
FLEXDIAG: AnyTime Diagnosis
for Reconfiguration

Alexander Felfernig1 and Rouven Walter2 and Stefan Reiterer1

Abstract. Anytime diagnosis is able to determine solutions within
predefined time limits. This is especially useful in realtime scenar-
ios such as production scheduling, robot control, and communication
networks management where diagnosis and corresponding reconfig-
uration capabilities play a major role. Anytime diagnosis in many
cases comes along with a tradeoff between diagnosis quality and the
efficiency of diagnostic reasoning. In this paper we introduce and
analyze FLEXDIAG which is an anytime variant of existing direct
diagnosis approaches. We evaluate the algorithm with regard to per-
formance and diagnosis quality using a configuration benchmark.

Keywords: Anytime Diagnosis, Reconfiguration.

1 Introduction

Knowledge-based configuration is one of the most successful appli-
cations of Artificial Intelligence [7, 24]. There are many different
applications of configuration technologies ranging from telecommu-
nication infrastructures [11], railway interlocking systems [5], the
automotive domain [22, 26, 28] to the configuration of services [27].
Configuration technologies must be able to deal with inconsistencies
which can occur in different contexts. First, a configuration knowl-
edge base can be inconsistent, i.e., no solution can be determined. In
this context, the task of knowledge engineers is to figure out which
constraints are responsible for the unintended behavior of the knowl-
edge base. Bakker et al. [1] show the application of model-based di-
agnosis [19] to determine minimal sets of constraints in a knowledge
base that are responsible for a given inconsistency. A variant thereof
is documented in Felfernig et al. [6] where an approach to the auto-
mated debugging of knowledge bases with test cases is introduced.
Felfernig et al. [6] also show how to diagnose customer requirements
that are inconsistent with a configuration knowledge base. The un-
derlying assumption is that the configuration knowledge base itself
is consistent but combined with a set of requirements is inconsistent.

All diagnosis approaches mentioned so far are based on conflict-
directed hitting set determination [15, 19]. These approaches typ-
ically determine diagnoses in a breadth-first search manner which
allows the identification of minimal cardinality diagnoses. The ma-
jor disadvantage of applying these approaches is the need of pre-
determining minimal conflicts which is inefficient especially in cases
where only the leading diagnoses (the most relevant ones) are sought.

1 Applied Software Engineering Group, Institute for Software
Technology, TU Graz, Austria, email: {alexander.felfernig, ste-
fan.reiterer}@ist.tugraz.at

2 Symbolic Computation Group, WSI Informatics, Universität Tübingen,
Germany, email: rouven.walter@uni-tuebingen.de

Anytime diagnosis algorithms are useful in scenarios where diag-
noses have to be provided in real-time, i.e., within given time limits.
If diagnosis is applied in interactive configuration, for example, to
determine repairs for inconsistent customer requirements, response
times should be below one second [2]. Efficient diagnosis and recon-
figuration of communication networks is crucial to retain the qual-
ity of service [18, 25]. In today’s production scenarios which are
characterized by small batch sizes and high product variability, it is
increasingly important to develop algorithms that support the effi-
cient reconfiguration of schedules. Such functionalities support the
paradigm of smart production, i.e., the flexible and efficient produc-
tion of highly variant products. Further applications are the diagnosis
and repair of robot control software [23], the reconfiguration of cars
[29], and the reconfiguration of buildings [12].

Algorithmic approaches to provide efficient solutions for diagno-
sis problems are manyfold. Some approaches focus on improvements
of Reiter’s original hitting set directed acyclic graph (HSDAG) [19]
in terms of a personalized computation of leading diagnoses [3] or
other extensions that make the basic approach [19] more efficient
[31]. Wang et al. [30] introduce an approach to derive binary decision
diagrams (BDDs) on the basis of a pre-determined set of conflicts –
diagnoses can then be determined by solving the BDD. A pre-defined
set of conflicts can also be compiled into a corresponding linear opti-
mization problem [10]; diagnoses can then be determined by solving
the given problem. In knowledge-based recommendation scenarios,
diagnoses for user requirements can be pre-compiled in such a way
that for a given set of customer requirements, the diagnosis search
task can be reduced to querying a relational table (see, for example,
[14, 20]). All of the mentioned approaches either extend the approach
of Reiter [19] or improve efficiency by exploiting pre-generated in-
formation about conflicts or diagnoses.

An alternative to conflict-directed diagnosis [19] are direct diag-
nosis algorithms that determine minimal diagnoses without the need
of pre-determing minimal conflict sets [9, 17, 21]. The FASTDIAG

algorithm [9] is a divide-and-conquer based algorithm that supports
the determination of diagnoses without a preceding conflict detec-
tion. In this paper we show how this algorithm can be converted into
an anytime diagnosis algorithm (FLEXDIAG) that is able to improve
performance by disregarding the aspect of minimality, i.e., the algo-
rithm allows for tradeoffs between diagnosis quality (e.g., minimal-
ity) and performance of diagnostic search. In this paper we focus on
reconfiguration scenarios, i.e., we show how FLEXDIAG can be ap-
plied in situations where a given configuration (solution) has to be
adapted conform to a changed set of customer requirements.

