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Abstract. We compare the concepts of the INVQX algorithm
for computing a Preferred Minimal Diagnosis vs. Partial Weighted
MAXSAT in the context of Propositional Logic. In order to restore
consistency of a Constraint Satisfaction Problem w.r.t. a strict total
order of the user requirements, INVQX identifies a diagnosis. Partial
Weighted MAXSAT aims to find a set of satisfiable clauses with the
maximum total weight. It turns out that both concepts have similari-
ties, i.e., both deliver a correction set. We point out these theoretical
commonalities and prove the reducibility of both concepts to each
other, i.e., both problems are FPNP-complete, which was an open
question. We evaluate the performance on problem instances based
on real configuration data of the automotive industry from three dif-
ferent German car manufacturers and we compare the time and qual-
ity tradeoff.

1 Introduction
Constraint programming is successfully applied in many different ar-
eas, e.g., planning, scheduling, and configuration. Besides the usage
of Constraint Satisfaction Problem (CSP) based knowledge bases,
the usage of the more restrictive Propositional Logic has been suc-
cessfully established in the context of automotive configuration and
verification [11].

In many practical use cases the knowledge base can become over-
constrained, e.g., by overly restrictive rules or user requirements. In
the context of automotive configuration the knowledge base can be-
come over-constrained, too [23]. A typical situation would be a cus-
tomer configuring a car up to his wishes conflicting with the knowl-
edge base. Another typical situation would be an engineer given the
task that new features should be constructable for an existing type
series by now which were not constructable before. In both situa-
tions we would like to have an automatic reasoning procedure for
assistance in order to restore consistency.

One approach to restore consistency is to guide the user by com-
puting minimal unsatisfiable cores (conflicts), which can be consid-
ered as a problem explanation. However, more than one conflict is
involved in general. Another approach is to try to satisfy as many of
the constraints as possible, i.e., finding a maximal satisfiable subset
(MSS) or, the opposite, finding a minimum correction subset (MCS)
which can be considered as a repair suggestion. The constraints of an
MCS have to be removed or altered in order to restore consistency.

An MCS can be calculated in different ways: (i) MAXSAT is
a generalization of the well-known SAT problem and computes
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the MCS of minimum cardinality; (ii) the Inverse QUICKXPLAIN

(INVQX) algorithm (also denoted as FASTDIAG) [4] delivers a pre-
ferred minimal diagnosis w.r.t. a total order on the user requirements.
Both approaches can be considered as an optimal repair suggestion
w.r.t. their definition of optimum. In this paper, we study both ap-
proaches by giving the following contributions:

1. We point out theoretical similarities and suggest an improvement
for INVQX.

2. We show that both problems, the computation of a preferred min-
imal diagnosis (INVQX) and the computation of an MCS of min-
imum cardinality (MaxSAT), are reducible to each other and that
both are FPNP-complete.

3. We provide experimental evaluations based on real automotive
configuration data.

To the best of our knowledge, it has not been proven before, that
the computation of a preferred minimal diagnosis in the context of
Propositional Logic is FPNP-hard.

The remainder of the paper is structured as follows: Section 2 in-
troduces the formal background. Section 3 discusses related work. In
Section 4 and Section 5 we introduce both approaches (MINUNSAT
and INVQX) and give an overview of solving techniques, respec-
tively. Section 6 points out the theoretical relationships and Section 7
shows how to reduce one problem to the other. In Section 8 we
present experimental evaluations. Finally, Section 9 concludes the
paper.

2 Preliminaries

Within the scope of this paper we focus on Propositional Logic over
the standard operators ¬,∧,∨,→,↔ with constants ⊥ and >, rep-
resenting false and true, respectively. For a Boolean formula ϕ we
denote its evaluation by ‖ϕ‖v ∈ {0, 1} for a variable assignment v.
A Boolean formula is in CNF normal form iff it consists of a conjunc-
tion of clauses, where a clause is a disjunction of literals. A literal is a
variable or its negation. A formula in CNF can be interpreted as a set
of clauses and further a clause can be interpreted as a set of literals.
The NP-complete SAT problem asks whether a Boolean formula is
satisfiable or not.

Definition 1. (MSS/MCS) Let ϕ be a set of clauses. A set ψ ⊆ ϕ
is a Maximal Satisfiable Subset (MSS) iff ψ is satisfiable and every
ψ′ ⊆ ϕ with ψ ⊂ ψ′ is unsatisfiable.

A set ψ ⊆ ϕ is a Minimal Correction Subset (MCS) iff ϕ − ψ is
satisfiable and for all ψ′ ⊆ ϕ with ψ′ ⊂ ψ the set difference ϕ− ψ′
is unsatisfiable.
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The definition of an MSS (resp. MCS) can be naturally extended
by taking into account a set of hard clauses which have to be satisfied.

Clearly, for a given MSS (resp. MCS) ψ of ϕ, the complement
ϕ− ψ is an MCS (resp. MSS) of ϕ.

Analogous to [16] we introduce the following definitions:

Definition 2. (L- and A-Preference) Let< be a strict total order over
a set ϕ = {c1, . . . , cm} of clauses with ci < ci+1 for 1 ≤ i < m,
i.e., clause ci is preferred to clause ci+1.

