent (see Definition 3), we can say that
the knowledge base always will be consistent if we remove CR. In
Definition 7 we introduce the term ’minimal diagnosis’ which helps
to reduce the number of constraints within a diagnosis.

Definition 7 ’Minimal Diagnosis’: A minimal diagnosis ∆ is a di-
agnosis (see Definition 6) and there doesn’t exist a subset ∆′ ⊂ ∆
which has the same property of being a diagnosis.

32Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop
September 10-11, 2015, Vienna, Austria



The example configuration knowledge base contains two minimal
diagnoses. The removal of the set ∆1 = {c9, c11} or ∆2 = {c10}
leads to a consistent configuration knowledge base. After having cal-
culated diagnoses and removed the constraints which are in one diag-
nosis, we can ensure a consistent knowledge base which is necessary
for calculating redundancies and well-formedness violations.
A redundancy is a set of redundant constraints in the knowledge
base. A constraint c is redundant, if a knowledge base KB′ with-
out the constraint c has the same semantics3 as the knowledge base
KB which contains the constraint. Redundant constraints are for-
mally described in Definition 8.

Definition 8 ’Redundant constraint’: A constraint c is redundant iff
the removal of the constraint from CKB leads to the same semantics,
s.t. CKB \ {c} |= c.

In our example, the constraint c7 is redundant, since only CityBikes
can be eBikes (c3) and have tires with a width of 37mm (c2).
While conflicts, diagnoses, and redundancies focus on constraints,
well-formedness violations identify anomalies based on variables
and domain elements [2]. We now introduce well-formedness vio-
lations in constraint-based configuration systems.
The first well-formedness violation focuses on dead domain ele-
ments. A dead domain element is an element which can never be
assigned to its variable in a consistent instance (see Definition 3).
Definition 9 introduces a formal description of dead elements.

Definition 9 ’Dead domain elements’: A domain element val ∈
dom(v) is dead iff it is never in a consistent instance, s.t. CKB ∪
{v = val; } is inconsistent.

The assignments FrimeSize = 40cm and UniCycle = true;
can never be part of a consistent instance because MountainBikes
and CityBikes require at least 50cm and RacerBikes require a
FrameSize of 60cm and our current knowledge base does not sup-
port UniCycles.
On the other hand, we can have domain elements which are assigned
to each consistent instance. We denote such domain elements full
mandatory and introduce definition 10.

Definition 10 ’Full mandatory’: A domain element val1 ∈
dom(vi) is full mandatory iff there is no consistent (complete or in-
complete) instance where the variable vi does not have the assign-
ment val1, s.t. CKB ∪ {vi 6= val1} is inconsistent.

The knowledge base can never be consistent if UniCycle 6= false.
In that case, we can say that the domain element false of the do-
main dom(UniCycle) is full mandatory and UniCycle = true
can never be in a consistent knowledge base (dead domain element).
Another well-formedness violation is called unnecessary refinement.
Such an unnecessary refinement consists of two variables. If the first
variable has an assignment, it is possible to predict the assignment
of the second variable because the second variable can only have
exactly one consistent assignment. A formal definition is given in
Definition 11.

Definition 11 ’Unnecessary refinement’: A knowledge base con-
tains a variable pair vi, vj . For each domain element val1 of vari-
able vi, we can say that variable vj always has the same assignment
vj = val2, s.t. ∀val1∈dom(vi)∃val2∈dom(vj)vi = val1 ∧ vj 6= val2
is inconsistent.
3 We use the term ’semantics’ to describe a knowledge base KB′ with the

same solution set as KB.

In our example the variable pair Usage and BikeType is unnec-
essary refined because whenever Usage = EverydayLife the
BikeType = CityBike, Usage = HillClimbing always leads
to BikeType = MountainBike, and Usage = Competition is
always combined with the assignment BikeType = RacerBike.
If such a violation occurs, we can recommend the knowledge engi-
neer to remove the variable Usage and replace it with the variable
BikeType in the constraints.

3 Intelligent Support for the Maintenance of
Constraint-based configuration systems

In this Section we describe existing (conflict and redundancy man-
agement) and new (recommendation, well-formedness, simulation,
metrics) intelligent techniques to support knowledge engineers in
their maintenance tasks.

