
RAMiCS 2015
15th Int. Conf. on Relational and Algebraic Methods

in Computer Science

Proceedings of the PhD/MSc Student Track

Short papers / Extended abstracts

RAMiCS 2015, Hotel do Parque, Bom Jesus,
Braga, 28 Sep–01 Oct, 2015

Local Organization by

HASLab / INESC TEC and University of Minho

Edited by

Wolfram Kahl, Michael Winter and José N. Oliveira

Preface

T he RAMiCS conference series is the main forum for Relational and Alge-
braic Methods in Computer Science. Special focus lies on formal methods

for software engineering, logics of programs and links with neighbouring dis-
ciplines.

This conference series finds its origins in the 38th Banach Semester on Alge-
braic Methods in Logic and their Computer Science Application in Warsaw,
Poland, September and October 1991. Adapting essentially a one-and-a-half
year rhythm, the first eleven RelMiCS conferences were held from 1994 to 2009
on all inhabited continents except Australia. Starting with RelMiCS 7, these
were were held as joint events with Applications of Kleene Algebras (AKA)
conferences. At RelMiCS 11 / AKA 6 in Doha, Qatar, it was decided to con-
tinue the series under the unifying name Relational and Algebraic Methods in
Computer Science (RAMiCS). The next events, RAMiCS 12-14, were then held
in Rotterdam, Netherlands, in 2011, Cambridge, UK, in 2012 and Marienstatt,
Germany, in 2014.

The 15th International Conference on Relational and Algebraic Methods in
Computer Science (RAMiCS 2015) was held in Braga, Portugal from September
28 to October 1, 2015. Further to invited and regular contributions, whose pro-
ceedings will be published as volume 9348 in the Lecture Notes in Computer
Science (LNCS) series by Springer Verlag, the call for papers also invited re-
searchers doing a PhD or an MSc in the areas of the RAMiCS conference to sub-
mit a short description of their ongoing work for presentation at the conference,
in the form of extended abstracts not published nor submitted for publication
elsewhere.

This was intended as an excellent opportunity for students to discuss their
on-going work with leading experts in this field. This technical report includes
the 8 contributions accepted by this “student track” of RAMiCS 2015.

September 2015

Wolfram Kahl
Michael Winter
José N. Oliveira

iv RAMiCS 2015 – Student Track

Acknowledgments

The RAMiCS conference was organized by HASLab – High Assurance Soft-
ware Laboratory (http://haslab.uminho.pt), a research unit of the INESC TEC
Associated Laboratory located at the University of Minho in Braga. All facilities
granted by Departamento de Informática and Escola de Engenharia are grate-
fully acknowledged. We also thank FCT (Fundação para a Ciência e Tecnologia)
for their sponsorship.

This tecnical report was type-set in LATEX using Springer-Verlag’s class pack-
age llncs.cls.

Preface v

Table of Contents

Preface . iii

Contents . vi

Decision Methods for Concurrent Kleene Algebra with Tests: Based on
Derivative (Yoshiki Nakamura) . 1

RLE-based Algorithm for Testing Biorders (Oliver Lanzerath) 9

Relational Equality in the Intensional Theory of Types (Victor Miraldo) . . . 15

Loop Analysis and Repair (Nafi Diallo) . 23

Monoid Modules and Structured Document Algebra (Andreas Zelend) . . . 33

On a Monadic Encoding of Continuous Behaviour (Renato Neves) 43

Relational Approximation of Maximum Independent Sets (Insa Stucke) . . 53

A Generic Matrix Manipulator (Dylan Killingbeck) . 61

Decision Methods for Concurrent Kleene Algebra
with Tests : Based on Derivative

Yoshiki Nakamura

Tokyo Instutute of Technology, Oookayama, Meguroku, Japan,
nakamura.y.ay@m.titech.ac.jp

Abstract. Concurrent Kleene Algebra with Tests (CKAT) were introduced by
Peter Jipsen[Jip14]. We give derivatives for CKAT to decide word prob-
lems, for example emptiness, equivalence, containment problems. These
derivative methods are expanded from derivative methods for Kleene Al-
gebra and Kleene Algebra with Tests[Brz64][Koz08][ABM12]. Addition-
ally, we show that the equivalence problem of CKAT is in EXPSPACE.

Keywords: concurrent kleene algebras with tests, series-parallel strings,
Brzozowski derivative, computational complexity

1 Introduction

In this paper, we assume [Jip14, theorem 1] and we use CKAT terms as expres-
sions of guarded series-parallel language.

Let Σ be a set of basic program symbols p1,p2, . . . and T a set of basic boolean
test symbols t1, t2, · · · , where we assume that Σ ∩ T = ∅. Each α1, α2, . . . de-
notes a subset of T . Boolean term b and CKAT term p over T and Σ are defined
by the following grammar, respectively.

b := 0 | 1 | t ∈ T | b1 + b2 | b1b2 | b1

p := b | p ∈ Σ | p1 + p2 | p1p2 | p∗1 | p1 ∥ p2

The guarded series-parallel strings set GSΣ,T over Σ and T is a smallest set
such that follows

– α ∈ GSΣ,T for any α ⊆ T
– α1pα2 ∈ GSΣ,T for any α1, α2 ⊆ T and any basic program p ∈ Σ
– if w1α, αw2 ∈ GSΣ,T , then w1αw2 ∈ GSΣ,T .
– if α1w1α2, α1w2α2 ∈ GSΣ,T , then α1{|w1, w2|}α2 ∈ GSΣ,T .

Definition 1 (guarded series-parallel language). Let ⋄ and ∥ be binary operators
over GSΣ,T , respectably. They are defined as follows.

w1 ⋄ w2 =

{
w′

1αw
′
2 (w1 = w′

1α and w2 = αw′
2)

undefined (o.w.)

In particular, if w1 = w2 = α, then w1 ⋄ w2 = α.

2 Y. Nakamura

w1 ∥ w2 =

α1{|w′

1, w
′
2|}α2 (w1 = α1w

′
1α2 and w2 = α1w

′
2α2)

α (w1 = w2 = α)

undefined (o.w.)

L is a map from CKAT terms over Σ and T to this concrete model by

– L(0) = ∅, L(1) = 2T

– L(t) = {α ⊆ T | t ∈ α} for t ∈ T
– L(b) = 2T \ L(b)
– L(p) = {α1pα2 | α1, α2 ⊆ T} for p ∈ Σ
– L(p1 + p2) = L(p1) ∪ L(p2)
– L(p1p2) = {w1 ⋄ w2 | w1 ∈ G(p1) and w2 ∈ L(p2) and w1 ⋄ w2 is defined }
– L(p∗) =

∪
n<ω

{α0 ⋄ w1 ⋄ · · · ⋄ wn | α0 ⊆ T and w1, . . . , wn ∈ L(p) and α0 ⋄ w1 · · · ⋄ wn is defined }

– L(p1 ∥ p2) = {w1 ∥ w2 | w1 ∈ L(p1) and w2 ∈ L(p2) and w1 ∥ w2 is defined }

We expand L to L(P) =
∪

p∈P L(p), where P is a set of CKAT terms. Furthermore,
let Lα(p) = {αw | αw ∈ L(p)}.

In guarded series-parallel strings, α1{|w1, w2|}α2 has commutative(i.e. α1{|w1, w2|}α2 =
α1{|w2, w1|}α2). We define p1 = p2 for two CKAT terms p1 and p2 as L(p1) =
L(p2) (by means of [Jip14, Theorem 1]).

2 The Brzozowski derivative for CKAT

Now, we give the naive derivative for CKAT. Derivative has applications to
many language theoretic problems (e.g. membership problem, emptiness prob-
lem, equivalence problem, and so on).

Definition 2 (Naive Derivative). We define Eα and Dw. They are maps from a
CKAT term to a set of CKAT terms, respectively. Eα is inductively defined as fol-
lows. We expand Eα and Dw to Eα(P) =

∪
p∈P Eα(p) and Dw(P) =

∪
p∈P Dw(p),

where P is a set of CKAT terms, respectively.

– Eα(0) = Eα(p) = ∅
– Eα(1) = Eα(p

∗
1) = {1}

– Eα(t) =

{
{1} (t ∈ α)

∅ (o.w.)

– Eα(b) = {1} \ Eα(b)
– Eα(p1 + p2) = Eα(p1) ∪ Eα(p2)
– Eα(p1p2) = Eα(p1 ∥ p2) = Eα(p1)Eα(p2)

Dw is inductively defined as follows.
For w = q | {|w′

1, w
′
2|} and any series-parallel string w′,

– Dαwα′w′α′′(p) = Dα′w′α′′(Dαwα′(p))
– Dαwα′(p1 + p2) = Dαwα′(p1) ∪Dαwα′(p2)
– Dαwα′(p1p2) = Dαwα′(p1){p2} ∪ Eα(p1)Dαwα′(p2)

CKAT is in EXPSPACE 3

– Dαwα′(p∗1) = Dαwα′(p1){p∗1}
– Dαwα′(b) = ∅ for any boolean term b

– Dαqα′(p) =

{
{1} (p = q)

∅ (o.w.)

– Dαqα′(p1 ∥ p2) = ∅
– Dα{|w1,w2|}α′(p) = ∅
– Dα{|w1,w2|}α′(p1 ∥ p2) = Eα′((Dαw1α′(p1) ∥ Dαw2α′(p2)) ∪ (Dαw1α′(p2) ∥
Dαw2α′(p1)))

The left-quotient of L ⊆ GSΣ,T with regard to w ∈ GSΣ,T is the set w−1L =
{w′ | w ⋄ w′ ∈ L}.

Lemma 1. For any series-parallel string αwα′,

1. 1 ∈ Eα(p) ⇐⇒ α ∈ Lα(p)
2. (αwα′)−1Lα(p) = Lα′(Dαwα′(p))

Proof (Sketch). 1. is proved by induction on the size of p.
2. is proved by double induction on the size of w and the size of p.

We can decide whether αwα′ ∈ L(p) to check 1 ∈ Eα′(Dαwα′(p)) by Lemma
1. We now define efficient derivative. This derivative is another definition of
derivative for CKAT. This derivative is useful for giving more efficient algo-
rithm than naive derivative in computational complexity. (In naive derivative,
we should memorize w1 and w2 to get Dα{|w1,w2|}α′(p). In particular, the size of
w1 and w2 can be double exponential size of input size in equivalence problem.)
We expand CKAT terms to express efficient derivative. We say these terms in-
termediate CKAT terms. Intermediate CKAT term is defined as following.

Definition 3 (intermediate CKAT term). Intermediate CKAT term is defined by
the following grammar.

q := b | p ∈ Σ | q1 + q2 | q1q2 | q∗1 | q1 ∥ q2 | Dx(q1)

We call x a derivative variable of Dx(q1).
The efficient derivative dpr(q) is defined in Definition 4, where q is an in-

termediate CKAT term, pr is a sequence of assignments formed x += αp or
x += αT (The sequence of assignments pr is formed x1 += term1; . . . ;xm +=
termm.) and T is formed by the following grammar. T := {|xlTl, xrTr|} |
{|xlTl,prxr|} | {|plxl, xrTr|} | {|plxl,prxr|}. Intuitively, dx+=αw(. . . Dx(q) . . .)

means (. . . Dx(D̆αw(joinα(q))) . . .).

Definition 4. The efficient derivative dpr(q) is inductively defined as follows, where
we assume that any derivative variable occurred in T are different. To define dpr(q), we
also define D̆αw and joinα. We expand dpr to dpr(Q) =

∪
q∈Q dpr(q), where Q is a set

of intermediate CKAT terms. We also expand joinα to joinα(Q) =
∪

q∈Q joinα(q).

4 Y. Nakamura

– dx+=αw;pr′(q) = dpr′(dx+=αw(q))
– dx+=αw(b) = {b}
– dx+=αw(p) = {p}
– dx+=αw(q1 + q2) = dx+=αw(q1) ∪ dx+=αw(q2)
– dx+=αw(q1q2) = dx+=αw(q1)dx+=αw(q2)
– dx+=αw(q

∗
1) = dx+=αw(q1)

∗

(= {q′∗ | q′ ∈ dx:=αw(q1)})
– dx+=αw(q1 ∥ q2) = dx+=αw(q1) ∥ dx+=αw(q2)
(= {q′1 ∥ q′2 | q′1 ∈ dx+=αw(q1), q

′
2 ∈ dx+=αw(q2)})

– dx+=αw(Dy(q1)) = Dy(dx+=αw(q1))

– dx+=αw(Dx(q1)) = Dx(D̆αw(joinα(q1)))

– D̆αp(q) = Dαp(q)

– D̆αT (b) = D̆αT (p) = ∅
– D̆αT (q1 + q2) = D̆αT (q1) ∪ D̆αT (q2)
– D̆αT (q1q2) = D̆αT (q1){q2} ∪ Eα(q1)D̆αT (q2)
– D̆αT (q

∗
1) = D̆αT (q1){q∗1}

– D̆αT (q1 ∥ q2) =

(Dxl
(D̆αpl

(q1)) ∥ Dxr (D̆αpr (q2)))

∪(Dxr
(D̆αpr

(q1)) ∥ Dxl
(D̆αpl

(q2))) (T = {|plxl,prxr|})
(Dxl

(D̆αTl
(q1)) ∥ Dxr (D̆αpr (q2)))

∪(Dxr (D̆αpr (q1)) ∥ Dxl
(D̆αTl

(q2))) (T = {|Tlxl,prxr|})
(Dxl

(D̆αpl
(q1)) ∥ Dxr (D̆αTr (q2)))

∪(Dxr (D̆αTr (q1)) ∥ Dxl
(D̆αpl

(q2))) (T = {|plxl, Trxr|})
(Dxl

(D̆αTl
(q1)) ∥ Dxr (D̆αTr (q2)))

∪(Dxr (D̆αTr (q1)) ∥ Dxl
(D̆αTl

(q2))) (T = {|Tlxl, Trxr|})
– joinα(b) = {b}, joinα(p) = {p}
– joinα(q1 + q2) = joinα(q1) ∪ joinα(q2), joinα(q1q2) = joinα(q1)joinα(q2)
– joinα(q1 ∥ q2) = joinα(q1) ∥ joinα(q2)
– joinα(q

∗
1) = joinα(q1)

∗

– joinα(Dy(q)) = Eα(joinα(q))

Efficient derivative is essentially equal to the derivative of Definition 1. Let
spx(pr) be the string corresponded to x of pr. (For example, spx0

(x0 += α{p1x1,p2x2};x1 +=
α′p3;x0 += α′′p4) = α{p1α

′p3,p2}α′′p4. spx1(x0 += α{p1x1,p2x2};x1 +=
α′p3;x0 += α′′p4) = αp1α

′p3)

Lemma 2. joinα′(dpr(Dx(p))) = Eα′(Dspx(pr)α′(p))

By Lemma 1 and Lemma 2, spx(pr)α′ ∈ L(p) ⇐⇒ 1 ∈ joinα′(dpr(Dx(p))).
Therefore, we can use effective derivative instead of naive derivative.

Next, we define the size of a intermediate CKAT term q, denoted by |q| as
follows.

– |0| = |1| = |t| = |p| = 1
– |b| = 1 + |b|
– |q∗1 | = |Dx(q1)| = 1 + |q1|

CKAT is in EXPSPACE 5

– |q1 + q2| = |q1q2| = |q1 ∥ q2| = 1 + |q1|+ |q2|
Definition 5 (Closure). ClX is a map from a intermediate CKAT term to a set of in-
termediate CKAT terms, where X is a set of intersection variables. ClX is inductively
defined as follows.