We define the lexicographical order <lex as follows: For two
sets ψ1, ψ2 ⊆ ϕ we say set ψ1 is lexicographically preferred to
ψ2, denoted as ψ1 <lex ψ2, iff ∃1≤k≤m : ck ∈ ψ1 − ψ2 and
ψ1 ∩ {c1, . . . , ck−1} = ψ2 ∩ {c1, . . . , ck−1}.

Furthermore, we define the anti-lexicographical order <antilex

as follows: For two sets ψ1, ψ2 ⊆ ϕ we say set ψ1 is anti-
lexicographically preferred to ψ2, denoted as ψ1 <antilex ψ2, iff
∃1≤k≤m : ck ∈ ψ2 − ψ1 and ψ1 ∩ {ck+1, . . . , cm} = ψ2 ∩
{ck+1, . . . , cm}.

An MSS/MCS ψ1 is L-preferred (resp. A-preferred) if for all
MSS/MCS ψ2 6= ψ1, ψ1 <lex ψ2 (resp. ψ1 <antilex ψ2).

The lexicographical order appears to be the more intuitive one.
Whereas the most L-preferred set includes the most preferred
clauses, the most A-preferred set excludes the most non-preferred
clauses. We denote the inverse order of < by <−1.

If ψ is an L-preferred (resp. A-preferred) MSS/MCS of ϕ w.r.t.
to the order < , then ϕ − ψ is an A-preferred (resp. L-preferred)
MSS/MCS of ϕ w.r.t. to the inverse order <−1 (see Proposition 12
in [16]). Therefore, algorithms for the computation of an L-preferred
MSS/MCS can also be used for the computation of the corresponding
A-preferred MCS/MSS.

Note that we use the standard notation for the complexity class
FPNP (resp. FPNP[logn]), the class of function problems solvable in
deterministic polynomial time using a polynomial (resp. logarithmic)
number of calls to an NP oracle [19].

3 Related Work
The authors of [14] improve the computation of an MCS by newly
introduced techniques, i.e., usage of backbone literals, disjoint unsat-
isfiable cores and satisfied clauses. Not all techniques can be applied
to the computation of an A-preferred MCS, i.e., only the usage of
backbone literals can be adopted. Hence the proposed enhanced ver-
sion of INVQX (also denoted as FASTDIAG [4]) of the cited work
can not be adopted for A-preferred MCS computation. The newly
proposed MCS algorithm, called CLAUSED, exploits the fact that a
falsified clause does not contain complementary literals, but it can
not be adopted, either.

The INVQX algorithm (also known as FASTDIAG) [4] is based on
the idea of divide-and-conquer that has been successfully exploited
in the QUICKXPLAIN algorithm [9]. Whereas QUICKXPLAIN com-
putes a preferred explanation (a minimal unsatisfiable subset (MUS)
in the context of Propsitional Logic), the INVQX algorithm com-
putes a preferred diagnosis (an MCS in the context of Propositional
Logic), which can be interpreted as the inverse of QUICKXPLAIN.

The complexity of computing preferred sets is studied in [16].
Furthermore, the authors give an overview of established algorithms
which can or can not be adopted to involve preferences.

The authors of [17] introduce improvements on computing an
MCS in the context of CSP, i.e., they adopt the CLAUSED algorithm
of [14]. The adopted variant is also not applicable for A-preferred
MCS computation.

4 Preferred Minimal Diagnosis
The definition of a Preferred Minimal Diagnosis (PMD) used in [4]
is in the context of a Constraint Satisfaction Problem (CSP). We will
recap the essential definitions briefly. Let CKB and CR be sets of
CSP constraints. The set CKB (resp. CR) represents the constraints
of the knowledge base (resp. the user requirements).

Definition 3. (CR Diagnosis) Let (CKB, CR) be a CR diagnosis
problem. A set ∆ ⊆ CR is a CR Diagnosis ifCKB∪(CR\∆) is con-
sistent. Furthermore, ∆ is called minimal if no diagnosis ∆′ ⊂ ∆
exists where CKB ∪ (CR \∆′) is consistent.

In the context of Propositional Logic a CR diagnosis corresponds
to the MCS problem with an additional hard part. The definitions for
L- and A-Preference can analogously be defined for CSP. We will
not write them out here.

Finally, we can define a preferred minimal diagnosis:

Definition 4. (Preferred Minimal Diagnosis) Let (CKB, CR =
{c1, . . . , cm}) be a CR diagnosis problem with a strict total order
s.t. c1 < . . . < cm. A minimal diagnosis ∆ is called a Preferred
Minimal Diagnosis (PMD) if ∆ is A-preferred w.r.t. the order <−1.

The strict total order in [4] is defined the other way round, i.e., if
ci < cj then constraint cj is preferred to ci. Our definition here is
consistent with [16].

Remark 1. In the context of Propositional Logic we assume, without
loss of generality, that CKB and CR are clause sets:

1. CR: Let si be a fresh variable. For each constraint ci ∈ CR we
add the clause set CNF(si → ci) to the hard part and the unit
clause {si} replaces ci within CR (cf. [2, 7]).

2. CKB: For any non-clausal constraint c ∈ CKB we apply
the Tseitin-/Plaisted-Greenbaum Transformation [20, 21] which
takes polynomial time and space. Furthermore, the constraint c
and the resulting formula share the same models w.r.t. the origi-
nal variables. The search space between both remains the same.