Our contributions in this paper are the following. First, we show
how to solve reconfiguration tasks with direct diagnosis. Second, we
make direct diagnosis anytime-aware by including a parametrization

Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria

105

that helps to systematically reduce the number of consistency checks.
Finally, we report the results of a FLEXDIAG-related evaluation con-
ducted on the basis of a configuration benchmark.

The remainder of this paper is organized as follows. In Section
2 we introduce an example configuration knowledge base from the
domain of resource allocation. This knowledge base will serve as a
working example throughout the paper. Thereafter (Section 3) we in-
troduce a definition of a reconfiguration task. In Section 4 we discuss
basic principles of direct diagnosis on the basis of FLEXDIAG and
show how this algorithm can be applied in reconfiguration scenar-
ios. In Section 5 we present the results of a performance analysis. A
simple example of the application of FLEXDIAG in production envi-
ronments is given in Section 6. In Section 7 we discuss major issues
for future work. With Section 8 we conclude the paper.

2 Example Configuration Knowledge Base
A configuration system determines configurations (solutions) on the
basis of a given set of customer requirements [13]. In many cases,
constraint satisfaction problem (CSP) representations [16] are used
for the definition of a configuration task. A configuration task and a
corresponding configuration (solution) can be defined as follows.

Definition 1 (Configuration Task and Configuration). A con-
figuration task can be defined as a CSP (V,D,C) where V =
{v1, v2, ..., vn} is a set of variables, D = ∪dom(vi) represents do-
main definitions, andC = {c1, c2, ..., cm} is a set of constraints. Ad-
ditionally, user requirements are represented by a set of constraints
R = {r1, r2, ..., rk}. A configuration (solution) for a configuration
task is a set of assignments (constraints) S = {s1 : v1 = a1, s2 :
v2 = a2, ..., sn : vn = an)} where ai ∈ dom(vi) which is consis-
tent with C ∪R.

An example of a configuration task represented as a constraint sat-
isfaction problem is the following.

Example (Configuration Task). In this resource allocation problem
example, items (a barrel of fuel, a stack of paper, a pallet of fire-
works, a pallet of personal computers, a pallet of computer games, a
barrel of oil, a palette of roof tiles, and a palette of rain pipes) have to
be assigned to three different containers. There are a couple of con-
straints (ci) to be taken into account, for example, fireworks must not
be combined with fuel (c1). Furthermore, there is one requirement
(r1) which indicates that the palette of fireworks has to be assigned
to container 1. On the basis of this configuration task definition, a
configurator can determine a configuration S.

• V = {fuel, paper, fireworks, pc, games, oil, roof, pipes}
• dom(fuel) = dom(paper) = dom(fireworks) =
dom(pc) = dom(games) = dom(oil) = dom(roof) =
dom(pipes) = {1, 2, 3}

• C = {c1 : fireworks 6= fuel, c2 : fireworks 6= paper, c3 :
fireworks 6= oil, c4 : pipes = roof, c5 : paper 6= fuel}

• R = {r1 : fireworks = 1}
• S = {s1 : pc = 3, s2 : games = 1, s3 : paper = 2, s4 :
fuel = 3, s5 : fireworks = 1, s6 : oil = 2, s7 : roof =
1, s8 : pipes = 1}

On the basis of the given definition of a configuration task, we now
introduce the concept of reconfiguration (see also [12, 18, 25, 28]).

3 Reconfiguration Task
It can be the case that an existing configuration S has to be adapted
due to a change or extension of the given set of customer require-

ments. Examples thereof are changing requirements that have to be
taken into account in production schedules, failing components or
overloaded network infrastructures in a mobile phone network, and
changes in the internal model of the environment of a robot. In the
following we assume that the palette of paper should be reassigned
to container 3 and the personal computer and games palettes should
be assigned to the same container. Formally, the set of new require-
ments is represented by Rρ : {r′1 : pc = games, r′2 : paper = 3}.
In order to determine reconfigurations, we have to calculate a corre-
sponding diagnosis ∆ (see Definition 2).

Definition 2 (Diagnosis). A diagnosis ∆ (correction subset) is a
subset of S = {s1 : v1 = a1, s2 : v2 = a2, ..., sn : vn = an} such
that S − ∆ ∪ C ∪ Rρ is consistent. ∆ is minimal if there does not
exist a diagnosis ∆′ with ∆′ ⊂ ∆.

On the basis of the definition of a minimal diagnosis, we can in-
troduce a formal definition of a reconfiguration task.