3.1 Intelligent Recommendation

Constraint-based knowledge bases can have hundreds or thousands
of variables, domain elements, and constraints. If there is a main-
tenance task (e.g., inserting new tire sizes), recommendation tech-
niques help to differentiate between relevant and not relevant infor-
mation within the knowledge base. For example, the tires of a bike
probably have an influence on the frame of a bike but does not influ-
ence the bell of a bike. In such cases, recommendation techniques de-
tect items (variables, domain elements, constraints, test cases) which
are influenced by the tires and the knowledge engineer can focus on
these items. We describe four different types of recommendation to
support knowledge engineers in their maintenance tasks [4].
The first recommendation approach is the most viewed recommenda-
tion which is user-independent. It can be useful for new engineers of
a product domain.
Second, recently added lists new items (products, product vari-
ables, questions, and constraints) in the knowledge base. It is user-
dependent since it considers the last log in of the knowledge engineer
and helps to get a fast understanding of the previous changes in the
knowledge base.
The next type of recommendation is collaborative filtering. This type
of recommendation takes the ratings for items into account and looks
for knowledge engineers with similar ratings. In our case, we don’t
have ratings but use the interaction with items as ratings. If a knowl-
edge engineer looks at products, she ’rates’ the item with 1. 2 will
be added by the knowledge engineer if she is editing an item. Table
1 shows an example for a collaborative filtering recommendation for
knowledge engineer u0 based on our example in Section 2.

c0 c1 c2 c3 c4 c5 c6 c7 c8
u0 1 1 2 1 ?
u1 1 1 1 1 1
u2 1 2 1 2 2
u3 1 1 2

Table 1. An example for collaborative filtering. 1 means that the item ci is
viewed by the user uj , 2 means that the item is edited and ’ ’ means that the
item is neither viewed nor edited by the user.

In table 1 we try to find out if we should recommend item c7 to
knowledge engineer u0. The common process to find recommend-
able items is twofold. First, we try to find knowledge engineers with
similar interests. In our example, u1 and u2 have nearly the same
items viewed or edited. Second, we have to evaluate if the similar

33 Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria



knowledge engineers are interested in the item. Therefore, we use the
Pearson correlation [3, 6]. In our example, u1, and u2 have viewed /
edited item c7 and we can recommend c7 to knowledge engineer c0.
Another recommendation approach is the usage of content-based fil-
tering. The basic idea is to find similar items compared to a reference
item. We take the variable names and domain values from a con-
straint and evaluate the similarities between the reference item and
all other items. The similarities are measured by the TF-IDF (term
frequency and inverse document frequency) algorithm [6, 8] where
the item is the document and the terms are the variables and domain
elements. Table 2 shows the similarity values between constraint c7
as reference constraint with the other constraints.

constraint similarity
c0 0.50
c1 0.17
c2 0.50
c3 0.00
c4 0.00
c5 0.00
c6 0.33
c8 0.00

Table 2. Similarities between constraint c7 with the other constraints based
on content based recommendation

With this approach, we can say, that there is a high relationship be-
tween constraint c7 with the constraints c0 and c2 and a weak rela-
tionship with the constraints c6 and c1.

3.2 Intelligent Anomaly Management
As mentioned in Section 2, there are many anomalies in our example
knowledge base. In the following, we describe algorithms for detect-
ing conflicts, diagnoses, redundancies, and well-formedness viola-
tions as well as explanations for those anomalies. These algorithms
reduce the time to detect the anomalies and explain the anomaly to
get a higher understanding of the knowledge base.
Junker [7] described a divide-and-conquer approach to detect con-
flicts in knowledge bases. The algorithm takes two sets of constraints
as input. CKB is a set of constraints which can not be part of a di-
agnosis. The constraints in the set CR will be taken into account for
calculating a diagnosis. If the set CR is not empty and CR ∪ CKB

is not consistent, the algorithm returns a set of constraints which is a
minimal conflict (see Definition 5).

Algorithm 1 QuickXPlain (CKB , CR):∆
. CKB : set of not diagnosable constraints

. CR: set of diagnosed constraints
if isEmpty(CR) or consistent(CKB ∪ CR) then

return ∅;
else

return QuickXPlain′(CKB ,∆, CR);
end if

The algorithm QuickXPlain’ takes three sets as input. While ∆ is
initially empty, the set CKB contains the constraints which can not
be part of a conflict and the constraints which are part of a conflict
are in the set CR. Note that the set CKB can also be empty. The
algorithm is a recursive divide-and-conquer algorithm. It splits the
set CR into two parts (C1 and C2) and adds the part C1 to CKB . C2

will be evaluated by doing a recursive call with C2 as the set which
has to be evaluated.