Therefore we can interpret the problem of computing a PMD as the
problem of computing an A-preferred MCS.

The computation of an A-preferred MCS is in FPNP [16]. The
question arises whether computing an A-preferred MCS is also
FPNP-hard? This is actually the case as we will show in Theorem 1.

4.1 Algorithms
A straightforward approach is Linear Search. We iterate in descend-
ing order through all constraints and check whether they conflict with
the hard constraints and the previously added constraints or not. If
there is a conflict, the constraint is part of the A-preferred MCS.
Otherwise, the constraint will be added. The complexity of Linear
Search in terms of the number of consistency checks isO(m), where
m = |C|.

Algorithm 1 shows the procedure presented in [4]. The worst case
complexity of INVQX in terms of the number of consistency checks
is O(2d · log2(m

d
) + 2d), where d is the minimal diagnosis set size

and m = |C|.

Remark 2. (Exploiting inc-/decremental SAT interface) Modern
SAT solvers often provide an inc-/decremental interface for adding
clauses and removing them afterwards. This can be useful, e.g., when

Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop
September 10-11, 2015, Vienna, Austria

98



Algorithm 1: INVQX Algorithm
Input: C ⊆ AC, AC = {c1, . . . , ct}
Output: Preferred minimal diagnosis ∆
if isEmpty(C) or inconsistent(AC − C) then

return ∅
else

return FD(∅, C,AC)

func FD(D,C = {c1, . . . , cq}, AC) : diagnosis ∆
if D 6= ∅ and consistent(AC) then

return ∅
if singleton(C) then

return C
k = q

2
; C1 = {c1, . . . , ck}; C2 = {ck+1, . . . , cq}

D1 = FD(C1, C2, AC − C1)
D2 = FD(D1, C1, AC −D1)
return D1 ∪D2

we have a huge formula representing the configuration model and
small test instances to check against the configuration model.

Therefore we can improve Algorithm 1 by adding all constraints
AC − C first and do the consistency checks by using the inc-
/decremental interface. Another improvement can be made for the
second recursive call D2 = FD(D1, C1, AC−D1). All constraints
in C2 −D1 have to be satisfied for this call. We add all constraints
C2 −D1 before and remove them afterwards. We evaluated this im-
provement, see Section 8.

5 Partial Weighted MINUNSAT
In the context of this paper, we will only focus on the Partial
Weighted MINUNSAT problem. See [13] for analogous definitions
of (Partial) (Weighted) MAXSAT.

Definition 5. (MINUNSAT) Let Hard be a set of propositional
clauses. Let Soft = {(c1, w1), . . . , (cm, wm)} a set of tuples where
ci is a propositional clause and wi ∈ N≥1 is a weight for all
i = 1, . . . ,m. Let ϕ = (Hard, Soft) and n be the number of vari-
ables in Hard ∪ Soft. The Partial Weighted Minimum Unsatisfiable
Problem (MINUNSAT) is defined as follows:

MINUNSAT(ϕ) := min

{
m∑
i=1

wi(1− ‖ci‖v)

∣∣∣∣v ∈ {0, 1}n
}

Partial Weighted MINUNSAT and Partial Weighted MAXSAT
are closely connected: MaxSAT(Hard, Soft) =

∑m
i=1 wi −

MINUNSAT(Hard, Soft). A solution for one problem directly leads
to a solution for the other one and vice verca. The Partial Weighted
MaxSAT (resp. MINUNSAT) problem is FPNP-complete [19].
The unweighted (partial) MAXSAT (resp. MINUNSAT) problem is
FPNP[logn]-complete [10].

In the context of this paper, we will refer to Partial Weighted
MINUNSAT just as MINUNSAT to simplify reading. Please note
that in the literature often the name MAXSAT is used to refer to
MINUNSAT. But we will use its original name to make the din-
stinction clear.

5.1 Algorithms
Different approaches to solve the MINUNSAT problem have been
developed: Branch-and-Bound for general optimization problems
has been adopted to MINUNSAT, e.g., [8, 12]. In recent years, many

MINUNSAT solvers make use of SAT solvers as a black box. A
basic approach is to add a blocking variable to each soft clause, it-
eratively checking the instance for satisfiability and restricting the
blocking variables further each time. Also binary search is possible
this way. Nowadays solvers make usage of SAT solvers delivering an
unsatisfiable core, which was first presented in [5] and extended by
weights in [1]. Our list is not complete, see [18] for an overview. As
an example, Algorithm 2 shows the WPM1 algorithm. If ϕc is not
necessarily an MUS, the worst case complexity of WPM1 in terms
of the number of consistency checks isO(d), where d is the minimal
sum of weights of unsatisfied clauses, i.e., only costs of 1 are added
in each iteration [6].

Algorithm 2: WPM1 Algorithm
Input: (Hard, Soft = {(c1, w1) . . . , (cm, wm)})
Output: Sum of minimal unsatisfied weights: cost
if UNSAT(Hard) then

return No solution
cost← 0
while true do

(st, ϕc)← SAT(Hard ∪ {(ci, wi) ∈ Soft})
if st = SAT then

return cost
BV← ∅
wmin ← min{wi | ci ∈ ϕc ∧ ci is soft}
foreach ci ∈ ϕc ∩ Soft do

bi ← fresh blocking variable
Soft←
Soft−{(ci, wi)}∪{(ci, wi−wmin)}∪{(ci∨bi, wmin)}
BV← BV ∪ {bi}

Hard← Hard ∪ CNF(
∑
b∈BV b = 1)

cost← cost+ wmin

6 Relationship
We want to identify and discuss similarities of the PMD problem and
the MINUNSAT problem. As we have already shown in Remark 1
in the context of Propositional Logic the PMD problem can be in-
terpreted as an A-preferred MCS problem. The hard parts of both
problems are equal in terms of expressive power, since both are sets
of clauses.