– ClX(a) = {a} for a = 0 | 1 | t
– ClX(b) = {b} ∪ ClX(b) for any boolean term b
– ClX(p) = {p,1}
– ClX(q1 + q2) = {q1 + q2} ∪ ClX(q1) ∪ ClX(q2)
– ClX(q1q2) = {q1q2} ∪ ClX(q1){q2} ∪ ClX(q2)
– ClX(q∗1) = {q∗1} ∪ ClX(q1){q∗1}
– ClX(q1 ∥ q2) = {q1 ∥ q2} ∪ {Dx1(q

′
1) ∥ Dx2(q

′
2) | q′1 ∈ ClX(q1), q

′
2 ∈

ClX(q2), x1, x2 ∈ X}
– ClX(Dx(q1)) = {Dx(q1)} ∪Dx(ClX(q1))

We expand ClX to ClX(Q) =
∪

q∈Q ClX(q), where Q is a set of intermediate
CKAT terms. ClX is a closed operator. In other words, ClX satisfies (1) Q ⊆
ClX(Q), (2) Q1 ⊆ Q2 ⇒ ClX(Q1) ⊆ ClX(Q2) and (3) ClX(ClX(Q)) = ClX(Q).
We also define the intersection width iw(q) over intermediate CKAT terms and
iw(w) over GIΣ,T as follows.

– iw(b) = iw(p) = 1 for any boolean term b and any basic program p ∈ Σ
– iw(q1 + q2) = iw(q1q2) = max(iw(q1), iw(q2))
– iw(q∗1) = iw(Dx(q1)) = iw(q1)
– iw(q1 ∥ q2) = 1 + iw(q1) + iw(q2)
– iw(α) = 1 for any α ⊆ T
– iw(α1pα2) = 1
– iw(w1αw2) = max(iw(w1α), iw(αw2))
– iw(α1{|w1, w2|}α2) = 1 + iw(w1) + iw(w2)

Lemma 3 (closure is bounded). For any intermediate CKAT term q and any se-
quence of program pr and any set of derivative variables X , where X contains any
derivative variables in pr,

|ClX(q)| ≤ 2 ∗ |X|2∗iw(q) ∗ |q|iw(q)

Proof (Sketch). This is proved by induction on the structure of q. We only consider the
case of q = q1 ∥ q2.

|ClX(q1 ∥ q2)| ≤ 1 + |X| ∗ |ClX(q1)| ∗ |X| ∗ |ClX(q2)|
≤ 1 + |X|2 ∗ 2 ∗ |q1|iw(q1) ∗ |X|2∗iw(q1) ∗ 2 ∗ |q2|iw(q2) ∗ |X|2∗iw(q2)

= 1 + 4 ∗ |X|2∗iw(q1∥q2) ∗ |q1|iw(q1) ∗ |q2|iw(q2)

≤ 2 ∗ |X|2∗iw(q1∥q2) ∗ (|q1|+ |q2|)iw(q1)+iw(q2)

≤ 2 ∗ |X|2∗iw(q1∥q2) ∗ |q1 ∥ q2|iw(q1∥q2)

Lemma 4 (derivative is closed). For any intermediate CKAT term q and any se-
quence of program pr and any set of derivative variables X , where X contains any
derivative variables in pr,

dpr(q) ⊆ ClX(q)

Proof (Sketch). This is proved by double induction on the size of pr and the size of q.

6 Y. Nakamura

3 CKAT equational theory is in EXPSPACE

By Lemma 1 and Lemma 2, L(p1) = L(p2) iff joinα′(dpr(Dx(p1))) = joinα′(dpr(Dx(p2)))

for any pr and any α′. Thus we find some pr such that joinα′(dpr(Dx(p1))) ̸=
joinα′(dpr(Dx(p2))) to decide p1 ̸= p2. We must consider all the patterns of pr at
first glance. But, we need not to check if pr is too long. We are enough to check
the cases of iw(sp(pr)) ≤ max(iw(p1), iw(p2))(≤ l) by the following Lemma 5.

Lemma 5. If iw(sp(pr)) > iw(q), dpr(q) = ∅.

By Lemma 5, we are enough to check the case of iw(sp(pr)) ≤ max(iw(p1), iw(p2)) ≤
l. By iw(sp(pr)) ≤ l, We are enough to prepare 1 + 3 ∗ (l − 1) derivative vari-
ables. By Lemma 3, |ClX(q)| ≤ 2∗ |q|iw(q) ∗ |X|2∗iw(q) ≤ 2∗ ll ∗ (1+3∗ (l−1))2∗l.
Therefore, |ClX(Dx(p1))| = O(2p(l)) and |ClX(Dx(p2))| = O(2p(l)), where p(l)
is a polynomial function of l.

We can give a nondeterministic algorithm. We nondeterministically select
the syntax of pr. (pr is x += αp or x += αT .) If there exists a sequent of assign-
ments pr and α′ such that joinα′(dpr(Dx(p1))) ̸= joinα′(dpr(Dx(p2))), p1 ̸= p2.
Otherwise, p1 = p2. (See Algorithm 1 if you know more details.)

It holds the Theorem 1 by this algorithm.

Theorem 1. CKAT equivalence problem is in EXPSPACE.

Corollary 1. if iw(p) is a fixed parameter, then CKAT equivalence problem is PSPACE-
complete.

Note that PSPACE-hardness is derived by [Hun73].

4 Concluding Remarks

We have given the derivative for CKAT and shown that CKAT equational the-
ory is in EXPSPACE. We finish with the following some of our future works.

– Is this equivalence problem EXPSPACE-complete? (We expect that this claim
is True.)

– If we allow ϵ (for example, α{|p, ϵ|}α), can we give efficient derivative?
(It become a little difficult because we have to memorize α in the case of
x += α{|p1x1, ϵ|}. We should give another derivative to show the result
like Corollary 1.)

A Pseudo Code

REFERENCES 7

Algorithm 1 Decide p1 = p2, given two CKAT terms p1 and p2
Ensure: Whether p1 ̸= p2 or not?(True or False)

step ⇐ 0, P1 ⇐ {Dx0(p1)}, P2 ⇐ {Dx0(p2)}
while step ≤ 2|ClX (Dx0 (p1))| ∗ 2|ClX (Dx0 (p2))| do

Let α be a subset of T , which is picked up nondeterministically.
if join

α
(P1) ̸= join

α
(P2) then

return True
end if
Let pr be x += αp or x += αT , which is picked up nondeterministically, where
iw(pr) ≤ max(iw(p1), iw(p2)).
step ⇐ step+ 1, P1 ⇐ dpr(P1), P2 ⇐ dpr(P2)

end while
return False

References

[ABM12] Ricardo Almeida, Sabine Broda, and Nelma Moreira. “Deciding KAT
and Hoare Logic with Derivatives”. In: Proceedings Third Interna-
tional Symposium on Games, Automata, Logics and Formal Verification,
GandALF 2012, Napoli, Italy, September 6-8, 2012. 2012, pp. 127–140.

[Brz64] Janusz A Brzozowski. “Derivatives of regular expressions”. In: Jour-
nal of the ACM (JACM) 11.4 (1964), pp. 481–494.

[Hun73] Harry B Hunt III. “On the time and tape complexity of languages
I”. In: Proceedings of the fifth annual ACM symposium on Theory of com-
puting. ACM. 1973, pp. 10–19.

[Jip14] Peter Jipsen. “Concurrent Kleene algebra with tests”. In: Relational
and Algebraic Methods in Computer Science. Springer, 2014, pp. 37–48.

[Koz08] Dexter Kozen. On the Coalgebraic Theory of Kleene Algebra with Tests.
Tech. rep. http://hdl.handle.net/1813/10173. Computing
and Information Science, Cornell University, Mar. 2008.

8 RAMiCS 2015 – Student Track

RLE-based Algorithm for Testing Biorders

Oliver Lanzerath

Department of Computer Sciences, Bonn-Rhein-Sieg University of Applied Sciences,
Grantham-Allee 20, 53757 Sankt Augustin, Germany

oliver.lanzerath@smail.inf.hochschule-bonn-rhein-sieg.de
http://www.inf.h-brs.de

Abstract. Binary relations with certain properties such as biorders, equiv-
alences or difunctional relations can be represented as particular matri-
ces. In order for these properties to be identified usually a rearrange-
ment of rows and columns is required in order to reshape it into a recog-
nisable normal form. Most algorithms performing these transformations
are working on binary matrix representations of the underlying relations.
This paper presents an approach to use the RLE-compressed matrix rep-
resentation as a data structure for storing relations to test whether they
are biorders in a hopefully more efficient way.

Keywords: RLE-XOR · RLE-permutation · biorder

1 Introduction

The matrix representation of a binary relation can be interpreted as a bitmap
image, that is, a bit sequence. In many cases the usage of a run length encoding
(RLE) technique results in a smaller representation of such pictures by shorter
codes for lengthy bit strings. Hence, algorithms which use RLE-compressed
binary matrices as input may have better runtime complexity on average. A
bitvector x consists of alternating series of 0- and 1-sequences. Referring to [3],
a bitvector can be represented by the lengths of the single sequences as follows.

Run Length Encoding. Let seqi ∈
{

0j |j ∈ N
}
∪

{
1j |j ∈ N

}
, i ∈ N, be a sequence

with value(seqi) = 0, seqi ∈
{

0j |j ∈ N
}

and value(seqi) = 1, seqi ∈
{

1j |j ∈ N
}

.
Then, a bitvector x = x0...xn−1 ∈ {0, 1}n can be represented as x = seq1...seqk,

1 ≤ k ≤ n, value(seqi) 6= value(seqi+1),
∑k

i=1 |seqi| = n. The RLE-compression
of a vector x is given by the vector

xrle = x0 [|seq1|, ..., |seqk|] (1)

Figure 1 shows an example for the RLE-compression of a bitvector. Further-
more we make use of a notation similar to arrays for accessing elements of
the RLE-compressed vector, where xrle[0] refers to the leading element x0 and
xrle[i], 1 ≤ i ≤ k, to the following length specifications.1

1 E.g. the RLE-compression of the vector x = 1100001 is given by xrle = 1 [2, 4, 1] with
xrle[0] = 1, xrle[1] = 2, xrle[2] = 4 and xrle[3] = 1.

10 O. Lanzerath

11111| {z }
5

000|{z}
3

11111111111| {z }
11| {z }

1[5,3,11]

Fig. 1. Example for the RLE-compression of a bitvector.

Biorders. Biorders can be defined in different ways. First we introduce the for-
mal definition[4]: Let R ⊆ X×X be a homogeneous binary relation. R is called
biorder (or: Ferrers relation in heterogeneous cases), iff

aRb ∧ cRd ∧ ¬aRd → cRb

holds ∀ a, b, c, d ∈ X .
In the context of this paper the following definiton is helpful. A binary rela-

tion is called a biorder, iff the matrix can be represented in (upper left) echelon
block form2 by rearranging rows and columns independently [4]. Thus, it is suffi-
cient to test relations for being biorders by using an algorithm that computes the
echelon block form if possible and returns an error otherwise. Figure 2 shows
the results of the group stage of group B during the recent FIFA World Cup,
where ARB , iff A won the match against B, A,B ∈ {ESP ,CHL,NLD ,AUS},
A 6= B. By rearranging rows and then columns the matrix for the relation R

R ES
P

C
H

L
N

LD
A

U
S

ESP 0 0 0 1
CHL 1 0 0 1
NLD 1 1 0 1
AUS 0 0 0 0

R ES
P

C
H

L
N

LD
A

U
S

NLD 1 1 0 1
CHL 1 0 0 1
ESP 0 0 0 1

AUS 0 0 0 0

R A
U

S
ES

P
C

H
L

N
LD

NLD 1 1 1 0
CHL 1 1 0 0
ESP 1 0 0 0

AUS 0 0 0 0

Fig. 2. Group stage FIFA World Cup 2014 (group B).

is transformed into echelon block form proving that R is a biorder.3 If a given
relation is a biorder, the echelon block form can be achieved in two steps [1]:

1. Sort the rows by their Hamming weight4 in descending order.
2. Sort the columns by their Hamming weight in descending order.

A corresponding algorithm would perform these two steps and check if the
result is in echelon block form. The time complexity of such an algorithm is
in O(2n log n + n2) ⊆ O(n2). The following lemma states, that with respect to
biorder tests the second step is not needed.

2 Visually speaking, a binary matrix is in upper left echelon block form, if all 1-entries
are placed in the upper left corner and the cardinality of the 1-entries monotonically
decreases from top to bottom.

3 Soccer results do not induce biorders in general. The example is well-chosen here.
4 We use the notation ‖x‖ =

Pn−1
i=0 xi to note the Hamming weight of a bitvector x (cf.

[2]).

RLE-based Algorithm for Testing Biorders 11

Lemma 1. Let A be a binary n×n-matrix, and let A′ be the result of sorting the rows
of A by their Hamming weights in descending order. A is a biorder if and only if A′ is
exclusively composed of column vectors x∗i ∈ {0n, 1n} ∪

{
1j0n−j |1 ≤ j ≤ n

}
.

Proof. First, we show the if-part by contradiction. Assume that a given n × n-
matrix resp. binary relation is a biorder, and after having sorted the rows by
their Hamming weights there exists a column vector that does not fulfil the
condition. Then there exists at least one column vector in which a 1-sequence
follows a 0-sequence, i.e. there exists at least one i, 1 ≤ i ≤ n, such that x∗i ∈{

υ01ω|υ ∈ {0, 1}j
, ω ∈ {0, 1}n−j−2

, 0 ≤ j ≤ n− 2
}

. Now we sort the columns
by their Hamming weights. Let xki = 0 and xli = 1 with k < l, then ‖xk∗‖ ≥
‖xl∗‖. After having sorted rows and columns the matrix should be in echelon
block form because it is a biorder. Then xl0 = xl1 = · · · = xli = 1 and xk0 =
xk1 = · · · = xki = 1 because of ‖xk∗‖ ≥ ‖xl∗‖. This contradicts the assumption.

The other direction is obvious. If the rows are ordered by Hamming weight
and all column vectors are of the desired type, there must be an ordering
〈x∗j1 ,x∗j2 , ...,x∗jn〉, ji ∈ {0, ..., n− 1} of the column vectors with ‖x∗j1‖ ≥
‖x∗j2‖≥ ... ≥ ‖x∗jn

‖. The echelon block form is accomplished by sorting the
columns according to this ordering.

2 Algorithm

The complexity of checking all column vectors of a binary matrix for a certain
form is still in O(n2). If the column vectors are RLE-compressed, the checking
can be done in linear time. We only need to verify that all RLE-compressed col-
umn vectors have a length of 1 or 2 and start with a 1-sequence. We assume
the relation is represented in RLE-compressed form, i.e. column vectors as well
as row vectors are RLE-compressed (c.f. running example in Fig. 3). A biorder-

ES
P

C
H

L
N

LD
A

U
S

ESP 0 0 0 1
CHL 1 0 0 1
NLD 1 1 0 1
AUS 0 0 0 0

ESP 0[3,1]
CHL 1[1,2,1]
NLD 1[2,1,1]
AUS 0[4]

ES
P

C
H

L
N

LD
A

U
S

0[1,2,1]
0[2,1,1]
0[4]
1[3,1]

Fig. 3. RLE-compressed rows and columns

checking algorithm is defined as follows. First one adjusts the definition of the
Hamming weight for RLE-compressed vectors with respect to the new sorting
algorithm. If the leading element xrle[0] is 1, all odd positions in the follow-
ing array refer to 1-entries in the corresponding binary matrix, and vice versa.