Algorithm 2 QuickXPlain’ (CKB ,∆, CR):∆
. CKB : Set of constraints which can’t be part of a conflict

. ∆: Set of constraints which can be part of a conflict
. CR: Set of constraints which will be evaluated

if ∆ 6= ∅ and inconsistent(CKB) then
return ∅;

end if
if singleton(CR) then

return CR;
end if
k ← d r

2
e;

C1 ← {c1, ..., ck} ∈ CR;
C2 ← {ck+1, ..., cr} ∈ CR;
∆1 ← QuickXPlain′(CKB ∪ C1, C1, C2);
∆2 ← QuickXPlain′(CKB ∪∆1,∆1, C1);
return(∆1 ∪∆2);

Contrary to QuickXPlain, FastDiag is an algorithm to calculate a
minimal diagnosis and has C and CR as input. C contains all con-
straints, s.t. C = CKB ∪ CR. If C is an empty set, FastDiag has
no diagnosable set and the algorithm stops. It also stops if the set
C \CR is inconsistent, because this set contains inconsistencies, but
will not be diagnosed. If both preconditions are fulfilled, Algorithm
4 will calculate one diagnosis.

Algorithm 3 FASTDIAG(CR, C):∆
. CR: Set of constraints which will be diagnosed

. C: inconsistent knowledge base including all constraints
if C = ∅ ∨ inconsistent(CKB − C) then

return ∅;
else

return DIAG(∅, CR, C)
end if

First of all, DIAG checks whether C is consistent. If it is consistent,
each subset of C is also consistent and no constraint in C can be a
part of the diagnosis. Otherwise, CR will be divided into two sub-
sets C1 and C2. Each subset will be removed from C separately and
checked again in a recursive manner. If C \ C1 is consistent, we can
say that C2 is consistent and an empty set will be returned. If it is in-
consistent, at least one constraint in C1 must be part of the diagnosis
and therefore C1 will be divided and tested again unless |C| = 1.
The algorithm returns ∆1 ∪∆2 which is a minimal diagnosis.
With the previous algorithms we can a.) support customers when
they do not get any products for their preferences (CKB ∪ CR is
inconsistent) and b.) support knowledge engineers when they main-
tain a constraint-based configuration system with conflicts in CKB .
For a detailed description of the visualization of conflicts we refer
the reader to [16].
When we can assume that CKB is consistent, we can continue with
redundancy and well-formedness checks. Please note that the follow-
ing algorithms are applied to the constraint set CKB and ignore CR,
s.t. C = CKB .
The first approach for detecting redundancies has been proposed by
Piette [9]. The approach is the following: a knowledge base aggre-
gated with its negotiation must be inconsistent, formally described as
C∪C is inconsistent and C = {¬c0∨¬c1∨...∨¬cn}. By removing
a constraint ci separately from C, the algorithm checks whether the
result of C−{ci}∪C is still inconsistent. If this is the case, then the
constraint ci is redundant and can be removed. Finally, the algorithm

34Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop
September 10-11, 2015, Vienna, Austria



Algorithm 4 DIAG(∆, CR, C):∆
. ∆: Set of diagnosed constraints

. CR: Set of constraints which will be diagnosed
. C: CR ∪ CKB

if ∆ 6= ∅ and consistent(C) then
return ∅;

end if
if singleton(CR) then

return CR;
end if
k ← d |CR|

2
e;

C1 ← {c0, ..., ck} ∈ CR;
C2 ← {ck+1, ..., cn} ∈ CR;
∆1 ← DIAG(C1, C2, C − C1);
∆2 ← DIAG(∆1, C1, C −∆1);
return(∆1 ∪∆2);

returns the set C without redundant constraints.

Algorithm 5 SEQUENTIAL(C): ∆

. C: knowledge base
. C: the complement of C

. ∆: set of redundant constraints
Ct ← C;
for all ci in Ct do

if isInconsistent(Ct − ci ∪ C) then
Ct ← Ct − {ci};

end if
end for
∆← C − Ct;
return ∆;

Another approach (CoreDiag) has been proposed by Felfernig et al.
[5]. Instead of a linear approach, they adapt the QuickXPlain al-
gorithm. The divide-and-conquer approach of this algorithm checks
whether removing a set of constraints C1 leads to an inconsistency
formally described as C − C1 ∪ C is inconsistent. If it is not incon-
sistent, C1 must be further divided and tested again.

Algorithm 6 COREDIAG (CKB): ∆

. C : set with all constraints
. C: the complement of C

. ∆: set of redundant constraints
C ← {¬c1 ∨ ¬c2 ∨ ... ∨ ¬cn};
return(C − CORED(C,C,C));

CoreD (Algorithm 7) checks, if B ⊆ C is inconsistent. An inconsis-
tency of B ∪ C means that the subset is not redundant and no con-
straint of B will be a part of ∆. singleton(C) = true means that
|C| is redundant and will be returned. Otherwise the constraint set C
will be further divided and the subsets will be checked recursively.
With the presented approaches we can calculate one conflict, diag-
nosis, or constraint set without redundancies. In complex knowledge
bases we can assume that many anomalies are in the knowledge base.
For calculating all conflicts / diagnoses / redundant constraint sets,
we use Reiter’s HSDAG approach [12]. This approach takes the re-
sult of one of the algorithms above and expands branches for each
constraint in the result set. The constraint will be inserted into the
set which can not be part of the result, e.g. a constraint ci will be
removed from CR and added to CKB in the QuickXPlain algorithm.

