
Solving Combined Configuration Problems:
A Heuristic Approach1

Martin Gebser2 and Anna Ryabokon3 and Gottfried Schenner4

Abstract. This paper describes an abstract problem derived from
a combination of Siemens product configuration problems encoun-
tered in practice. Often isolated parts of configuration problems can
be solved by mapping them to well-studied problems for which ef-
ficient heuristics exist (graph coloring, bin-packing, etc.). Unfortu-
nately, these heuristics may fail to work when applied to a problem
that combines two or more subproblems. In the paper we show how
to formulate a combined configuration problem in Answer Set Pro-
gramming (ASP) and to solve it using heuristics à la hclasp. The
latter stands for heuristic clasp that is nowadays integrated in clasp
and enables the declaration of domain-specific heuristics in ASP. In
addition, we present a novel method for heuristic generation based
on a combination of greedy search with ASP that allows to improve
the performance of clasp.

1 Introduction
Researchers in academia and industry have tried different approaches
to configuration knowledge representation and reasoning, including
production rules, constraints languages, heuristic search, description
logics, etc.; see [16, 14, 9] for surveys. Although constraint-based
methods remain de facto standard, Answer Set Programming (ASP)
has gained much attention over the last years because of its expres-
sive high-level representation abilities.

As evaluation shows ASP is a compact and expressive method to
capture configuration problems [15, 18, 9], i.e. it can represent con-
figuration knowledge consisting of component types, associations,
attributes, and additional constraints. The declarative semantics of
ASP programs allows a knowledge engineer to choose the order in
which rules are written in a program, i.e. the knowledge about types,
attributes, etc. can be easily grouped in one place and modularized.
Sound and complete solving algorithms allow to check a configu-
ration model and support evolution tasks such as reconfiguration.
Generally, the results prove that ASP has limitations when applied
to large-scale product (re)configuration instances [1, 5]. The best re-
sults in terms of runtime and solution quality were achieved when
domain-specific heuristics were applied [17, 12].

In this paper we introduce a combined configuration problem
that reflects typical requirements frequently occurring in practice at
Siemens. The parts of this problem correspond (to some extent) to

1 This work was funded by COIN and AoF under grant 251170 as well as
by FFG under grant 840242. An extended version of this paper is to appear
in the proceedings of the 13th International Conference on Logic Program-
ming and Non-monotonic Reasoning.

2 Aalto University, HIIT, Finland and University of Potsdam, Germany,
email: martin.gebser@aalto.fi

3 Alpen-Adria-Universität Klagenfurt, Austria, email: anna.ryabokon@aau.at
4 Siemens AG Österreich, Austria, email: gottfried.schenner@siemens.com

classical computer science problems for which there already exist
some well-known heuristics and algorithms that can be applied to
speed up computations and/or improve the quality of solutions.

As the main contribution, we present a novel approach on how
heuristics generated by a greedy solver can be incorporated in an
ASP program to improve computation time (and obtain better so-
lutions). The application of domain-specific knowledge formulated
succinctly in an ASP heuristic language [8] allows for better solu-
tions within a shorter solving time, but it strongly deteriorates the
search process when some additional requirements (conflicting with
the formulated heuristics) are included. On the other hand, the for-
mulation of complex heuristics might be cumbersome using greedy
methods. Therefore, we exploit a combination of greedy methods
with ASP for the generation of heuristics and integrate them to ac-
celerate an ASP solver. We evaluate the method on a set of instances
derived from configuration scenarios encountered by us in practice
and in general. Our evaluation shows that for three different sets of
instances solutions can be computed an order of magnitude faster
than compared to a plain ASP encoding.

The remainder of this paper is structured as follows. Section 2 in-
troduces a combined configuration problem (CCP) which is exempli-
fied in Section 3. Section 4 discusses heuristics for solving the CCP.
We present our evaluation results in Section 5. Finally, in Section 6
we conclude and discuss future work.

