
Column Oriented Compilation of Variant Tables
Albert Haag1

Abstract. The objective of this work is to improve variant table
evaluation in a configurator by compiling/compressing the tables in-
dividually to reduce both processing time and space. The main re-
sult is a proposed simple heuristic for decomposing the variant table
into subtables and a representation linking these subtables in a di-
rected acyclic graph (DAG). The size of the compression obtained
by this heuristic for examples used in [2, 10] is comparable to that
achieved there. However, a formal analysis of complexity has not
yet been completed. A prototype implemented in Java exists. Objec-
tives in designing it were to keep it completely decoupled from any
particular configurator, while using little machinery in order to keep
software maintenance costs low. Testing both on abstract examples
and on tables that resemble real customer data is ongoing and looks
promising. Non-atomic table cells (such as real intervals, or value
sets) are supported. My approach to negative variant tables [8] has
been incorporated into the implementation.

1 Preamble
Following the usage of the SAP Variant Configurator - SAP VC [4] I
term a table that lists all valid combinations of properties of a product
as a variant table. One use of a variant table in configuration is as a
table constraint. However, variant tables and their maintenance by
modelers entail some special considerations that have implications
beyond what is formally captured by that concept:

• The product properties and the values referred to have a business
meaning outside of configuration. Value domains for a product
property are naturally maintained in a defined sort order

• Variant tables may be stored in a database table outside the model.
A data definition in a database management system (DBMS) may
exist that defines database keys etc.

• Tables will often be relational, i.e., table cells will be atomic val-
ues (strings or numbers), but non-atomic entries may occur 2

• Customers have the tendency to maintain large wide tables, i.e.,
normalization is often sacrificed in favor of fewer tables. In such
cases, compression techniques seem particularly advantageous

• A variant tables can have its own individual update cycle. The
overall model should not need to be compiled or otherwise pro-
cessed each time a change is made to a table

The relevant functionality a configurator has to provide regarding
variant tables is to

• restrict domains via contraint propagation (general arc consistency
GAC (see [3])), treating the variant table as a constraint relation.

1 SAP SE, Germany, email: albert.haag@t-online.de
2 The SAP VC allows real-valued intervals and and sets of values in table

cells. Such a table cannot be transparently stored as a relation table in a
DBMS

• query the table using a key defined in the DBMS
• iterate over the current solution set of the table given domain re-

strictions for the associated product properties

I assume that an existing (legacy) configurator has already imple-
mented this functionality. This will include means for efficiently test-
ing membership in a domain (memberp), testing if domains intersect
(intersectsp), and for calculating the intersection of domains (inter-
section).

2 Introduction and Notation
In [8] I look at tables that list excluded combinations of product prop-
erties. I term these negative variant tables. The techniques and the
associated prototypical implementation I present here cover that ap-
proach as well. Here, except in Section 7, I limit the exposition to
positive tables.

For simplicity, I take a positive variant table T to be given as a
relational table of values (atoms). I relax the assumption about T
being relational later in Section 3.3. If T has k columns and r rows
it is an r × k array of values: T =

(
aij
)

; i = 1 . . . r; j = 1 . . . k. k
is the arity of T . Each column is mapped to a product property such
as Color, Size, The product properties are denoted by vj : j =
1 . . . k.

Following notation in [8], I define the column domains πj(T) as
the set of all values occurring in the j-th column of T :3

πj(T) :=

r⋃
i=1

{aij ∈ T } (1)

I define sj as the number of elements in πj(T):

sj := |πj(T)| (2)

I call
π(T) := π1(T)× . . .× πk(T)

the global domain tuple for v1, . . . , vk and I denote a run-time do-
main restriction for the product property vj as Rj ⊆ πj(T).

For ease of notation, I refer to any subset of π(T) that is a Carte-
sian product as a c-tuple. Both π(T) itself and the tuple of run-time
restrictions R := R1 × . . .×Rk are c-tuples.
T can be seen as a set of value tuples and, as such, T ⊆ π(T),

but T is not necessarily a c-tuple. In the special case that T itself is
a c-tuple4, i.e., T = π1(T)× . . .× πj(T), then

s :=
k∑
j=1

sj (3)

3 πj(T) can be seen as the projection of T for the j-th column
4 In this case, it holds that for any given c- tuple (run-time restriction) R

π(T ∩R) = T ∩R

89 Juha Tiihonen, Andreas Falkner, and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria

values suffice to represent the N := (
∏k
j=1 sj) tuples in T . In this

case, the c-tuple π(T) is a compressed way of representing the ar-
ray aij . This observation is central to attempts to compress a given
table into a disjoint union5 of as few as possible c-tuples. It has been
utilized in various other work. Notably, I cite [10, 6] in this context.

When T is viewed as a constraint relation, v1 . . . vk are just the
constraint variables, and each value x ∈ πj(T) maps to a propo-
sition p(vj , x) that states that vj can be consistently assigned to x:
p(vj , x) |= (vj = x). In this case, a row (tuple) ri in T directly maps
to a conjunction of such propositions: ri = (ai1, . . . , aik) |= τi :=
p(v1, ai1)∧ . . .∧ p(vk, aik), and T itself represents the disjunction:

T |=
r∨
i=1

τi.