12 O. Lanzerath

Hence, the Hamming weight for RLE-compressed vectors can be defined as:5

‖xrle‖ =

|xrle|∑

i=1,i∈O+

xrle[i], xrle[0] = 1

|xrle|∑
i=2,i∈E+

xrle[i], xrle[0] = 0

(2)

where O+ and E+ are the positive odd and even numbers, respectively.
Sorting RLE-compressed row vectors by the Hamming weight causes

changes in the column vectors, too. In binary-coded cases this is no point of
interest because this change occurs automatically. But, if the vectors are RLE-
compressed, it is much more complicated. A permutation of the row vectors
xrle

j∗ can have effects on all column vectors xrle
∗i . Assume xj∗ and xk∗ are swapped

then xji and xki must be inverted iff xji 6= xki. Algorithm 1 implements a bit-
compare function for RLE-compressed vectors.

Data: A RLE-compressed n-bitvector xrle and two integers
j, k, 1 ≤ j ≤ n, 1 ≤ k ≤ n, j < k

Result: Boolean: xk 6= xj

dist := 0;
counter := xrle[1];
for i := 2 to |xrle| do

if counter ≥ j && counter ≤ k then
dist + +;

end
counter+ = xrle[i];

end
if dist == 1 mod 2 then

return true;
else

return false;
end
Algorithm 1: bitCompare-function for RLE-compressed n-bitvectors

To ensure that in case xji 6= xki the corresponding bits must be switched, we
use an XOR-operation with a special bit mask:

x x1 · · · xj−1 xj xj+1 · · · xk−1 xk xk+1 · · · xn

mask 0 · · · 0 1 0 · · · 0 1 0 · · · 0
XOR x1 · · · xj−1 xj xj+1 · · · xk−1 xk xk+1 · · · xn

The logical XOR is the essential part of the whole procedure. Algorithm 2 shows
how the XOR-operation can be computed on RLE-compressed vectors.

5 |xrle| is the length of the array or the RLE-compressed vector, respectively.

RLE-based Algorithm for Testing Biorders 13

First the biorder checking algorithm sorts the row vectors xrle
j∗ by their Ham-

ming weights. For each pairwise permutation of rows all column vectors xrle
∗i

must be adjusted if necessary. After that the resulting column vectors must be
checked for meeting the conditions of Lemma 1. If each column vector meets
the conditions, the underlying relation is a biorder.

3 Examination

As is well known, sorting row vectors of a binary matrix by the Hamming
weight is inO(n log n), as well as sorting RLE-compressed vectors. But, to check
the conditions of Lemma 1 in later process, the column vectors need to be
adjusted, too. In the worst case all n column vectors must be modified for
each change of rows and, therefore, n XOR-operations have to be computed.
The required time for each XOR-operation depends on the length of the RLE-
compressed vectors. Hence, the time complexity of the sorting procedure is
bounded from above by O(n3 log n). Now, the test for meeting the conditions
of Lemma 1 can be done in O(n).

Data: Two RLE-compressed copies of n-bitvectors xrle, yrle

Result: Result of the XOR zrle

xpointer := 1;
ypointer := 1;
zpointer := 1;
zrle[0] := |xrle[0]− yrle[0]|;

while
zpointerP

i:=1

zrle[i] < n do

if xrle[xpointer] == yrle[ypointer] then
zrle[zpointer]+ = xrle[xpointer];
xpointer + +;
ypointer + +;

else if xrle[xpointer] < yrle[ypointer] then
zrle[zpointer]+ = xrle[xpointer];
yrle[ypointer]− = xrle[xpointer];
xpointer + +;
zpointer + +;

else
zrle[zpointer]+ = yrle[ypointer];
xrle[xpointer]− = yrle[ypointer];
ypointer + +;
zpointer + +;

end
Algorithm 2: XOR on RLE-compressed n-bitvectors

14 O. Lanzerath

To speed up the runtime of the algorithm one could use a more specific op-
eration than the XOR. Furthermore, generating customized bitmasks for each
column during the sorting process could reduce the number of necessary XOR-
operations to n. In this paper the logical XOR on RLE-compressed vectors is
focused because using it in context of checking relations for being biorders is
only one possible use case. An other one could be a simple compare function
that returns true if two RLE-compressed vectors are equal and false otherwise.
Premising two n-bitvectors xrle,yrle are equal, the bitwise XOR requires n steps
and the RLE-XOR requires |xrle| · 32 steps (assuming that natural numbers are
saved as 32-bit integers). Hence, such an algorithm can reach much better run-
times for sparsely populated or sorted vectors than a bitwise one. A conceivable
use case for such an algorithm could be an automated error correction for par-
ticular kinds of databases.

4 Conclusion

Advantages and disadvantages of using RLE codes in the context of relational
algebraic methods have not been well studied yet. The main contribution of this
paper is to motivate further research and analysis of RLE encodings for binary
relations. Actually, the presented algorithm is in O(n3) but clearly conveys the
advantages of using RLE-codes. Our current work focuses on the development
of further efficient algorithms for logical operators on RLE codes. Once a suf-
ficient repository is available, these operations can be used for more efficient
row-to-row and column-to-column comparison and, hence, sorting. Together
with more test procedures for difunctionality and transitivity, we hope to find
an algorithm that comes close to the “magic” runtime complexity of O(n2.3).

Acknowledgements. The author wish to express his thanks to Dr. Martin E.
Müller and Professor Dr. Kurt-Ulrich Witt for careful reading and useful com-
ments.

References

1. Müller, M.E.: Towards Finding Maximal Subrelations with Desired Properties. In:
Höfner, P., Jipsen, P., Kahl, W., Müller, M.E. (eds.) RAMiCS 2014. LNCS, vol. 8428,
pp. 344–361. Springer, Heidelberg (2014)

2. Reed, I.: A class of multiple-error-correcting codes and the decoding scheme. Trans-
actions of the IRE Professional Group on Information Theory, vol. 4, no. 4, pp. 38–49
(1954)

3. Salomon, D.: Data compression - The Complete Reference, 4th Edition. Springer, Lon-
don (2007)

4. Schmidt, G.: Relational Mathematics, Encyclopedia of Mathematics and its Applica-
tions, vol. 132. Cambridge University Press, Cambridge (2011)

Relational Equality in the Intensional Theory of
Types

Victor Cacciari Miraldo

University of Minho
University of Utrecht

1 Introduction

Relational Algebra [BdM97] has already proven to be a very expressive for-
malism for calculating with programs. In particular, relational shrinking can be
used to derive a program as an optimization of its specification [MO12]. Nev-
ertheless, there is still lack of computer support for relational calculus. Our ap-
proach is basically piggybacking on Agda[Nor09], an emerging language with a
dependent type system, instead of building such a support system from scratch.
Agda has a series of features that make it a very interesting target for such sys-
tem. One such feature is being able to define mix-fix operators, from where
its Equational Reasoning framework arises. This framework can be modified to
closely resemble what a squiggolist would write on paper.

The task of encoding Relational Algebra in Martin-Löf’s theory of types
[ML84], however, is not as straightforward as one might think. There exists
two separate efforts in such a direction. One is due to Mu et al., where a library
targeted at program refinement is presented [MKJ09]; the other, more general
approach, is due to Kahl [Kah14] and provides a complete categorical library
for Agda, where the category of relations arises as a specific instantiation. Our
goal is somewhat different, making both approaches unsuitable for us.

This student-track paper will focus on the difficulties we encountered when
encoding relational equality in Agda in way suitable for (automatic) rewriting.
We start with a (very) small introduction to Agda, section 2, aimed at readers
without any Agda background whatsoever. We, then, explain how to perform
syntactical rewrites in Agda, section 3. This should give a fair understanding of
whats going to happen on sections 4, 5 and 6. Where we explain the encoding
of relations, more specifically relational equality, in Agda and introduces some
concepts from Homotopy Type Theory that allows one to fully formalize our
model. We conclude on section 7 providing a summary of what was done and
an example that illustrates the application of the tool we developed.

2 Agda Basics

In languages such as Haskell or ML, where a Hindley-Milner based algorithm
is used for type-checking, values and types are clearly separated. Values are the
objects being computed and types are simply tags to categorize them. In Agda,

16 V.C. Miraldo

however, this story changes. There is no distinction between types and values,
which gives a whole new level of expressiveness to the programmer.

The Agda language is based on the intensional theory of types by Martin-
Löf [ML84]. Great advantages arise from doing so, more specifically in the
programs-as-proofs mindset. Within the Intensional Theory of Types, we gain
the ability to formally state the meaning of quantifiers in a type. We refer the
interested reader to [NPS90].

Datatype definitions in Agda resemble Haskell’s GADTs syntax [VWPJ06].
Let us illustrate the language by defining fixed-size Vectors. For this, we need
natural numbers and a notion of sum first.

data Nat : Set where
Z : Nat
S : Nat → Nat

+ : Nat → Nat → Nat
Z + n = n
(S m) + n = S (m + n)

The Nat : Set statement is read as Nat is of kind ∗, for the Haskell enthusiast.
In a nutshell, Set , or, Set0, is the first universe, the type of small types. For
consistency reasons, Agda has an infinite number of non-cumulative universes
inside one another. That is, Seti * Seti but Seti ⊆ Seti+1.

The underscores in the definition of + indicate where each parameter goes.
This is how we define mix-fix operators. We can use underscores virtually any-
where in a declaration, as long as the number of underscores coincide with the
number of parameters the function expects.

Leaving details aside, and jumping to Vectors, the following a possible dec-
laration of fixed-size vectors in Agda.

data Vec (A : Set) : Nat → Set where
Nil : Vec Z
Cons : A → Vec A n → Vec A (S n)

Here we can already see something different from Nat . The type Vec takes
one parameter, which must be a small type, we called it A and it is indexed by
a natural number. Given an A : Set , Vec A has kind Nat → ∗. This correctly
models the idea of an inductive type family. For every natural number n, there
is one type Vec A n .

Intuitively, if we concatenate a Vec A n to a Vec A m , we will obtain a
Vec A (n + m). This is exactly how vector concatenation goes in Agda.

++ : {A : Set } {n m : Nat } → Vec A n → Vec A m → Vec A (n + m)
Nil ++ v = v
(Cons a as) ++ v = Cons a (as ++ v)

The parameters enclosed in curly brackets are known as implicit parameters.
These are values that the compiler can figure out during type-checking, so we
need not to worry.

Relational Equality in the Intensional Theory of Types 17

3 Rewriting in Agda

The steps of mathematical reasoning one usually writes on a paper have a fair
amount of implicit rewrites. Yet, we cannot skip these steps in a proof assistant.
We need to really convince Agda that two things are equal, by Agda’s equality
notion, before it can rewrite.

In Agda, writing x ≡ y means that x and y evaluate to the same value. This
can be seen from the definition of propositional equality, where we only allow
one to construct an equality type using reflexivity:

data ≡ {A : Set } (x : A) : A → Set where
refl : x ≡ x

Having a proof p : x ≡ y convinces Agda that x and y will evaluate to the
same value. Whenever this is the case, we can rewrite x for y in a predicate. The
canonical way to do so is using the subst function:

subst : {A : Set } (P : A → Set) {x y : A} → x ≡ y → P x → P y
subst P refl p = p

Here, the predicate P can be seen as a context where the rewrite will hap-
pen. From a programming point of view, Agda’s equality notion makes perfect
sense! Yet, whenever we are working with more abstract concepts, we might
need a finer notion of equality. However, this new equality must agree with
Agda’s equality if we wish to perform syntactical rewrites. As we will see in
the next section, this is not always the case.

It is worth mentioning a subtle detail on the definition of subst . Note that, on
the left hand side, the pattern p has type P x , according to the type signature.
Still, Agda accepts this same p to finish up the proof of P y . What happens
here is that upon pattern matching on refl , Agda knows that x and y evaluate
to the same value. Therefore it basically substitutes, in the current goal, every y
for x . As we can see here, pattern-matching in Agda actually allows it to infer
additional information during type-checking.

4 Relations and Equality in Agda

In order to have a Relational Reasoning framework, we first need to have rela-
tions. We follow the same powerset encoding of [MKJ09], and encode a subset
of a given set by:

P : Set → Set1
P A = A → Set

18 V.C. Miraldo

In Agda, Set is the type of types, which allows us to encode a subset of a set
A as a function f : P A. Such subset is defined by {a ∈ A | f a is inhabited}.
A simple calculation will let one infer B R←− A = B → A → Set from
P (A × B). The subrelation notion is intuitively defined by:

⊆ : {A B : Set } → (B R←− A) → (B S←− A) → Set
R ⊆ S = ∀ a b → R b a → S b a

This makes sense because we are saying that B R←− A is a subrelation of
B S←− A whenever the set R b a being inhabited implies that the set S b a is also
inhabited, for all b a . For this matter, a set S being inhabited means that there
exist some s : S. This follows from the inclusion of (mathematical) sets.

The relation ⊆ is an order: it is reflexive, transitive and anti-symmetric. Re-
flexivity and transitivity are straight-forward to prove, but there is a catch in
anti-symmetry. Remember that relational equality is defined by mutual inclu-
sion:

≡r : {A B : Set } → (B R←− A) → (B S←− A) → Set
R ≡r S = R ⊆ S × S ⊆ R

On paper, anti-symmetry follows by construction. But for rewriting purposes
in Agda, we need to find a way to prove R ≡ S from R ≡r S . Unfortunately,
this is not possible without additional machinery. We would like to have:

∀ a b → R b a → S b a
∀ a b → S b a → R b a ≡r promote

R ≡ S

We could postulate function extensionality1 and, if the functions are isomor-
phisms, this would finish the proof. But this is somewhat cheating. By pin-
pointing the problem one can give a better shot at solving it.

Well, if R ≡ S , then R b a ≡ S b a at least propositionally. On the other
hand, if R ≡r S then we might have propositionally different relations. Con-
sider the following relations (where 1 is the unit type and + is the coproduct).

Top : Rel N N

Top = 1

Top′ : Rel N N

Top′ = 1 + 1

Although they are equivalent, it is clear that Top b a = 1 6≡ 1 + 1 =
Top′ b a . To prove propositional equality from relational equality we depend

1 Function extensionality is expressed by point-wise equality. It is known not to intro-
duce any inconsistency and it is considered to be a safe postulate. In short, given
f , g : A → B , f ≡ g only if ∀ x → f x ≡ g x .

Relational Equality in the Intensional Theory of Types 19

on the user not making stupid decisions. We are thus facing a subtle encoding
problem.

5 Homotopy Type Theory

Luckily people from the Univalent Foundations have thought of this problem.
In this section we will borrow a few concepts from Homotopy Type Theory
[Uni13] (HoTT) and discuss how these concepts can contribute to a solution for
our encoding. There is no final solution, though, since they will boil down to
design decisions.

Recalling our problem, given R ≡r S , R b a and S b a might evaluate to
different types. But we do not care to which values they evaluate to, as long as
one is inhabited iff the other is so. This notion is called proof-irrelevance in HoTT
jargon, and the sets which are proof irrelevant are called mere propositions.

isProp : Set → Set
isProp P = (p1 p1 : P) → p1 ≡ p2

Let us denote the set of all proof irrelevant types, or (Σ Set isProp), by MP.
Should we have defined our relations as B → A → MP, our problem
would be almost done. The drawback of such a decision is the evident loss of
expressiveness, for instance, coproducts are already not proof-irrelevant. Not
to mention that users would have to be familiar with such notions before en-
coding their relations. We chose to encode this as a typeclass and, for using a
fully formal definition of anti-symmetry, both relations must belong into that
typeclass.

There is a very useful result we exploit. Given P a mere proposition. If we
find an inhabitant p : P , then P ≈ 1. If we find a contradiction P → ⊥,
then P ≈ ⊥, where≈means univalence. For the unfamiliar reader, univalence
can be thought of as some sort of isomorphism. The concept is too deep to be
introduced in detail here. We refer the reader to [Uni13].

