
Arc Consistency with Negative Variant Tables
Albert Haag1

Abstract. In this paper I discuss a fundamental difference between
positive and negative variant tables (tables listing excluded combi-
nations) from the viewpoint of a modeler. I provide an approach to
achieving arc consistency with negative tables that can be integrated
into an existing configurator that already implements methods for
arc consistency. I also provide a simple necessary condition to test
whether a further restriction of given domains is possible using a neg-
ative table. As a positive table is equivalent to a negative table repre-
senting the complement, this condition test also applies for positive
tables that have a small complement. I refer to this process as double
negation. A prototypical implementation in Java exists that covers
the work described both here and in [6]. I present aggregated results
of applying double negation to variant tables from real product test
data in [6]. This also validates the overall functional correctness of
the entire approach.

1 Introduction
Tabular data are an important element of product configuration mod-
els. In the context of the SAP Variant Configurator - SAP VC [3] a
table that lists valid combinations of product properties is referred to
as a variant table. The number of columns of a variant table is called
its arity. Each column of the table is mapped to a product property,
e.g., Color.

The simplest form of a product model is just as one single variant
table. The term variant table derives from this. Table 1, below is
an example of a variant table that completely describes the model
of a configurable t-shirt by listing all variants. The t-shirt has three
properties Color, Size, and Print2. Given the values that appear in
the table3 it is evident that 11 of possible 24 combinations have been
selected as valid for configuration. I expand on this model in Section
3.

Now, SAP customers have long requested the ability to also main-
tain tables of disallowed (excluded) combinations of product proper-
ties. These would be called negative variant tables.

Whereas, a positive table implicitly defines a bound on the overall
(global) domains of the associated properties4, this is different for a
negative variant table. There are at least two interpretations of the
motivation for maintaining a negative table:

1. The persons maintaining a negative table are aware of overall
(global) domains for the affected product properties. The negative
form of the table is merely chosen as shorthand for maintaining
the complement of an otherwise very large positive table.

1 SAP SE, Germany, email: albert.haag@t-online.de
2 The example is taken from [1]. I use and extend it both here and in [6]
3 I have kept the shorthand codes of MIB (for “Men in Black”) and STW

(for “Save the Whales”) used in [1]
4 That is to say, for a positive table a value that does not occur in a particular

table column can be removed from the domain of the property associated
with that column

Table 1. Variant table for a simple configurable t-shirt

Color Size Print
Black Small MIB
Black Medium MIB
Black Large MIB
Black Medium STW
Black Large STW
Red Medium STW
Red Large STW
White Medium STW
White Large STW
Blue Medium STW
Blue Large STW

2. The persons maintaining the table are expressing exclusions com-
pletely independently of any thought of what the affected property
domains might be.

One obvious way of dealing with negative variant tables that per-
tains to the first case is to provide support for complementing the ta-
ble with respect to global domains of the product properties at main-
tenance time5. Note that it is not possible to calculate the complement
to the global domains if these are unconstrained6.

I shall focus on the second case as requests by SAP customers
clearly indicate this setting. Then, it is not legal to complement a
negative table at maintenance time with regard to the global domains
even if these are finite, because they may change after the table was
maintained. The table may have its own update cycle and should,
therefore, not need to be touched each time a global domain changes.

In knowledge-based configuration variant tables function as table
constraints. The extensional form of a table constraint (explicitly list-
ing all tuples of values implied by the table) closely corresponds to
the relational form of a variant table (directly storing the variant ta-
ble transparently in a relational database7). Each value aij (where i
is the index of the row, and j is the index of the column) that occurs
in a table cell states a Boolean proposition pij that the corresponding
mapped property vj is assigned to that value (pij |= (vj = aij)).
In this case, a row ri in the variant table directly maps to a tuple
of propositions τi in the associated table constraint representing the

5 If the challenge lies in the large size of the positive variant table, offering
maintenance of the table directly in a compressed format is another option.
Compressions of Table 1 are depicted in [6]. For the SAP VC some support
is provided for complementing tables at maintenance time and maintain-
ing tables in non-extensional form, i.e., with cells containing non-atomic
entities such as real-valued intervals or sets of values

6 Unconstrained domains are not that common in traditional business settings,
but they do occur. For real-valued numeric properties the global domains
may often be (bounded/unbounded) continuous intervals

7 In this case, the table cells will contain only atomic values (Strings or num-
bers)

81 Juha Tiihonen, Andreas Falkner, and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria

conjunction of its elements, i.e., for fixed row index i and arity k
ri = (ai1, . . . , aik) and τi = (pi1, . . . , pik) |= pi1 ∧ . . . ∧ pik.

A central form of constraint evaluation is propagation to achieve
arc consistency, which removes any values from the current domains
of the properties constrained by the variant table that are not sup-
ported in the intersection of the table with these domains. This is a
proven way in practice to limit the choices available to the user in
interactive configuration. I refer to this simply as constraint propaga-
tion in the sequel8.

In this paper, I do not propose an own algorithm for constraint
propagation with negative tables9. Rather, I assume that a configura-
tor will already implement constraint propagation for positive tables,
but it may not implement a corresponding algorithm (such as [9]) for
negative table constraints10.