2 Combined Configuration Problem
The Combined Configuration Problem (CCP) is an abstract prob-
lem derived from a combination of several problems encountered in
Siemens practice (railway interlocking systems, automation systems,
etc.). A CCP instance is defined by a directed acyclic graph, called
just graph later on in this paper for simplicity. Each vertex of the
graph has a type and each type of the vertices has a particular size.
In addition, each instance comprises two sets of vertices specifying
two vertex-disjoint paths in the graph. Furthermore, an instance con-
tains a set of areas, sets of vertices defining possible border elements
of each area and a maximal number of border elements per area. Fi-
nally, a number of available colors as well as a number of available
bins and their capacity are given.

Given a CCP instance, the goal is to find a solution that satisfies
a set of requirements. All system requirements are separated into
the corresponding subproblems which must be solved together or in
combinations:

• P1 Coloring Every vertex must have exactly one color.
• P2 Bin-Packing For every color a Bin-Packing problem must be

solved. For every color the same number of bins are available.
Every vertex must be assigned to exactly one bin of its color and

Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria

55



for every bin it holds that the sum of sizes must be smaller or equal
to the bin capacity.

• P3 Disjoint Paths Vertices of different paths cannot be colored in
the same color.

• P4 Matching Each border element must be assigned to exactly
one area such that the number of selected border elements of an
area does not exceed the maximal number of border elements and
all selected border elements of an area have the same color.

• P5 Connectedness Two vertices with the same color must be con-
nected via a path that contains only vertices of that color.

Origin In the railway domain the given graph represents a track lay-
out of a railway line. A coloring P1 can then be thought as an assign-
ment of resources (e.g. computers) to the elements of the railway line.
In real-world scenarios different infrastructure elements may require
different amounts of a resource that is summarized in P2. This may
be hardware requirements (e.g. a signal requiring a certain number
of hardware parts) or software requirements (e.g. an infrastructural
element requiring a specific processing time). The requirements of
P1 and P2 are frequently used in configuration problems during an
assignment of entities of one type to entities of another type [11, 5].

The constraint of P3 increases availability, i.e. in case one resource
fails it should still be possible to get from a source vertex (no in-
coming edges) of the graph to a target vertex (no outgoing edges) of
the graph. In the general version of this problem one has to find n
paths that maximize availability. The CCP uses the simplified prob-
lem where 2 vertex-disjoint paths are given.

P4 stems from detecting which elements of the graph are occu-
pied. The border elements function as detectors for an object leaving
or entering an area. The Partner Units Problem [2, 1] is a more elab-
orate version of this problem. P5 arises in different scenarios, e.g. if
communication between elements controlled by different resources
is more costly, then neighboring elements should be assigned to the
same resource whenever possible.

3 Example
Figure 1 shows a sample input CCP graph. In this section we illus-
trate how particular requirements can influence a solution. Namely,
we add the constraints of each subproblem one by one. If only P1
is active, any graph corresponds to a trivial solution of P1 where all
vertices are colored white.

b1 s1 p1 b2 p2 b3 p3 s2 b4

b5 e1 b6

b7 s3 p4 b8 p5 b9 p6 s4 b10

b11 e2 b12

Figure 1: Input CCP graph and a trivial solution of Coloring (P1)

Let us consider the input graph as a Bin-Packing problem instance
with four colors and three bins per color of a capacity equal to five.
The vertices of type b, e, s and p have the sizes 1, 2, 3 and 4, respec-
tively. A solution of Coloring and Bin-Packing (P1-P2) is presented
in Figures 2 and 3.

Moreover, two vertex-disjoint paths are declared by
path1 = {b1, s1, p1, b2, p2, b3, p3, s2, b4} as well as
path2 = {b7, s3, p4, b8, p5, b9, p6, s4, b10}, and the Disjoint

Paths constraint (P3) is active. Consequently, in this case the
solution shown in Figure 2 violates this constraint and must be
modified as given in Figure 4 where the vertices of different paths
are colored with different colors (path1 with dark grey and grey, and
path2 with white and light grey).