6 Anti-Symmetry of Relational Inclusion

Being a mere proposition is of no interest if we cannot compute the set R a b,
for a given R , a and b. Yet, we can also make this explicit in Agda, by means of
another typeclass. We require our relations to be decidable.

isDec : {A B : Set } (B R←− A) → Set
isDec R = (a : A) (b : B) → (R b a) + (R b a → ⊥)

On these terms, together with function extensionality, we are able to provide
a proof of anti-symmetry in Agda’s terms. The type2 is:

2 The double braces {{ }} work almost like Haskell’s type context syntax (Fa) ⇒.

20 V.C. Miraldo

⊆−antisym : {A B : Set } {R S : Rel A B }
{{decr : IsDec R}} {{decs : IsDec S }}
{{prpr : IsProp R}} {{prps : IsProp S }}
→ R ⊆ S → S ⊆ R → R ≡ S

Yet, this model of anti-symmetry is too restrictive for the user. During de-
velopment, base relations might change, which will trigger changes in all of
their instances. For this reason, we provide a postulate of the ≡r-promote rule
introduced in section 4. Note, however, that this postulate allows for a contra-
diction. It is easy to see why. Take the Top and Top′ relations defined in section
4. It is easy to prove Top ≡r Top′, therefore, through ≡r-promote we have
Top ≡ Top′, but 1 6≡ 1 + 1, and, through cong (const ◦ const), we have
λ → 1 6≡ λ → 1 + 1. Therefore, Top 6≡ Top′. The actual Agda code
for this is trickier than one thinks, hence it is omitted here.

This is not inconsistent with our model, however. Since the definition of a
relation is basically the encoding of its defining predicate in Agda, one should
not need to use Sets which are not mere propositions. The ≡r-promote pos-
tulate is there to speed up development. As we proved in this section (more
details on [Mir15]), if we use decidable mere-propositions in the domain of our
relations, no inconsistency arises. The coproduct is not a mere-proposition.

7 Summary and Conclusions

On this very short paper we presented the problem of encoding relational equal-
ity in Agda, and gave a few pointers on how to tackle it. This is just a short
summary of [Mir15], where we present our library in full. We provide standard
relational constructs, including a prototype of catamorphisms, generic on their
functor. Our encoding uses W-types and is built on top of [AAG04]. We had to
build all of these constructs from scratch, since we had the goal of also provid-
ing automatic inference of rewriting context for them, which we accomplished.
The full Agda code of our relational algebra library, together with the author’s
master dissertation is available on GitHub.

https://github.com/VictorCMiraldo/msc-agda-tactics

It is arguable that we did not really solve the problem, since our final so-
lution still relies on the univalence axiom (a ≈ b → a ≡ b [Uni13]). We
reiterate that there is no final solution to this problem, since different options
will lead to libraries with different designs, fit for different purposes.

Here we give a small example of the final product of this project, and how
we use the lifting of relational equality to perform generic (automatic) rewrites
in Agda. Note that Agda’s mix-fix feature allows one to define operators such
as the squiggol environment. The example below is one branch of the proof that
Lists are functors. The by function was also developed by us, and it uses the

Relational Equality in the Intensional Theory of Types 21

Reflection mechanism of Agda (similar to Template Haskell) to infer the substi-
tution to be performed.

The rewrites we perform are just substs, as explained in section 3. The au-
tomation happens on compile time. The tactic keyword gives us the meta-representation
of the relevant terms, our engine then generates a meta-representation of the
subst that justifies the rewrite step, which is then plugged back in before the
compiler resumes type-checking. It is very relevant to state that, although the
lemmas justifying the rewrite steps have a ≡r as their type, this is then con-
verted to Agda’s ≡ in order for us to use subst . Relational equality is not substi-
tutive, in general.

Let us imagine we are in doubt whether lists are a functor or not. A good
start is if they distribute over composition, that is,

L (f · g) ≡ L f · L g

The proof itself is simple to complete with the universal law for coproducts. We
illustrate the i2 branch in Agda, using our library.

ex : (Id + (Id × R) ◦ Id + (Id × S)) ◦ i2 ≡r i2 ◦ Id × (R ◦ S)
ex = begin

(Id + (Id × R) ◦ Id + (Id × S)) ◦ i2

≡r { tactic (by (quote +-bi-functor)) }

(Id ◦ Id) + (Id × R ◦ Id × S) ◦ i2

≡r { tactic (by (quote i2-natural)) }

i2 ◦ Id × R ◦ Id × S

≡r { tactic (by (quote ×-bi-functor)) }

i2 ◦ (Id ◦ Id) × (R ◦ S)

≡r { tactic (by (quote ◦-id-r)) }

i2 ◦ Id × (R ◦ S)
�

References

[AAG04] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Representing nested
inductive types using w-types. In In Automata, Languages and Programming,
31st International Colloqium (ICALP), pages 59 71, pages 59–71, 2004.

[BdM97] R. Bird and O. de Moor. Algebra of Programming. Prentice-Hall international
series in computer science. Prentice Hall, 1997.

[Kah14] W. Kahl. Rath-agda, relational algebraic theories in agda, Dez 2014.
[Mir15] Victor Cacciari Miraldo. Proofs by rewriting in Agda. Master’s thesis, Utrecht

University and University of Minho, 2015. Submitted.

22 V.C. Miraldo

[MKJ09] S-C. Mu, H-S. Ko, and P. Jansson. Algebra of programming in agda. Journal of
Functional Programming, 2009.

[ML84] P. Martin-Löf. Intuitionistic type theory, 1984.
[MO12] Shin-Cheng Mu and Jos Nuno Oliveira. Programming from galois connec-

tions. The Journal of Logic and Algebraic Programming, 81(6):680 – 704, 2012. 12th
International Conference on Relational and Algebraic Methods in Computer
Science (RAMiCS 2011).

[Nor09] Ulf Norell. Dependently typed programming in agda. In Proceedings of the 4th
International Workshop on Types in Language Design and Implementation, TLDI
’09, pages 1–2, New York, NY, USA, 2009. ACM.

[NPS90] Bengt Nordström, Kent Petersson, and Jan Smith. Programming in Martin-Löf’s
Type Theory. Oxford University Press, 1990.

[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Univalent Founda-
tions of Mathematics. http://homotopytypetheory.org/book, Institute for Ad-
vanced Study, 2013.

[VWPJ06] Dimitrios Vytiniotis, Stephanie Weirich, and Simon Peyton Jones. Boxy types:
Inference for higher-rank types and impredicativity. SIGPLAN Not., 41(9):251–
262, September 2006.

Loop Analysis and Repair

Nafi Diallo, PhD Candidate
Department of Computer Science

Advisor: Ali Mili

New Jersey Institute of Technology

Abstract. This doctoral work proposes to use invariant relations to an-
alyze and repair loops. We discuss how invariant relations allow us to
derive loop properties such as termination, correctness and incorrectness
and to generate invariant assertions. We also present a method to stati-
cally repair a loop using invariant relations, to what we refer as “Debug-
ging without Testing”.

1 Introduction

Software quality is of critical importance due to the pervasiveness of software
in modern societies, its use in critical applications and its growing size and com-
plexity. The demands on software technology are putting relentless pressure on
software research to deliver ever more capable methods, tools, and processes.
For imperative programming languages,still most prevalent in software pro-
duction, loops still constitute a main source of complexity and to analyze a
loop, one must re-engineer the inductive argument that underlies its construc-
tion.
Due to the usual difficulty of this task, many approaches proceed by unrolling
the loop a number of times, and analyzing the resulting program as a sequential
code. In this work, we explore an orthogonal approach based on the concept
of invariant relations, which allow approximating the function of a loop. The
choice between capturing all the functional details of a loop whose iterations
are bounded, and approximating its function for all possible executions, can
be viewed as a trade-off between knowing everything about some executions
and knowing something about all executions. We argue for the latter approach
on the grounds that knowing everything is not necessary (many properties of
interest can be established with partial information) and that making claims
about bounded executions is not sufficient (a property may hold for bounded
executions and fail to hold for unbounded executions).
This work contributes the following:

– A definition of the concept of loop convergence as the integration of termi-
nation and abort-freedom

– Proofs of correctness and incorrectness of while loops
– A method to statically prove that a fault is removed and that the resulting

program is more correct.

24 N. Diallo

– An automated loop analysis tool via analysis of the source code (to compute
artifacts such as convergence condition, loop function, correctness verifica-
tion)

In the following sections, we discuss related work, describe the proposed meth-
ods, and present a description of the plan of evaluation of this work.

2 Background and Related Work

This work is part of an ongoing project. [13] propose to use the relational ap-
proach for automated loop function computation via static analysis of the source
code. In this context, they provide a definition of invariant relations and how it
can be applied to compute the loop function and pre/post conditions.
This work builds on their results and investigates the use of invariant relations
for loop analysis and repair with the aim to develop an automated tool for in-
variant relation generation and the implementation of the proposed methods.

2.1 Loop Analysis

Analysis of loop termination is a very mature area of research starting with
the work of Alan Turing. This area can be characterized by a separation be-
tween two concerns: termination as a finite number of iterations and termi-
nation as abort-freedom. Termination as a finite number of iterations, which
has also received the most attention, involves the discovery of well-founded
ranking functions, namely transition invariants [2, 15] and size-change graphs
[9]. In [2], Cook et. al. give a comprehensive survey of loop termination, in
which they discuss transition invariants which are approximations of (T ∩B)+

while invariant relations are approximations of (T ∩B)∗. This slight difference
of form has a significant impact on the properties and uses of these distinct con-
cepts. While transition invariants are used by Cook et al. to characterize the well
founded property of (T ∩ B)+, we use invariant relations to approximate the
function of a loop, and its domain. Abstract interpretation [3], Model Checking
and Bounded Model Checking [6] are techniques aimed at capturing aspects
of abort-freedom. Abstract interpretation is a broad scoped technique used to
infer properties of programs by successive approximations of their execution
traces and thus resembles most our approach. Model checking consists of ex-
haustively traversing all the reachable states of the system to verify the desired
properties. Bounded model checking is a specialization of model checking in
which the traversal is halted after a given number of iterations, in which case it
is decided that no counter example exists and the property holds.
Overall, our work distinguishes itself with the approaches described above in
that, with invariant relations, we can model the termination of while loops in a
broad sense; we do that by merging the condition that the number of iterations
is finite and the condition that every single iteration executes without causing
an abort.

Loop Analysis and Repair 25

Traditionally, proof of correctness of loops involves two aspects: proof of par-
tial correctness in the sense of Floyd/Hoare Logic and termination [7]. Another
approach is based the weakest precondition theory [5].

2.2 Loop Repair

Most existing repair approaches rely on execution traces to identify faults. [8,
10, 11].
In [12] the authors consider an original program P and a variation P ′ of P ,
extract semantic information from P , and use it to instrument P ′ (by means
of executable assertions). They then reason about semantic guarantees which
can be inferred about the instrumented version of P ′ and analyze the condi-
tion under which both programs can execute without causing an abort (due
to attempting an illegal operation), which they approximate by sufficient con-
ditions and necessary conditions. They implement the VMV (Verification Mod-
ulo Versions) system aimed at exploiting semantic information about P in the
analysis of P ′, and ensuring that the transition from P to P ′ happens without
regression to decide that P ′ is correct relative to P . Their definition of relative
correctness differs from the approach of this work, in several aspects: whereas
[12] talk about relative correctness between an original program and a subse-
quent version in the context of adaptive maintenance (where P and P ′ may be
subject to distinct requirements), we talk about relative correctness between an
original (faulty) software product and a revised version of the program (possi-
bly still faulty yet more-correct) in the context of corrective maintenance with
respect to a fixed requirements specification; whereas [12] use a set of assertions
inserted throughout the program as a specification, we use a relation that maps
initial states to final states to specify the standards against which absolute cor-
rectness and relative correctness is defined; whereas [12] represents program
executions by execution traces, we represent program executions by functions
mapping initial states into final states; finally, while [12] define a successful ex-
ecution as a trace that satisfies all the relevant assertions, we define a successful
one as simply an initial state/ final state pair that falls with the specification
(relation).
In [8] Lahiri et al. introduce Differential Assertion Checking for verifying the rel-
ative correctness of a program with respect to a previous version of the pro-
gram. They explore applications of this technique as a tradeoff between sound-
ness (which they concede) and lower costs (which they hope to achieve). Like
the approach of the authors of [12] (from the same team), their work uses ex-
ecutable assertions as specifications, represents executions by execution traces,
defines successful executions as traces that satisfy all the executable assertions,
and targets abort-freedom as the main focus of the executable assertions. They
define relative correctness between programs P and P ′ as the property that P ′

has a larger set of successful traces and a smallest set of unsuccessful traces
than P ; and they introduce relative specifications as specifications that capture
functionality of P ′ that P does not have. Our approach differs from [8] in that
we reason in terms of the initial and final states, characterize correct executions

26 N. Diallo

by such pairs that belong to the specification, and we make no distinction be-
tween abort-freedom and normal functional properties.
In [11], the authors introduce a definition of relative correctness similar to that
of [8]. Programs are modeled with trace semantics, and execution traces are
compared in terms of executable assertions inserted into P and P ′; in order for
the comparison to make sense, programs P and P ′ have to have the same (or
similar) structure and/or there must be a mapping from traces of P to traces of
P ′. When P ′ is obtained from P by a transformation, and when P ′ is provably
correct relative to P , the transformation in question is called a verified repair.
The authors introduce an algorithm specialized in deriving program repairs
from a predefined catalog targeted to specific program constructs, such as: con-
tracts, initializations, guards, floating point comparisons, etc. Similarly to ([12,
8]), the authors model programs by execution traces and distinguish between
two types of failures: contract violations, when functional properties are not
satisfied; and run-time errors, when the execution causes an abort; for the rea-
sons we discuss above, we do not make this distinction, and model the two
aspects with the same relational framework. They implement their approach in
an automated tool based on the static analyzer cccheck, and assess their tool for
effectiveness and efficiency.
In [14], Nguyen et al. present an automated repair method based on symbolic
execution, constraint solving, and program synthesis; they call their method
SemFix, on the grounds that it performs program repair by means of semantic
analysis. This method combines three techniques: fault isolation by means of
statistical analysis of the possible suspect statements; statement-level specifica-
tion inference, whereby a local specification is inferred from the global specifi-
cation and the product structure; and program synthesis, whereby a corrected
statement is computed from the local specification inferred in the previous step.
The method is organized in such a way that program synthesis is modeled as a
search problem under constraints, and possible correct statements are inspected
in the order of increasing complexity. When programs are repaired by Sem-
Fix, they are tested for (absolute) correctness against some predefined test data
suite; as we argue throughout [4], it is not sensible to test a program for abso-
lute correctness after a repair, unless we have reason to believe that the fault we
have just repaired is the last fault of the program (how do we ever know that?).
By advocating to test for relative correctness, we enable the tester to focus on
one fault at a time, and ensure that other faults do not interfere with our as-
sessment of whether the fault under consideration has or has not been repaired
adequately.

3 Semantics

We assume the reader familiar with elementary relational mathematics and
generally use the notation adapted from [1].
Given a set S defined by the values of some program variables, say x and y,
elements of S are denoted by s and expressed as s = 〈x, y〉. We represent the

Loop Analysis and Repair 27

x-component and (resp.) y-component of s as x(s) and y(s). When there is no
ambiguity, we refer to x(s) as x and x(s′) as x′ for elements s and s′ of S. We
refer to S as the state space of the program and to elements of S, denoted by s,
as the states of the program.
A relation on S is a subset of the Cartesian product S × S.
Of interest to us are the following constant relations on some set S:

– the universal relation, denoted by L = S × S,
– the identity relation, denoted by I = {(s, s′)|s = s′},
– and the empty relation, denoted by φ.