A tuple representing a disallowed combination of propositions
(p1, . . . , pk) in a negative variant table of arity k allows k obvious
inferences:

pj1 ∧ . . . ∧ pjk−1 → ¬pjk (1)

These could be applied at run-time if and where the configurator sup-
ports it, e.g., where it is possible to remove a value from a domain in
a way that can be represented in the configurator11.

In this paper, I characterize what can be achieved using pre-
existing means of constraint propagation beyond (1) with negative
tables that are maintained independently from the global domains
for the mapped properties. I give a condition that can be tested during
evaluation to determine if further restrictions via constraint propaga-
tion are possible (Section 4). The condition states that at least all but
one of the domains must be sufficiently restricted in order to achieve
further filtering with the negative variant table. In a way, this general-
izes (1), which states that an inference is possible if all but one value
assignments are known.

The condition test rests on the fact that the solution set of a nega-
tive variant table with arity k can be easily decomposed at run-time
into k + 1 disjoint parts, of which k are in the form of Cartesian
products (referred to as c-tuples in Section 2.2). This decomposition
is one of the results presented in this paper and applies independently
and on top of the methods implemented in the configurator for arc
consistency.

A positive variant table can be transformed into a negative one by
negating (complementing) it. When processing this negative table the
table is logically negated again, yielding an identical solution set, but
not an identical structure to the original table. I refer to this as double
negation, and discuss it as one possible approach to compression in
Section 5. Otherwise, compression of variant tables is a topic I deal
with in [6].

I distinguish between information known to the modeler at the
time the variant table is maintained (maintenance-time) from infor-
mation known when configuring the product (run-time). Some cal-
culations can already be performed at maintenance-time, others best

8 I am only concerned with the propagation on each table constraint individ-
ually. The question of how to achieve overall arc consistency and how to
resolve inconsistencies is up to the methods pre-implemented in the con-
figurator. The SAP VC, for example, does not backtrack, but performs con-
straint propagation via forward filtering

9 The implementation is part of a prototype for exploring the compression
approach in [6]. This also handles negative variant tables, and thus an own
approach is implicit in that context

10 If it does implement such an algorithm, then the algorithm itself implicitly
involves calculating the complement to the domains known at run-time

11 This will not be the case when the run-time domain is unconstrained,
but then all methods of dealing with negative tables referred to cannot be
meaningfully applied

at run-time. It is important that run-time operations do not impede
the overall performance of the configurator. Maintenance-time oper-
ations should be performant as well, but this is less critical.

In Section 2, I introduce the notation and some formalisms. Sec-
tion 3 uses the product model of a t-shirt taken from [1] (Table 1) to
illustrate the concepts. As already mentioned, Sections 4 and 5 deal
with deriving the necessary condition test and with double negation,
respectively. In Section 6, I comment on the status of the implemen-
tation. I conclude with some further observations in Section 7.

Finally, a disclaimer: While the motivation for this work lies in my
past at SAP and is based on insights and experiences with the prod-
uct configurators there [3, 5], all work on this paper was performed
privately during the last two years after transition into partial retire-
ment. The implementation is neither endorsed by SAP nor does it
reflect ongoing SAP development.

2 Framework

My scope here is restricted to the problem of constraint propagation
with negative tables. I construct a framework for this that is based on
operations with sets. After an overview of the basic framework, I de-
fine the relevant sets in Section 2.1, and present the actual framework
I use for negative variant tables in Section 2.2.

A variant table T is characterized as follows: its arity expresses
how many columns it has. The columns are indexed with j : 1 ≤
j ≤ k, where k is the arity. Each column is mapped to a product
property, vj . I assume T to be in relational form, i.e., each table
cell contains an atomic value (a string or number). Variant tables that
allow intervals or wild cards in cells are not directly representable in
relational form. Many of the results here could be extended to cover
this case, but I consider it out of scope here.

I view a variant table T in its role as a constraint only12. In the
language of constraints the product properties mapped to the columns
of the variant table are the constraint variables. I continue to refer
to them as product properties. The assumed relational form of the
variant table simplifies the correspondence between a table cell aij
(where i is the index of the row, and j is the index of the column) and
a value assignment vj = aij . Thus each row directly corresponds
to a value assignment tuple (v1 = a1, . . . , vk = ak). In its role
as a constraint, each row in T expresses a k-tuple of valid value
assignments.

Each product property, vj , has a domain. The domain known at
maintenance-time for vj is called the global domain, Ωj , which
may be unconstrained (infinite) if unknown (or otherwise infinite
as would be the case for a continuous interval). For negative vari-
ant tables, I treat global domains as unconstrained, as discussed in
Section 1. I refer to a domain known at run-time for vj as a run-time
restriction, Rj , even if it also unconstrained or infinite.

I assume that the configurator already implements constraint prop-
agation methods for arc consistency, e.g., implements some form of
a GAC algorithm [2, 8]. As a consequence, I do not delve into the
details of any particular GAC algorithms here13.

The following example illustrates the concepts introduced so far,
albeit for a positive variant table. Examples for negative variant tables
are constructed in Section 3.