b1 s1 p1 b2 p2 b3 p3 s2 b4

b5 e1 b6

b7 s3 p4 b8 p5 b9 p6 s4 b10

b11 e2 b12

Figure 2: Used colors in a solution of the Coloring and Bin-Packing
problems (P1-P2)

p2 p6 p3
s1

p4 p1

p5

b4

s4

b5

b10 b1

b9

b8

b3

b11

s3

b2

s2

b7

b12

e2

e1

b6

Figure 3: Used bins in a solution of the Coloring and Bin-Packing
problems (P1-P2)

b1 s1 p1 b2 p2 b3 p3 s2 b4

b5 e1 b6

b7 s3 p4 b8 p5 b9 p6 s4 b10

b11 e2 b12

Figure 4: Solution of the Coloring, Bin-Packing and Disjoint Paths
problems (P1-P3)

Figure 5 shows an example of Matching (P4). In this example
there are seven areas in the matching input graph, each correspond-
ing to a subgraph surrounded with border elements (Figure 1). For in-
stance, area a1 represents the subgraph {b1, s1, p1, b2, b5} and area
a2 the subgraph {b5, e1, b6}. The corresponding border elements,
{b1, b2, b5} and {b5, b6}, are displayed in Figure 5.

Assume that an area can have at most 2 border elements assigned
to it. In the resulting matching (Figure 5) b1, b2 are assigned to a1,
whereas b5, b6 are assigned to a2. Note that the sample selected
matching shown in Figure 5 is not valid with the coloring presented
previously, because, for example, b5 and b6 are assigned to the same
area a2 although they are colored differently.

In addition, the coloring solution shown in Figure 4 violates the
Connectedness constraint (P5). Therefore, the previous solutions
must be updated to take the new requirements into account. Figure 6
shows a valid coloring of the given graph that satisfies all problem
requirements (P1-P5).

4 Combining Heuristics for Configuration
Problems

We formulated the CCP using ASP and the corresponding encod-
ing can be found at http://isbi.aau.at/hint/problems.

Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop
September 10-11, 2015, Vienna, Austria

56



b9 b7 b11 b10 b12

a1 a2 a3 a4 a5 a6 a7

b1 b2 b5 b6 b4 b3 b8

Figure 5: A sample input and solution graphs for P4. The selected
edges of the input graph are highlighted with solid lines.

b1 s1 p1 b2 p2 b3 p3 s2 b4

b5 e1 b6

b7 s3 p4 b8 p5 b9 p6 s4 b10

b11 e2 b12

Figure 6: A valid solution for P1-P5

To formulate a heuristic within ASP we use the declarative heuris-
tic framework developed by Gebser et al. [8]. In this formalism the
heuristics are expressed using atoms heuristic(a,m, v, p), where
a denotes an atom for which a heuristic value is defined, m is one of
four modifiers (init, factor, level and sign), and v, p are integers de-
noting a value and a priority, respectively, of the definition. A num-
ber of shortcuts are available, e.g. heuristic(a, v, l), where a is an
atom, v is its truth value and l is a level. The heuristic atoms modify
the behavior of the VSIDS heuristic [10]. Thus, if a heuristic atom
is true in some interpretation, then the corresponding atom a might
be preferred by the ASP solver at the next decision point.

There are different ways to incorporate heuristic atoms in a pro-
gram. The standard approach [8] requires an implementation of a
heuristic at hand using a pure ASP encoding, whereas the idea of our
method is to delegate the (expensive) generation of a heuristic to an
external tool and then to extend the program with generated heuristic
atoms to accelerate the ASP search. Below we will exemplify how
both approaches can be applied.

4.1 Standard generation of heuristics in ASP
Several heuristics can be used for the problems that compose the
CCP. For instance, for the coloring of vertices (P1) we seek to use as
few colors as possible by the following rule:

1 _heuristic(vertex_color(V,C),true,MC-C) :-
vertex(V), color(C), nrofcolors(MC).