Algorithm 7 CORED(B,∆, C): ∆

. B: Consideration set
. ∆: Constraints added to B

. C: set of constraints to be checked for redundancy
if ∆ 6= ∅ and inconsistent(B) then

return ∅;
end if
if singleton(C) then

return(C);
end if
k ← d |C|

2
e;

C1 ← {c1, c2, ..., ck} ∈ C;
C2 ← {ck+1, ck+2, ..., cn} ∈ C;
∆1 ← CORED(B ∪ C2, C2, C1);
∆2 ← CORED(B ∪ ∆1,∆1, C2);
return(∆1 ∪ ∆2);

Hence the shifted constraint can not be part of an anomaly and further
anomalies can be detected.
Both algorithms (SEQUENTIAL and CoreDiag) can be used to de-
tect redundant constraints. As mentioned in Section 2 a constraint
consists of a set of variable assignments A(ci). When we want to
test if an assignment of a constraint is redundant, we have to remove
the assignment from the constraint and check, if the knowledge base
is still redundant. For a detailed description of assignment-based re-
dundancy detection we refer the reader to [11].
We also have to discuss the usefulness of redundant constraints. On
the one hand, desired redundancies can help to increase the under-
standing of a knowledge base. For example, if many implications
(e.g. A → B;B → C;C → D) are in the knowledge base, a con-
straint A→ D may helps to understand the knowledge base. On the
other hand, redundant constraints can increase the effort for updates.
If the redundant constraint are not identified by the knowledge engi-
neer, the knowledge base does not have a correct behavior anymore.
Next, we describe the algorithms to detect well-formedness viola-
tions. First, Algorithm 8 takes sets of constraints (C) and variables
(V ) as input parameters and returns a set of variable assignments.
Each of the assignments can never be consistent with C. The sugges-
tion for the knowledge engineer is, that the domain elements which
will be returned by the algorithm can be deleted.

Algorithm 8 DeadDomainElement (C, V ): ∆

. C: knowledge base constraints
. V : knowledge base variables

. ∆ set with inconsistent variable assignments
for all vi ∈ V do

for all domj ∈ dom(vi) do
C′ = C ∪ {vi = domj}
if inconsistent(C′) then

∆← {vi = domj}
end if

end for
end forreturn ∆

While we can evaluate if a domain element can never be in a con-
sistent instance, we can also check if a domain element must be in
a consistent instance of a knowledge base. We denote such domain
elements as full mandatory. Algorithm 9 checks whether the knowl-
edge base will be inconsistent, if the domain element domj is not
selected.

35 Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria



Algorithm 9 FullMandatory (C, V ): ∆

. C: knowledge base constraints
. V : knowledge base variables

. ∆ set with inconsistent variable assignments
for all vi ∈ V do

for all domj ∈ dom(vi) do
C′ = C ∪ {vi 6= domj}
if inconsistent(C′) then

∆← {vi 6= domj}
end if

end for
end forreturn ∆

If variable vi contains a full mandatory domain element, we can say,
that each other domain element of vi is a dead element. If a do-
main element is full mandatory, we suggest the knowledge engineer
to delete all other domain elements or to remove the variable itself.
Finally, we introduce an algorithm to detect unnecessary refinements
between variables (see Definition 11). Algorithm 10 returns a set of
constraints. Each of these constraints describe one unnecessary re-
finement between two variables and each domain element between
both variables. The assignments between the variables are conjunc-
tive and each domain element of variable vi is in a disjunctive order,
e.g. (vi = vali1∧vj = valj1)∨ (vi = vali2∧vj = valj2)∨ (vi =
vali3 ∧ vj = valj3).

Algorithm 10 UnnecessaryRefinement (C, V ): ∆

. C: knowledge base constraints
. V : knowledge base variables

. ∆ set with constraints
for all vi ∈ V do

for all vj ∈ V |vi 6= vj do
A = ∅; . set with assignments
for all domk ∈ dom(vi) do