12 In the SAP VC configurator variant tables are also used in procedural
fashion, e.g., in “rules”

13 If the configurator also already implements some form of arc consistency
with negative table constraints such as [9], the basic approach will still
apply. I shall indicate what differences must then be observed in the appro-
priate places, below

82Juha Tiihonen, Andreas Falkner, and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop
September 10-11, 2015, Vienna, Austria

Example 1 Table 1 is a positive variant table of t-shirt variants.
Looking at this table, the global domains are

• {Black,Blue,Red,White} for the product property “Color”,
denoted by v1

• {Large,Medium, Small} for the product property “Size”, de-
noted by v2

• {MIB,STW} for the product property “Print”, denoted by v3

If the customer wants a red t-shirt, but specifies nothing else, then
the run-time restrictions are

• R1 = {Red} for the product property “Color”
• R2 = {Large,Medium, Small} for the product property

“Size”
• R3 = {MIB,STW} for the product property “Print”

A GAC algorithm can then further restrict the domains of the prop-
erty “Size” to {Large,Medium} and of the property “Print” to
{STW}. (There are only two rows in the table involving the color
“Red”.)

2.1 Definitions and Notation of Relevant Sets
Let T denote a variant table of arity k for product properties
v1 . . . vk. These are the product properties that are related via T as a
constraint, and the only properties to consider when looking at T in
isolation, but their existence is not directly tied to T . Let Ω1 . . .Ωk
be known global domains of v1 . . . vk. I define the solution space, Ω,
as

Ω := Ω1 × . . .× Ωk (2)

Any subset of the solutions space consisting of valid tuples defines
a constraint relation on v1 . . . vk. In particular, ST , the set of valid
tuples defined by T , is a subset of Ω. If T is in relational (extensive)
form, then ST = T for a positive table, and ST = Ω \ T for a
negative table. I refer to ST as the solution set of T . Generally, a
solution set as defined above may not be finite.

Let τ = (τ1, . . . , τk) ∈ Ω denote a tuple in the solution space.
Given any X ⊆ Ω, I define the j-th column domain of X as

πj(X) :=
⋃
τ∈X

{τj} (3)

I call πj(X) the projection of X onto the j-th component, and define
the projection or constraint propagation operator π as:

π(X) := π1(X)× . . .× πk(X) (4)

The complement of a column domain πj(X) with respect to a
run-time restriction Rj plays a central role in the decomposition in
Section 2.2. Hence, I find it convenient to abbreviate its notation as:

πj(X)
R

:= Rj \ πj(X) (5)

For notational convenience I refer to any set C ⊆ Ω that is a
Cartesian product C = C1 × . . . × Ck as a c-tuple. All of the fol-
lowing are c-tuples

• Ω itself
• π(X) the tuple of column domains for in (4)
• the tuple of run-time restrictions, denoted by

R = R1 × . . .×Rk

I refer to R as a whole as as a run-time restriction tuple

In Example 1 it can be seen that it is possible to eliminate
{Small} and {MIB} after deciding on a red t-shirt. This is the ba-
sic inference of arc consistency, which I refer to as constraint propa-
gation: filtering out values that are no-longer part of any valid tuple.

Given a run-time restriction tuple R and a variant table T with
solution set ST , then the set of remaining valid tuples is R ∩ ST .
I abbreviate the solution set SR∩S

T
by ST ,R. If T is positive, then

ST ,R = T ∩R. If T is negative, then ST ,R = R \ T .
Constraint propagation restricts the run-time restrictions Rj to

πj(R ∩ ST).

2.2 Negative Variant Tables
For clarity, I denote a negative variant table by U . I take U to be
in relational form and have arity k. The complement of U with re-
spect to π(U) is a positive table constraint that can be calculated at
maintenance-time and depends only on U itself. I denote this com-
plement by U

U = π(U) \ U (6)

Note that U = ∅ by construction if U has only a single line, be-
cause then π(U) = U .

Given a run-time restriction tuple R, the solution set of U ∧ R
is SU,R = R \ U . This can be decomposed into two disjoint parts
(either of which may be empty, see Section 3 for examples):

SU,R = (R \ π(U)) ∪· (U ∩R) (7)

The first part (R \ π(U)) is just R with the c-tuple spanning all
values that occur in U removed. The second part then re-adds all
tuples in π(U) that occur both in U and R.

The second part (U ∩R) is just the solution set of U ∧R. As U is
a positive variant table, this can be processed by the means available
to the configurator14.

The first part (R \ π(U)) can be decomposed into k disjoint c-
tuples CU,Rj as follows (see Proposition 2):

CU,R1 = π1(U)
R
×R2 ×R3 × . . .×Rk

CU,R2 = π1(U)× π2(U)
R
×R3 × . . .×Rk

· · ·

CU,Rk = π1(U)× π2(U)× π3(U)× . . .× πk(U)
R

(8)

or more explicitly for the omitted rows 2 < j < k:

CU,Rj = (π1(U)× . . .×πj−1(U))×πj(U)
R
× (Rj+1× . . .×Rk)

Proposition 2 (R\π(U)) in (7) can be decomposed into the disjoint
union15 (8) for an arbitrary ordering of the columns.