Given the definition of s in (3), there are s distinct propositions
associated with T , one for each value in each πj(T). Hence, given
any value assignment to these s propositions, T , seen as a logical
expression implementing the constraint relation, will evaluate to 1
(>/true) or 0 (⊥/false), and T defines a Boolean function:

F : 2π1(T)×...πk(T) → {0, 1} (4)

F can be represented by a BDD (Ordered Binary Decision Diagram)
or one of its cousins [12]. BDDs have the enticing property that find-
ing the right ordering of their Boolean variables (the propositions
p(vj , x)) can lead to a very compact representation. Furthermore,
this representation can potentially be found by existing agnostic op-
timization algorithms. The complexity of this optimization is high,
and heuristics are employed in practice. The construction of an op-
timal BDD is not suitable for configuration run-time, but must be
performed in advance. Hence, this approach is referred to as a compi-
lation approach. For configuration, this has been pursued in [9]. The
approach using multi-valued decision diagrams (MDD) [2] is related
to the BDD approach. Zero-Suppressed decision diagrams (ZDDs)
[12] are another flavor of BDD, which I refer to again below.

From a database point of view, approaches based on compression
that allow fast reading but slow writing have been developed, among
them column-oriented databases [14]. The SAP HANA database sup-
ports column orientation as well. My work, here, is not directly based
on database techniques, although thinking about column-orientation
was the trigger for the heuristics detailed in Section 46.

Both the BDD approaches and the database approaches entail a
maintenance-time transformation into a compact representation that
facilitates run-time evaluation, and both strive for a compact repre-
sentation (“hard to write, easy to read”). This would also apply to
various approaches at identifying c-tuple subsets of T whether with
the explicit notion of achieving compression [10] or of simply speed-
ing up constraint propagation (GAC) algorithms [6].

Thus, all these approaches could be termed as compression or
compilation or as both. Indeed, I conjecture that the ultimately
achievable results to be more or less identical, up to differences
forced by the respective formalism, which may be unfavorable in
some circumstances. For example, my experiences suggest that a
BDD may be less suitable than a ZDD for compiling a single table
constraint, because in the latter propositions need only be represented
where they occur in positive form (see [12]). The approach I follow
here is motivated by looking at ways of decomposing a table into

5 I exclusively use the term disjoint union to refer to a union of disjoint sets
[5]. I denote the disjoint union of two setsA andB byA∪· B which implies
that A ∩B = ∅

6 It would be interesting to investigate whether a column-oriented database
could in itself be beneficially employed in this context. This was proposed
by colleague at SAP some time ago, but has not been followed up on

disjoint subtables based on a particular heuristic.
In Section 3, I introduce the basic approach to decomposing a ta-

ble. In Section 4, I discuss the heuristic. My running example is a
(single) variant table listing all variants of a t-shirt. The example is
taken and adapted further from [2]. The t-shirt has three properties
Color (v1), Size (v2), and Print (v3) with global domains:

• π1(T) := {Black,Blue,Red,White}
• π2(T) := {Large,Medium, Small}
• π3(T) := {MIB(Men in Black), STW (Save the Whales)}

Of the 24 possible t-shirts only 11 are valid due to constraints that
state that MIB implies black and STW implies ¬small as de-
picted in table (1). In Section 5, I extend this example to be slightly
more complex.

I have implemented a prototype in Java that meets the functionality
requirements listed above. Here, I refer to it as the VDD prototype. It
functions standalone, independent of any particular configurator. A
feature of this implementation is that it can be selectively applied to
some tables, while processing others with the existing means of the
configurator. Results obtained using this prototype validate the ap-
proach (see Section 6). In Section 7, I comment on results for double
negation of variant tables, an approach I develop in [8]. Real run-
time performance evaluations have not been done, but in Section 8
I discuss what results I have. I close this paper with an outlook and
conclusions (Section 9).

Finally, a disclaimer: While the motivation for this work lies in my
past at SAP and is based on insights and experiences with the prod-
uct configurators there [4, 7], all work on this paper was performed
privately during the last two years after transition into partial retire-
ment. The implementation is neither endorsed by SAP nor does it
reflect ongoing SAP development.

3 Decomposition

3.1 Column Oriented Decomposition

Let s be defined as in (3). Given a table T of arity k with r rows
ri = (ai1, . . . , aik) and selecting one of the s propositions p(vj , x)
associated with T , then T can be decomposed into those rows in
which x occurs in column j and those where it doesn’t. Define
L(T , j, x) as the sub-table of T consisting of those rows that do
not reference p(vj , x):

L(T , j, x) := {ri = (ai1, . . . , aik) ∈ T | aij 6= x} (5)

L(T , j, x) has the same arity k as T . In the complementary sub-
table T \ L(T , j, x) all values in the j-th column are equal to x
by construction. Define R(T , j, x) as the sub-table of arity (k − 1)
obtained by removing the j-th column from T \ L(T , j, x):

R(T , j, x) := {(aih) ⊂ (T \ L(T , j, x)) | h 6= j} (6)

Given a table T and a proposition p(vj , x) associated with T , then
I call L(T , j, x) defined in (5) the left sub-table of T andR(T , j, x)
defined in (6) the right sub-table of T . Either L(T , j, x) and/or
R(T , j, x) may be empty.

The variant table of the 11 variants of the t-shirt example is shown
in Table 1. It illustrates a decomposition of this table table based
on the proposition p(v2,Medium). L(T , 2,Medium) is in bold-
face, andR(T , 2,Medium) is underlined. (The value block of cells
{ai2 ∈ T | ai2 = Medium} is in italics.)