Listing 1: Heuristic for an assignment of colors to vertices

Roughly speaking, this rule means that the assignment of
colors to vertices must be done in an ascending order of
colors. Given a vertex (b1) and two colors nrofcolors(2)
encoded as color(1) and color(2), the solver can derive
two heuristic atoms heuristic(vertex color(b1, 1), true, 1) and
heuristic(vertex color(b1, 2), true, 0). These atoms indicate the

solver that the atom vertex color(b1, 1) must be assigned the truth
value true first since the atom with the higher level is preferred.

Additionally, we can apply the well-known Bin-Packing heuris-
tics for the placement of colored vertices into the bins of specified
capacity (P2). The Bin-Packing problem is known to be an NP-hard
combinatorial problem. However, there are a number of approxima-

tion algorithms (construction heuristics) that allow efficient computa-
tion of good approximations of a solution [6], e.g. Best/First/Next-Fit
heuristics. They can, of course, be used as heuristics for the CCP.

Let the Bin-Packing problem instance be encoded using a set of
predicates among which nrofbins/1 and order/2 denote a number
of bins in the instance and an ordered set of input vertices, respec-
tively. The predicate vertex bin/2 is used to encode a solution and
denotes an assignment of a vertex to a bin. As shown in Listing 2,
given a (decreasing) order of vertices, we can force the solver to
place vertex Vi into the lowest-indexed bin for which the size of al-
ready placed vertices does not exceed the capacity, i.e. in a first-fit
bin. The heuristic never uses a new bin until all the non-empty bins
are full and it can be expressed by rules that generate always a higher
level for the bins with smaller number:

1 binDomain(1..NB) :- nrofbins(NB).
2 offset(NB+1) :- nrofbins(NB).
3 _heuristic(vertex_bin(V,B),true,M+O*NB-B) :-

binDomain(B), nrofbins(NB), order(V,O),
offset(M).

Listing 2: First-Fit heuristic for an assignment of vertices to bins

It is also possible (with an intense effort) to express other heuristics
for P1-P5 that guide the search appropriately and allow to speed up
the computation of solutions if we solve these problems separately.
However, as our experiments show, the inclusion of heuristics for
different problems at the same time might drastically deteriorate the
performance for real-world CCP instances.

4.2 Greedy Search
From our observations in the context of product configuration, it is
relatively easy to devise a greedy algorithm to solve a part of a config-
uration problem. This is often the case in practice, because products
are typically designed to be easily configurable. The hard configu-
ration instances usually occur when new constraints arise due to the
combination of existing products and technologies.

The same can be said for the CCP. Whereas it is easy to develop
greedy search algorithms for the individual subproblems, it becomes
increasingly difficult to come up with an algorithm that solves the
combined problem. For instance, a greedy algorithm for the Match-
ing problem of the CCP (P4) can be formulated as follows: For every
vertex v find a related area a with the fewest assigned vertices so
far and match v with a. The algorithm assumes that all border ele-
ments are colored with one color, as it trivially satisfies the coloring
requirement of the matching problem. A greedy algorithm for solv-
ing the CCP wrt. Coloring, Bin-Packing and Connectedness (P1, P2
and P5) can be described as follows:

1. Select the first available color c and add the first vertex not as-
signed to any bin to a queue Q;

2. Get and remove from Q the first element v, label it with c and try
to assign it to a bin using some Bin-Packing heuristic, e.g. First-Fit
or Best-Fit [6];

3. If v is assigned to some bin, add neighbors of v to Q;
4. If Q 6= ∅, then goto 2;
5. Otherwise, if there are unassigned vertices, then make the color c

unavailable and goto 1.

Suppose one wants to combine these two algorithms. One strategy
would be to run greedy Matching and then solve the Bin-Packing

Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria

57



Algorithm 1: Greedy & ASP
Input: A problem P , an ASP program Π solving the problem P
Output: A solution S

1 GreedySolution ← solveGreedy(P );
2 H ← generateHeuristic(GreedySolution);
3 return solveWithASP(Π, H);

problem taking matchings into account. Namely, the combined algo-
rithm preforms the following steps:

1. Call the matching greedy algorithm and get a set of matchings
M = {(v1, a1), . . . , (vn, am)};

2. For each vertex vi of the input graph G do:

(a) Assign a new color to vi, if vi has no assigned color;

(b) Put vi into a bin, as in the greedy Bin-Packing (steps 2-3);

(c) If vi is a border element, then retrieve an area aj that matches
vi in M and color all vertices of this area in the same color as
vi.