Given that by definition relations are sets, set theoretic operations such as union(∪),
intersection(∩) and complement(R, for a relation R) apply to them.
Operations on relations also include:

– the domain, dom(R), of R defined by dom(R) = {s|∃s′ : (s, s′) ∈ R},
– the range, rng(R), of R, defined rng(R) = {s′|∃s : (s, s′) ∈ R},.
– The converse, denoted by R̂, and defined by R̂ = {(s, s′)|(s′, s) ∈ R}.
– The product of relations, say R and R′, denoted by R ◦ R′ (or RR′) and

defined by R ◦R′ = {(s, s′)|∃s′′ : (s, s′′) ∈ R ∧ (s′′, s′) ∈ R′}.
– The nucleus of relation R, denoted by µ(R) and defined by µ(R) = RR̂.
– The nth power of relation R, for natural number n, denoted by Rn and de-

fined by R0 = I , and Rn = R ◦Rn−1, for n ≥ 1.
– The transitive closure of relation R, denoted by R+ and defined by R+ =
{(s, s′)|∃i > 0 : (s, s′) ∈ Ri}.

– The reflexive transitive closure of relation R, denoted by R∗ and defined by
R∗ = I ∪ R+. We admit without proof that R∗R∗ = R∗ and that R∗R+ =
R+R∗ = R+.

– The pre-restriction (resp. post-restriction) of relation R to predicate t is the
relation {(s, s′)|t(s) ∧ (s, s′) ∈ R} (resp. {(s, s′)|(s, s′) ∈ R ∧ t(s′)}).

Given a program p on state space S, we letP be the function of p.P is defined as:
P = {(s, s′)|p starts execution on s, then it terminates normally in state s′}
Normal termination means that the program terminates after a finite number of
operations, without causing an abort and returns a well-defined final state.
We consider while loops written in some C-like programming language, of the
form while (t) {b} and the semantic following definition:

[{while (t) {b}}] ≡ (T ∩B)∗ ∩ T̂ .
B is the function of b and T is the vector defined by: {(s, s′)|t(s)}

4 Invariant Relations

Informally, an invariant relation can be described as a binary relation between
input states and their corresponding output states obtained by applying zero or
more iterations of the loop body. More formally, we define an invariant relation
as follows:

28 N. Diallo

Definition 1. Given a while loop of the formw =while t {b} on space S, a relation
R on S is said to be an invariant relation for w if and only if it is a reflexive and
transitive superset of (T ∩B).

To illustrate the concept of invariant relation, we consider the loop below on
state space S = N× N× N where N is the set of natural numbers. A state s ∈ S
is defined by the integer variables n, f , and k such that a state s =< n, f, k >.

while (k !=n) {k=k +1; f = f ∗k ;}

We consider the following relation: R =
{

(s, s′)| f
k! = f ′

k′!

}
.

This relation is reflexive and transitive, since it is the nucleus of a function; to
prove that it is a superset of (T ∩ B) we compute the intersection R ∩ (T ∩ B)
and easily find that it equals (T ∩B).
Other invariant relations include:
R1 = {(s, s′)|n′ = n} R2 = {(s, s′)|k ≤ k′}.
One of the main attributes of invariant relations is that they allow us to de-
rive invariant assertions, a key concept in the established approach for proving
correctness of while loops. In [7], an invariant assertion α for a while loop w:
while t {b} with respect to precondition φ and postcondition ψ is defined as
a predicate on S such that the following are true:

– φ⇒ α,
– {α ∧ t}b{α},
– α ∧ ¬t⇒ ψ.

We consider the factorial example given above to which we add initialization
of the variables involved.

w: n=n0 ; k =0; f =1; while (k !=n) {k=k +1; f = f ∗k ;}

The reader can easily verify that f = k! and n = n0 are invariant assertions for
the loop with respect to the precondition n = n0; f = 1; k = 1; and postcondi-
tion f = n0!
As expressed above, an invariant assertion depends on both the loop body and
the context of the loop, namely its precondition and its post condition while in-
variant relations only involve the loop body.To make the comparison between
invariant assertions and invariant relations meaningful, we redefine invariant
assertions to be assertions that satisfy the condition {α ∧ t}b{α} since it is the
only condition that depends exclusively on the loop and does not depend on
the precondition (as ψ ⇒ α) nor the postcondition (as α ∧ ¬t ⇒ ψ). Given a
predicate α, let A be defined as a vector on S by: A = {(s, s′)|α(s)}

Definition 2. Vector A is said to be an invariant assertion for the while loop w:
while t {b} if and only if it satisfies the following condition: (A ∩ T ∩ B) ⊆ Â
where T is a vector defined by predicate t

The following two propositions, describe the relationships between invariants
assertions and invariant relations.

Loop Analysis and Repair 29

Proposition 1. Let R be an invariant relation of w: while t {b} on space S and
let C be an arbitrary vector on S. Then R̂C is an invariant assertion for w.

Proposition 2. Given an invariant assertion A, there exists an invariant relation R
and a vector C such that A = R̂C.

5 Loop Analysis

5.1 Convergence

In the spirit of merging the two aspects of termination described in related
work, we introduce the concept of convergence as the integration of these two
aspects. The following theorem provides a general framework for convergence
and illustrates how we only need to model one aspect or another or both by our
choice of invariant relation.

Theorem 1. We consider a while loop w of the form w: while (t) {b} on space
S, and we let R be an invariant relation for w. Then: WL ⊆ RT.

While this result provides that any invariant relation gives a necessary condi-
tion of termination, smaller invariant relations are favored as they can lead to
both a necessary and sufficient condition. In [4], we present a theorem that pro-
vides means of capturing aspects of abort-freedom by generating invariant rela-
tions of this form : R = {(s, s′)|∀u : (s, u) ∈ B′∗ ∧ (u, s′) ∈ B′+ ⇒ u ∈ dom(B)},
where B′ is a superset of B. In practice, B′ is an approximation of B, derived
by focusing on the variables that are involved in abort-prone statements and
recording how B transforms them while dom(B) is modeled using the abort
condition of interest. For example, to model

– the condition that arithmetic operations inB does not cause overflow, dom(B)
will express a clause to the effect that all operations produce a result within
the range of representable values.

– the condition of non-zero division in the execution of B, a condition is
added in dom(B) that ensures that all divisors in B are non-zero;

To illustrate the concept of convergence, we consider the following example
where we assume that we want to avoid a division by zero (variable j).

while (i ! = 0) { i =i −1; j = j +1 ; k=k−k/ j ;}

We find the following invariant relations:

– R1 = {(s, s′)|j ≤ j′}
– R2 = {(s, s′)|i ≥ i′}
– R3 = {(s, s′)|i+ j == iP + jP}
– R4 = {(s, s′)|∀h : j ≤ h < j′, 1 + h 6= 0}

Using these relations, we compute the following convergence condition:
(i = 0 ∨ (i ≥ 1 ∧ j ≥ 0) ∨ (i > 0 ∧ 1 + i+ j ≤ 0))

30 N. Diallo

5.2 Correctness Verification

In [4], two propositions are introduced for computing necessary and sufficient
conditions of correctness using invariant relations. We use them to derive an
algorithm which generates successive invariant relations, and tests a necessary
condition of correctness and a sufficient condition of correctness, until one of
three conditions arises:

– either the sufficient condition is true, then we diagnose the loop as correct.
– or the necessary condition is false, then we diagnose the loop as incorrect.
– or we run out of invariant relations before we reach the conclusions above;

in which case we exit with the conclusion that we do not know enough
about the loop to rule on its correctness.

6 Loop Repair

Simply put, loop repair consists of removing a fault and proving that the fault
has been removed. Our proposed method for loop repair consists of the follow-
ing.

1. Observation of failure (loop is diagnosed as incorrect by finding an invari-
ant relation that violates the necessary condition of correctness)

2. fault diagnosis (statements involving variables of the invariant relation above
are targeted)

3. fault removal (deriving a new invariant that verifies the necessary condition
of correctness)

4. proof of relative correctness (defined below)

6.1 Relative Correctness

Definition 3. LetR be a specification on state space S and let p and p′ be two programs
on space S whose functions are respectively P and P ′.

– We say that program p′ is more-correct than program p with respect to specifica-
tion R (abbreviated by: P ′ wR P) if and only if: (R ∩ P ′)L ⊇ (R ∩ P)L.

– Also, we say that program p′ is strictly more-correct than program p with respect
to specificationR (abbreviated by: P ′ AR P) if and only if (R∩P ′)L ⊃ (R∩P)L.

where L be the universal relation on S

(R ∩ P)L is referred to as the competence domain of program p; it represents
the set of initial states for which the program agrees with the specification R.
Thus to be more-correct means to have a larger competence domain. Note for
program p′ to be more-correct than program p, it does not have to duplicate
the behavior of p over the competence domain of p: it may have a different
behavior (since R is potentially non-deterministic) provided this behavior is
also correct with respect to R; In [4], We illustrate the concept with an example
for which (R ∩ P)L = {1, 2, 3, 4} × S, (R ∩ P ′)L = {1, 2, 3, 4, 5} × S, where
S = {0, 1, 2, 3, 4, 5, 6}. Hence p′ is more-correct than p with respect to R.

Loop Analysis and Repair 31

7 Proving Relative Correctness for Loops

In [4], we propose a theorem and an algorithm to the effect that we can achieve
the four steps mentioned above for loop repair. To illustrate loop repair, we con-
sider the following loop, where all the variables except t are of type double,
and where a and b are positive constants.

w: while (abs (r−p)>upsi lon)
{ t = t +1;n=n+x ; m=m−1; l = l ∗(1+b) ; k=k +1000; y=n+k ;
w=w+z ; z=(1+a)+ z ; v=w+k ; r =(v−y)/y ; u=(m−n)/n ; d=r−u ; }

We consider the following specification:

R = {(s, s′)|b < a < 1 ∧ x′ = x ∧ w′ = w − z × 1−(1+a)t′−t

a

∧k′ = k+1000×(t′−t)∧t ≤ t′∧0 < l ≤ l′∧z > 0∧ l×(1+b)−t = l′×(1+b)−t′}.

Analysis of this loop by our invariant relation generator derives fourteen in-
variant relations, five of which are found to be incompatible with the specifi-
cation. We select the following incompatible invariant relation for remediation:

Q = {(s, s′)|l × (1 + b)−
z

1+a = l′ × (1 + b)−
z′

1+a }. To fix this incompatibility,
we must alter variable z or variable l. We compute the condition on z and l
under which a change in these variables does not alter any of the relevant com-
patible relations, and we find: z′ ≥ z ∧ (l = l′ ∨ l × (l′ − l) > 0). z is chosen
and common mutation operators are applied to the statement {z=(1+a)+z}
while preserving the condition z′ ≥ z; for each mutant of this statement, we
recompute the new invariant relation that substitutes for Q and check whether
it is compatible with R. We find that the statement {z=(1+a)*z} produces a
compatible invariant relation, and conclude that the loop w′ obtained when we
replace {z=(1+a)+z} by {z=(1+a)*z} is more-correct than w with respect to
R. Running the invariant relations generator on the new loop produces four-
teen invariant relations, one of which is incompatible with R (hence w′ is in-
deed incorrect); it seems that by removing the earlier fault we have remedied
four invariant relations at once. Applying the same process to w′, we find the
following loop, which is correct with respect to R:

wc : while (abs (r−p)>upsi lon)
{ t = t +1;n=n+x ; m=m+1; l = l ∗(1+b) ;
k=k +1000; y=n+k ;w=w+z ; z=(1+a)∗ z ;
v=w+k ; r =(v−y)/y ; u=(m−n)/n ; d=r−u ; }

8 Conclusions and Prospects

Presently, we are developing and evolving the tool to automate the methods
described above. It currently covers numeric data types and provide artifacts
related to convergence and correctness verification. The results of the experi-
ments are promising and encouraging. We intend to assess the effectiveness of

32 N. Diallo

the proposed approach and tool by comparing the tool with tools from other
approaches[Astree, Genprog],using relevant benchmarks. While evolving the
tool to include more application domains, we plan to further explore the impli-
cations and applications of relative correctness, to further derive techniques for
proving relative correctness by static analysis of the source code. We also intend
to create a new benchmark for convergence and analysis of program repair with
relative correctness. This should all contribute as evidence of the significance of
this work.

References

1. C. Brink, W. Kahl, and G. Schmidt. Relational Methods in Computer Science. Springer
Verlag, New York, NY and Heidelberg, Germany, 1997.

2. B. Cook, A. Podelski, and A. Rybalchenko. Proving program termination. Commu-
nications of the ACM, 54(5), 2011.

3. P. Cousot. Abstract interpretation. Technical Report www.di.ens.fr/c̃ousot/AI/,
Ecole Normale Superieure, Paris, France, August 2008.

4. N. Diallo, W. Ghardallou, and A. Mili. Correctness and relative correctness. In
Proceedings, 37th International Conference on Software Engineering, Firenze, Italy, May
20–22 2015.

5. E. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.
6. S. Falke, D. Kapur, and C. Sinz. Termination analysis of imperative programs using

bitvector arithmetic. In VSTTE, pages 261–277, 2012.
7. C. Hoare. An axiomatic basis for computer programming. Communications of the

ACM, 12(10):576 – 583, Oct. 1969.
8. S. K. Lahiri, K. L. McMillan, R. Sharma, and C. Hawblitzel. Differential assertion

checking. In Proceedings, ESEC/ SIGSOFT FSE, pages 345–455, 2013.
9. C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for program

termination. In ACM SIGPLAN Notices, volume 36, pages 81–92. ACM, 2001.
10. C. LeGoues, S. Forrest, and W. Weimer. Current challenges in automatic software

repair. Software Quality Journal, 21(3):421–443, 2013.
11. F. Logozzo and T. Ball. Modular and verified automatic program repair. In Proceed-

ings, OOPSLA, pages 133–146, 2012.
12. F. Logozzo, S. Lahiri, M. Faehndrich, and S. Blackshear. Verification modulo ver-

sions: Towards usable verification. In Proceedings, PLDI, 2014.
13. A. Mili, S. Aharon, and C. Nadkarni. Mathematics for reasoning about loop. Science

of Computer Programming, pages 989–1020, 2009.
14. H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. Semfix: Program repair

via semantic analysis. In Proceedings, ICSE, pages 772–781, 2013.
15. A. Podelski and A. Rybalchenko. Transition invariants. In Proceedings, 19th Annual

Symposium on Logic in Computer Science, pages 132–144, 2004.

Monoid Modules and Structured Document Algebra
(Extendend Abstract)

Andreas Zelend

Institut für Informatik, Universität Augsburg, Germany
zelend@informatik.uni-augsburg.de

1 Introduction

Feature Oriented Software Development (e.g. [3]) has been established in computer
science as a general programming paradigm that provides formalisms, meth-
ods, languages, and tools for building maintainable, customisable, and exten-
sible software product lines (SPLs) [8]. An SPL is a collection of programs that
share a common part, e.g., functionality or code fragments. To encode an SPL,
one can use variation points (VPs) in the source code. A VP is a location in a pro-
gram whose content, called a fragment, can vary among different members of
the SPL. In [2] a Structured Document Algebra (SDA) is used to algebraically de-
scribe modules that include VPs and their composition. In [4] we showed that
we can reason about SDA in a more general way using a so called relational pre-
domain monoid module (RMM). In this paper we present the following extensions
and results: an investigation of the structure of transformations, e.g., a condi-
tion when transformations commute, insights into the pre-order of modules,
and new properties of predomain monoid modules.

2 Structured Document Algebra

VPs and Fragments. Let V denote a set of VPs at which fragments may be in-
serted and F(V) be the set of fragments which may, among other things, contain
VPs from V. Elements of F(V) are denoted by f1,f2, There are two special
elements, a default fragment 0 and an error . An error signals an attempt to
assign two or more non-default fragments to the same VP within one module.
The addition, or supremum operator + on fragments obeys the following rules:

0+ x = x , + x = ,
x+ x = x , fi + fj = (i 6= j) ,

where x ∈ {0,fi, }. This structure forms a flat lattice with least element 0 and
greatest element and pairwise incomparable fi. By standard lattice theory +
is commutative, associative and idempotent and has 0 as its neutral element.