90Juha Tiihonen, Andreas Falkner, and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop
September 10-11, 2015, Vienna, Austria

Table 1. Basic decomposition of a table

Color Size Print
Black Small MIB
Black Medium MIB
Black Large MIB
Black Medium STW
Black Large STW
White Medium STW
White Large STW
Red Medium STW
Red Large STW
Blue Medium STW
Blue Large STW
Blue Small STW

The decomposition process can be continued until only empty sub-
tables remain. The question, which propostion (value block) to de-
compose on next at each non-empty subtable will depend a suitable
heuristic (see Section 4).

3.2 Variant Decision Diagram - VDD

A variant table can be represented as a decomposition tree. The root
represents the entire table. It is labeled with a first chosen proposition
p(vj1 , x1). It has two children. One, termed the left child, represents
the left sub-tableL(T , j1, x1). The other, termed the right child, rep-
resents the right sub-table R(T , j1, x1). Each of these children can
in turn have children if it can be decomposed further. An empty left
child is labeled by a special symbol ⊥. An empty right child is la-
beled by a special symbol >. (All leaves of a decomposition tree are
labeled either by ⊥ or >.) Figure 1 shows a graphic depiction7. It
also shows the further decomposition of R(T , j1, x1), here indicat-
ing that it has two empty children.

B(T,j,x)

Left child: L(T,j, x) Right child: R(T,j,x)

⊥ ⊤

Figure 1. Basic scheme of a decomposition

Identical subtables may arise at different points in the decompo-
sition tree. A goal of minimal representation is to represent these
multiple occurrences only once by transforming the decomposition
tree into a directed acyclic graph (DAG), which I call a VDD or vari-
ant decision diagram. All leaves can be identified with one of two
predefined nodes also labeled ⊥ and >. Subsequently, all nodes la-
beled by the same proposition p(vj , x) that have identical children
are represented by re-using one shared node. This reduction can be
accomplished by an algorithm in the spirit of Algorithm R in [12].

7 For simplicity in creating the graph, the label of the root node is given as
B(T, j, x) for p(vj1 , x1)

Figure 2 shows an entire VDD8.9

⊥⊤

1:(2, Small)

2:(1, White)

4:(1, Black)

3:(3, STW)

3:(3, STW)

6:(3, MIB)

4:(1, Black)

4:(1, Black)

5:(2, Medium)

7:(2, Large)

5:(2, Medium)

5:(2, Medium)

7:(2, Large)

8:(1, Red) 6:(3, MIB)

9:(1, Blue)

Figure 2. VDD of t-shirt using heuristic h1 (Section 4)

In Figure 2 each node is labeled in the form 〈p : (j, val)〉,
where (j, val) is the column/value pair that denotes the proposition
p(vj , x), and p is a unique identifier for the node/proposition. The
identifiers are contiguously numbered. Thus, the set of propositions
for T can be seen as totally ordered according to this numbering. The
ordering underlying the graph in Figure 2 is

p(v2, Small), p(v1, x)White, p(v3, x)STW, p(v1, Black),

p(v2,Medium), p(v3,MIB), p(v2, Large), p(v1, Red),

p(v1, Blue)

Given that such a total ordering can be identified in the decompo-
sition, the resulting VDD may be seen as a ZDD (zero-suppressed
decision diagram) [12]. The gist of the algorithms for evaluation of
BDDs and their cousins given in [12], such as Algorithm C and Al-
gorithm B would apply. However, I have not made any verbatim use
of these so far.10

VDDs have certain special characteristics beyond ZDDs. A termi-
nal HI-link always leads to >, and a terminal LO-link always leads
to⊥. This and further characteristics that are ensured by the heuristic
h2 given in Algorithm 1 allow certain short-cuts in the implementa-
tion (see Sections 4 and 6).

8 By conventions established in [12], I term a link to the left child as a LO-
link, drawn with a dotted line, preferably to the left, and a link to the right
child as a HI-link, drawn with a filled line, preferably to the right. A LO-
link is followed when the proposition in the node label is disbelieved. A
HI-link is followed when it is believed. The terminal nodes ⊥ and > are
called sinks

9 The amount of compression achieved in figure 2 is not overwhelming. The
heuristic h2 does better (see figure 3)

10 Both heuristics h1 and h2 in Section 4 are designed to guarantee such an
ordering, but this is doesn’t seem essential to the VDD approach in general

91 Juha Tiihonen, Andreas Falkner, and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria

3.3 Set-labeled Nodes
There is an additional reduction of a VDD I have implemented as
an option. This is most easily described using the concept of an l-
chain. Define the subgraph composed of a node and all its descen-
dent nodes that can be reached from it following only LO-links as
the l-chain of the node11. Nodes in an l-chain that pertain to the
same column and have the same right child can be joined into a sin-
gle node. Let p(vj1 , x1), . . . , p(vh, xh) be the propositions in the
labels of members in an l-chain that can be joined. The resulting
combined node is labeled with the disjunction of these propositions:
P := p(vj1 , x1) ∨ . . . ∨ p(vh, xh). This disjunction is represented,

for short, by the (non-atomic) set of values X :=
h⋃
i=1

xh occurring

in P . In the sequel, I refer to a node by

ν(j,X) (7)

where j is the column index of the referenced product property vj ,
andX is the set of values represented by the node12. In case the node
label is a single atomic value {x}, I also denote this by ν(j, x).

Figure 3 is a graph of the t-shirt using set-labeled nodes13. It is not
a reduction of Figure 2, but rather a reduction of the graph in Figure
4 (see Section 4).