Definition 3 (Reconfiguration Task and Reconfiguration). A recon-
figuration task can be defined as a CSP (V,D,C, S,Rρ) where V
is a set of variables, D represents variable domain definitions, C
is a set of constraints, S represents an existing configuration, and
Rρ = {r′1, r′2, ..., r′k} (Rρ consistent with C) represents a set of
reconfiguration requirements. A reconfiguration is a variable assign-
ment S∆ = {s1 : v1 = a′1, s2 : v2 = a′2, ..., sl : vl = a′l} where
si ∈ ∆, a′i 6= ai, and S −∆ ∪ S∆ ∪ C ∪Rρ is consistent.

If Rρ is inconsistent with C, the new requirements have to be an-
alyzed and changed before a corresponding reconfiguration task can
be triggered [4, 8]. An example of a reconfiguration task in the con-
text of our configuration knowledge base is the following.

Example (Reconfiguration Task). In the resource allocation prob-
lem, the original customer requirements R are substituted by the re-
quirements Rρ = {r′1 : pc = games, r′2 : paper = 3}. The result-
ing reconfiguration task instance is the following.

• V = {fuel, paper, fireworks, pc, games, oil, roof, pipes}
• dom(fuel) = dom(paper) = dom(fireworks) =
dom(pc) = dom(games) = dom(oil) = dom(roof) =
dom(pipes) = {1, 2, 3}

• C = {c1 : fireworks 6= fuel, c2 : fireworks 6= paper, c3 :
fireworks 6= oil, c4 : pipes = roof, c5 : paper 6= fuel}

• S = {s1 : pc = 3, s2 : games = 1, s3 : paper = 2, s4 :
fuel = 3, s5 : fireworks = 1, s6 : oil = 2, s7 : roof =
1, s8 : pipes = 1}

• Rρ = {r′1 : pc = games, r′2 : paper = 3}

To solve a reconfiguration task (see Definition 3), conflict-directed
diagnosis approaches [19] would determine a set of minimal conflicts
and then determine a hitting set that resolves each of the identified
conflicts. In this context, a minimal conflict set CS ⊆ S is a min-
imal set of variable assignments that trigger an inconsistency with
C ∪Rρ, i.e., CS ∪C ∪Rρ is inconsistent and there does not exist a
conflict set CS′ with CS′ ⊂ CS. In our working example, the min-
imal conflict sets are CS1 : {s1 : pc = 3, s2 : games = 1},
CS2 : {s3 : paper = 2}, and CS3 : {s4 : fuel = 3}.
The corresponding minimal diagnoses are ∆1 : {s1, s3, s4} and
∆2 : {s2, s3, s4}. The elements in a diagnosis indicate which vari-
able assignments have to be adapted such that a reconfiguration
can be determined that takes into account the new requirements in
Rρ. If we choose ∆1, the reconfigurations (reassignments) for the
variable assignments in ∆1 can be determined by a CSP solver
call C ∪ Rρ ∪ (S − ∆1). The resulting configuration S′ can be
{s1 : pc = 1, s2 : games = 1, s3 : paper = 3, s4 : fuel = 2, s5 :
fireworks = 1, s6 : oil = 2, s7 : roof = 1, s8 : pipes = 1}. For

Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop
September 10-11, 2015, Vienna, Austria

106

a detailed discussion of conflict-based diagnosis we refer to Reiter
[19]. In the following we introduce an approach to the determination
of minimal reconfigurations which is based on a direct diagnosis al-
gorithm, i.e., diagnoses are determined without the need of determin-
ing related minimal conflict sets.

4 Reconfiguration with FLEXDIAG

In the following discussions, the set AC = C ∪ Rρ ∪ S represents
the union of all constraints that restrict the set of possible solutions
for a given reconfiguration task. Furthermore, S represents a set of
constraints that are considered as candidates for being included in a
diagnosis ∆. The idea of FLEXDIAG (Algorithm 1) is to systemati-
cally filter out the constraints that become part of a minimal diagnosis
using a divide-and-conquer based approach.

Algorithm 1 − FLEXDIAG.

1 func FLEXDIAG(S,AC = C ∪Rρ ∪ S) : ∆
2 if isEmpty(S) or inconsistent(AC − S) return ∅
3 else return FLEXD(∅, S,AC);

4 func FLEXD(D,S = {s1..sq}, AC) : ∆
5 if D 6= 0 and consistent(AC) return ∅;
6 if size(S) ≤ m return S;

7 k =
q

2
;

8 S1 = {s1..sk};S2 = {sk+1..sq};
9 D1 = FLEXD(S1, S2, AC − S1);

10 D2 = FLEXD(D1, S1, AC −D1);
11 return(D1 ∪D2);

In our example reconfiguration task, the original configuration
S = {s1, s2, s3, s4, s5, s6, s7, s8} and the new set of customer re-
quirements is Rρ = {r′1, r′2}. Since S ∪ Rρ ∪ C is inconsistent, we
are in the need of a minimal diagnosis ∆ and a reconfiguration S∆

such that S−∆∪S∆∪Rρ∪C is consistent. In the following we will
show how the FLEXDIAG (Algorithm 1) can be applied to determine
a minimal diagnosis ∆.