The combined algorithm might violate Connectedness, because it
colors all border vertices assigned to an area with the same color.
However, these vertices are not necessarily connected. That is, there
might be a solution with a different matching, but the greedy algo-
rithm tests only one of all possible matchings. Moreover, there is no
obvious way how to create an algorithm solving all three problems
efficiently. This is a clear disadvantage of using ad-hoc algorithms in
contrast to the usage of a logic-based formalism like ASP, where the
addition of constraints is just a matter of adding some rules to an en-
coding. On the other hand, domain-specific algorithms are typically
faster and scale better than ASP-based or SAT-based approaches that
cannot be used for large instances. For instance, the memory demand
of the greedy Bin-Packing algorithm is polynomial in graph size.

4.3 Combining Greedy Search and ASP

One way to let a complete ASP solver and a greedy search algo-
rithm benefit from each other is to use the greedy algorithm to com-
pute upper bounds for the problem to solve. The tighter upper bound
usually means smaller grounding size and shorter solving time, be-
cause the greedy solver being domain-specific usually outperforms
ASP for the relaxed version of the problem. For instance, running the
greedy algorithm for the Bin-Packing problem and Matching prob-
lem gives upper bounds for the maximal number of colors, i.e. num-
ber of different Bin-Packing problems to solve. The same applies to
the Matching problem. This kind of application of greedy algorithms
has a long tradition in branch and bound search algorithms, where
greedy algorithms are used to compute the upper bound of a problem.
For an example see [19], where a greedy coloring algorithm is used
to find an upper bound for the clique size in a graph for the computa-
tion of maximum cliques. In this paper we investigate a novel way to
combine greedy algorithms and ASP (Algortihm 1). Consequently,
in our approach we, first, use a greedy algorithm to find a solution of
a relaxed version of the problem. Next, this solution is converted into
a heuristic for an ASP solver which assigns the atoms of the greedy
solution a higher heuristic value.

As an example for solving the complete CCP problem, we can,
first, find an unconnected solution for the combination of Coloring,
Bin-Packing, Disjoint paths and Matching problems (P1-P4), and
then, use the ASP solver to fix the Connectedness property (P5). The

idea of combining local search with a complete solver is also found
in large neighborhood search [4].

5 Experimental results
Experiment1 In our evaluation we compared a plain ASP en-

coding of the CCP with an ASP encoding extended with domain-
specific knowledge. The Bin-Packing problem (P2) of the CCP cor-
responds to the classic Bin-Packing problem and the same heuristics
can be applied. We implemented several Bin-Packing heuristics such
as First/Best/Next-Fit (Decreasing) heuristics using ASP as shown in
Section 4.1. For the evaluation we took 37 publicly available Bin-
Packing problem instances5, for which the optimal number of bins
optnrofbins is known, and translated them to CCP instances. The
biggest instance of the set includes 500 vertices and 736 bins of the
capacity 100. In the experiment, the maximal number of colors was
set to 1 and the maximal number of bins was set to 2 · optnrofbins .
All instances were solved by both approaches6. For a plain ASP
encoding the solver required at most 27 seconds to find a solution
whereas for the heuristic ASP program solving took at most 6 sec-
onds, which is 4.5 times faster. The best results for the heuristic ap-
proach were obtained using the First-Fit heuristic with the decreasing
order of vertices. Corresponding solutions utilized less bins then the
ones obtained with the plain ASP program. Moreover, using First-Fit
heuristic, for 23 from 37 instances a solution with optimal number of
bins was found and for 13 other instances at most 4 bins more were
required. The plain ASP encoding resulted in solutions that used on
average 4 bins more than corresponding solutions of the heuristic
approach.