F T

1:(3, MIB)|7

2:(3, STW)|6

10:(2, [Large, Medium, Small])|312:(2, [Large, Medium])|5

6:(1, Black)|211:(1, [Black, Blue, Red, White])|4

Figure 3. VDD of t-shirt with set-labeled nodes

By inspection, the complexity of the graph in Figure 3 is compara-
ble to that obtained for the merged MDD in [2] (Figure 2 (b) there).

This further reduction is important from the viewpoint of com-
pression, as each path from the root of the graph to a sink > can
be seen as a c-tuple in the solution of T , and a set-labeled node
reduces the number of such c-tuples. It is also important from the
viewpoint of run-time performance, if set intersection (intersectsp)
is more efficient than multiple membership tests. A VDD using set-
labeled nodes should result in similar c-tuples as the approach in [10]
(depending of course on the heuristic). A key difference is that VDD
paths may share nodes (c-tuples sharing common tails)14, whereas

11 A maximal l-chain would be one for a node which does not itself occur as
the left child of any other node

12 For the exposition, here, X represents a finite disjunction of propositions.
In the implemented prototype it can also be an interval with continuous
bounds

13 The new set-labeled nodes are assigned a uniquely identifying node num-
ber outside the range used for numbering the propositions

14 Figure 5 has shared nodes

this is not the case for a set representation of c-tuples. Hence, a VDD
is a more compact representation.

Also, there may be external sources for set-labeled nodes if the
maintained variant table is not relational. The SAP VC allows mod-
eling variant tables with cells that contain real-valued intervals as
well as a condensed form, where a cell may contain a set of values.
Such cells can be directly represented as set-labeled nodes.

I close this section in noting that in [10] a Boolean function as in
(4) is also used to construct a decomposition of a table into disjoint
union of Cartesian products (c-tuples). There the resulting decompo-
sition into c-tuples is the goal. Here the VDD is the goal, as I base
the evaluation on it (see Section 8).

4 Heuristics
For the exposition in this section, I assume T to be in relational form
with arity k.

The graph in Figure 2 is derived using on an initial heuristic h1,
which I tried. h1 is based on trying to minimize splitting value blocks
during decomposition. A value block for a proposition p(vj , x) is the
rows in a table T that reference that proposition. Decomposing T on
some other proposition p(vh, y) will split p(vj , x), if it has rows in
both L(T , j, y) andR(T , j, y). Subsequently, both of these children
need to be decomposed by p(vj , x), whereas a single decomposition
would have handled p(vj , x) for T at its root level. It is assumed that
keeping large value blocks intact is good, and the order of decompo-
sition decisions should incur as little damage to these value blocks as
possible. In order to apply this heuristic, all value blocks, their sizes,
and the row indices that pertain to each one are initially calculated
and stored. I do not go into further detail on this here.

The current implementation relies on characteristics of a VDD en-
sured by the decomposition heuristic h2 given in Algorithm 1. Recall
that the total number of propositions is s, defined by (3), and that the
number of propositions that pertain to the j-th column is sj , defined
by (2).

Algorithm 1 (Heuristic h2)
First, define P (T) as an ordered set of all s propositions p(vj , x) by
1. Sorting the k columns of T by sj , ascending (largest values last).
p(vj , x), below, refers to the j-th column with respect to this or-
dering of the columns

2. Within each column, sort the values by their business order (any
defined order the implementation can readily implement). xpj
refers to the p-th value in the j-th column domain πj(T).

Then,
1. Make a root node of the VDD for the first proposition in the first

column: p(v1, x11)
2. While nodes with a non-terminal subtable remain: split them al-

ways using the first proposition (value block) in their first column
3. Optionally, collect members of an l-chain with the same child

nodes into an aggregated set-labeled node. I refer to this variant
of the heuristic as h2∗

4. Reduce the nodes by unifying equivalent nodes as discussed in
Section 3.2

Figure 4 shows the graph of Table 1 produced using Algorithm
1 without set-labeled nodes (h2). Figure 3 shows the same graph
produced with set-labeled nodes (h2∗).

A decomposition based on Algorithm 1 has the following charac-
teristics:

• After k HI-links the >-sink is always reached. (This is trivially
true for all VDDs, as each row consists of k elements)

92Juha Tiihonen, Andreas Falkner, and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop
September 10-11, 2015, Vienna, Austria

FT

1:(3, MIB)|13

2:(3, STW)|12

3:(2, Large)|5

3:(2, Large)|11

4:(2, Medium)|4

6:(1, Black)|2

4:(2, Medium)|10

6:(1, Black)|9

7:(1, Blue)|8

8:(1, Red)|7

9:(1, White)|6

5:(2, Small)|3

Figure 4. Basic VDD of t-shirt using algorithm 1

• All nodes in an l-chain (i.e., linked via LO-links) will always
pertain to the same column. This follows from the fact that the
columns of any non-empty left subtable of a table T are the same
as the columns of T . The heuristic says to always choose from the
first column

• A node pertaining to the jth column is always (j − 1) HI-links
distant from the root node. This follows by iterating the argument
that if a table T is decomposed by a proposition p(v1, x) refer-
encing its first column, then the right sub-table T has the second
column of T as its first column (by construction))

Note that for BDDs an optimal ordering of P (T) is important
to achieve a minimal graph. Thus, the search space for finding this
is s! (s factorial). In Algorithm 1 only the order of the columns is
important. It is not important how the values are ordered within the
column. To see this, note that the proposition p(v1, x11) used in de-
composition slices T horizontally15. The slices obtained overall with
respect to all values xp1 in the first column are the same, regardless
of the order of the values in a column. Thus, the search space for
an optimal column order is merely k!. As Algorithm 1 indicates, I
am currently only exploring one ordering of columns, supposing that
it will dominate the others. However, this still needs to be verified
empirically.