Proof
Each CU,Rj is a subset of R by construction.

The j-th component of CU,Rj is πj(U)
R

. This is disjoint to πj(U).
So CU,Rj is disjoint to all CU,Rp ∀j < p ≤ k.
No tuple x ∈ π(U) is in any CU,Rj , because x ∈ CU,Rj ⇒ xj ∈
πj(U)

R
⇒ xj /∈ πj(U)⇒ x /∈ π(U).

14 If the configurator implements an algorithm for negative GAC such as [9],
then U need not be explicitly calculated. Processing would not be affected
for this part

15 I exclusively use the term disjoint union to refer to a union of disjoint sets
[4]. I denote the disjoint union of two sets A and B by A ∪· B, which
implies that A ∩B = ∅

83 Juha Tiihonen, Andreas Falkner, and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria

For all other tuples y ∈ R, there is at least one component with
yj /∈ πj(U). Let j∗ denote the smallest such index. Then, it follows
by construction that y ∈ CU,Rj∗ , because ∀p < j∗ : yp ∈ πp(U),

yj∗ ∈ πj∗(U)
R

, and ∀p > j∗ : yp ∈ Rp.

The decomposition (8) is meaningful, because if (R \ π(U)), the
first part in (7), does not allow further constraint propagation, then
the GAC algorithm need not be applied for U ∩R in the second part
at all. (All values in R are allowed by the first part.) I give a simple
criteria for when this is the case in Section 4. This is a necessary
precondition for a further reduction. Generally, it is easy to perform
constraint propagation on a constraint that is a c-tuple16.

3 Examples
I base my examples on the t-shirt model I introduced in Table 1. The
global domains are listed in Example 1. In a real application setting,
Table 1 would be used as the product model as is. For purposes of ex-
position here, I assume that the model evolves over time and further
colors, sizes, and prints might be added in later model updates along
with associated constraints. The restriction to the initial 11 valid tu-
ples in Table 1 implements constraints to the effect thatMIB implies
Black and STW implies ¬Small.

In this section, I use U to denote a negative variant table, and T to
denote a positive one.

3.1 T-Shirt Example: STW
The constraint STW → ¬Small in the t-shirt example can be for-
mulated as a single exclusion, yielding a negative variant table U
with one row, k = 2, v1 = Print, and v2 = Size

U =
(
STW small

)
As noted, U = ∅.
Assume that the restricted domains at run-time are just the global

domains, i.e., R1 = Ω1 (property Print) and R2 = Ω2 (Prop-
erty Size). Then, the solution set SU,R is directly given by the de-
composition (8) of the first term in (7)17. This means that π1(U) =
{STW}, π2(U) = {Small} and:

CU,R1 r = {MIB} × {Large,Medium, Small}

CU,R2 = {STW} × {Large,Medium}
(9)

The solution set is the five tuples in (9):

(MIB,Large), (MIB,Medium), (MIB,Small),

(STW,Large), (STW,Medium)

Constraint propagation does not produce a domain reduction (ver-
ifiable by inspection).

If, instead, the domain restriction for v2 at run-time is R2 =
{Small} (but still R1 = Ω1), then

CU,R1 = {MIB} × {Small}

CU,R2 = ∅ (= {STW} × ({Small} \ {Small}))

The solution set is now the tuple (MIB,Small). Constraint prop-
agation produces a domain reduction of R1 to {MIB}.
16 Constraint propagation on a solution set in the form of a c-tuple means

intersecting the c-tuple with the given run-time restriction tuple R. In a
product configuration context the values will most often be ordered. Hence,
set operations can use binary search and are relatively efficient

17 The unaffected property Color could take any value. I take this up in Sec-
tion 3.5

3.2 T-Shirt Example: MIB

The constraint MIB → Black in the t-shirt example could be for-
mulated as three exclusions against the original global domain of
the property Color yielding a negative variant table with three rows,
k = 2, v1 = Print, and v2 = Color:

U =

MIB Red
MIB White
MIB Blue

Using the global domains given in Example 1, this means that

π1(U) = {MIB} and π2(U) = {Red,White,Blue}:

CU,R1 = {STW} × {Black,Red,White,Blue}

CU,R2 = {MIB} × {Black}
(10)

It still holds that U = ∅. So the solution set is still directly given
by the first component in (7) and its decomposition in (8), and it
follows from (10) that there are five tuples in the solution set. Again,
constraint propagation does not produce a domain reduction.

If, instead, the domain restriction for v2 at run-time is R2 =
{Red,Blue} (but still R1 = Ω1), then

CU,R1 = {STW} × {Red,Blue}

CU,R2 = ∅ (= {MIB} × ({Red,Blue} \ π2(U)))

The solution set SU,R is now two tuples (STW,Red) and
(STW,Blue). Constraint propagation produces a domain reduction
of R1 to {STW}

3.3 Original T-Shirt Example in a Single Negative
Table U

In the sequel, the order of the complete set of constraint variables is
v1 = Color, v2 = Size, v3 = Print.