The interesting part is the set CR with its strict total ordering <
and the set Soft of weighted clauses. Both can be defined as a special
case of an MCS problem: The PMD problem can be interpreted as
an A-preferred MCS problem (cf. Remark 1):

min
<−1

antilex

{S | S is MCS of CR w.r.t. CKB}

Whereas the MINUNSAT problem is also an MCS with the mini-
mum sum of weights:

min
≤∑

c∈S weight(c)

{
S

∣∣∣∣ S is MCS of Soft w.r.t. Hard

}
Where weight(c) denotes the weight of clause c.

Remark 3. The same similarities hold for the corresponding oppo-
site problems, i.e., the MAXSAT problem and the L-preferred MSS
problem.
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6.1 Approximation of MINUNSAT
Solvers for the A-preferred MCS problem can be used to approxi-
mate the MINUNSAT problem. Let π be a permutation of the in-
dices 1, . . . ,m such that the weights are sorted, i.e., if i < j then
wπ(i) < wπ(j). We set:

CKB := Hard

CR := Soft

< := cπ(1), . . . , cπ(m)

This transformation is actually an approximation: An A-preferred
MCS will prefer to satisfy a clause with a high weight value more
than to satisfy multiple clauses with low weight values. Whereas a
MINUNSAT solution will minimize the sum of the weights of unsat-
isfied clauses in total. The transformation can be done in polynomial
time: We sort the clauses w.r.t. their weights, which can be done in
O(m logm) where m is the number of soft clauses. We evaluated
this approximation, see Section 8.

Example 1. Consider Hard = ∅ and Soft = {(x, 6), (¬x ∨
y, 5), (¬y, 4), (¬x, 3)}. With a strict total ordering relying on the
weights of the soft clauses (see above), the A-preferred MCS is
∆ = {(¬y, 4), (¬x, 3)} resulting in costs of 7. But the MINUNSAT
solution {(x, 6)} has costs of 6.

6.2 Approximation of A-preferred MCS
We can also use MINUNSAT to approximate the A-preferred MCS
problem. The crucial question is which weights to assign to the soft
clauses. We can assume CR to be a set of clauses, see Remark 1. We
set:

Hard := CKB

Soft := CR

weight(ci) := m− (i− 1)

With this weight assignment, the most preferred clause is assigned to
weight m, the next one to weight m− 1 and so on. The lexicograph-
ical order will be imitated somewhat but not sufficiently to be exact.
The greater the distances of the weights of consecutive constraints ci
and ci+1 the better the approximation gets. Above we set the distance
to 1. In Subsection 7.1 we will show how to determine distances that
help to reach an exact reduction. The transformation can be done in
polynomial time, too.

Example 2. Consider CR with x ∨ y < ¬x < ¬y < x < z.
The A-preferred MCS is ∆ = {¬y, x}, but MINUNSAT({(x ∨
y, 5), (¬x, 4), (¬y, 3), (x, 2), (z, 1)}) = 4, because ¬x with weight
4 is less than clauses x and ¬y with weights 2 + 3 = 5.

7 Reduction
In this section we will show how to polynomially reduce one problem
to each other and finally see that both problems are FPNP-complete
and are therefore equally hard to solve.

7.1 From A-preferred MCS to MINUNSAT
Let (CKB , CR) be an A-preferred MCS problem with CR =
{c1, . . . , cm} and a total strict order s.t. c1 < . . . < cm. We can

assume CR to be a set of clauses, see Remark 1. We can reduce the
problem to a MINUNSAT problem by:

Hard := CKB

Soft := CR

with weight wi defined recursively:

wi :=

(
m∑

j=i+1

wj

)
+ 1

With these weights assigned we achieve two important properties:
(1) the ascending order of the constraints ci and more important
(2) the lexicographical ordering, because constraint ci with weight(∑m

j=i+1 wj
)

+1 = wi+1+ . . .+wm+1 is greater than the sum of
weights of all previous and less preferred constraints ci+1, . . . , cm.

Each step requires polynomial time. But the downside of the above
reduction is the exponential growth of the search space. It can be
shown by induction that (

∑m
j=i+1 wj) + 1 = 2m−i. The most pre-

ferred clause has weight 2m−1, so the weights are in O(2m).

7.2 From MINUNSAT to A-preferred MCS
Firstly, we show how we can reduce the MINUNSAT problem eas-
ily to the A-preferred MCS problem if the weights comply with the
following property:

Proposition 1. Let ϕ = (Hard,Soft) be a MINUNSAT problem
as defined in Definition 5 with Soft = {(c1, w1), . . . , (cm, wm)}. If
there exists a permutation π of the indices {1, . . . ,m} such that:

wπ(i) >

m∑
j=i+1

wπ(j)

then the strict total ordering <π with cπ(1) < . . . < cπ(m) with
CKB = Hard and CR = {cπ(1), . . . , cπ(m)} is a reduction to the
A-preferred MCS problem.