5 Example of Extended T-shirt Model
In [8] I extended the t-shirt by adding the colors Y ellow and
DarkPurple, the sizes XL and XXL, and the print none to the
global domains πj(T) (given in Section 2):

π1(T) = {Black,Red,White,Blue, Y ellow,DarkPurple}
π2(T) = {Large,Medium, Small,XL,XXL}
π3(T) = {MIB,STW,none}

15 The terminology is inspired by [6]

The new values combine with everything, except that no rows are
added for combinations of MIB (print) and Y ellow (color). The
table of all variants then has 73 rows (as opposed to the 11 of table
1)16. The graph is given in Figure 5

F T

1:(3, MIB)|12

2:(3, STW)|11

18:(2, [Large, Medium, Small])|53:(3, none)|10 6:(2, Small)|8

17:(2, [XL, XXL])|4

15:(1, [Black, DarkPurple])|2

20:(2, [Large, Medium, Small, XL, XXL])|9 19:(2, [Large, Medium, XL, XXL])|7

11:(1, DarkPurple)|616:(1, [Black, Blue, DarkPurple, Red, White, Yellow])|3

Figure 5. VDD of extended t-shirt with set-labeled nodes

Now 11 nodes are needed instead of the 6 nodes in Figure 3.
The table is decomposed into 5 c-tuples. The node labeled 〈16 :
(1, [Black,Blue,DarkPurple,Red,White, Y ellow])〉 is shared
by three parents.

6 Empirical Compression Results
A prototype I have implemented in Java was tested for functional
correctness against small exemplary tables such as the t-shirt model
given in Table 1. This set of exemplary tables also contains some
negative variant tables to test the approach in [8]. I refer to the im-
plementation as the VDD prototype. It was further tested against 238
relational variant tables taken from three product models used at SAP
in configurator maintenance issues. Since this data is proprietary, I
give only summary statistics on the results. Testing on publicly avail-
able models, such as the Renault model [1] is a next step for future
work.

It proved possible to successfully compile all 238 tables in this test
base with all of the following three approaches:

• the heuristic h1 used to obtain the graph in Figure 2
• the heuristic h2 in Algorithm 1 - without merging nodes to set-

labeled nodes
• the heuristic h2∗ in Algorithm 1 - with merging nodes to set-

labeled nodes

Table 2 gives statistics on the table size and complexity. It lists the
minimal, maximal, and average values, as well as the values for the
four quartiles Q1, Q2, Q3, Q4, for each of the following parameters:
k (arity), r (number of rows), s (number of propositions), and N
(number of cells - k ∗ r).

There is one table with arity one. This is used as a technique of
dynamically defining a global domain for a product property in a
variant table, rather than doing this directly in the declaration of the
product property in the model. This technique has the disadvantage
that it is more difficult to ensure translation of all relevant texts asso-
ciated with a value in multi-lingual deployments of the configuration
solution. It may, however, be used to dynamically restrict a large,

16 I elaborate on the derivation of this example in [8]

93 Juha Tiihonen, Andreas Falkner, and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria

Table 2. Size statistics on 238 SAP VC variant tables

Range k r s N
Minimum 1 1 2 2
Q1 2 14 17 42
Q2 3 56.5 46 176
Q3 5 137.5 93.75 635.5
Q4 16 21372 998 213720
Average 4.29 238.53 79.04 1590.51
Maximum 16 21372 998 213720

pre-defined, enterprise-wide global domain to the requirements of a
particular product. General modeling considerations and experiences
with the SAP VC are elaborated in [4].

The largest arity is 16. The associated table has only 76 rows. The
largest table with 21372 rows has arity 10. The table with the largest
number of propositions (998) has arity six and 469 rows.

Table 3 gives statistics on the achieved compression for the three
compression techniques. (I discuss double negation separately, in
Section 7.) The variant tables are partitioned into the four quartiles
for s (number of distinct node labels17). These are denoted by Qs1,
Qs2, Qs3, and Qs4. Averages are given for each of these four parti-
tions for the following parameters: s, N (number of cells in variant
table), n (number of nodes), reduct (reduction: (N − n)), and t
(compilation time in milli-seconds). Explicit results are also given
for the table with largest number of cells (MaxN), largest number of
propositions (Max s), and largest arity (Max k), as well as the overall
average.