Let T be the variant table of the t-shirt in its original positive form
given in Table 1. T has 11 solutions out of a possible 24. Thus com-
plementing the table with respect to the global domains in Example
1 yields a negative table U with thirteen rows, k = 3, and

U =

Black Small STW
Red Small MIB
Red Medium MIB
Red Large MIB
Red Small STW
White Small MIB
White Medium MIB
White Large MIB
White Small STW
Blue Small MIB
Blue Medium MIB
Blue Large MIB
Blue Small STW

Let R1 = Ω1 (Color), R2 = Ω2 (Size), and R3 = Ω3 (Print).

πj(U) = Rj for every j, therefore all πj(U)
R

= ∅, and all CU,Rj =

∅. In this case, T = U , and the tuples in Table 1 are just the solution
set.

84Juha Tiihonen, Andreas Falkner, and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop
September 10-11, 2015, Vienna, Austria

3.4 Extending the T-Shirt Model
3.4.1 Extending the Global Domains

First, assume that after U in Section 3.3 has been maintained, the
global domains of the properties are extended − without adding any
exclusions (U remains unchanged)18 − as follows:

• Y ellow and DarkPurple are added to Ω1 (Color)

Ω1 = {Black,Red,White,Blue, Y ellow,DarkPurple}

• XL and XXL are added to Ω2 (Size)

Ω2 = {Large,Medium, Small,XL,XXL}

• none is added to Ω3 (Print)

Ω3 = {MIB,STW,none}

Let the run-time domain restrictions reflect the changed global do-
mains R1 = Ω1, R2 = Ω2, and R3 = Ω3. Since U is not changed,
π(U) does not change either. It still holds that

π1(U) = {Black,Red,White,Blue}
π2(U) = {Large,Medium, Small}
π3(U) = {MIB,STW}

Hence, U is not changed either (still equal to Table 1), and with

π1(U)
R

= {Y ellow,DarkPurple}

π2(U)
R

= {XL,XXL}

π3(U)
R

= {none}

(8) now yields

CU,R1 = {Y ellow,DarkPurple} ×R2 ×R3

CU,R2 = π1(U)× {XXL,XL} ×R3

CU,R3 = π1(U)× π2(U)× {none}

(11)

In this example, both components R \ π(U) and U ∩ R in (7) are
non-empty and contribute to the solution set SU,R.

Note that |R| = 6 × 5 × 3 = 90, and (looking at (11)) the total
number of solutions s for U is

s = |CU,R1 |+ |CU,R2 |+ |CU,R3 |+ |U| = 30 + 24 + 12 + 11 = 77

3.4.2 Extending the Constraints

If product management notices that Y ellow does not go with MIB,
then corresponding exclusions must be added to U . This can be done
in several ways. In this example, I assume that Y ellow and the cor-
responding exclusions are added before any of the other changes to
the domains are made19. Then, the global domain given in Example 1
for the product property Color, denoted by Ω1, is augmented by the

18 Leaving U unchanged implicitly changes the underlying positive con-
straints. It now no-longer holds that MIB → black, This is taken to
be an intended consequence of using a negative variant table in a product
model

19 This assumption is made to keep the example simple. The general problem
of achieving a good compression directly from a positive table is addressed
in [6]

value Y ellow, and Ω2 (Size) and Ω3 (Print) remain unchanged.
The following exclusions must be added to U in 3.3:

¬(Y ellow, Small,MIB)

¬(Y ellow,Medium,MIB)

¬(Y ellow, Large,MIB)

¬(Y ellow, Small, STW)

In this situation

π1(U) = {Y ellow,Black,Red,White,Blue}

changes, and U changes accordingly. Two values are added to allow
the color of Y ellow in sizes Large and Medium with the print
STW . So |U| = 13. (11) holds with the modified version of π1(U).
Again, both components in (7) contribute to the solution set SU,R,
and after adding all remaining new values

CU,R1 = {DarkPurple} ×R2 ×R3

CU,R2 = π1(U)× {XXL,XL} ×R3

CU,R3 = π1(U)× π2(U)× {none}

(12)

As above, |R| = 6×5×3 = 90. Looking at (12), the total number
of solutions s for U is now

s = 15 + 30 + 15 + 13 = 73

(The four new exclusions are subtracted from the solutions in Section
3.4.1)

3.5 Excursion on Table Compression

From Sections 3.1 and 3.2 it is clear that the t-shirt table can be ex-
pressed in much more compact form by looking at the two constraints
in two individual negative variant tables than at the single table in
Section 3.3. In both Sections 3.1 and 3.2, the solution set is defined
only by the decomposition of (R \ π(U)) into c-tuples. An overall
solution set can be obtained by expanding these solution sets to ac-
count for the respective unconstrained property, and then intersecting
the resulting two expanded solution sets.