Proof. The reduction is correct since (1) it preserves the order of
the soft clauses w.r.t. their weights and (2) the weights are in such
a relation that for each clause cπ(i) a MINUNSAT solution will try
to satisfy cπ(i) before satisfying all clauses cπ(i+1), . . . , cπ(m) and
so will a solution of A-preferred MCS due to the strict total clause
ordering.

We can check whether such a permutation can be found by: (1)
Sorting soft clauses c1, . . . , cm in ascending order w.r.t. their weights
for complexity O(m logm), (2) Iterating through the sorted list and
checking each clause ci whether the inequality holds for complexity
O(m).

The property of Proposition 1 is sufficient but not necessary. There
are other classes of MINUNSAT instances without this property
which are reducible in polynomial time, too.

Example 3. Soft = {(x1,m), . . . , (xm, 1)}, i.e., a descend-
ing weight for each clause. We assume atMost(x1, . . . , xm) ⊆
Hard, i.e., at most one soft clause is allowed to be true.
MINUNSAT will try to satisfy the clause with the highest weight.
The A-preferred MCS problem with the strict total ordering x1 <
. . . < xm will be a diagnosis which contains clauses except for
the most preferred one in the ordering which can be satisfied un-
der Hard. Since at most one of the clauses can be true, the result
is the same.
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Next we will show the newly result that actually any MINUNSAT
instance is polynomially reducible to the A-preferred MCS problem,
i.e., the A-preferred MCS is FPNP-hard.

Theorem 1. The A-preferred MCS problem is FPNP-hard.

Proof. Consider the Maximum Satisfying Assignment (MSA) prob-
lem: For a Boolean formula ϕ over the variables x1, . . . , xn find a
satisfying assignment with the lexicographical maximum of the word
x1 · · ·xn ∈ {0, 1}n or 0 if not satisfiable. This problem is FPNP-
complete as proved in [10].

We can polynomially reduce the MSA problem to the A-preferred
MCS problem:

CKB := Tseitin(ϕ)

CR := {{x1}, . . . , {xn}}
< := x1, . . . , xn

Since the Tseitin-transformed formula Tseitin(ϕ) has the same
models on the set of the original variables x1, . . . , xn as the
original formula ψ (see Remark 1), our reduction is sound. Let
APreMCS(CKB, CR) be the solution of the constructed A-preferred
MCS problem w.r.t. the order<−1. Using Proposition 12 of [16], the
corresponding L-preferred MSS, which isϕ−APreMCS(CKB, CR)
w.r.t. the order <, is the solution for the MSA problem. Therefore,
the A-preferred MCS problem is FPNP-hard.

Corollary 1. The A-preferred MCS problem is FPNP-complete.

Proof. The A-preferred MCS problem is FPNP-hard (Theorem 1)
and in FPNP [16].

Remark 4. With similar arguments one can prove that the L-
preferred MSS problem is FPNP-complete, too. Assuming P 6= NP,
then FPNP[logn] ⊂ FPNP holds [10]. Hence FPNP-complete prob-
lems are strictly harder than problems in FPNP[logn].

Theorem 1 negatively answers the open question whether com-
puting L-preferred MSSes and A-preferred MCSes could be in
FPNP[logn] or not stated in Remark 1 in [16].

A practical encoding of a MINUNSAT problem instance as an A-
preferred MCS problem could be to encode each soft clause as an
unit clause with variable si (similiar to Remark 1) and to build the
binary representation of the sum:∑

i

wi · si = 2l+1 · cl+1 + . . .+ 20 · c0

Where wi is the weight of the unit soft clause {si}. Then, design
an adder-network of this sum with the output variables cl+1, . . . , c0
and set CR := {cl+1, . . . , c0}. The strict total order is given by the
order of the coefficients of the binary representation from the most
significant bit cl+1 to the least significant bit c0. SetCKB is the union
of the set of the hard clauses, the encoding of the soft clauses as unit
clause and the encoding of the adder-network of the sum. We will
not go into more detail in this work.

8 Experimental Evaluation
We evaluate both problems, the A-preferred MCS problem and the
MINUNSAT problem, with real industrial datasets from the auto-
motive domain. In the next subsections we describe the benchmark
data and the considered use cases in more detail, afterwards we de-
scribe the used solver settings and finally discuss the results.

Table 1. Statistics about the considered POFs

Rules Families
POF #Var. Qty. Avg. #Var. Qty. Avg. #Var.
M1_1 996 11,627 5.9 188 6.3
M1_2 612 4,465 5.3 174 5.3
M2_1 483 495 4.3 60 8.7
M3_1_1 1,772 2,074 33.8 35 56.7
M3_1_2 1,586 1,496 4.6 35 48.9
M3_1_3 1,993 2,281 32.9 35 61.6
M3_2_1 2,087 2,430 34.0 42 57.2
M3_3_1 880 1,137 19.6 31 29.3
M3_3_2 884 1,121 55.1 31 29.4
M3_3_3 885 1,198 47.8 31 29.4