Modules. A module is a partial function m : V F(V). A VP v is assigned in m if
v ∈ dom(m), otherwise unassigned or external. By using partial functions rather

34 A. Zelend

than relations, a VP can be filled with at most one fragment (uniqueness). The
simplest module is the empty module 0, i.e., the empty partial map.

Module Addition. The main goal of feature oriented programming is to con-
struct programs step by step from reusable modules. In the algebra this is done
by module addition (+). Addition fuses two modules while maintaining unique-
ness (and signaling an error upon a conflict). Desirable properties for + are
commutativity and associativity. For module addition, + on fragments is lifted
to partial functions:

(m+ n)(v) =df

m(v) if v ∈ dom(m)− dom(n) ,
n(v) if v ∈ dom(n)− dom(m) ,
m(v) + n(v) if v ∈ dom(m) ∩ dom(n) ,
undefined if v 6∈ dom(m) ∪ dom(n) .

If in the third case m(v) 6= n(v) and m(v),n(v) 6= 0 then (m + n)(v) = , thus
signalling an error.

The set of modules forms a commutative monoid under + with the neutral
element 0.

Deletion and Subtraction. For modules m and n the subtraction m−n is defined
as

(m− n)(v) =df

{
m(v) if v ∈ dom(m)− dom(n) ,
undefined otherwise.

Overriding. To allow overriding, an operation −. can be defined in terms of
subtraction and addition. Module m overrides n, written m−. n, if

m−. n = m+ (n− m)

This replaces all assignments in n for which m also provides a value. −. is asso-
ciative and idempotent with neutral element 0.

Modules m and n are called compatible, in signs m ↓ n, if their fragments
coincide on their shared domains, i.e.,

m ↓ n ⇔df ∀v ∈ dom(m) ∩ dom(n) : m(v) = n(v) .

We have chosen this characterization of compatibility with regard to the non-
relational abstract approach, to be pursued in Section 3, which especially needs
no converse operation. For a relational treatment see [9]. All submodules of a
module are pairwise compatible with each other.

2.1 Transformations

In this section we sketch an extension of SDA, intended to cope with some
standard techniques in software refactoring (e.g., [1, 7]). Examples of such tech-
niques are consistent renaming of methods or classes in a large software system.
To stay at the same level of abstraction as before, we realize this by a mechanism
for generally modifying the fragments in SDA modules.

Monoid Modules and Structured Document Algebra 35

By a transformation or modification or refactoring we mean a total function
T : F(V) → F(V). By T · m we denote the application of T to a module m. It yields
a new module defined by

(T · m)(v) =df

{
T(m(v)) if v ∈ dom(m)
undefined otherwise .

We need to handle the special case of transforming the error fragment . Since
we don’t want to allow transformations to mask errors that are related to mod-
ule addition, we add the requirement

T() = .

We use the convention that · binds stronger than all other operators. Note that,
although T is supposed to be a total function on all fragments, it might well
leave many of those unchanged, i.e., act as the identity on them.

2.2 Structure of Transformations

Definition 2.1 A monoid of transformations is a structure F = (F, ◦,1), where F is
a set of total functions f : X → X over some set X, closed under function com-
position ◦, and 1 the identity function. The pair (X,F) is called transformation
monoid of X. By T|A we denote the transformation T restricted to the set A.

We call the set of transformations on fragments Γ . Then, by the above defini-
tion, (F(V), Γ) is the transformation monoid of fragments F(V) which we abbre-
viate to Γ . Since these transformations are not necessarily invertible, in general
Γ is not a transformation group. We now can extend the list of properties given
in [2].

(6) T · (m+ n) = T · m+ n ⇐ T|ran(n) = 1|ran(n) ∧ m ↓ n ,
(7) 1 · m = m ,
(8) T · 0 = 0 .

0 being an annihilator, (Property (8)) means that transformations can only
change existing fragments rather than create new ones.

Furthermore we can define the application equivalence ≈ of two transforma-
tions S,T by S ≈ T ⇔df ∀m : S · m = T · m.

It is common to undo refactorings, e.g., undo a renaming of a variable. This
can be modelled by inverse transformations, denoted by −1. When it exists,
the inverse of a stacked, or composed transformation, is given by (T ◦ S)−1 =
S−1◦T−1. Of course the inverse of T or Smight not exist, e.g., if T is not injective.

As stated above transformations are total functions. Since they act as the
identity for fragments that should not be modified we define the set of frag-
ments they transform as follows.

Definition 2.2 Let T : F(V) → F(V) be a transformation. Then we call Tm =df

{f ∈ F(V) : T(f) 6= f} the modified fragments of T and Tv =df {T(f) ∈ F(V) :
T(f) 6= f} = ran(T|Tm) the value set of T.

36 A. Zelend

Restricting transformations to their modified fragments allows us to state
situations in which transformations can be omitted or commute.

Lemma 2.3

1. T · (S · m) = S · m if Tm ⊆ Sm ∧ Tm ∩ Sv = ∅.
2. T and S commute if Tm ∩ Sm = ∅ ∧ Tm ∩ Sv = ∅ ∧ Tv ∩ Sm = ∅.

A proof can be found in Appendix A.1.

3 Abstracting from SDA

The set M of modules, i.e., partial maps m : V F(V), with + and −, defined
as in subsection 2, forms an algebraic structure SDA =df (M,+,−,0) such that
(M,+,0) is an idempotent and commutative monoid and which satisfies the fol-
lowing laws for all l,m,n ∈ M:
1. (l− m)− n = l− (m+ n) ,
2. (l+ m)− n = (l− n) + (m− l) ,

3. 0− l = 0 ,
4. l− 0 = l .

Definition 3.1 A monoid module (m-module) is an algebraic structure (B,M, :)
where (M,+,0) is an idempotent and commutative monoid and (B,+, ·,0,1,¬)
is a Boolean algebra in which 0 and 1 are the least and greatest element and ·
and + denote meet and join. Note that 0 and + are overloaded, like in classi-
cal modules or vector spaces. The restriction, or scalar product, : is a mapping
B× M → M satisfying for all p,q ∈ B and m,n ∈ M:

(p+ q) :m = p :m+ q :m , (1)
p : (m+ n) = p :m+ p :n , (2)

0 :m = 0 , (3)

(p · q) :m = p : (q :m) , (4)
1 :m = m , (5)
p :0 = 0 . (6)

We define the natural pre-order on (M,+,0) by m ≤ n ⇔df m + n = n.
Therefore + is isotone in both arguments.

We have choosen the name monoid module following the notion of a mod-
ule over a ring and because SDA’s modules form an idempotent and commu-
tative monoid.

Lemma 3.2

1. Restriction : is isotone in both arguments.
2. p :m ≤ m.
3. p : (q :m) = q : (p :m)

The first claim follows by distributivity, the second by isotony and (5) and
the third by (4) and Boolean algebra.

The structure RMM = (P(M),P(M × N), :), where : is restriction, i.e., p :m =
{(x,y) | x ∈ p ∧ (x,y) ∈ m}, forms a mono module. To model subtraction we
extend mono modules with the predomain operator p : M → B.

Definition 3.3 A predomain monoid module (predomain m-module) is a structure
(B,M, :, p) such that(B,M, :) is a m-module and p : M → B satisfies for all p ∈ B
and m ∈ M:

Monoid Modules and Structured Document Algebra 37

(d1) m ≤ pm : m , (d2) p(p : m) ≤ p .

In a predomain m-module pm is the least left preserver of m and ¬pa is the great-
est left annihilator. To justify this we present the following lemma.

Lemma 3.4 In a predomain m-module (B,M, :, p) for all p ∈ B and m ∈ M:

(llp) pm ≤ p ⇔ m ≤ p :m , (gla) p ≤ ¬pm ⇔ p :m ≤ 0 .

Note that (llp) does not establish a Galois connection, since there is no great-
est element in the monoid (M,+,0) per se, cf. [5] A proof can be found in Ap-
pendix A.2.

Now we can give more useful properties of the predomain function like
isotony or strictness.

Lemma 3.5 In a predomain m-module (B,M, :, p) for all p ∈ B and m,n ∈ M:

1. m = 0 ⇔ pm = 0 ,
2. m ≤ n ⇒ pm ≤ pn ,
3. m = pm : m ,

4. p(m+ n) = pm+ pn ,
5. p(p :m) :m = p :m ,
6. p(p :m) = p · pm .

A proof can be found in Appendix A.3.
Now it is easy to verify that the SDA laws for subtractions also hold in a pre-

domain m-module. Note that the sides change, e.g., right distributivity becomes
left distributivity.

Lemma 3.6 Assume a predomain m-module (B,M, :, p). Then for all l,m,n ∈ M:

1. p(¬pn :m) = pm · ¬pn ,
2. (¬pn :0 = 0) ,
3. ¬pl : (m+ n) = ¬pl :m+ ¬pl :n ,
4. ¬p(m+ n) : l = ¬pn :(¬pm :l) ,

5. ¬p0 :m = m ,
6. ¬pm :m = 0 ,
7. ¬pn :m ≤ m ,
8. m ≤ n ⇒ ¬pn :m = 0 .

A proof can be found in Appendix A.4.

By defining pm =df {x | (x,y) ∈ m} RMM becomes a predomain m-module
and using an RMM over binary functional relations R ⊆ V × F(V), i.e., R̆ ;R ⊆
id(F(V)), allows us to reason about SDA. As a result, SDA’s subtraction m−n of
modules is equivalent to ¬pn :m in the corresponding RMM.

38 A. Zelend

Using SDA’s module addition, cf. Section 2, we can investigate the induced
natural pre-order.

m ≤ n ⇔df m+ n = n

⇔

m(v) if v ∈ pm− pn
n(v) if v ∈ pn− pm
m(v) + n(v) if v ∈ pm ∩ pn
undefined if v 6∈ pm ∪ pn

 = n(v)

⇔

m(v) = n(v) if v ∈ pm− pn
n(v) = n(v) if v ∈ pn− pm
m(v) + n(v) = n(v) if v ∈ pm ∩ pn
true if v 6∈ pm ∪ pn

⇔

false if v ∈ pm− pn
true if v ∈ pn− pm
m(v) ≤ n(v) if v ∈ pm ∩ pn
true if v 6∈ pm ∪ pn

⇔ v ∈ pn− pm ∨ (v ∈ pm ∩ pn ∧ m(v) ≤ n(v)) ∨ v 6∈ pm ∪ pn for any v ∈ V.

Therefore the least element w.r.t. ≤ is the empty module 0 and the top element
is the module t with t(v) = for any v ∈ V.

SDA’s overriding operator m−. n can also be defined in a predomain m-
module: m−. n =df m + ¬pm :n . In [6] this operator, embedded into a Kleene
algebra, is used to update links in pointer structures.

Lemma 3.7 In a predomain m-module (B,M, :, p) for all p ∈ B and l,m,n ∈ M:
1. 0−. n = n,
2. m−. 0 = m,
3. m ≤ m−. n,

4. m = pm :(m−. n),
5. p(m−. n) = pm+ pn,
6. pm ≥ pn⇒ m−. n = m,
7. l−. (m+ n) = l−. m+ l−. n.

A proof can be found in Appendix A.5.
Future work will focus on further properties of transformations and their

incorporation into the abstract framework of predomain m-modules.

Acknowledgments I am very grateful to the anonymous referees for helpful
comments and suggestions and I thank B. Möller for fruitful discussions and
valuable comments.

Monoid Modules and Structured Document Algebra 39

References

1. Batory, D.: Program refactorings, program synthesis, and model-driven design. In:
Krishnamurthi, S., Odersky, M. (eds.) Compiler Construction. LNCS, vol. 4420, pp.
156–171. Springer (2007)

2. Batory, D., Höfner, P., Möller, B., Zelend, A.: Features, modularity, and variation
points. Tech. Rep. CS-TR-13-14, The University of Texas at Austin (2013)

3. Batory, D., O’Malley, S.: The design and implementation of hierarchical software
systems with reusable components. ACM Transactions Software Engineering and
Methodology 1(4), 355–398 (1992)

4. Dang, H.H., Glück, R., Möller, B., Roocks, P., Zelend, A.: Exploring modal
worlds. Journal of Logical and Algebraic Methods in Programming 83(2), 135 –
153 (2014), http://www.sciencedirect.com/science/article/pii/S1567832614000058,
festschrift in Honour of Gunther Schmidt on the Occasion of his 75th Birthday

5. Desharnais, J., Möller, B., Struth, G.: Kleene algebra with domain. ACM Trans. Com-
put. Log. 7(4), 798–833 (2006), http://doi.acm.org/10.1145/1183278.1183285

6. Ehm, T.: The Kleene Algebra of Nested Pointer Structures: Theory and Applications.
Ph.D. thesis, Universität Augsburg (2005)

7. Kuhlemann, M., Batory, D., Apel, S.: Refactoring feature modules. In: Edwards, S.,
Kulczycki, G. (eds.) Formal Foundations of Reuse and Domain Engineering. LNCS,
vol. 5791, pp. 106–115. Springer (2009)

8. Lopez-Herrejon, R., Batory, D.: A standard problem for evaluating product-line
methodologies. In: Bosch, J. (ed.) GCSE ’01: Generative and Component-Based Soft-
ware Engineering. LNCS, vol. 2186, pp. 10–24. Springer (2001)

9. Möller, B.: Towards pointer algebra. Sci. Comput. Program. 21(1), 57–90 (1993),
http://dx.doi.org/10.1016/0167-6423(93)90008-D

A Proofs for Subsection 2.2 and Section 3

A.1 Proofs for Lemma 2.3

1. Tm ∩ Sv = ∅ implies that T acts as the identity on the set Sv. Since Tm ⊆ Sm,
we obtain that T also is the identity on the set ran(m) − Sm. Therefore we
have T · (S · m)(v) = T · (S(m(v))) = S(m(v)).

2. We have x ∈ Sm ⇒ T(x) = x ∧ x ∈ Tm ⇒ S(x) = x because Tm ∩ Sm = ∅.
Therefore, for an arbitrary x = m(v), we get

(T ◦ S)(x) = T(S(x)) =

S(x) if x ∈ Sm since Tm ∩ Sv = ∅ ,
T(x) if x ∈ Tm ,
x if x ∈ Sm ∩ Tm .

On the other hand we get

(S ◦ T)(x) = S(T(x)) =

T(x) if x ∈ Tm since Sm ∩ Tv = ∅ ,
S(x) if x ∈ Sm ,
x if x ∈ Tm ∩ Sm .

40 A. Zelend

A.2 Proofs for Lemma 3.4

(llp) ⇒: m ≤ pm :m ≤ p :m by (d1) and isotony of restriction (pm ≤ p).
⇐: m ≤ p :m⇒ m = p :m by Lemma 3.2.2 and therefore pm = p(p :m) ≤ p
by (d2).

(gla) ⇒: p :m ≤ p :(pm :m) = (p · pm) :m by (d1), isotony of restriction and (4).
Since p ≤ ¬pm, p ·pm = 0 holds and therefore (p ·pm) :m = 0 :m = 0 by (3).
⇐: m = 1 :m = (p+ ¬p) :m = p :m+ ¬p :m = 0+ ¬p :m = ¬p :m by (5),
Boolean algebra, (1) and the assumption (p :m ≤ 0). Using (llp) we have
pm ≤ ¬p which is equivalent to p ≤ ¬pm by shunting.