Experiment2 In the next experiment we tested the same Bin-
Packing heuristics implemented in ASP for the combined CCP, i.e.
when all subproblems P1-P5 are active, on 100 real-world test in-
stances of moderate size (maximally 500 vertices in an input). The
instances in this experiment were derived from a number of indus-
trial configuration tasks. Neither the plain program nor the heuristic
program were able to improve runtime/quality of solutions. More-
over, our greedy method described in Section 4.2 also failed to find a
connected solution, i.e. when P5 is active. For this reason, we inves-
tigated the combined approach (Greedy & ASP) described in Sec-
tion 4.3. This approach uses the greedy method to generate a partial
solution ignoring the Connectedness constraint and provides this so-
lution as heuristic atoms to the ASP solver. Our experiments show
(see Figure 7a) that the combined approach can solve all 100 bench-
marks from the mentioned set, whereas the plain encoding solves
only 54 instances (the time frame was set to 900 seconds in this
and the next experiment). Moreover, for those instances which were
solved using both approaches, the quality of solutions measured in
terms of used bins and colors was the same. However, the runtime of
the combined approach was 18 times faster on average and required
at most 24 seconds instead of 848 seconds needed for the plain ASP
encoding.

Experiment3 In addition, we tested more complex real-world in-
stances (maximally 1004 vertices in an input)7 which we have also
submitted to the ASP competition 2015. Similarly to Experiment2

5 http://www.wiwi.uni-jena.de/Entscheidung/binpp/index.htm
6 The evaluation was performed using clingo version 4.3.0 from the Potassco

ASP collection [7] on a system with Intel i7-3030K CPU (3.20 GHz) and
64 GB of RAM, running Ubuntu 11.10.

7 The instances are available at: http://isbi.aau.at/hint/problems

Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop
September 10-11, 2015, Vienna, Austria

58



0,001

0,01

0,1

1

10

100

1000
g0

1

g0
6

g1
1

g1
6

g2
1

g2
6

g3
1

g3
6

g4
1

g4
6

g5
1

g5
6

g6
1

g6
6

g7
1

g7
6

g8
1

g8
6

g9
1

g9
6

T
IM

E,
 S
EC

Plain ASP Greedy & ASP

(a) Experiment2

0,001

0,01

0,1

1

10

100

1000

TI
M
E,
 S
EC

Plain ASP Greedy & ASP

(b) Experiment3

Figure 7: Evaluation results using Plain ASP and Greedy & ASP

we compared the plain ASP encoding to the combined approach
from Section 4.3. Again, regarding the quality of solutions, both ap-
proaches are comparable, i.e. they use on average the same number
of colors and bins, with the combined approach having a slight edge.
Generally, from 48 instances considered in this experiment, 36/38 in-
stances were solved using the plain/combined encoding, respectively.
On average/maximally the plain encoding needed 69/887 seconds to
find a solution whereas the combined method took 14/196 seconds,
respectively, which is about 5 times faster. Figure 7b shows the in-
fluence of heuristics on the performance for the instances from Ex-
periment3 that were solved by both approaches within 900 seconds.
Although the grounding time is not presented for both experiments,
we note that it requires about 10 seconds using both approaches for
the biggest instance when all subproblems P1-P5 are active.

6 Discussion
Choosing the right domain-specific heuristics for simple backtrack-
based solvers is essential for finding a solution at all, especially for
large and/or complex problems. The role of domain-specific heuris-
tics in a conflict-driven nogood learning ASP solver seems to be less
important when it comes to solving time. Here the size of the ground-
ing and finding the right encoding is often the limiting factor. Never-
theless, domain-specific heuristics are very important to control the
order in which answer sets are found and are an alternative to opti-
mization statements. As we have shown, domain-specific heuristics
also provide a mechanism to combine greedy algorithms with ASP
solvers, which opens up the possibility to use ASP in a meta-heuristic
setting. However, the possible applications go beyond this. The same
approach could be used to repair an infeasible assignment using an
ASP solver. This is currently a field of active research for us and has
applications in the context of product reconfiguration. Reconfigura-
tion occurs when a configuration problem is not solved from scratch,
but some parts of an existing configuration have to be taken into ac-
count.