Let the properties be ordered as v1 = Color, v2 = Size, and
v3 = Print, and the solution space Ω given by the global do-
mains in Example 1. In Section 3.1 the property v1 = Color is
unconstrained. Set π1(U) = Ω1 (which implies π1(U)

R
= ∅ for all

R ⊂ Ω). Then, the decomposition of R \ π(U) in (9) now results in
three c-tuples C′j(STW) (one of them empty by construction):

C′1(STW) := ∅ (= π1(U)
R
× Ω2 × Ω3)

C′2(STW) := Ω1 × {Large,Medium} × Ω3

C′3(STW) := Ω1 × {Small} × {MIB}
(13)

Similarly, for Section 3.2 (10) can be replaced by:

C′1(MIB) := {Black} × Ω2 × Ω3)

C′2(MIB) := ∅ (= {Black} × π2(U)
R
× Ω3)

C′3(MIB) := {Red,White,Blue} × Ω2 × {STW}

(14)

The solution set ST of the original positive T given in Table 1 is

85 Juha Tiihonen, Andreas Falkner, and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria

the intersection of the solution sets given by (13) and (14):

ST = C′2(STW) ∩ C′1(MIB) ∪
C′2(STW) ∩ C′3(MIB) ∪
C′3(STW) ∩ C′1(MIB) ∪
C′3(STW) ∩ C′3(MIB)

= {Black} × {Large,Medium} × Ω3 ∪
{Red,White,Blue} × {Large,Medium} × {STW} ∪
{Black} × {Small} × {MIB} ∪
∅ (= {Red,White,Blue} × {Small} × ∅)

The 11 tuples of T are represented as 3 c-tuples. The complexity
of this compares favorably with the MDD representation in [1] for
the same example. The representation also compares favorably with
the compression of the table to c-nodes introduced in [7] if a suit-
able heuristic is applied. Thus, it should be possible to recover this
compact representation from the full table. This is a topic of [6].

4 Arc Consistency for Negative Variant Tables

Let a negative table U of arity k and a finite run-time restriction tu-
ple R be given. (I assume in the sequel that πj(U)

R
is finite for all

columns.)
One approach at arc consistency with U is to use (7) directly at

run-time to discard any tuples in U from R constructing π(SU,R) at
the same time. The STR-Negative algorithm [9] is such an algorithm.

Here, I propose an alternative approach based on (7) and the de-
composition (8). As already noted, a further restriction of R is only
possible if the c-tuples in (8) allow a restriction. The lemma and its
corollary below provide a simple necessary condition for this.

Lemma 3 If πp(U)
R
6= ∅ for some column with index p, then ∀j 6=

p : πj(R ∩ SU) = Rj , i.e., no further reduction of any of the other
domains is possible by constraint propagation using U .

Proof Suppose that the premise of the lemma holds. Without loss of
generality, sort the columns such that p = 1. Then,

CU,R1 = π1(U)
R
×R2 ×R3 × . . .×Rk

Any value in π1(U)
R
6= ∅ supports all values in Rj for j ≥ 2.

This has a trivial but important consequence:

Corollary 4 If πj(U)
R
6= ∅ for more than one column, then no re-

duction of domains is possible by constraint propagation using U .

Lemma 3 and Corollary 4 generalize (1) to state that a reduction
via constraint propagation is possible, if at least all but one of the
domains are sufficiently restricted at run-time so that they lie within
the range of π(U), i.e., πj(U)

R
= ∅.

Recall that π(U) is determined when maintaining the variant table,
whereas R is only known at run-time.

The examples in Section 3 illustrate that either both or only one
of the components in (7) need to be considered at run-time. Let a
negative table U of arity k and a run-time restriction tupleR be given.
Then, three cases can happen:

1. U = ∅. In this case, arc consistency is obtained solely by com-
puting the decomposition (8) of k c-tuples at run-time. Constraint
propagation is achieved through directly intersecting these with
R in a way that quickly tests the precondition of Lemma 3 and
Corollary 4.

2. R \ π(U) = ∅. In this case, the GAC algorithm implemented in
the configurator is applied to U (or a GAC-negative algorithm is
applied to U if this seems better).

3. Both components (R \ π(U)) and U are non-empty. In this case,
the component (R\π(U)) is decomposed and processed as in the
first case, testing the pre-conditions in Lemma 3 and Corollary
4 at the same time. The constraint propagation methods of the
configurator need to be applied to U , if this is still indicated after
processing the first part.

5 Double Negation of a Positive Variant Table T
In the sequel, I take T to be a positive table. I denote the negation of
T as the negative table ¬T := π(T) \ T . Trimming any run-time
restrictions to π(T), ¬T (as a negative table) and T have the same
solution space, and constraint propagation on T can be replaced by
constraint propagation on ¬T . The approach seems advantageous,
if ¬T has a decomposition of the solution set (7) with a non-empty
first part (8), i.e., if ¬T is smaller than T . I refer to this approach as
double negation.

As an example, consider the extended model of the t-shirt as spec-
ified in Section 3.4.2. A representation as a positive table T has 73
tuples (rows) as inidicated there. Negating T against the extended
global domains yields a table ¬T with 17 rows. ¬T is just the table
U of Section 3.4.2 (and thus U there corresponds to ¬T here). Thus,
as outlined there, ¬T has a decomposition as in (7). It has 13 rows
and the c-tuples indicated in (12).

Double negation is not only an approach at compression for a table
with a small complement, but also allows applying Lemma 3 and
Corollary 4 as a simple test, before actually evaluating the remaining
doubly negated table ¬T . The process could be iterated, i.e., ¬T
could be doubly negated in turn. A fixed point occurs if T = ¬T .