The FLEXDIAG algorithm is assumed to be activated under the
assumption that AC is inconsistent, i.e., the consistency of AC is
not checked by the algorithm. If AC is inconsistent but AC − S is
also inconsistent, FLEXDIAG will not be able to identify a diagnosis
in S; therefore ∅ is returned. Otherwise, a recursive function FLEXD
is activated which is in charge of determining one minimal diagnosis
∆. In each recursive step, the constraints in S are divided into two
different subsets (S1 and S2) in order to figure out if already one of
these subsets includes a diagnosis. If this is the case, the second set
must not be inspected for diagnosis elements anymore.

FLEXDIAG is based on the concepts of FASTDIAG [9], i.e., it re-
turns one diagnosis (∆) at a time and is complete in the sense that
if a diagnosis is contained in S, then the algorithm will find it. A
corresponding reconfiguration can be determined by a solver call
C ∪ Rρ ∪ (S − ∆). The determination of multiple diagnoses at a
time can be realized on the basis of the construction of a HSDAG
[19]. If m = 1 (see Algorithm 1), the number of consistency checks
needed for determining one minimal diagnosis is 2δ× log2(n

δ
) + 2δ

in the worst case [9]. In this context, δ represents the set size of the
minimal diagnosis ∆ and n represents the number of constraints in
solution S.

If m > 1, the number of needed consistency checks can be sys-
tematically reduced if we accept the tradeoff of possibly loosing the
property of diagnosis minimality (see Definition 2). If we allow set-
tings with m > 1, we can reduce the upper bound of the number
of consistency checks to 2δ × log2(2n

δ×m) in the worst case. These
upper bounds regarding the number of needed consistency checks al-
low to estimate the worst case runtime performance of the diagnosis
algorithm which is extremely important for realtime scenarios. Con-
sequently, if we are able to estimate the upper limit of the runtime
needed for completing one consistency check (e.g., on the basis of
simulations with an underlying constraint solver), we are also able
to figure out lower bounds for m that must be chosen in order to
guarantee a FLEXDIAG runtime within predefined time limits.

Table 1 depicts an overview of consistency checks needed depend-
ing on the setting of the parameter m and the diagnosis size δ for
|S| = 16. For example, ifm = 2 and the size of a minimal diagnosis
is δ = 4, then the upper bound for the number of needed consistency
checks is 16. If the size of δ increases further, the number of cor-
responding consistency checks does not increase anymore. Figures
1 and 2 depict FLEXDIAG search trees depending on the setting of
granularity parameter m.

δ m=1 m=2 m=4 m=8
1 10 8 6 4
2 16 12 8 4
4 24 16 8 4
8 32 16 16 16

Table 1. Worst-case estimates for the number of needed consistency
checks depending on the granularity parameter m and the diagnosis size δ

for |S| = 16.

FLEXDIAG determines one diagnosis at a time which indicates
variable assignments of the original configuration that have to be
changed such that a reconfiguration conform to the new requirements
(Rρ) is possible. The algorithm supports the determination of lead-
ing diagnoses, i.e., diagnoses that are preferred with regard to given
user preferences [9]. FLEXDIAG is based on a strict lexicographi-
cal ordering of the constraints in S: the lower the importance of a
constraint si ∈ S the lower the index of the constraint in S. For
example, s1 : pc = 3 has the lowest ranking. The lower the rank-
ing, the higher the probability that the constraint will be part of a
reconfiguration S∆. Since s1 has the lowest priority and it is part of
a conflict, it is element of the diagnosis returned by FLEXDIAG. For
a discussion of the properties of lexicographical orderings we refer
to [9, 15].

5 Evaluation

In order to evaluate FLEXDIAG, we analyzed the two major aspects
of (1) algorithm performance and (2) diagnosis quality in terms of
minimality and accuracy. We analyzed both aspects by varying the
value of parameter m. Our hypothesis in this context was that the
higher the value of m, the lower the number of needed consistency
checks (the higher the efficiency of diagnosis search) and the lower
diagnosis quality in terms of the share of diagnosis-relevant con-
straints returned by FLEXDIAG. Diagnosis quality can, for example,
be measured by the degree of minimality of the constraints contained
in a diagnosis ∆ returned by FLEXDIAG (see Formula 1).

Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria

107

Figure 1. FLEXDIAG: determining one minimal diagnosis with m = 1 (∆ = {s1, s3, s4}).

Figure 2. FLEXDIAG: determining a minimal diagnosis with m = 2 (∆ = {s1, s2, s3, s4}).

Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop
September 10-11, 2015, Vienna, Austria

108

id |V | |C| |Rρ| |∆min| avg. runtime (ms) minimality (accuracy)
m=1 m=2 m=4 m=6 m=10 m=1 m=2 m=4 m=6 m=10

1 47 285 5 4 772 647 561 429 350 1.0(1.0) 0.56(1.0) 0.45(1.0) 0.21(1.0) 0.15(1.0)
2 55 73 10 7 359 273 203 180 85 1.0(1.0) 0.55(0.91) 0.31(0.91) 0.30(0.83) 0.41(0.58)
3 73 150 10 5 733 593 343 304 195 1.0(1.0) 0.64(0.91) 0.83(0.55) 0.83(0.55) 1.07(0.30)
4 158 242 20 24 2176 1864 1451 1419 819 1.0(1.0) 0.66(0.89) 0.43(0.82) 0.41(0.67) 0.33(0.65)

Table 2. Avg. runtime and minimality of FLEXDIAG evaluated with feature models from www.splot-research.org (calculation of the first diagnosis: 1: Dell
laptops, 2: Smarthomes, 3: Cars, 4: Xerox printers). |Rρ| is the number of changed requirements and |∆min| the average cardinality of minimal diagnoses.

minimality(∆) =
|∆min|
|∆| (1)

If m > 1, there is no guarantee that the diagnosis ∆ determined
for S is a superset of the diagnosis ∆min determined for S in the case
m = 1. Besides minimality, we introduce accuracy as an additional
quality indicator (see Formula 2). The higher the share of elements of
∆min in ∆, the higher the corresponding accuracy (the algorithm is
able to reproduce the elements of the minimal diagnosis for m = 1).

accuracy(∆) =
|∆ ∩∆min|
|∆min|

(2)

In order to evaluate FLEXDIAG with regard to both aspects we ap-
plied the algorithm to the configuration benchmark from www.splot-
research.org - the configuration models are feature models which in-
clude requirement constraints, compatibility constraints, and differ-
ent types of structural constraints such as mandatory relationships
and alternatives. The feature models were represented as CSP on the
basis of the Java-based Choco library.3 For each setting (see Table
2) in the benchmark, we randomly generated |Rρ| new requirements
that were inconsistent with an already determined configuration (10
iterations per setting). The average cardinality of a minimal diagno-
sis form = 1 is |∆min|. Related average runtimes (in milliseconds)4

and degrees of minimality and accuracy (see Formula 1) are depicted
in Table 2. As can be seen in Table 2, increasing the value ofm leads
to an improved runtime performance in our example cases. Mini-
mality and accuracy depend on the configuration domain and are not
necessarily monotonous. For example, since a diagnosis determined
by FLEXDIAG is not necessarily a superset of a diagnosis determined
with m = 1, it can be the case that the minimality of a diagnosis de-
termined with m > 1 is greater than 1 (if FLEXDIAG determines
a diagnosis with lower cardinality than the minimal diagnosis deter-
mined with m = 1).

Note that in this paper we did not compare FLEXDIAG with more
traditional diagnosis approaches – for related evaluations we refer
the reader to [9] were detailed related analyses can be found. The
outcome of these analyses is that direct diagnosis approaches such as
FLEXDIAG clearly outperform standard diagnosis approaches based
on the resolution of minimal conflicts [19].

6 Reconfiguration in Production

The following simplified reconfiguration task is related to scheduling
in production where it is often the case that, for example, schedules
and corresponding production equipment has to be reconfigured. In

3 choco-solver.org.
4 Test platform: Windows 7 Professional 64 Bit, Intel(R) Core(TM) i5-2320

3.00 GHz CPU with 8.00 GB of memory.

this example setting we do not take into account configurable pro-
duction equipment (configurable machines) and limit the reconfigu-
ration to the assignment of orders to corresponding machines. The
assignment of an order oi to a certain machine mj is represented by
the corresponding variable oimj . The domain of each such variable
represents the different possible slots in which an order can be pro-
cessed, for example, o1m1 = 1 denotes the fact that the processing
of order o1 on machine m1 is performed during and finished after
time slot 1.

Further constraints restrict the way in which orders are allowed
to be assigned to machines, for example, o1m1 < o1m2 denotes
the fact that order o1 must be completed on machine m1 before a
further processing is started on machine m2. Furthermore, no two
orders must be assigned to the same machine during the same time
slot, for example, o1m1 6= o2m1 denotes the fact that order o1 and
o2 must not be processed on the same machine in the same time slot
(slots 1..3). Finally, the definition of our reconfiguration task is com-
pleted with an already determined schedule S and a corresponding
reconfiguration request represented by the reconfiguration require-
ment Rρ = {r′1 : o3m3 < 5}, i.e., order o3 should be completed
within less than 5 time units.

• V = {o1m1, o1m2, o1m3, o2m1, o2m2, o2m3, o3m1,
o3m2, o3m3}

• dom(o1m1) = dom(o2m1) = dom(o3m1) = {1, 2, 3}.
dom(o1m2) = dom(o2m2) = dom(o3m2) = {2, 3, 4}.
dom(o1m3) = dom(o2m3) = dom(o3m3) = {3, 4, 5}.