dompair = false;
C′ ← C ∪ {vi = domk}
for all doml ∈ dom(vj) do

C′′ ← C′ ∪ {vj 6= doml}
if inconsistent(C′′) ∧ dompair = false then

dompair = true;
A← A ∪ {vi = domk ∧ vj = doml}

end if
end for

end for
if |A| = |dom(vi)| then

∆← ∆ ∪ disjunctive(A)
end if

end for
end forreturn ∆

The performance of this algorithm depends on the number of vari-
ables, their domain size, the number of unnecessary refinements, and
the performance of the solver. In our short study with 14 knowledge
bases (up to 34 variables and domain sizes from two to 47) the de-
tection of unnecessary refinements requires up to 375 ms (with 42
unnecessary refinements) for the detection of all possible unneces-
sary refinements (Intel Xeon @ 2.4Ghz * 6 cores, 24GB RAM).
To get a deep understanding of the anomalies we need to explain
them to the knowledge engineer [2]. For the calculation of an ex-
planation we use the QuickXPlain algorithm (see Algorithm 2) for

each type of anomaly. We take the set of constraints (e.g. set of dead
elements) and add this set to CKB in the algorithm. Now we have
ensured, that the constraint which describes the anomaly, can’t be
part of ∆ in the algorithm. Next, we have to negate the constraint set
which describes the anomaly. Since the negation of the anomaly can
never be consistent, QuickXPlain will return the set of constraints
which is responsible for the anomaly. For example, the dead domain
element UniCycle = true will be negated and added to C. In that
case, QuickXPlain will return the set {c8} as an explanation for the
dead domain element.

3.3 Simulation
Due to the huge complexity of calculating all possible instances for
all possible assignments (see Section 2) in constraint-based configu-
ration systems we use Gibbs’ simulation to estimate the consistency
rate cr for a specific set of assignments A [11]. With this approxima-
tion, we can . . .

. . . estimate the restriction rate (number of consistent instances
compared to all instances) and evaluate the knowledge base (see
Section 3.4).
. . . generate test cases for boundary value analysis [11].
. . . rank diagnoses and conflicts (assuming that a knowledge base
with nearly the same restriction rate compared to the current
knowledge base is preferred).
. . . generate reports for variety management (e.g. ’How many
bikes can be used for Competition, EverydayLife, and
HillClimbing?’).

An assignment is a constraint which contains one variable av , one
domain element ad, and a relationship between variable and domain
element ar (see Section 2). Examples for assignments are eBike =
true; and BikeType = MountainBike. Algorithm 11 is divided
into three functions and shows the basic algorithm for estimating the
consistency rate for a set of assignments.
The function Gibbs(KB,A) is the main function of this algorithm.
It has a knowledge base KB and a set of assignments A as input.
The knowledge base contains sets of variables V ∈ KB and con-
straints C ∈ KB. The set CC (checks) contains all results from
consistency checks. A consistency check is either consistent (1) or
inconsistent (0). The number of minimum calls is constant and given
in variable mincalls. The total number of consistent checks is given
in variable consistent. threshold is a constant and required to test,
if the current set of consistency checks has a high accuracy. If the
variable verify is greater than the threshold, we can not guaran-
tee, that the current result is accurate. Therefore, we have to execute
the loop again. In the while-loop we first have to generate a set of
new random assignments. Since assignments are also special types
of constraints, we add them to the set C ∈ KB and do a consistency
check again. If randA ∪ C ∈ KB is consistent, we add 1 to the set
CC and increment the variable consistent. Otherwise, we add 0 to
the set CC. Finally, we verify all previous consistency checks. If the
variable verify is lower than the variable threshold and we have
more consistency checks than mincalls, we can return the number
of consistent checks divided by the total number of checks.
The function generateRandAssign(KB) is responsible for the
generation of new assignments. Random(C) returns the number
of assignments which has to be generated randomly. Random(V )
takes a variable from the knowledge base. If the variable is al-
ready part of another assignment, the variable won’t be used again.
Random(R) selects a relation between the variable and the domain

36Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop
September 10-11, 2015, Vienna, Austria



Algorithm 11 GibbsSampling
function GIBBS(KB, A): ∆

CC = ∅ . set of consistency check results {0, 1}
mincalls = 200 . constant
threshold = 0.01 . constant
consistent = 0
verify = Double.Max V alue
while n < mincalls ∨ verify > threshold do

randA = A ∪ GENERATERANDASSIGN(KB)
C.addAll(randA) . C ∈ KB
if isConsistent(KB) then

consistent + +
CC.add(1)

else
CC.add(0)

end if
C.removeAll(randA)
verify = VERIFYCHECKS(CC)
n + +

end while
return consistent/n

end function
function GENERATERANDASSIGN(KB):A

A = ∅ . A: set of assignments
n = Random(C) > 0: . generate n assignments
for i = 0; i < n; i + + do

av = Random(V ) . V ∈ KB
ar = Random(R)
ad = Random(dom(av))
A.add(a)

end for
return A

end function
function VERIFYCHECKS(CC):∆

CC1 = CC.split(0, |CC|/2)
CC2 = CC.split((|CC|/2) + 1, |CC|)
mean1 = mean(CC1)
mean2 = mean(CC2)
if mean1 ≥ mean2 then