6 Implementation/Work in Progress
I have implemented the approach for treating negative tables I de-
scribe here, including double negation, within a Java prototype ad-
dressing the greater context of compressing and compiling variant
tables [6].

As customers so far have not had the opportunity of maintaining
negative tables directly in product configuration models, I have no
real data to evaluate this approach. Experiences are currently limited
to testing for functional correctness. Besides testing with exemplary
tables such as variations of the t-shirt, I have applied the double nega-
tion approach to 238 SAP VC variant tables. These tables are also the
basis for the evaluation of the approach at compression in [6].

Complementing a sparse table is not feasible if the solution space
is large. The implementation performs complementation on a repre-
sentation I term a Variant Decision Diagram − VDD, and produces
a result in a compressed form (see [6]). I have so far limited attempts
at double negation to those of the 238 tables where the number of
tuples of the complement is smaller than the number of rows (tuples)
in the original (relational) table. The result is given in Table 2. All
tables where this criterium does not apply are counted as Skipped.
Of the remaining tables where double negation was attempted, those
where a reduction was realized (i.e., the VDD of T was larger than

86Juha Tiihonen, Andreas Falkner, and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop
September 10-11, 2015, Vienna, Austria

that of ¬T) are counted as Reduced. The total number of tables in
the model and the number of those neither skipped nor reduced are
given for completeness.

I give more detailed results of tests with the implementation in
[6]. As pointed out there, it is not yet clear whether double negation
yields a gain over the general compression approach.

Table 2. Tables amenable to double negation

Number of tables
Total Skipped Reduced Not reduced
238 181 39 18

7 Conclusion
I presented an approach to handling configuration constraints defined
by negative variant tables that can be integrated as an add-on to an
existing configurator, such as the SAP VC, with little risk. The origi-
nal mechanisms and architecture of the configurator are not touched.

SAP customers specifically request that a constraint for a negative
table not be sensitive to subsequent changes to the global domains
of the affected product properties. This approach meets that require-
ment. As the footnote to the example in Section 3.4.1 points out,
this may mean that some implicit positive constraints, valid before a
change to the global domains, may no-longer be valid afterwards.

This emphasizes a modeling aspect of the problem: Is it feasible
and beneficial to offer the option of negative variant tables as part
of the modeling environment in this fashion? This may be a tricky
question. The implemented prototype offers a means for experiment-
ing with the functionality, and thus a basis for discussing the merits
and demerits of negative variant tables.

One main idea, implicit in the approach, is to make use of the
distinction between information known at maintenance-time to the
modeler (the table content) and information known at run-time to the
configurator (the current domain restrictions). For a negative table U
the finite column domains πj(U) can be determined at maintenance
time. For a given run-time restriction of the domains R the comple-
ments of the column domains to R (denoted by πj(U)

R
) must be

calculated at run-time. This calculation is efficient, as the required
set-operations can make use of the natural order imposed on the do-
main values by the business context.

If more than one πj(U)
R

is non-empty at run-time, constraint
propagation does not yield a further restriction of the run-time do-
mains. If one πj(U)

R
is non-empty, then only the run-time restric-

tion for that column can be further restricted. When a restriction is
possible by constraint propagation, the GAC algorithm only needs
to be applied to the positive table U , the complement of U to π(U).
The remaining part of the solution set of U is the set-difference be-
tween two c-tuples (Cartesian products). I showed in Proposition 2
that such a set-difference can be decomposed into k disjoint c-tuples,
where k is the arity of U . Constraint propagation on c-tuples is again
based on set operations that are assumed to be efficient, given the
value ordering on the domains.

Of course, the approach also applies to the general case that neg-
ative tables are merely meant as a short-cut to maintaining an other-
wise lengthy positive variant table.

The approach can also be applied to a positive variant table T by
negating it, and treating its complement ¬T as a negative table. In

this process ¬T is negated again (¬T), which I refer to as double
negation. The purpose of double negation is that it may yield a ben-
eficial (partial) compression of the table, i.e., the table ¬T may be
smaller than T , with the remaining part of the solution set being a
set of k c-tuples that additionally allows testing whether constraint
propagation is possible at all for a given run-time restriction R.

ACKNOWLEDGEMENTS
I would like to thank all that took the time to comment on previous
versions of this paper, and have thus contributed to its current form.
This includes the anonymous reviewers, but also colleagues at SAP,
particularly Conrad Drescher and Andreas Krämer. I tired to incorpo-
rate all their suggestions. Any remaining flaws and dis-improvements
are solely my responsibility.

REFERENCES
[1] H.R. Andersen, T. Hadzic, and D. Pisinger, ‘Interactive cost configura-

tion over decision diagrams’, J. Artif. Intell. Res. (JAIR), 37, 99–139,
(2010).

[2] C. Bessiere, ‘Constraint propagation’, in Handbook of Constraint Pro-
gramming, eds., F. Rossi, P. van Beek, and T. Walsh, chapter 3, Elsevier,
(2006).

[3] U. Blumöhr, M. Münch, and M. Ukalovic, Variant Configuration with
SAP, second edition, SAP Press, Galileo Press, 2012.