A.3 Proofs for Lemma 3.5

1. ⇒: pm = p0 = p(0 : 0) ≤ 0 by (3) and (d2).
⇐: m ≤ pm :m by (d1) and therefore m ≤ 0 :m = 0 by (3).

2. ¬pn ≤ ¬pn ⇒ ¬pn :n ≤ 0 ⇒ ¬pn :m ≤ 0 ⇒ ¬pn ≤ ¬pm ⇒ pm ≤ pn by (gla),
isotony of restriction, (gla) again and shunting (2 times).

3. p ≤ ¬p(m+ n) ⇔ p : (m+ n) ≤ 0⇔ p : m+ p : n ≤ 0⇔ p : m ≤ 0 ∧ p : n ≤
0 ⇔ p ≤ ¬pm ∧ p ≤ ¬pn ⇔ p ≤ ¬pm · ¬pn ⇔ p ≤ ¬(pm + pn). Using indirect
equality we get ¬p(m+ n) = ¬(pm+ pm) ⇔ p(m+ n) = pm+ pm.

4. m ≤ pm :m holds by (d1) and pm :m ≤ m holds by Lemma 3.2.2.

5. ≤: p(p :m) :m ≤ p :m holds by (d2) and isotony of restriction.
≥: p :m ≤ p(p :m) :(p :m) = (p(p :m) · p) :m by (d1) and (4). Since p(p :m) ≤ p
by (d2) it follows that p(p :m) · p = p(p :m). In sum we have p :m ≤ p(p :m) :m.

6. First we have pm = p(1 :m) = p((p + ¬p) :m) = p(p :m + ¬p :m) = p(p :m) +
p(¬p :m) by (5), Boolean algebra, and Part 4. By (d2) it holds that p(p :m) ≤
p ∧ p(¬p :m) ≤ ¬p. And therefore by Boolean algebra: p · p(p :m) = p(p :m)
and p · p(¬p :m) = 0. In sum we conclude: p · pm = p · (p(p :m) + p(¬p :m)) =
p · p(p :m) + p · p(¬p :m) = p · p(p :m) + 0 = p(p :m).

A.4 Proofs for Lemma 3.6

1. p(¬pn :m) = pm · ¬pn by Lemma 3.5.6 and Boolean algebra.
2. (¬pn :0 = 0) by (6).
3. ¬pl : (m+ n) = ¬pl :m+ ¬pl :n by (5).
4. ¬p(m+ n) : l = ¬(pm+ pn) : l = (¬pm · ¬pn) = ¬pm :(¬pn :l) = ¬pm :(¬pn :l) by

Lemma 3.5.4, Boolean algebra, (4) and Lemma 3.2.3.
5. ¬p0 :m = ¬0 :m = 1 :m = m by (5) and ¬p0 = ¬0 = 1 Lemma 3.5.1, Boolean

algebra and (5).
6. ¬pm ≤ ¬pm⇒ ¬pm :m ≤ 0 by (gla).
7. ¬pn :m ≤ m by Lemma 3.2.2.
8. m ≤ n ⇒ pm ≤ pn ⇒ ¬pn ≤ ¬pm ⇒ ¬pn : m ≤ 0 by Lemma 3.5.2, Boolean

algebra and (gla).

Monoid Modules and Structured Document Algebra 41

A.5 Proofs for Lemma 3.7

1. 0−. n = 0+ ¬p0 :n = ¬0 :n = 1 :n = n by Lemma 3.5.1 and (5).

2. m−. 0 = m+ ¬pm :0 = m+ 0 = m by (6).

3. m ≤ m+ ¬pm :n = m−. n by isotony of +.

4. pm :(m−. n) = pm :(m + ¬pm :n) = pm :m + pm :(¬pm :n) = m + (pm · ¬pm) :n =
m+ 0 :n = m+ 0 = m by (2), (4) and (3).

5. p(m−. n) = p(m + ¬pm :n) = pm + p(¬pm :n) = pm + ¬pm · pn = pm + pn ,
by Lemma 3.5.4, 3.5.6 and Boolean algebra.

6. First we conclude pm ≥ pn ⇒ ¬pm ≤ ¬pn ⇒ ¬pm :n ≤ 0 by (gla). Therefore
m−. n = m+ ¬pm :n = m+ 0 = m.

7. l−. (m+n) = l+¬pl :(m+n) = l+¬pl :m+¬pl :n = l+¬pl :m+l+¬pl :n =
l−. m+ l−. n by (2) and idempotence.

42 RAMiCS 2015 – Student Track

On a Monadic Encoding of Continuous Behaviour
(extended abstract)

Renato Neves

INESC TEC (HASLab) & University of Minho, Portugal
rjneves@inescporto.pt

Abstract. The original purpose of component–based development was
to provide techniques to master complex software, through composition,
reuse, and parametrisation. However, such systems are rapidly moving
towards a level in which they become prevalently intertwined with (con-
tinuous) physical processes. A possible way to accommodate the latter in
component calculi relies on a suitable encoding of continuous behaviour
as (yet another) computational effect.
This paper reports such an encoding through a monad which, in the com-
positional development of hybrid systems, may play a role similar to the
one played by the maybe, powerset, and distribution monads in the char-
acterisation of partial, non deterministic and probabilistic components,
respectively.

Keywords: Monads, components, hybrid systems, control theory

1 Introduction

Component-based software development is often explained through a visual
metaphor: a palette of computational units, and a blank canvas in which they
are dropped and interconnected by drawing wires abstracting different com-
position and synchronisation mechanisms. More and more, however, compo-
nents are not limited to traditional information processing units, but encapsu-
late some form of interaction with physical processes. The resulting systems,
referred to as hybrid, exhibit a complex dynamics in which loci of computation,
coordination, and control of physical processes interact, become mutually con-
strained, and cooperate to achieve specific goals.

One way of looking at components, proposed in [1, 2], emphasises an ob-
servational semantics, through a signature of observers and methods, making
them amenable to a coalgebraic [3] characterisation as (generalisations of) ab-
stract Mealy machines. The resulting calculus is parametric on whatever be-
havioural model underlies a component specification. This captures, for exam-
ple, partial, non deterministic or probabilistic evolution of a component’s dy-
namics by encoding such behavioural effects as strong monads [4, 5].

This paper summarises a number of results developed in the context of the
author’s PhD project [6]. Namely, the introduction of a strong monadH [7] that

44 Renato Neves

subsumes continuous behaviour and the study of the corresponding Kleisli cat-
egory [8] as the mathematical space in which the underlying behaviour can be
isolated and its effect over different forms of composition studied. This work
may pave the way to the development of a coalgebraic calculus of hybrid compo-
nents.

Related work. A few categorial models for hybrid systems have been proposed.
For example, document [9] introduced an institution – in essence, a categorial
rendering of logic – for hybrid systems and provided basic forms of compo-
sition. Around the same time, Jacobs [10] suggested a coalgebraic framework
where hybrid systems are viewed as coalgebras equipped with a monoid ac-
tion. Some years later Haghverdi et. al [11] provided a formalisation of hybrid
systems using a conceptual framework that is closer to the coalgebraic perspec-
tive.

The monad reported in this paper captures the typical continuous behaviour
of hybrid systems. Actually, there is a close relationship between the work re-
ported here and Peter Höfner’s algebra of hybrid systems [12]: the latter’s main
operator and its laws are embedded in the (sequential) composition ofKlH, the
Kleisli category for monadH.

Since our approach, differently from Höfner’s calculus, is structured around
a monad that encodes continuous evolution, a number of canonical construc-
tions come for free. Moreover, the integration with other behavioural effects,
such as non determinism or probabilistic evolution, becomes more systematic.

Roadmap. After a brief detour on preliminaries and notation in Section 2, monad
H is described in Section 3. Section 4 gives some details about the correspond-
ing Kleisli category Kl H, characterising composition and some (co)limits. Fi-
nally, conclusions and possible future research directions are discussed in Sec-
tion 5. In this paper many calculations adopt a pointfree style in the spirit of the
Bird-Meertens formalism [13].

2 Preliminaries

2.1 The category of topological spaces

The typical continuous behaviour of hybrid systems suggests the category Top of
topological spaces and continuous functions as a suitable working environment
for developing the aforementioned results. In the sequel, if the context is clear,
a topological space will be denoted just by its underlying set. Also, assume
that spaces X × Y , X + Y correspond to the canonical product and coproduct
of X,Y , respectively, and that whenever Y is core-compact, space XY comes
with the exponential topology [14]. In this context, given a continuous function
f : X × Y → Z where Y is core–compact, we denote its curried version by

On a monadic encoding of continuous behaviour 45

λf : X → ZY . Moreover, we will use the following isomorphisms in Top:

αl : (X × Y)× Z ∼= X × (Y × Z)

sw : X × Y ∼= Y ×X
i : (X × Y)R0 ∼= XR0 × Y R0

2.2 Notation

Arrows X → 1 to the final object in Top will be denoted by !, and a function
constantly yielding a value x by x. Given two functions f, g : X → Y , and a
predicate p, conditional expression f C p B g : X → Y is defined by

(f C p B g) x = (f x C p x B g x) =

{
f x p x

g x otherwise

The continuous functions minimum f : R×(R+1)→ R and truncated subtraction
� : R× (R + 1)→ R play a key role in the sequel. They are defined as follows

r f (i1 s) = (π1 C (≤) B π2) (r, s) r � (i1 s) = ((−) C (>) B 0) (r, s)

r f (i2 ?) = r r � (i2 ?) = 0

where ≤, > are the usual ordering relations over the reals, and 1 introduces in-
finity. Set R0 denotes the non–negative real numbers. Then, we have (fd) r =
r f d and (�d) r = r � d. Finally, for any category C, |C| denotes the corre-
sponding class of objects.

3 A Monad for Continuity

Formally, we see continuous systems as arrows of the type

I → OR0 ×D

where D = R0 + 1 and I,O are the input and output spaces, respectively. The
intuition is that outputs of such systems are continuous evolutions (also known
as trajectories) with a specific (possibly infinite) duration d ∈ D.

Definition 1 H : Top → Top is a functor such that, for any objects X,Y ∈ |Top|
and any continuous function g : X → Y ,

HX = { (f, d) ∈ XR0 ×D | f · fd = f }
Hg = g ·× id

where (g ·) h = g · h. Condition f · fd = f tells that function f must become
constant after reaching its duration; more formally, for any r ∈ R0 such that
r > d, f r = f d. Hence, continuous systems become arrows of the type

I → HO

46 Renato Neves

also denoted as I →· O.
The crucial step now is to equipH with a monad structure, i.e. with natural

transformations

η : Id
·→ H, µ : HH ·→ H.

First,

Definition 2 Given any X ∈ |Top|, define ηX : X → HX such that

ηX x = (x, i1 0)

in pointfree notation ηX = 〈λπ1, i1 · 0〉.

The definition of µ is more demanding.

Definition 3 Define the continuous functions g : HHX × R0 → XR0 , h : HHX ×
R0 → R0 such that

g((f, d), r) = (π1 · f) (r f d),

h((f, d), r) = r � d

Next, we have fl1 : HHX → XR0 where fl1 = λ(ev · 〈g, h〉). In pointwise notation,
fl1 is defined as

fl1(f, d) = ev · 〈π1 · f · fd,�d〉

Then, define function fl2 : H2X → D such that

fl2 (f, d) = ((π2 · f) d C (d 6∈ 1) B i2 ?) + d

Finally, we define for any X ∈ |Top|, µX = 〈fl1, f l2〉.

Intuitively, operation µX ‘concatenates’ functions: given a pair (f, d) ∈ HHX ,
µX concatenates function (π1 · f) - 0 : [0, d]→ X with (π1 · f) d - : [0, d′]→ X ,
and sums the corresponding durations.

Theorem 1 The triple 〈H, η, µ〉 forms a monad.

Proof. In document [7].

4 The Category of Continuous Behaviours

4.1 Kleisli Composition

The Kleisli category forH (KlH) provides an interesting setting to study the re-
quirements placed by continuity over different forms of composition; actually,
the envisaged component calculus for hybrid systems is essentially its calculus.
This motivates the study of KlH, summmarised in the current section.

The definition of Kleisli composition in KlH suggests a relevant distinction
between continuous systems.

On a monadic encoding of continuous behaviour 47

Definition 4 A continuous system c : I → HI is passive if the following diagram
commutes

I
fc //

id

IR0

ev·〈id,0〉
��

I

where fc = π1 · c. It is active otherwise.

Intuitively, the diagram tells that any evolution triggered by c ‘starts’ at the
point given as input. To see why such a distinction is relevant, let us consider
two continuous systems c1 : I → HK, c2 : K → HO. Through Kleisli composi-
tion we obtain component c2 • c1 : I → HO whose behaviour is computed as
follows:

π1 · (c2 • c1) x

= { Kleisli composition }

π1 · µ ·Hc2 · c1 x
= { Cancellation × }

fl1 ·Hc2 · c1 x
= { Definition ofH (taking d = (π2 · c1) x) }

fl1 (c2 · (fc1 x), d)

= { Application }

ev · 〈π1 · c2 · (fc1 x) · fd,�d〉

= { Notation }

ev · 〈fc2 · (fc1 x) · fd,�d〉

Going pointwise,

ev · 〈fc2 · (fc1 x) · fd,�d〉 t

= { Application }

fc2
(
fc1 x (tf d)

)
(t� d)

= { Notation }

fc2
(
fc1 x t

)
0 C (t ≤ d) B fc2

(
fc1 x d

)
(t− d)

= { If c2 is passive }

fc1 x tC (t ≤ d) B fc2
(
fc1 x d

)
(t− d)

Assuming that c2 is passive, the last expression tells that given an input i ∈
I the resulting evolution corresponds to the evolution of the first component

48 Renato Neves

fc1 i ensued by the evolution of the second, which receives as input the ‘last’
point of evolution fc1 i. Therefore, when c2 is passive Kleisli composition may
be alternatively called sequential composition or concatenation. On the other
hand if c2 is active, Kleisli composition tells that c2 can alter the evolution of
c1 and then proceed with its own evolution. This is illustrated in the following
examples.

Example 1. Given two signal generators c1, c2 : R→ HR defined as

c1 r = (r + sin - , 3π),

c2 r = (r + sin (3× -), 3π)

the signal given by c1 • (c2 • c1) 0 yields the plot below

0 5 10 15 20 25

−2

0

2

x

y

c1 • (c2 • c1) 0

This type of signal is common in the domain of frequency modulation, where the
varying frequency is used to encode information for electromagnetic transmis-
sion.

Example 2. Suppose the temperature of a room is to be regulated according to the
following discipline: starting at 10 ◦C, seek to reach and maintain 20 ◦C, but in no case
surpass 20.5 ◦C. To realise such a system, three components have to work together: c1
to raise the temperature to 20 ◦C, component c2 to maintain a given temperature, and
component c3 to ensure the temperature never goes over 20.5 ◦C. Formally,

c1 x = ((x+ -), 20 � x),

c2 x = (x+ (sin -), ∞),

c3 x = (x C (x ≤ 20.5) B 20.5 , 0)

One may then compose c2, c1 into c2 • c1, which results in a component able
to read the current temperature, raise it to 20 ◦C, and then keep it stable, as
shown by the plot below on the left. If, however, temperatures over 20.5 ◦C
occur, composition c3 • c2 • c1 puts the system back into the right track as the
plot below on the right illustrates.

On a monadic encoding of continuous behaviour 49

0 5 10 15 20 25 30
10

15

20

25

x

y
c2 • c1 10

0 5 10 15 20 25 30
10

15

20

25

x

y

c3 • c2 • c1 10

On a different note, for any X ∈ |Top|, arrow ηX is a trivial system in the sense
that its evolutions always have duration zero and the only point in the trajecto-
ries is the input given. For this reason we will refer to ηX by copyX , and often
omit the subscript. Setting up KlH yields the following laws

copy • c1 = c1 (1)
c1 • copy = c1 (2)
(c3 • c2) • c1 = c3 • (c2 • c1) (3)

for any arrows c1, c2, c3 in KlH.