return mean1−mean2
else

return mean2−mean1
end if

end function

elements. In our case, variables can have textual domain elements
(e.g. the brand of a bike) or numeric domain elements (e.g. the price
of a bike). While the set of relations for textual domain elements is
R = {=, 6=}, the set is extended to R = {=, 6=, <,≤, >,≥} for
numerical domain elements. Finally, Random(dom(av)) selects a
domain element from dom(av) randomly.
The function verifyChecks(CC) tests if the number of consistent
and inconsistent checks are normally distributed. Therefore, we first
divide the set with the consistency check results CC into two parts.
We evaluate the mean of both sets CC1 and CC2 and test if both
mean values are near to each other. If they have nearly the same
value, we can say that the consistent checks are normally distributed
in both sets and return the difference between mean1 and mean2.

3.4 Knowledge base Evaluation
As mentioned in the previous Sections, we can analyze a knowl-
edge base in different ways and collect a lot of information about
the knowledge base. Finally, we can also evaluate the knowledge
base in terms of metrics. Those metrics a) help to get information
about the quality of the knowledge base and b) get information about
the quality of previous changes. Next, we will describe some met-
rics, use them to answer five questions, and measure three goals for
constraint-based configuration systems (goal-question-metrics). The
metrics are based on a literature review focusing on knowledge engi-
neering. An overview of the literature review is given in [10]. In the
following list we describe several metrics.

• Number of variables |V | ∈ KB.

• Average domain size domsize:
∑

vi∈V |dom(vi)|
|V |

• Number of constraints |CKB | ∈ KB
• Number of minimal conflicts |CS|: see Definition 3
• Minimal cardinality CS MCCS: the lowest number of constraints

in a conflict set
• Number of minimal diagnoses |∆|: see Definition 5
• Minimal cardinality diagnosis MC∆: the lowest number of con-

straints in a diagnosis
• Number of redundancy sets |R|
• Maximal cardinality redundancy set MCR: the largest number of

constraints in a redundancy set
• dead elements DE: number of dead elements compared to the

total number of all domain elements

DE =

∑
vi∈V

∑
dj∈dom(vi)

{
0 C ∪ {vi = dj} 6= ∅
1 else

|V | × domsize

• full mandatory FM : number of full mandatory domain elements
compared to the total number of all domain elements

FM =

∑
vi∈V

∑
dj∈dom(vi)

{
0 C ∪ {vi 6= dj} = ∅
1 else

|V | × domsize

• unnecessary refinement UR: whenever a variable vi has an as-
signment, we can predict the assignment of variable vj , s.t.
dom(vi)→ dom(vj)

• restriction rate RR: |C||V |

• restriction rate RR2:
∑

ci∈C
#vars(ci)
#vars(C)

|C|
|V | where #vars(ci) is the

number of variables in ci.
• variable influence factor V IF (vi): number of constraints in

which a variable vi appears related to the number of constraints,

e.g., V IF (vi) =

∑
ci∈C

1 vi ∈ ci

0 else
|C| .

• variable influence factor V IFall: average influence of all variables

∑
vi∈V

√
(V IF (vi)−

∑
vj∈V V IF (vj)

|V | )2

|V |
• coverage coverage: GIBBSSAMPLING(KB, ∅) (see Section 3.3)

With the metrics we collected a lot of information about the knowl-
edge base. To evaluate the knowledge base, we aggregate the metrics
and use the goal-question-metrics approach [1] to quantify the qual-
ity of the knowledge base.

37 Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria



The aggregation of metrics will be used to answer questions relat-
ing to one or more goals. Next, we are listing the questions and the
corresponding metrics for each question:

Q1: Is the configuration knowledge base complete?:
|V |, domsize, |C|, coverage, |CS|, |∆|

Q2: Does the knowledge base contain anomalies?:
|CS|, |∆||R|, DE, FM,UR

Q3: Does the configuration knowledge base have an admissible per-
formance?:
|V |, domsize, |C|, |R|DE,FM,UR

Q4: Is the configuration knowledge base modifiable?:
MCCS,MC∆,MCR,DE,FM,UR,RR,RR2,
V IFall, Coverage

Q5: Is the configuration knowledge base understandable?:
MCCS,MC∆,MCR,DE,FM,UR,RR,RR2,
V IFall, coverage

Based on the answers for these questions we can evaluate the quality
of a knowledge base. The quality will be measured in terms of three
goals which we will list in the following:

G1: A configuration knowledge base must be maintainable, such that
it is easy to change the semantics of the knowledge base in a de-
sired manner (corresponding questions: Q2 anomalies, Q4 modi-
fiability)

G2: A configuration knowledge base must be understandable, such
that the effort for a maintainability task for a knowledge engineer
can be evaluated (corresponding questions: Q2 anomalies, Q5 un-
derstandability)

G3: A configuration knowledge base must be functional, such that it
represents a part of the real world (e.g. a bike configuration knowl-
edge base; corresponding questions: Q1 completeness, Q2 anoma-
lies, Q3 performance).