Table 3. Average compression on 238 SAP VC variant tables

Range N Heur s n reduct t (msec)
h1 17 20 15.75 4

Qs1 42 h2 17 18 19.5 0
h2∗ 8 8 28.75 0
h1 46 73.5 95.5 17.5

Qs2 176 h2 46 65 102.5 1
h2∗ 17 19.5 155 1
h1 93.75 184 418.5 112.75

Qs3 635.5 h2 93.75 154.75 489.5 3
h2∗ 53.75 74.5 558.5 5
h1 998 3756 213329 1192988

Qs4 213720 h2 998 2728 213289 598
h2∗ 988 2381 213575 659
h1 79.04 178.95 1411.57 5475.59

Average 1590.51 h2 79.04 149.95 1440.56 9.77
h2∗ 50.32 83.92 1506.59 12.43
h1 152 391 54793 1192988

Max N 213720 h2 152 431 213289 598
h2∗ 70 145 213575 659
h1 998 998 868 478

Max s 2814 h2 998 998 868 86
h2∗ 130 130 1736 91
h1 181 885 331 874

Max k 1216 h2 181 653 563 5
h2∗ 182 649 567 5

The compilation times of h2 are drastically better for large tables
than those for h1. This is because the information needed by h1 has

17 For VDDs without merged nodes this is just the number of propositions.
For VDDs with merged nodes this is a different number, because labels
for disjunctions of propositions are added, but not all original propositions
still explicitly appear as node labels

some components that are non-linear to process, whereas h2 does
not. Not surprisingly, using merged nodes further reduces both the
number of nodes (n) in the VDD as well as the number of distinct la-
bels of the nodes (s). The times are obtained on my Apple Mac mini
with 2.5 GHz Intel Core i5 and 8GB memory. Times on other de-
velopment PCs (both Windows and MacBook) are comparable. The
time to compile the largest table with h1 is almost 20 minutes, but it
takes less than one second using h2 with and without merging for the
same table. Thus, compiling these tables into VDDs with h2 would
almost be feasible at run-time.

Heuristic h2 strictly dominates h1 with respect to achieved
compression (smaller number of nodes) for 143 of the 238 ta-
bles18. For 71 tables the same compression was achieved. For
24 tables h1 strictly dominates h2. Table 4 compares the advan-
tages/disadvantages of h2 over h1. The three cases are labeled
“h2 > h1” (h2 strictly dominates h1), “h2 = h1” (indifference),
and “h2 < h1” (h2 is strictly dominated by h1). Table 4 lists av-
erages for the following parameters: Tab, s, N , n, ∆R , and ∆t.
Tab is the number of tables that pertain to that case. The parameters
s, N , and n are as defined above for Table 3. ∆R is the weighted
difference in reduction: ∆R = Tab ∗ (reducth2 − reducth1). It is
positive where h2 has the advantage. ∆t is the weighted difference
in compile time: ∆t = Tab∗ (th2− th1) in milli-seconds. It is nega-
tive where h2 has the advantage. The last row gives the averages per
table ∆R/238 and ∆t/238 over all rows.

Table 4. Averages for dominated heuristics

Dominance Tab N s n ∆R ∆t
h2 > h1 143 867.06 85.03 222.59 7702 -563065
h2 = h1 71 114.76 54.83 56.00 0 -1208
h2 < h1 24 10266.88 114.92 282.58 -992 -1206770
Average 28.19 -7446.43

The largest table is one where h1 strictly dominates h2. However,
the compile time using h1 is almost 20 min. That for h2 is 0.6 sec.
Overall, h2 seems to prevail over h1. The average gain in reduction
over all 238 tables is 28.19. The average gain in compilation time is
7446.43 (msec). The large gain in the latter is due to the non-linear
performance of h1, which makes it grossly uncompetitive for large
tables. Further experiments with other column orderings and with
other heuristics remains a topic of future work.

7 Excursion: Negation

In [8] I describe double negation of a positive table as one approach
to compression that is completely independent of the VDD mecha-
nism. Being able to negate a table, i.e. calculate the complement with
respect to a given domain restrictions is central in that approach.

My implementation of the VDD-prototype supports the approach
in [8], and supports negation of a VDD. A BDD can be negated by
switching the sinks⊥ and>. This doesn’t work for a VDD (and for a
ZDD in general). Algorithm 2 gives the spirit of my implementation
for negating a VDD produced using Algorithm 1 for a variant table T
of arity k against a domain restriction tuple R. It produces a negated
VDD that has set-labeled nodes.

18 As merging could potentially also be done in conjunction with heuristic
h1, it is not a fair comparison to compare the number of nodes achieved
with h1 against that achieved with h2∗

94Juha Tiihonen, Andreas Falkner, and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop
September 10-11, 2015, Vienna, Austria

Algorithm 2 (Negation)
Start with the root node of V . Negate it as described below

• If ν is a non-negated terminal node, i.e., ν references the last col-
umn index k, replace it with a node ν that is assigned the comple-
mentary labelLC(ν) := πj(T)\LC(ν), whereLC(ν) is defined
as the union of all values/sets in the l-chain19 of ν

• If ν is a non-negated non-terminal node that references column
index j < k, negate it by doing the following in order:

– negate each right child of each node in its l-chain in turn

– add a node ν⊥ to the end of the l-chain of ν , where ν⊥ repre-
sents the c-tuple LC(ν)×Rj+1× . . .×Rk. ν⊥ itself is labeled
with LC(ν). Its right child is a node labeled Rj+1 which has a
right child Rj+2 All LO-links of added nodes point to ⊥

Prune any unneeded nodes that have an empty set as a label or have
a right child that is pruned, suitably rerouting a link to a pruned node
to the left child of the pruned node

The VDD prototype actually does the pruning of empty nodes on
the fly. If the root node itself is pruned, the entire resulting VDD is
empty after negation.

The fact that double negation of a positive table needs to yield the
same solution set as the original table (see [8]) provides a straightfor-
ward possibility to test for the correctness of this approach to nega-
tion.