• C = {c1 : o1m1 < o1m2, c2 : o1m2 < o1m3,
c3 : o2m1 < o2m2, c4 : o2m2 < o2m3, c5 : o3m1 < o3m2,
c6 : o3m2 < o3m3, c7 : o1m1 6= o2m1,
c8 : o1m1 6= o3m1, c9 : o2m1 6= o3m1,
c10 : o1m2 6= o2m2, c11 : o1m2 6= o3m2,
c12 : o2m2 6= o3m2, c13 : o1m3 6= o2m3,
c14 : o1m3 6= o3m3, c15 : o2m3 6= o3m3}

• S = {s1 : o1m1 = 1, s2 : o1m2 = 2, s3 : o1m3 = 3,
s4 : o2m1 = 2, s5 : o2m2 = 3, s6 : o2m3 = 4,
s7 : o3m1 = 3, s8 : o3m2 = 4, s9 : o3m3 = 5}

• Rρ = {r′1 : o3m3 < 5}

This reconfiguration task can be solved using FLEXDIAG. If we
keep the ordering of the constraints as defined in S, FLEXDIAG (with
m = 1) returns the diagnosis ∆ : {s4, s5, s6, s7, s8} which can be
used to determine the new solution S = {s1 : o1m1 = 1, s2 :
o1m2 = 2, s3 : o1m3 = 3, s4 : o2m1 = 3, s5 : o2m2 = 4, s6 :
o2m3 = 5, s7 : o3m1 = 2, s8 : o3m2 = 3, s9 : o3m3 = 4}. Pos-
sible ordering criteria for constraints in such rescheduling scenarios
can be, for example, customer value (changes related to orders of
important customers should occur with a lower probability) and the
importance of individual orders. If some orders in a schedule should
not be changed, this can be achieved by simply defining such re-
quests as requirements (Rρ), i.e., change requests as well as stability

Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop

September 10-11, 2015, Vienna, Austria

109

requests can be included as constraints r′i in Rρ.

7 Ongoing And Future Work
We are currently evaluating FLEXDIAG with a more complex (indus-
trial) benchmark from three different German car manufacturers on
the level of type series. In this context we include further evaluation
metrics that help to better estimate the quality of diagnoses (reconfig-
urations) – for example, the currently applied accuracy metric does
not take into account the importance of the different constraints con-
tained in a diagnosis. Furthermore, we will extend the FLEXDIAG

algorithm in order to make it applicable in scenarios where knowl-
edge bases are tested [6]. Our goal in this context is to improve the
performance of existing automated debugging approaches and to in-
vestigate to which extent diagnoses resulting from m > 1 are con-
sidered as relevant by knowledge engineers. Finally, we will compare
FLEXDIAG with local search approaches such as genetic algorithms.

8 Conclusions
Efficient reconfiguration functionalities are needed in various scenar-
ios such as the reconfiguration of production schedules, the reconfig-
uration of the settings in mobile phone networks, and the reconfig-
uration of robot context information. We analyzed the FLEXDIAG

algorithm with regard to potentials of improving existing direct di-
agnosis algorithms. When using FLEXDIAG, there is a clear tradeoff
between performance of diagnosis calculation and diagnosis quality
(measured, for example, in terms of minimality and accuracy).

REFERENCES
[1] R. Bakker, F. Dikker, F. Tempelman, and P. Wogmim, ‘Diagnosing and

solving over-determined constraint satisfaction problems’, in 13th In-
ternational Joint Conference on Artificial Intelligence, pp. 276–281,
Chambery, France, (1993).

[2] S.K. Card, G.G. Robertson, and J.D. Mackinlay, ‘The information vi-
sualizer, an information workspace’, in CHI ’91 Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pp.
181–188, New Orleans, Louisiana, USA, (1991). ACM.

[3] J. DeKleer, ‘Using crude probability estimates to guide diagnosis’, AI
Journal, 45(3), 381–391, (1990).

[4] A. Falkner, A. Felfernig, and A. Haag, ‘Recommendation Technologies
for Configurable Products’, AI Magazine, 32(3), 99–108, (2011).

[5] A. Falkner and H. Schreiner, ‘SIEMENS: Configuration and Recon-
figuration in Industry’, in Knowledge-based Configuration – From Re-
search to Business Cases, eds., A. Felfernig, L. Hotz, C. Bagley,
and J. Tiihonen, chapter 16, 251–264, Morgan Kaufmann Publishers,
(2013).

[6] A. Felfernig, G. Friedrich, D. Jannach, and M. Stumptner,
‘Consistency-based diagnosis of configuration knowledge bases’, Ar-
tificial Intelligence, 152(2), 213–234, (2004).

[7] A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Knowledge-based
Configuration: From Research to Business Cases, Elsevier/Morgan
Kaufmann Publishers, 1st edn., 2014.