8.1 Benchmark Data

For our benchmarks we use test instances based on real automotive
configuration data from three different major German car manufac-
turers. The configuration model of constructable cars is given as a
product overview formula (POF) in Propositional Logic [11]. A POF
is satisfiable and each satisfying assignment represents a valid con-
figurable car. If the POF is over-constrained (unsatisfiable), then no
cars are constructable. We denote a POF by Mx_y_z, where each x
is a different car manufacturer, each y is a different type series and
each z is a different model type. Each satisfying variable assignment
is a constructable car configuration. Table 1 shows statistics about
each used POF instance. Column #Var. shows the total variable num-
ber of each instance. Rules are Boolean formulas (not necessarily
clauses) describing the dependencies between components. Column
Qty. shows the number of rules and column Avg. #Var. shows the
average number of variables of a rule. Families are groups of compo-
nents where usually one element has to be chosen, e.g., one motor has
to be chosen of the family of motors. But the condition of a family
depends on the car manufacturer. Column Qty. shows the number of
families and column Avg. #Var. shows the average number of com-
ponents of a family.

We consider two use cases of re-configuration problems (see [23]
for a detailed description of use cases regarding optimization and re-
configuration in the context of automotive configuration):

• Re-Configuration of Selections: The constraints of the POF are
considered as hard constraints. We choose soft user requirements
(variables) at random.
Since not all user requirements are consistent w.r.t. the POF in
general, such a random selection easily gets inconsistent. The goal
is to optimize the user selections.
By this use case we try to realistically imitate a user behavior when
configuring a custom car.

• Re-Configuration of Rules: The constraints of the POF are con-
sidered as soft constraints. We choose user requirements (vari-
ables) at random.
Similarly to the previous use case, such a random user selection
easily leads to inconsistency. But in contrast to the previous use
case, we want to optimize the POF constraints instead of the user
selections.
By this use case we try to realistically imitate, for example, an
engineering situation where new hard requirements are given and
the corresponding engineer wants to be guided by an optimized
repair suggestion to adjust the rules.
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Table 2. Results of MINUNSAT use case “Re-Configuration of Selections” (in seconds)

30% 50% 70%
Problem WPM1 msu4 LSB IQB IQBO WPM1 msu4 LSB IQB IQBO WPM1 msu4 LSB IQB IQBO
M1_1 3.19 1.33 0.51 0.47 0.48 t/o 4.97 0.50 0.55 0.49 t/o 47.96 0.51 0.62 0.50
M1_2 2.13 0.04 0.24 0.23 0.20 0.77 0.05 0.23 0.23 0.22 5.20 0.08 0.25 0.24 0.24
M2_1 0.10 0.53 0.09 0.07 0.09 0.11 0.75 0.08 0.07 0.08 0.12 1.08 0.08 0.07 0.08
M3_1_1 1.13 0.53 0.89 1.01 0.89 1.19 0.75 0.95 1.00 1.00 1.24 1.08 0.91 0.98 1.04
M3_1_2 0.12 0.05 0.09 0.07 0.09 0.11 0.07 0.08 0.07 0.08 0.12 0.08 0.08 0.08 0.08
M3_1_3 1.34 0.63 1.16 1.08 1.17 1.36 0.96 1.19 1.09 1.17 1.43 1.30 1.18 1.11 1.15
M3_2_1 1.38 0.71 1.13 1.03 1.16 1.39 0.92 1.21 1.07 1.47 1.48 1.40 1.43 1.05 1.24
M3_3_1 0.88 0.46 1.00 0.75 1.16 0.87 0.45 0.88 0.75 0.94 0.90 0.61 0.89 0.79 0.89
M3_3_2 1.59 0.78 1.60 1.43 1.62 1.57 0.90 1.41 1.46 1.45 1.69 1.41 1.59 1.76 1.46
M3_3_3 1.34 0.63 1.22 1.23 1.18 1.25 0.93 1.18 1.23 1.18 1.31 0.88 1.20 1.22 1.21

Table 3. Results of MINUNSAT use case “Re-Configuration of Rules” (in seconds)

30% 50% 70%
Problem WPM1 msu4 LSB IQB IQBO WPM1 msu4 LSB IQB IQBO WPM1 msu4 LSB IQB IQBO
M1_1 10.98 t/o 80.45 13.01 4.97 48.15 t/o 79.33 22.16 8.01 31.69 t/o 79.26 25.25 9.32
M1_2 3.24 35.08 7.43 1.78 0.72 4.24 89.95 7.36 2.47 0.89 5.88 64.91 7.10 3.23 1.13
M2_1 0.20 0.11 0.25 0.15 0.16 0.19 0.19 0.25 0.18 0.15 0.23 0.34 0.25 0.19 0.16
M3_1_1 1.88 13.35 9.36 1.97 1.85 2.17 41.86 9.49 2.30 2.04 1.89 14.00 9.13 2.42 2.18
M3_1_2 0.39 0.59 1.48 0.41 0.27 0.50 4.98 1.54 0.55 0.33 0.33 2.15 1.56 0.51 0.34
M3_1_3 2.11 23.69 12.95 2.25 2.08 2.44 59.11 12.32 2.75 2.37 2.17 32.55 12.51 2.84 2.57
M3_2_1 2.40 36.57 11.47 2.56 2.22 2.37 71.15 14.16 2.99 2.50 2.29 65.02 13.95 3.17 2.70
M3_3_1 1.10 2.07 5.14 1.24 1.22 1.18 10.80 5.24 1.49 1.36 1.09 5.26 5.18 1.44 1.36
M3_3_2 2.04 5.92 7.78 2.08 2.10 2.03 14.19 8.76 2.38 2.27 3.08 8.11 8.54 2.30 2.48
M3_3_3 1.58 4.62 6.41 1.79 1.78 1.61 5.54 6.72 1.89 1.83 1.57 6.41 6.73 2.00 1.98

Additionally, we considered three different levels of the user selec-
tions: 30%, 50% and 70%. Each level represents the percentage of
components chosen from the families, where 100% are all families.
By this distinction we want to compare the performance impact of
less configured cars in contrast to highly configured cars. A more
detailed description of these use cases can be found in [22].