An open question is how to combine heuristics for different sub-
problems in a modular manner without the adaptation of every
domain-specific heuristic. Here approaches like search combinators
[13] from the constraint programming community might be useful.
Another interesting topic for future research would be how to learn
heuristics from an ASP solver, i.e. to investigate the variable/value
order chosen by an ASP solver for medium size problem instances
and use heuristics in a backtrack solver for larger instances that are
out of scope of an ASP solver due to the grounding size. Some as-
pects of this topic were discussed in [3].

REFERENCES
[1] M. Aschinger, C. Drescher, G. Friedrich, G. Gottlob, P. Jeavons,

A. Ryabokon, and E. Thorstensen, ‘Optimization Methods for the Part-
ner Units Problem’, in Proceedings of CPAIOR, pp. 4–19, (2011).

[2] M. Aschinger, C. Drescher, G. Gottlob, P. Jeavons, and E. Thorstensen,
‘Tackling the Partner Units Configuration Problem’, in Proceedings of
IJCAI, pp. 497–503, (2011).

[3] M. Balduccini, ‘Learning and using domain-specific heuristics in ASP
solvers’, AI Communications, 24(2), 147–164, (2011).

[4] Raffaele Cipriano, Luca Di Gaspero, and Agostino Dovier, ‘A hybrid
solver for large neighborhood search: Mixing gecode and easylocal++’,
in Hybrid metaheuristics, 141–155, Springer, (2009).

[5] G. Friedrich, A. Ryabokon, A. A. Falkner, A. Haselböck, G. Schenner,
and H. Schreiner, ‘(Re) configuration based on model generation’, in
Proceedings of LoCoCo, pp. 26–35, (2011).

[6] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W. H. Freeman, 1979.

[7] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, Answer Set
Solving in Practice, Morgan & Claypool Publishers, 2012.

[8] M. Gebser, B. Kaufmann, J. Romero, R. Otero, T. Schaub, and
P. Wanko, ‘Domain-Specific Heuristics in Answer Set Programming’,
in Proceedings of AAAI, (2013).

[9] L. Hotz, A. Felfernig, M. Stumptner, A. Ryabokon, C. Bagley, and
K. Wolter, ‘Configuration Knowledge Representation and Reasoning’,
Knowledge-Based Configuration: From Research to Business Cases,
41–72, (2014).

[10] C.F. Madigan, S. Malik, M.W. Moskewicz, L. Zhang, and Y. Zhao,
‘Chaff: Engineering an efficient SAT solver’, in Proceedings of DAC,
(2001).

[11] W. Mayer, M. Bettex, M. Stumptner, and A. Falkner, ‘On solving com-
plex rack configuration problems using CSP methods’, in Proceedings
of the IJCAI Workshop on Configuration, (2009).

[12] A. Ryabokon, G. Friedrich, and A. A. Falkner, ‘Conflict-Based Pro-
gram Rewriting for Solving Configuration Problems’, in Proceedings
of LPNMR, pp. 465–478, (2013).

[13] T. Schrijvers, G. Tack, P. Wuille, H. Samulowitz, and P. J. Stuckey,
‘Search combinators’, Constraints, 18(2), 269–305, (2013).

[14] C. Sinz and A. Haag, ‘Configuration’, IEEE Intelligent Systems, 22(1),
78–90, (2007).

[15] T. Soininen, I. Niemelä, J. Tiihonen, and R. Sulonen, ‘Representing
configuration knowledge with weight constraint rules’, in Proceedings
of the Workshop on ASP, pp. 195–201, (2001).

[16] M. Stumptner, ‘An overview of knowledge-based configuration’, AI
Communications, 10(2), 111–125, (1997).

[17] E. C. Teppan, G. Friedrich, and A. A. Falkner, ‘QuickPup: A Heuristic
Backtracking Algorithm for the Partner Units Configuration Problem’,
in Proceedings of IAAI, pp. 2329–2334, (2012).