[8] A. Felfernig, M. Schubert, G. Friedrich, M. Mandl, M. Mairitsch, and
E. Teppan, ‘Plausible repairs for inconsistent requirements’, in 21st In-
ternational Joint Conference on Artificial Intelligence (IJCAI’09), pp.
791–796, Pasadena, CA, USA, (2009).

[9] A. Felfernig, M. Schubert, and C. Zehentner, ‘An efficient diagnosis al-
gorithm for inconsistent constraint sets’, Artificial Intelligence for En-
gineering Design, Analysis and Manufacturing (AI EDAM), 26(1), 53–
62, (2012).

[10] A. Fijany and F. Vatan, ‘New approaches for efficient solution of hit-
ting set problem’, in Winter International Symposium on Information
and Communication Technologies, pp. 1–6, Cancun, Mexico, (2004).
Trinity College Dublin.

[11] Gerhard Fleischanderl, Gerhard E. Friedrich, Alois Haselböck, Herwig
Schreiner, and Markus Stumptner, ‘Configuring large systems using
generative constraint satisfaction’, IEEE Intelligent Systems, 13(4), 59–
68, (1998).

[12] G. Friedrich, A. Ryabokon, A. Falkner, A. Haselböck, G. Schenner, and
H. Schreiner, ‘ (Re)configuration using Answer Set Programming’, in
IJCAI 2011 Workshop on Configuration, pp. 17–24, (2011).

[13] L. Hotz, A. Felfernig, M. Stumptner, A. Ryabokon, C. Bagley, and
K. Wolter, ‘Configuration Knowledge Representation & Reasoning’, in
Knowledge-based Configuration – From Research to Business Cases,
eds., A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, chapter 6, 59–
96, Morgan Kaufmann Publishers, (2013).

[14] D. Jannach, ‘Finding preferred query relaxations in content-based rec-
ommenders’, in 3rd Intl. IEEE Conference on Intelligent Systems, pp.
355–360, London, UK, (2006).

[15] Ulrich Junker, ‘QUICKXPLAIN: preferred explanations and relax-
ations for over-constrained problems’, in 19th Intl. Conference on Artif-
ical Intelligence (AAAI’04), eds., Deborah L. McGuinness and George
Ferguson, pp. 167–172. AAAI Press, (2004).

[16] A. Mackworth, ‘Consistency in Networks of Relations’, Artificial Intel-
ligence, 8(1), 99–118, (1977).

[17] J. Marques-Silva, F. Heras, M. Janota, A. Previti, and A. Belov, ‘On
computing minimal correction subsets’, in IJCAI 2013, pp. 615–622,
Peking, China, (2013).

[18] I. Nica, F. Wotawa, R. Ochenbauer, C. Schober, H. Hofbauer, and
S. Boltek, ‘Kapsch: Reconfiguration of Mobile Phone Networks’, in
Knowledge-based Configuration – From Research to Business Cases,
eds., A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, chapter 19, 287–
300, Morgan Kaufmann Publishers, (2013).

[19] R. Reiter, ‘A theory of diagnosis from first principles’, Artificial Intel-
ligence, 32(1), 57–95, (1987).

[20] M. Schubert and A. Felfernig, ‘BFX: Diagnosing Conflicting Require-
ments in Constraint-based Recommendation’, International Journal on
Artificial Intelligence Tools, 20(2), 297–312, (2011).

[21] I. Shah, ‘Direct algorithms for finding minimal unsatisfiable subsets in
over-constrained csps’, International Journal on Artificial Intelligence
Tools, 20(1), 53–91, (2011).

[22] Carsten Sinz, Andreas Kaiser, and Wolfgang Küchlin, ‘Formal meth-
ods for the validation of automotive product configuration data’, Artifi-
cial Intelligence for Engineering Design, Analysis and Manufacturing,
17(1), 75–97, (2003).

[23] G. Steinbauer, M. Mörth, and F. Wotawa, ‘Real-Time Diagnosis and
Repair of Faults of Robot Control Software’, in RoboCup 2005, LNAI,
pp. 13–23. Springer, (2005).

[24] M. Stumptner, ‘An Overview of Knowledge-based Configuration’, AI
Communications, 10(2), 111–126, (1997).

[25] M. Stumptner and F. Wotawa, ‘Reconfiguration using model-based di-
agnosis’, in 10th International Workshop on Principles of Diagnosis
(DX-99), pp. 266–271, (1999).

[26] J. Tiihonen and A. Anderson, ‘VariSales’, in Knowledge-based Config-
uration – From Research to Business Cases, eds., A. Felfernig, L. Hotz,
C. Bagley, and J. Tiihonen, chapter 26, 377–388, Morgan Kaufmann
Publishers, (2013).

[27] J. Tiihonen, W. Mayer, M. Stumptner, and M. Heiskala, ‘Configuring
Services and Processes’, in Knowledge-based Configuration – From
Research to Business Cases, eds., A. Felfernig, L. Hotz, C. Bagley,
and J. Tiihonen, chapter 21, 313–324, Morgan Kaufmann Publishers,
(2013).