Table 4. Avg. approx. quality of “Re-Config. of Selections”

Problem 30% 50% 70%
M1_1 93.39 % 93.60 % 91.78 %
M1_2 95.79 % 95.94 % 95.76 %
M2_1 100 % 99.47 % 98.79 %
M3_1_1 99.43 % 99.29 % 97.61 %
M3_1_2 100 % 100 % 97.49 %
M3_1_3 99.67 % 100 % 96.62 %
M3_2_1 100 % 98.21 % 96.43 %
M3_3_1 99.57 % 99.44 % 99.17 %
M3_3_2 100 % 97.56 % 98.85 %
M3_3_3 100 % 95.64 % 97.62 %
Avg. 98.79 % 97.92 % 97.01 %

We consider two problem categories:

• Category I: MINUNSAT
• Category II: A-preferred MCS

For MINUNSAT the weights were chosen between 1 to 10 by ran-
dom and for A-preferred MCS the order was chosen by random. We

assume a uniform distribution of the soft formulas to simulate the in-
teraction of the user. For each POF, each use case and each percent-
age level we created 10 instances to get a reasonable distribution.

8.2 Implementation Techniques
On the MINUNSAT side we used the following solvers for our eval-
uation:

• MSU4: An unsat core-guided approach with iterative SAT calls
using a reduced number of blocking variables [15].

• WPM1: An unsat core-guided with iterative SAT calls, see Algo-
rithm 2 and [1]. In each iteration a new blocking variable will be
added to each soft clause within the unsat core.

Whereas for the A-preferred MCS side we used:

• LSB: Linear search with backbone improvement plus usage of the
in-/decremental SAT-Solving interface.

• IQB: Basic INVQX with backbone improvement plus usage of
the first part of Remark 2.

• IQBO: Optimized INVQX with backbone improvement plus full
usage of Remark 2.

Solver MSU4 is an external one due to [15]. All other solvers were
implemented on top our uniform logic framework, which we use for
commercial applications within the context of automotive configu-
ration. Our SAT solver provides an inc-/decremental interface. We
maintain two versions (Java and .NET) and decided to implement
the solvers in C# using .NET 4.0.

Our experiments were run on the following settings: Processor:
Intel Core i7-3520M, 2.90 GHz; Main memory: 8GB. All our .NET
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Table 6. Results of A-preferred MCS use case “Re-Configuration of Selections” (in seconds)

30% 50% 70%
Problem WPM1 msu4 LSB IQB IQBO WPM1 msu4 LSB IQB IQBO WPM1 msu4 LSB IQB IQBO
M1_1 0.76 2.15 0.41 0.41 0.44 – – 0.42 0.47 0.49 – – 0.52 0.56 0.52
M1_2 0.36 0.64 0.18 0.20 0.21 – – 0.19 0.22 0.19 – – 0.26 0.23 0.22
M2_1 0.10 0.05 0.06 0.06 0.06 0.11 0.04 0.06 0.06 0.05 0.11 0.06 0.06 0.07 0.05
M3_1_1 1.20 0.62 0.75 0.81 0.72 1.34 0.88 0.82 0.89 0.73 1.18 1.10 0.76 0.91 0.85
M3_1_2 0.10 0.05 0.06 0.06 0.06 0.11 0.06 0.06 0.06 0.06 0.11 0.08 0.06 0.07 0.06
M3_1_3 1.27 0.69 0.86 0.94 0.86 1.48 0.73 0.87 1.00 0.85 1.42 1.23 0.93 1.03 0.88
M3_2_1 1.31 0.84 0.76 0.98 0.85 1.33 1.10 0.85 0.96 0.84 1.39 1.44 0.93 0.99 0.93
M3_3_1 0.86 0.84 0.59 0.64 0.56 0.88 0.56 0.65 0.65 0.62 0.90 0.64 0.63 0.67 0.67
M3_3_2 1.63 0.83 1.08 1.19 1.07 1.59 1.13 1.07 1.15 1.08 1.62 1.08 1.10 1.17 1.09
M3_3_3 1.28 0.66 0.91 0.93 0.88 1.26 0.86 0.86 0.96 0.92 1.27 1.18 0.93 0.98 0.94

Table 7. Results of A-preferred MCS use case “Re-Configuration of Rules” (in seconds)