In order to avoid complexity issues with very large complements, I
so far applied double negation only in those cases where the number
of tuples in the complement was smaller or equal to the number of
tuples in the original table. 57 of the 238 SAP VC variant tables that
are the basis for the results I presented in Section 6 proved amenable
to double negation in this sense. Of these, 18 did not yield a smaller
VDD than that obtained with heuristic h2∗. For the remaining 39 the
maximal gain was 4 nodes, the average gain was 1.89 nodes.

Run-time performance tests have yet to be made, but these results
raise the question, whether double negation will add value over di-
rect compression. However, the concept of double negation is inde-
pendent of the VDD concept, and could be applied on its own with-
out using VDDs. Also, it remains to be seen, if the test on whether
constraint propagation can be gainfully applied, given in [8], proves
valuable.

8 Evaluation of a VDD
Given a run-time restriction R, a VDD V , and a node ν(j,X) in V
(using the notation in (7)). ν(j,X) can be marked as out ifX∩Rj =
∅. The admissible solutions of V are all paths from the root node to
the sink > that do not contain any node marked out. I denote this set
as V ∩R, for short. If there are no such paths, then R is inconsistent
given V .

I do not go into further detail on how to determine V∩R. This fol-
lows the spirit of known algorithms for directed acyclic graphs. For
example, see [12] for an exposition in the context of BDDs/ZDDs.

Concerning the general complexity of the calculations:

• Let sj be the number of distinct node labels pertaining to the j-th
column of V (as in (2), but modified to allow for set-valued labels).
sj node-labels must be intersected withRj for each column index

19 Defined in Section 3.3, the l-chain of a node is the sub-graph consisting
of the node and all nodes reachable from it via LO-links, but excluding the
sink ⊥. All nodes in an l-chain reference the same column index j

j to determine admissibility of all occurring node labels. Given
that the domains are naturally ordered, binary search can be used
to speed this up. The VDD prototype also imposes an ordering on
the node labels to facilitate this

• Let n be the number of nodes in V . The question of which nodes
have admissible paths to >, is related to the problem of count-
ing the admissible paths. After determining which node labels are
admissible, this has the remaining complexity ofO(n) (c.f., Algo-
rithm C in [12])

In the case that V is a VDD without set-valued nodes, i.e., all node
labels are of the form X = {x}, V ∩ R is just the solution set of
T ∩ R, where T is the variant table encoded by V . But, if V has
non-atomic set-valued nodes20 T ∩R ⊆ V ∩R. Here, the evaluation
comes at the slight additional cost of determining the solution set by
additionally intersecting V ∩ R with R.21 The intersection of two c-
tuples is easy to calculate. Thus, this additional cost is offset, because
determining the admissibility of each node is now faster (a smaller
number of intersectsp tests hopefully offsets the otherwise greater
number of memberp tests).

Real run-time measurements have not yet been performed. How-
ever, in the beginning, in trying to determine whether the VDD ap-
proach is worthwile, I did an experimental integration with the (Java-
based) SAP IPC configurator (see [4]) with the product models en-
compassing the 238 tables mentioned in Section 6. The software con-
figuration I used was completely non-standard, so any results are not
objectively meaningful, but they did encourage me to pursue this ap-
proach. The expectations on performance gains might be roughly ori-
ented on the inverse of the compression ratio N/n (total number of
table cells/number of nodes). For heuristics h1/h2/h2∗ the averages
for N/n are 2.2/2.4/3.9, respectively. But, this does not account for
losses due to the overhead of needing more complex set operations.
In any case, real run-time measurements need to be performed as a
future step.

I close this section with a remark on using a VDD as a simple
database. A query with an instantiated database key is equivalent to
a run-time restriction R, where the key’s properties are restricted to
singleton values, and the other properties are unconstrained (or have
the domain that is established at the time of the query). The solution
set of the VDD will contain only tuples consistent with the query
(by construction). If, for example, the key is defined as unique in the
database (and the table content is consistent with this definition), the
result can contain at most the unique response (or the empty set, if
no row for the key exists in the table). For queries with non-unique
database keys, the solution set needs to be intersected with R, as
discussed above.

9 Conclusion

Although it remains to explore other variants of Algorithm 1 with dif-
ferent orderings of the columns, the compression achieved with the
current version (both h2 and h2∗) has been surprisingly satisfactory.
The very short compile times may be of more practical advantage
than a more expensive search for heuristics that provide (somewhat)
better results. However, further investigation into search and heuris-
tics of an altogether different type should to be done more completely
and formally. This is future work.

20 Either merged nodes or nodes representing continuous intervals
21 To see this, suppose that T is itself a c-tuple, so that there is at most

one admissible c-tuple consisting of T itself. Obviously R may be more
restrictive

95 Juha Tiihonen, Andreas Falkner, and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria

The goal of this work was not only to find a good compression
technique, but also to provide a solution that can be used in conjunc-
tion with a legacy configurator to enhance the handling of variant
tables, either as a whole or individually. The VDD prototype I imple-
mented uses little machinery and adds little to software maintenance
(training, size of the code base, etc.). It also conveys little risk. In
the event that some tables cannot be compiled to a VDD, the legacy
handling can be seamlessly kept. (This did not occur in the initial
explorations using the h1 heuristic with the test models.) The SAP
VC is a configurator with a very large user base. Thus, any change
to it comes with large risk. This is the type of situation I had in mind
when designing the VDD prototype.22

In the course of this work I have come to believe that all of the
following three approaches to speed up variant table handling and to
look for a compact representation yield very similar results:

• BDDs in various flavors ([9, 2])
• Compression into c-tuples and constraint slicing ([6, 10])
• Read optimized databases (such as column-oriented databases

([14])) in conjunction with a constraint propagation algorithm
(e.g. the STR-algorithm [13])

The differences are in the machinery needed for the intended de-
ployment and in the heuristics that suggest themselves. Although the
representation as a VDD is central to my approach at compression
and evaluation, functionally, the two important aspects in practice are
that it functions as a (limited) replacement for a database, and that it
performs constraint propagation. I would see as a topic of future work
to both look more closely at read optimized databases and to investi-
gate, if the VDD approach can be extended to support more complex
database queries. Investigating the commonality between the three
approaches (BDDs, compression, read-optimized databases) more
formally could be another interesting topic. The VDD approach has
elements of all three.