The results of the GQM-approach can be explained by a compari-
son with the measurements of previous versions of the knowledge
base. The comparison can show, if maintainability, understandabil-
ity, and functionality increases or decreases over time and explain
the changes (based on a comparison of the answers for the questions
and metrics). For a detailed description of the GQM-approach for
constraint-based configuration systems we refer the reader to [10].

4 Summary
In this paper we presented approaches to improve the mainte-
nance for constraint-based configuration systems. We described the
state-of-the-art in conflict and redundancy management and intro-
duced recommendation for the support of knowledge engineers. New
anomaly detection algorithms can be used to detect well-formedness
violations. Simulation techniques in the context of constraint-based
configuration systems allow us to approximate metrics for the goal-
question-metrics approach. We implemented these approaches in our
web-based system called ’iCone’ (Intelligent environment for the
development and maintenance of configuration knowledge bases)
[15].4

While we presented novel approaches to support knowledge engi-
neers, further research has to be done in the verification of the new
recommendation, simulation, and metrics evaluation techniques. Fur-
thermore, micro tasks can be used to collect and verify assumptions

4 http://ase-projects-studies.ist.tugraz.at:
8080/iCone/

of knowledge engineers about the knowledge base. Further research
should also be done in the context of stakeholder integration. For ex-
ample, in the software engineering process it is common that several
stakeholders (e.g. customers and users) can participate in the engi-
neering process. For the integration of different stakeholders and to
optimize the knowledge engineering, further research should also be
done in the context of knowledge engineering processes and knowl-
edge base development.

REFERENCES
[1] Victor R. Basili. Software modeling and measurement: The

goal/question/metric paradigm. Technical report, University of Mary-
land at College Park College Park, MD, USA, College Park, MD, USA,
1992.

[2] Alexander Felfernig, David Benavides, Jos A. Galindo, and Florian Re-
infrank. Towards anomaly explanation in feature models. Workshop on
Configuration, pages 117 – 124, 2013.

[3] Alexander Felfernig, Paul Blazek, Florian Reinfrank, and Gerald Nin-
aus. Intelligent User Interfaces for Configuration Environments, vol-
ume 1, pages 89 – 106. Morgan Kaufmann, 2014.

[4] Alexander Felfernig, Stefan Reiterer, Martin Stettinger, Florian Rein-
frank, Michael Jeran, and Gerald Ninaus. Recommender systems for
configuration knowledge engineering. Workshop on Configuration,
pages 51 – 54, 2013.

[5] Alexander Felfernig, Christoph Zehentner, and Paul Blazek. Corediag:
Eliminating redundancy in constraint sets. In Martin Sachenbacher,
Oskar Dressler, and Michael Hofbaur, editors, DX 2011. 22nd Interna-
tional Workshop on Principles of Diagnosis, pages 219 – 224, Murnau,
GER, 2010.

[6] Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard
Friedrich. Recommender Systems: An Introduction, volume 1. Univer-
sity Press, Cambridge, 2010.

[7] Ulrich Junker. Quickxplain: preferred explanations and relaxations for
over-constrained problems. In Proceedings of the 19th national confer-
ence on Artifical intelligence, AAAI’04, pages 167–172. AAAI Press,
2004.

[8] Michael Pazzani and Daniel Billsus. Content-based recommendation
systems. In Peter Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl, ed-
itors, The Adaptive Web, volume 4321 of Lecture Notes in Computer
Science, pages 325–341. Springer Berlin / Heidelberg, 2007.

[9] Cédric Piette. Let the solver deal with redundancy. In Proceedings of
the 2008 20th IEEE International Conference on Tools with Artificial
Intelligence - Volume 01, pages 67–73, Washington, DC, USA, 2008.
IEEE Computer Society.

[10] Florian Reinfrank, Gerald Ninaus, Bernhard Peischl, and Franz
Wotawa. A goal-question-metrics model for configuration knowledge
bases. Configuration Workshop, 2015.

[11] Florian Reinfrank, Gerald Ninaus, Franz Wotawa, and Alexander
Felfernig. Maintaining constraint-based configuration systems: Chal-
lenges ahead. Configuration Workshop, 2015.

[12] Raymond Reiter. A theory of diagnosis from first principles. Artificial
Intelligence, 32(1):57–95, 1987.