[18] J. Tiihonen, M. Heiskala, A. Anderson, and T. Soininen, ‘WeCoTin -
A practical logic-based sales configurator’, AI Communications, 26(1),
99–131, (2013).

[19] Etsuji Tomita and Toshikatsu Kameda, ‘An efficient branch-and-bound
algorithm for finding a maximum clique with computational experi-
ments’, Journal of Global Optimization, 37(1), 95–111, (2007).

Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria

59


	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\CWS-2015-Proceedings-full-v0.993.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\01_Confws-15_submission_14.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\02_Confws-15_submission_3.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\03_Confws-15_submission_16.pdf
	1 INTRODUCTION
	2 LITERATURE REVIEW
	3 CASE STUDY
	3.1 Background
	3.2 Analysis of the Company’s Performance Before and After Implementation of Configuration Systems
	3.2.1 Analysis of Cost Structure and Deviations
	3.2.2 Reasons for the deviations

	3.3 Comparison of Budgetary Proposals Made in Excel and PCS
	3.3.1 Sales Representatives and CR

	3.4 Future Initiatives

	4 CONCLUSIONS
	5 DISCUSSION AND FUTURE RESEARCH
	REFERENCES

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\04_Confws-15_submission_20.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\05_Confws-15_submission_18.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\06_Confws-15_submission_22.pdf
	Introduction
	Related Work
	Intelligent Support for the Maintenance of Constraint-based systems
	Intelligent Recommendation
	Intelligent Anomaly Management
	Simulation
	Knowledge base Evaluation

	Summary

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\07_Confws-15_submission_23.pdf
	Introduction
	Preliminaries
	Challenges in the Development and Maintenance of Constraint-based systems
	Simulation
	Test Case generation
	Assignment-based anomaly management
	Constraint-based system development

	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\08_Confws-15_submission_7.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\09_Confws-15_submission_25.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\10_Confws-15_submission_17.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\11_Confws-15_submission_10.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\12_Confws-15_submission_6.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\13_Confws-15_submission_5.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\14_Confws-15_submission_24.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\15_Confws-15_submission_4.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\16_Confws-15_submission_8.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\17_Confws-15_submission_9.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\18_Confws-15_submission_2.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\19_Confws-15_submission_26.pdf
	Introduction
	Configuration Knowledge Base
	A GQM model for Configuration Knowledge Bases
	Goals for Configuration Knowledge Bases
	Questions for Configuration Knowledge Bases
	Metrics for Configuration Knowledge Bases

	Discussion
	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\20_Confws-15_submission_11.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\21_Confws-15_submission_15.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\new versions\Intelligent_Support_UTF8.pdf
	Introduction
	Related Work
	Intelligent Support for the Maintenance of Constraint-based systems
	Intelligent Recommendation
	Intelligent Anomaly Management
	Simulation
	Knowledge base Evaluation

	Summary

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\new versions\Simulation_UTF8.pdf
	Introduction
	Preliminaries
	Challenges in the Development and Maintenance of Constraint-based systems
	Simulation
	Test Case generation
	Assignment-based anomaly management
	Constraint-based system development

	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\new versions\Metrics_UTF8.pdf
	Introduction
	Configuration Knowledge Base
	A GQM model for Configuration Knowledge Bases
	Goals for Configuration Knowledge Bases
	Questions for Configuration Knowledge Bases
	Metrics for Configuration Knowledge Bases

	Discussion
	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\AustriaLatest\Simulation_Reinfrank_Ninaus_Wotawa_Felfernig.pdf
	Introduction
	Preliminaries
	Challenges in the Development and Maintenance of Constraint-based Configuration Systems
	Simulation
	Test Case generation
	Assignment-based anomaly management
	Constraint-based configuration system development

	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\AustriaLatest\Summary_Reinfrank_Ninaus_Wotawa_Felfernig.pdf
	Introduction
	Related Work
	Intelligent Support for the Maintenance of Constraint-based configuration systems
	Intelligent Recommendation
	Intelligent Anomaly Management
	Simulation
	Knowledge base Evaluation

	Summary