[4] K. Ferland, Discrete Mathematics, Cengage Learning, 2008.
[5] A. Haag, ‘Chapter 27 - product configuration in sap: A retrospective’,

in Knowledge-Based Configuration, eds., Alexander Felfernig, Lothar
Hotz, Claire Bagley, and Juha Tiihonen, 319 – 337, Morgan Kaufmann,
Boston, (2014).

[6] A. Haag, ‘Column oriented compilation of variant tables’, in Proceed-
ings of the 17th International Configuration Workshop, Vienna, Austria,
September 10-11, 2015., pp. 89–96, (2015).

[7] G. Katsirelos and T. Walsh, ‘A compression algorithm for large arity
extensional constraints’, in Principles and Practice of Constraint Pro-
gramming - CP 2007, 13th International Conference, CP 2007, Prov-
idence, RI, USA, September 23-27, 2007, Proceedings, ed., Christian
Bessiere, volume 4741 of Lecture Notes in Computer Science, pp. 379–
393. Springer, (2007).

[8] C. Lecoutre, ‘STR2: optimized simple tabular reduction for table con-
straints’, Constraints, 16(4), 341–371, (2011).

[9] Honbo Li, Yanchun Liang, Jinsong Guo, and Zhanshan Li, ‘Making sim-
ple tabular reductionworks on negative table constraints’, in Proceed-
ings of the Twenty-Seventh AAAI Conference on Artificial Intelligence,
July 14-18, 2013, Bellevue, Washington, USA., eds., Marie desJardins
and Michael L. Littman. AAAI Press, (2013).

87 Juha Tiihonen, Andreas Falkner, and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\CWS-2015-Proceedings-full-v0.993.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\01_Confws-15_submission_14.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\02_Confws-15_submission_3.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\03_Confws-15_submission_16.pdf
	1 INTRODUCTION
	2 LITERATURE REVIEW
	3 CASE STUDY
	3.1 Background
	3.2 Analysis of the Company’s Performance Before and After Implementation of Configuration Systems
	3.2.1 Analysis of Cost Structure and Deviations
	3.2.2 Reasons for the deviations

	3.3 Comparison of Budgetary Proposals Made in Excel and PCS
	3.3.1 Sales Representatives and CR

	3.4 Future Initiatives

	4 CONCLUSIONS
	5 DISCUSSION AND FUTURE RESEARCH
	REFERENCES

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\04_Confws-15_submission_20.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\05_Confws-15_submission_18.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\06_Confws-15_submission_22.pdf
	Introduction
	Related Work
	Intelligent Support for the Maintenance of Constraint-based systems
	Intelligent Recommendation
	Intelligent Anomaly Management
	Simulation
	Knowledge base Evaluation

	Summary

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\07_Confws-15_submission_23.pdf
	Introduction
	Preliminaries
	Challenges in the Development and Maintenance of Constraint-based systems
	Simulation
	Test Case generation
	Assignment-based anomaly management
	Constraint-based system development

	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\08_Confws-15_submission_7.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\09_Confws-15_submission_25.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\10_Confws-15_submission_17.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\11_Confws-15_submission_10.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\12_Confws-15_submission_6.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\13_Confws-15_submission_5.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\14_Confws-15_submission_24.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\15_Confws-15_submission_4.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\16_Confws-15_submission_8.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\17_Confws-15_submission_9.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\18_Confws-15_submission_2.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\19_Confws-15_submission_26.pdf
	Introduction
	Configuration Knowledge Base
	A GQM model for Configuration Knowledge Bases
	Goals for Configuration Knowledge Bases
	Questions for Configuration Knowledge Bases
	Metrics for Configuration Knowledge Bases

	Discussion
	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\20_Confws-15_submission_11.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\21_Confws-15_submission_15.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\new versions\Intelligent_Support_UTF8.pdf
	Introduction
	Related Work
	Intelligent Support for the Maintenance of Constraint-based systems
	Intelligent Recommendation
	Intelligent Anomaly Management
	Simulation
	Knowledge base Evaluation

	Summary

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\new versions\Simulation_UTF8.pdf
	Introduction
	Preliminaries
	Challenges in the Development and Maintenance of Constraint-based systems
	Simulation
	Test Case generation
	Assignment-based anomaly management
	Constraint-based system development

	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\new versions\Metrics_UTF8.pdf
	Introduction
	Configuration Knowledge Base
	A GQM model for Configuration Knowledge Bases
	Goals for Configuration Knowledge Bases
	Questions for Configuration Knowledge Bases
	Metrics for Configuration Knowledge Bases

	Discussion
	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\AustriaLatest\Simulation_Reinfrank_Ninaus_Wotawa_Felfernig.pdf
	Introduction
	Preliminaries
	Challenges in the Development and Maintenance of Constraint-based Configuration Systems
	Simulation
	Test Case generation
	Assignment-based anomaly management
	Constraint-based configuration system development

	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\AustriaLatest\Summary_Reinfrank_Ninaus_Wotawa_Felfernig.pdf
	Introduction
	Related Work
	Intelligent Support for the Maintenance of Constraint-based configuration systems
	Intelligent Recommendation
	Intelligent Anomaly Management
	Simulation
	Knowledge base Evaluation

	Summary