30% 50% 70%
Problem LSB IQB IQBO LSB IQB IQBO LSB IQB IQBO
M1_1 77.00 10.69 3.65 73.83 17.95 6.14 73.75 19.90 7.31
M1_2 6.40 1.54 0.56 6.30 1.81 0.67 5.96 2.12 0.81
M2_1 0.22 0.14 0.11 0.22 0.15 0.12 0.22 0.18 0.14
M3_1_1 8.41 1.88 1.62 8.10 2.05 1.63 8.35 2.12 1.71
M3_1_2 1.36 0.33 0.20 1.33 0.46 0.24 1.38 0.49 0.28
M3_1_3 11.03 1.95 1.69 11.04 2.34 1.94 11.53 2.35 2.07
M3_2_1 9.87 2.20 1.79 12.48 2.51 2.11 12.12 2.69 2.14
M3_3_1 4.24 1.19 1.02 4.29 1.31 1.08 4.46 1.34 1.16
M3_3_2 6.79 2.01 1.66 7.25 2.06 1.79 7.05 2.10 1.95
M3_3_3 5.41 1.61 1.42 5.65 1.68 1.55 5.70 1.79 1.61

Table 5. Avg. approx. quality of “Re-Configuration of Rules”

Problem 30% 50% 70%
M1_1 99.90 % 99.91 % 99.93 %
M1_2 99.94 % 99.94 % 99.86 %
M2_1 99.82 % 99.56 % 99.70 %
M3_1_1 100 % 99.98 % 100 %
M3_1_2 100 % 99.96 % 99.99 %
M3_1_3 99.98 % 99.99 % 99.99 %
M3_2_1 100 % 99.99 % 99.97 %
M3_3_1 99.95 % 99.89 % 99.99 %
M3_3_2 99.96 % 99.94 % 99.97 %
M3_3_3 99.97 % 99.98 % 99.95 %
Avg. 99.95 % 99.91 % 99.94 %

based algorithms run under Windows 7 while MSU4 runs under
Ubuntu 12.04.

8.3 Results
For all of the following result tables, each table entry shows the av-
erage time in seconds a solver needed to solve 10 different instances
of the considered use case and POF. We set a timeout (t/o) of 600
seconds. Each table is separated in three levels (30%, 50% and 70%)
which is the percentage of families where user selections were made
from.

8.3.1 Category I: Partial Weighted MINUNSAT

Table 2 and Table 3 show the results of both use cases, respectively.
MSU4 performs well on the first use case, whereas IQBO performs
most often best on the second use case.

Table 4 and Table 5 show the average approximation quality of the
A-preferred MCS approaches used as MINUNSAT approximation
(cf. Subsection 6.1), which turns out to be quite good. Percentage p
is calculated as follows:

p =
(
∑m
i=1 wi)− approxOpt

(
∑m
i=1 wi)− exactOpt

Where approxOpt is the optimum of the A-preferred MCS solver
and exactOpt is the optimum of the MINUNSAT solver.

8.3.2 Category II: A-preferred MCS

Table 6 does not contain entries for M1_1 and M1_2 in the columns
50% and 70% because the encoding of the weights exceeds the
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native long data type. The MaxSAT competition format3 permits
a top weight lower than 263. Table 7 is missing an evaluation for
MINUNSAT solvers for the same reason.

For instances where an encoding is possible, both MINUNSAT
solvers can keep up with the native A-preferred MCS solvers. IQBO
performs significantly better than IQB for the second use case.

9 Conclusions and Future Work

In this work, we compared the problem of finding a minimal pre-
ferred diagnosis (A-preferred MCS in the context of Propositional
Logic) with the problem of finding a diagnosis of minium cardinal-
ity (MINUNSAT in the context of Propositional Logic). We proved
the FPNP-hardness of the A-preferred MCS problem and therefore
showed, that both problems are equally hard to solve and reducible
to each other.

Both optimization approaches (A-preferred MCS and
MINUNSAT) complement each other. For use cases which
can be expressed as an A-preferred MCS problem one should use
INVQX as solving engine. For the other use cases, one should use
MINUNSAT.

For instances where MINUNSAT is not able to find the solution
in within a reasonable time or where fast responses are needed, we
can fall back to INVQX if an approximated answer is reasonable for
the considered use case.

We evaluated the performance of both problems with benchmarks
based on real automotive configuration data. We assumed a uniform
distribution of the soft formulas to simulate the interaction of the
user. These benchmarks can be improved by choosing a more realis-
tic distribution of the soft formulas.

For an exhaustive evaluation of both problems, we need to con-
sider more complex benchmark data, e.g. unsatisfiable instances of
the SAT4 or MaxSAT5 competitions. Also, we need to evaluate all
solvers based on the same SAT solving engine, i.e. MINISAT [3], in
order to build up an uniform environment.

Another interesting evaluation could be the reduction of the
MINUNSAT problem to an A-preferred MCS problem by using an
adder-network encoding as described in Subsection 7.2. With such an
encoding, we could use every A-preferred MCS solver, like INVQX,
to solve MINUNSAT problem instances.

INVQX and MINUNSAT in their original form compute only a
single diagnosis. Both approaches can be extended to compute a set
of all diagnoses. We plan to investigate the relationship of these ex-
tensions and to evaluate them, too.
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[1] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy, ‘Solving

(weighted) partial MaxSAT through satisfiability testing’, in Theory
and Applications of Satisfiability Testing - SAT 2009, ed., Oliver Kull-
mann, volume 5584 of Lecture Notes in Computer Science, 427–440,
Springer Berlin Heidelberg, (2009).

[2] Josep Argelich and Felip Manyà, ‘Exact Max-SAT solvers for over-
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