A note in closing: The compression algorithm in [10] is based on a
very similar approach to table decomposition. I was not aware of this
work until recently, so there are some unfortunate disconnects in con-
ventions I use. I tend to follow [12], whereas in [10] left and right are
used the other way around. I did adopt use of the term c-tuple. I think
the column oriented view, here, is more intuitive and has resulted in
more useful heuristics. Another major difference to [10], which I see,
is that the I base evaluation directly on the VDD. Furthermore, the
VDD supports nodes labeled with real-valued intervals, but his could
also be added to [10] in a straightforward manner23.

ACKNOWLEDGEMENTS
I would like to thank the anonymous reviewers and my daughter
Laura for their constructive suggestions, on how to improve the intel-
ligibility of this paper. I am afraid the current result may not yet meet
their expectations, but I think it is a step forward from the previous
version.

REFERENCES
[1] J. Amilhastre, H. Fargier, and P Marquis, ‘Consistency restoration and

explanations in dynamic csps application to configuration’, Artif. Intell.,
135(1-2), 199–234, (2002).

22 In my estimation, the effort to reimplement the current VDD functionality
in SAP ABAP ([11]) for use with the SAP VC would be feasible from a
cost and risk perspective

23 Basically treating an interval syntactically like a value in compilation, but
evaluating it like a set at run-time

[2] H.R. Andersen, T. Hadzic, and D. Pisinger, ‘Interactive cost configura-
tion over decision diagrams’, J. Artif. Intell. Res. (JAIR), 37, 99–139,
(2010).

[3] C. Bessiere, ‘Constraint propagation’, in Handbook of Constraint Pro-
gramming, eds., F. Rossi, P. van Beek, and T. Walsh, chapter 3, Elsevier,
(2006).

[4] U. Blumöhr, M. Münch, and M. Ukalovic, Variant Configuration with
SAP, second edition, SAP Press, Galileo Press, 2012.

[5] K. Ferland, Discrete Mathematics, Cengage Learning, 2008.
[6] Nebras Gharbi, Fred Hemery, Christophe Lecoutre, and Olivier Rous-

sel, ‘Sliced table constraints: Combining compression and tabular re-
duction’, in CPAIOR’14, pp. 120–135, (2014).

[7] A. Haag, ‘Chapter 27 - product configuration in sap: A retrospective’,
in Knowledge-Based Configuration, eds., Alexander Felfernig, Lothar
Hotz, Claire Bagley, and Juha Tiihonen, 319 – 337, Morgan Kaufmann,
Boston, (2014).

[8] A. Haag, ‘An approach to arc consistency with negative variant tables’,
in Proceedings of the 17th International Configuration Workshop, Vi-
enna, Austria, September 10-11, 2015., pp. 81–87, (2015).

[9] Tarik Hadzic, ‘A bdd-based approach to interactive configuration’, in
Principles and Practice of Constraint Programming - CP 2004, 10th
International Conference, CP 2004, Toronto, Canada, September 27
- October 1, 2004, Proceedings, ed., Mark Wallace, volume 3258 of
Lecture Notes in Computer Science, p. 797. Springer, (2004).

[10] G. Katsirelos and T. Walsh, ‘A compression algorithm for large arity
extensional constraints’, in Principles and Practice of Constraint Pro-
gramming - CP 2007, 13th International Conference, CP 2007, Prov-
idence, RI, USA, September 23-27, 2007, Proceedings, ed., Christian
Bessiere, volume 4741 of Lecture Notes in Computer Science, pp. 379–
393. Springer, (2007).

[11] H. Keller, The Official ABAP Reference, number Bd. 1 in Galileo SAP
Press, Galileo Press, 2005.

[12] D.E. Knuth, The Art of Computer Programming, volume 4A Combina-
torial Algorithms Part 1, chapter Binary Decision Diagrams, 202–280,
Pearson Education, Boston, 2011.

[13] C. Lecoutre, ‘STR2: optimized simple tabular reduction for table con-
straints’, Constraints, 16(4), 341–371, (2011).

[14] Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen,
Mitch Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Samuel
Madden, Elizabeth J. O’Neil, Patrick E. O’Neil, Alex Rasin, Nga Tran,
and Stanley B. Zdonik, ‘C-store: A column-oriented DBMS’, in Pro-
ceedings of the 31st International Conference on Very Large Data
Bases, Trondheim, Norway, August 30 - September 2, 2005, eds., Kle-
mens Böhm, Christian S. Jensen, Laura M. Haas, Martin L. Kersten,
Per-Åke Larson, and Beng Chin Ooi, pp. 553–564. ACM, (2005).

96Juha Tiihonen, Andreas Falkner, and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop
September 10-11, 2015, Vienna, Austria