[28] R. Walter and W. Küchlin, ‘ReMax - A MaxSAT aided Product (Re-)
Configurator’, in Workshop on Configuration 2014, pp. 55–66, (2014).

[29] R. Walter, C. Zengler, and W. Küchlin, ‘Applications of maxsat in auto-
motive configuration’, in Workshop on Configuration 2013, pp. 21–28,
(2013).

[30] K. Wang, Z. Li, Y. Ai, and Y. Zhang, ‘Computing Minimal Diagnosis
with Binary Decision Diagrams Algorithm’, in 6th International Con-
ference on Fuzzy Systems and Knowledge Discovery (FSKD’2009), pp.
145–149, (2009).

[31] F. Wotawa, ‘A variant of reiter’s hitting-set algorithm’, Information
Processing Letters, 79(1), 45–51, (2001).

Juha Tiihonen, Andreas Falkner and Tomas Axling, Editors
Proceedings of the 17th International Configuration Workshop
September 10-11, 2015, Vienna, Austria

110

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\CWS-2015-Proceedings-full-v0.993.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\01_Confws-15_submission_14.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\02_Confws-15_submission_3.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\03_Confws-15_submission_16.pdf
	1 INTRODUCTION
	2 LITERATURE REVIEW
	3 CASE STUDY
	3.1 Background
	3.2 Analysis of the Company’s Performance Before and After Implementation of Configuration Systems
	3.2.1 Analysis of Cost Structure and Deviations
	3.2.2 Reasons for the deviations

	3.3 Comparison of Budgetary Proposals Made in Excel and PCS
	3.3.1 Sales Representatives and CR

	3.4 Future Initiatives

	4 CONCLUSIONS
	5 DISCUSSION AND FUTURE RESEARCH
	REFERENCES

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\04_Confws-15_submission_20.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\05_Confws-15_submission_18.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\06_Confws-15_submission_22.pdf
	Introduction
	Related Work
	Intelligent Support for the Maintenance of Constraint-based systems
	Intelligent Recommendation
	Intelligent Anomaly Management
	Simulation
	Knowledge base Evaluation

	Summary

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\07_Confws-15_submission_23.pdf
	Introduction
	Preliminaries
	Challenges in the Development and Maintenance of Constraint-based systems
	Simulation
	Test Case generation
	Assignment-based anomaly management
	Constraint-based system development

	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\08_Confws-15_submission_7.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\09_Confws-15_submission_25.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\10_Confws-15_submission_17.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\11_Confws-15_submission_10.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\12_Confws-15_submission_6.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\13_Confws-15_submission_5.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\14_Confws-15_submission_24.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\15_Confws-15_submission_4.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\16_Confws-15_submission_8.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\17_Confws-15_submission_9.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\18_Confws-15_submission_2.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\19_Confws-15_submission_26.pdf
	Introduction
	Configuration Knowledge Base
	A GQM model for Configuration Knowledge Bases
	Goals for Configuration Knowledge Bases
	Questions for Configuration Knowledge Bases
	Metrics for Configuration Knowledge Bases

	Discussion
	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\20_Confws-15_submission_11.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\21_Confws-15_submission_15.pdf
	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\new versions\Intelligent_Support_UTF8.pdf
	Introduction
	Related Work
	Intelligent Support for the Maintenance of Constraint-based systems
	Intelligent Recommendation
	Intelligent Anomaly Management
	Simulation
	Knowledge base Evaluation

	Summary

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\new versions\Simulation_UTF8.pdf
	Introduction
	Preliminaries
	Challenges in the Development and Maintenance of Constraint-based systems
	Simulation
	Test Case generation
	Assignment-based anomaly management
	Constraint-based system development

	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\new versions\Metrics_UTF8.pdf
	Introduction
	Configuration Knowledge Base
	A GQM model for Configuration Knowledge Bases
	Goals for Configuration Knowledge Bases
	Questions for Configuration Knowledge Bases
	Metrics for Configuration Knowledge Bases

	Discussion
	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\AustriaLatest\Simulation_Reinfrank_Ninaus_Wotawa_Felfernig.pdf
	Introduction
	Preliminaries
	Challenges in the Development and Maintenance of Constraint-based Configuration Systems
	Simulation
	Test Case generation
	Assignment-based anomaly management
	Constraint-based configuration system development

	Conclusion

	C:\HY-Data\JUTIIHON\documents\Work\Confws2015\proceedings\AustriaLatest\Summary_Reinfrank_Ninaus_Wotawa_Felfernig.pdf
	Introduction
	Related Work
	Intelligent Support for the Maintenance of Constraint-based configuration systems
	Intelligent Recommendation
	Intelligent Anomaly Management
	Simulation
	Knowledge base Evaluation

	Summary