[13] Stuart Russell and Peter Norvig. Artificial Intelligence. A modern ap-
proach, volume 2. Prentice Hall, New Jersey, 2003.

[14] Edward Tsang. Foundations of Constraint Satisfaction. Academic
Press, 1993.

[15] Franz Wotawa, Florian Reinfrank, Gerald Ninaus, and Alexander
Felfernig. icone: intelligent environment for the development and main-
tenance of configuration knowledge bases. IJCAI 2015 Joint Workshop
on Constraints and Preferences for Configuration and Recommenda-
tion, 2015.

[16] Franz Wotawa, Martin Stettinger, Florian Reinfrank, Gerald Ninaus,
and Alexander Felfernig. Conflict management for constraint-based
recommendation. IJCAI 2015 Joint Workshop on Constraints and Pref-
erences for Configuration and Recommendation, 2015.

38Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop
September 10-11, 2015, Vienna, Austria

http://ase-projects-studies.ist.tugraz.at:8080/iCone/
http://ase-projects-studies.ist.tugraz.at:8080/iCone/

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\CWS-2015-Proceedings-full-v0.993.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\01_Confws-15_submission_14.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\02_Confws-15_submission_3.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\03_Confws-15_submission_16.pdf
	1 INTRODUCTION
	2 LITERATURE REVIEW
	3 CASE STUDY
	3.1 Background
	3.2 Analysis of the Company’s Performance Before and After Implementation of Configuration Systems
	3.2.1 Analysis of Cost Structure and Deviations
	3.2.2 Reasons for the deviations

	3.3 Comparison of Budgetary Proposals Made in Excel and PCS
	3.3.1 Sales Representatives and CR

	3.4 Future Initiatives

	4 CONCLUSIONS
	5 DISCUSSION AND FUTURE RESEARCH
	REFERENCES

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\04_Confws-15_submission_20.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\05_Confws-15_submission_18.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\06_Confws-15_submission_22.pdf
	Introduction
	Related Work
	Intelligent Support for the Maintenance of Constraint-based systems
	Intelligent Recommendation
	Intelligent Anomaly Management
	Simulation
	Knowledge base Evaluation

	Summary

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\07_Confws-15_submission_23.pdf
	Introduction
	Preliminaries
	Challenges in the Development and Maintenance of Constraint-based systems
	Simulation
	Test Case generation
	Assignment-based anomaly management
	Constraint-based system development

	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\08_Confws-15_submission_7.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\09_Confws-15_submission_25.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\10_Confws-15_submission_17.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\11_Confws-15_submission_10.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\12_Confws-15_submission_6.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\13_Confws-15_submission_5.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\14_Confws-15_submission_24.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\15_Confws-15_submission_4.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\16_Confws-15_submission_8.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\17_Confws-15_submission_9.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\18_Confws-15_submission_2.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\19_Confws-15_submission_26.pdf
	Introduction
	Configuration Knowledge Base
	A GQM model for Configuration Knowledge Bases
	Goals for Configuration Knowledge Bases
	Questions for Configuration Knowledge Bases
	Metrics for Configuration Knowledge Bases

	Discussion
	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\20_Confws-15_submission_11.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\21_Confws-15_submission_15.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\new versions\Intelligent_Support_UTF8.pdf
	Introduction
	Related Work
	Intelligent Support for the Maintenance of Constraint-based systems
	Intelligent Recommendation
	Intelligent Anomaly Management
	Simulation
	Knowledge base Evaluation

	Summary

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\new versions\Simulation_UTF8.pdf
	Introduction
	Preliminaries
	Challenges in the Development and Maintenance of Constraint-based systems
	Simulation
	Test Case generation
	Assignment-based anomaly management
	Constraint-based system development

	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\new versions\Metrics_UTF8.pdf
	Introduction
	Configuration Knowledge Base
	A GQM model for Configuration Knowledge Bases
	Goals for Configuration Knowledge Bases
	Questions for Configuration Knowledge Bases
	Metrics for Configuration Knowledge Bases

	Discussion
	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\AustriaLatest\Simulation_Reinfrank_Ninaus_Wotawa_Felfernig.pdf
	Introduction
	Preliminaries
	Challenges in the Development and Maintenance of Constraint-based Configuration Systems
	Simulation
	Test Case generation
	Assignment-based anomaly management
	Constraint-based configuration system development

	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\AustriaLatest\Summary_Reinfrank_Ninaus_Wotawa_Felfernig.pdf
	Introduction
	Related Work
	Intelligent Support for the Maintenance of Constraint-based configuration systems
	Intelligent Recommendation
	Intelligent Anomaly Management
	Simulation
	Knowledge base Evaluation

	Summary