4.2 (Co)limits and Tensorial Strength

(Co)limits are a main tool to build ‘new’ arrows from ‘old’ ones, which in the
case of Kl H translates to new forms of (continuous) component composition.
One important colimit is the coproduct, which provides the choice operator:

Definition 5 Given two components c1 : I1 → HO, c2 : I2 → HO component

[c1, c2] : I1 + I2 → HO

behaves as c1 if input I1 is chosen, and as c2 otherwise. Diagrammatically,

I1
pi1q

· //

c1
·

''

I1 + I2

[c1,c2]·
��

I2
pi2q

·oo

c2
·

ww
O

where, for any continuous function f : X → Y , symbol pfq denotes copy · f .

50 Renato Neves

Since the choice operator comes from a colimit, a number of laws are given; one
example is the following equation

c3 • [c1, c2] = [c3 • c1, c3 • c2] (4)

An important limit of Kl H is the pullback below, which brings parallelism up
front.

I
γ·〈c1,c2〉
·
""

c1 ·

++

c2·

��

K ×O pπ2q
· //

pπ1q ·
��

O

p!q·
��

K
p!q
· // 1

for γ((f1, d), (f2, d)) = (〈f1, f2〉, d).
Intuitively, the diagrams states that whenever two components c1, c2 are

compatible – in the sense that for any input the duration of their evolutions
coincide (commutativity of the outer square) – we can define component γ ·
〈c1, c2〉whose output corresponds to the (paired) evolutions of c1 and c2.

Note that functions pπ1q, pπ2q introduce trajectory elimination, due to their
ability to remove one side of the paired evolution. Note also that p4q : X →
H(X ×X) duplicates trajectories, for4 : X → (X ×X) the diagonal function,
and pswq swaps evolutions.

Definition 6 Given two compatible components c1 : I → HO1, c2 : I → HO2

component

〈〈c1, c2〉〉 = γ · 〈c1, c2〉 : I → H(O1 ×O2)

is the parallel execution of c1, c2.

Since parallelism comes from a limit, we have again a number of laws for free;
for instance

〈〈c1, c2〉〉 • d = 〈〈c1 • d, c2 • d〉〉 (5)

Example 3. Consider two signal generators, c1, c2 such that

c1 x = (x+ (sin -), 20),

c2 x = (x+ sin (3× -), 20)

For input 0, their parallel evolution 〈〈c1, c2〉〉 is illustrated in the plot below on the
left. Moreover, we can combine signals. For example, to add incoming signals, take the
active component c3, formally defined as c3(x, y) = (x+ y, 0). For input 0, the system
c3 • 〈〈c1, c2〉〉 yields the plot shown below, on the right.

On a monadic encoding of continuous behaviour 51

0 5 10 15 20

−2

0

2

x

y
〈〈c1, c2〉〉 0

0 5 10 15 20

−2

0

2

x

y

c3 • 〈〈c1, c2〉〉 0

We close this section introducing a tensorial strength for monad H — which
turns out to be an essential mechanism for the generation of a calculus for hy-
brid components.

Definition 7 Tensorial strength for monadH is a natural transformation

τ : HX × Y ·→ H(X × Y)

defined as τ = 〈f1, f2〉 where f1 : HX × Y → (X × Y)R0 , f1((f, d), y) = 〈f, y〉, and
f2 : HX × Y → D, f2((f, d), y) = d.

Theorem 2 〈H, η, µ〉 is a strong monad.

Proof. In document [7].

5 Conclusions and future work

Software systems are becoming prevalently intertwined with (continuous) phys-
ical processes. This renders their rigorous design (and analysis) a difficult chal-
lenge that calls for a wide, uniform framework where ‘Continuous’ Mathemat-
ics and Computer Science must work together. As a first step towards a calculus
of hybrid components in the spirit of [2], this paper showed how continuous be-
haviour can be encoded in the form of a strong topological monad, and briefly
explored the corresponding Kleisli category.

Our current research investigates how hybrid behaviour can be rendered
by arrows typed as 〈c, p〉 : S × I → S ×HO, where c : S × I → S is a discrete
arrow (S comes equipped with the discrete topology) and p : S × I → HO is a
continuous system. This paves the way to extending the component calculus in
[2] to hybrid systems.

Acknowledgements. This work is funded by ERDF - European Regional De-
velopment Fund, through the COMPETE Programme, and by National Funds
through FCT within project FCOMP-01-0124-FEDER-028923. The author is also
sponsored by FCT grant SFRH/BD/52234/2013.

52 Renato Neves

References

1. L. S. Barbosa, Components as coalgebras, Ph.D. thesis, DI, Minho University (2001).
2. L. S. Barbosa, Towards a calculus of state-based software components, Journal of

Universal Computer Science 9 (2003) 891–909.
3. J. Rutten, Universal coalgebra: a theory of systems, Theoretical Computer Science

249 (1) (2000) 3 – 80, modern Algebra.
4. A. Kock, Strong functors and monoidal monads, Archiv der Mathematik 23 (1)

(1972) 113–120.
5. E. Moggi, Notions of computation and monads, Information and computation 93 (1)

(1991) 55–92.
6. R. Neves, Logics and calculi for hybrid components, Ph.D. thesis, DI, Universidade

do Minho (2017).
7. R. Neves, L. S. Barbosa, D. Hofmann, M. A. Martins, Continuity as a computational

effect, CoRR abs/1507.03219.
URL http://arxiv.org/abs/1507.03219

8. R. Neves, L. S. Barbosa, M. A. Martins, A kleisli category for hybrid components, in:
Formal Aspects of Component Software (FACS) 2015, submitted.

9. H. Lourenço, A. Sernadas, An institution of hybrid systems, in: D. Bert, C. Choppy,
P. Mosses (Eds.), Recent Trends in Algebraic Development Techniques, Vol. 1827 of
Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2000, pp. 219–236.
doi:10.1007/978-3-540-44616-3 13.
URL http://dx.doi.org/10.1007/978-3-540-44616-3 13

10. B. Jacobs, Object-oriented hybrid systems of coalgebras plus monoid
actions, Theoretical Computer Science 239 (1) (2000) 41 – 95.
doi:http://dx.doi.org/10.1016/S0304-3975(99)00213-3.
URL http://www.sciencedirect.com/science/article/pii/S0304397599002133

11. E. Haghverdi, P. Tabuada, G. J. Pappas, Bisimulation relations for dynami-
cal, control, and hybrid systems, Theor. Comput. Sci. 342 (2-3) (2005) 229–261.
doi:10.1016/j.tcs.2005.03.045.
URL http://dx.doi.org/10.1016/j.tcs.2005.03.045

12. P. Höfner, Algebraic calculi for hybrid systems, Ph.D. thesis, University of Augsburg
(2009).

13. R. Bird, O. de Moor, The Algebra of Programming, Prentice-Hall, 1996.
URL http://www.cs.ox.ac.uk/publications/books/algebra/

14. M. Escardó, R. Heckmann, Topologies on spaces of continuous functions, in: Topol-
ogy Proceedings, Vol. 26, 2001, pp. 545–564.

Relational Approximation of Maximum
Independent Sets (Extended Abstract)

Insa Stucke

Institut für Informatik, Christian-Albrechts-Universität zu Kiel, Germany
ist@informatik.uni-kiel.de

1 Introduction

Previous work has shown that relation algebra (as introduced in [14] and fur-
ther developed in [9,12,13,15], for example) is well suited for computational
problems on many discrete structures. In particular, adjacency or incidence re-
lations can be used to model graphs and special relations like vectors and points
to represent subsets of vertices or edges, as shown in [12].

We develop and formally verify a relational program for approximating
maximum independent sets in undirected and loop-free graphs. Formal pro-
gram verification means to show with mathematical rigor that the program is
correct with respect to a formal problem specification, in our case we comply
with the assertion-based Floyd-Hoare-approach.

At the end, the most interesting task is to prove the desired approximation
bound. Of course, therefore we need knowledge about cardinalities of relations.
In [7] a characterisation of a cardinality operation is developed and further con-
sequences of it were proved. Based on this cardinality operation we not only
prove the approximation bound but also facts about the cardinalities of vectors
and points in a calculational, algebraic manner only.

2 Relation-Algebraic Preliminaries

In this section we recall the fundamentals of relation algebra based on the het-
erogeneous approach of [12,13]. Set-theoretic relations form the standard model
of relation algebras. We assume the reader to be familar with the basic opera-
tions on set-theoretic relations, viz. RT (transposition), R (complementation),
R ∪ S (union), R ∩ S (intersection), R;S (composition), the predicates R ⊆ S
(inclusion) and R = S (equality), and the special relations O (empty relation), L
(universal relation) and I (identity relation). The Boolean operations, the inclu-
sion and the constants O and L form Boolean lattices.

The theoretical framework for this and many other results concerning re-
lations is that of a (heterogeneous) relation algebra in the sense of [12,13], with
typed relations as elements. Thus, we write R : X↔Y to express that X is the
source, Y is the target. The type of R is denoted by X↔Y . As constants and
operations of a relation algebra we have those of set-theoretic relations, where
we frequently overload the symbols O, L and I, i.e., avoid the binding of types

54 I. Stucke

to them. If necessary we use indices as e.g., LXY for L with type X↔Y . The
axioms of a relation algebra are

(1) the axioms of a Boolean lattice for all relations of the same type under the
Boolean operations, the inclusion, empty relation and universal relation,

(2) the associativity of composition and that identity relations are neutral ele-
ments with respect to composition,

(3) that Q;R ⊆ S, QT;S ⊆ R and S;RT ⊆ Q are equivalent, for all relations Q,
R and S (with appropriate types),

(4) that R 6= O implies L;R;L = L, for all relations R and all universal relations
(with appropriate types).

In [12] the laws of (3) are called the Schröder rules and (4) is called the Tarski
rule. In the relation-algebraic proofs of this paper we will mention only applica-
tions of (3), (4) and ‘non-obvious’ consequences of the axioms. Furthermore, we
will assume that complementation and transposition bind stronger than com-
position, composition binds stronger than union and intersection and that all
expressions and formulae are well-typed.

Furthermore, we call a relation R irreflexive if R ⊆ I, symmetric if R = RT

and a mapping if R is univalent, i.e., RT;R ⊆ I, and total, i.e., R;L = L (for more
details, see e.g., [12,13]). A vector is a relation v with v = v;L. For v : X↔Y the
condition v = v;L means that v can be written in the form v = Z × Y with a
subset Z of X . Then we say that v models the subset Z of X . Since for this purpose
the target of a vector is irrelevant, we use the specific singleton set 11 as target.
Moreover, a point p is a vector with p;pT ⊆ I and L;p = L. In the set-theoretic
case and if the point p : X↔Y is of the specific form p = P × Y with P ⊆ X
these three conditions mean that p contains exactly one element.

In the remainder we use the following point axiom of [4] which holds for
set-theoretic relations, where Pv := {p | p ⊆ v ∧ p is point} for all vectors v.

Axiom 2.1 For all sets X we have LX11 =
⋃

p∈PLX11
p.

Additionally we have the following lemma which states that this property can
be generalised for arbitrary vectors (see [4]).

Lemma 2.1 If v : X↔11 is a vector, then v =
⋃

p∈Pv
p. ut

3 Cardinality of Relations

In [7] Kawahara discusses the cardinality of set-theoretic relations. The main re-
sult is a characterisation of the cardinalities of relations. Considering the prop-
erties of this characterisation as axiomatic specification of the cardinality oper-
ation | · | this leads to the following definition:

Definition 3.1 For all relations R we denote its cardinality by |R|. The following axi-
oms specify the meaning of the cardinality operation, where Q,R and S are arbitrary
relations with appropriate types:

Relational Approximation of Maximum Independent Sets 55

(C1) If R is finite, then |R| ∈ N and |R| = 0 iff R = O.
(C2) |R| = |RT|.
(C3) If R and S are finite, then |R ∪ S| = |R|+ |S| − |R ∩ S|.
(C4) If Q is univalent, then |R ∩QT;S| ≤ |Q;R ∩ S| and |Q ∩ S;RT| ≤ |Q;R ∩ S|.
(C5) |I1111| = 1.

In (C1) and (C3) the relations in question are assumed to be finite so that the
cardinality |R| can be regarded as a natural number, in (C2) and (C4) the nota-
tion |R| = |S| (respectively |R| ≤ |S|) is equivalent to the fact that there exists a
bijection between R and S (respectively an injection from R to S) and (C5) says
that the identity relation on the singleton set 11 consists of precisely one pair.
Throughout this paper we assume in case of an expression |R| the sets of R’s
type to be finite and thereby |R| ∈ N.

Based on the above axioms in [7] a lot of laws for the cardinality operation
are derived in a purely calculational manner. For example, from the axioms (C1)
and (C3) we get the monotonocity of the cardinality operation, i.e., that R ⊆ S
implies |R| ≤ |S|. Another fact we use in the remainder is following (see [7]):

Lemma 3.1 If R : X↔Y is univalent and S : Y ↔Z is a mapping, then |R;S| =
|R|. ut

Next, we consider the cardinality of points of type X↔11 and vectors by us-
ing only the mentioned cardinality axioms and the presented consequences of
them. The next lemma states that a point in deed contains exactly one element.

Lemma 3.2 If p : X↔11 is a point, then |p| = 1.

Proof. Using cardinality axioms (C2) and (C5) and Lemma 3.1 (I1111 is univalent
and pT : 11↔X is a mapping), we have the folliwng calculation:

|p| = |pT| = |I1111;pT| = |I1111| = 1. �

This lemma allows to show that the cardinality of a vector with target 11 equals
the cardinality of the set of all points it contains:

Lemma 3.3 For all v : X↔11 we have |v| = |Pv|.

Proof. Because of Lemma 2.1, cardinality axioms (C3) and (C1) (the points of Pv

are pair-wise disjoint) and Lemma 3.2 we obtain the claim by

|v| = |
⋃

p∈Pv

p| =
∑

p∈Pv

|p| = |Pv|. �

4 Approximation of Maximum Independent Sets

In this section we use the notions and results of the previous sections to for-
mally verify a relational version of the approximation algorithm of Wei for
maximum independent sets (see [16]).

56 I. Stucke

We assume an undirected and loop-free graph g = (X, E) to be given, where
the set X of vertices is non-empty and finite. We model g by an adjacency relation
R : X↔X , that is defined by (x, y) ∈ R iff {x, y} ∈ E, for all x, y ∈ X . Due to
this definition R is irreflexive and symmetric. The relation R is taken as input
for the relational program we want to show as correct. Since the approximation
bound depends on the degrees of the vertices, we additionally assume that the
maximum degree of g is k ∈ N. This causes to the conjunction of the following
three formulae as pre-condition Pre(R, k):

R ⊆ I R = RT k = max{|R;p| | p ∈ PLX11}

An independent set (or stable set) of g is a set of vertices S such that {x, y} /∈ E,
for all x, y ∈ S. It can be easily derived that a vector s : X↔11 models an
independent set with respect to the adjacency relation R iff R;s ⊆ s. We want to
show that our program has approximation bound k + 1. So, the post-condition
Post(R, k, s) is the conjunction of the following two formulae:

R;s ⊆ s ∀ t : X↔11 •R;t ⊆ t ⇒ |t| ≤ |s|(k + 1)

In the remainder of this section we show that with respect to these specifications
the following relational program is totally correct:

s, v := O,OX11;
while v 6= L do

let p = point(v);
s, v := s ∪ p, v ∪ p ∪R;p od

(W)

We use the operation point that selects deterministically a point such that point(v) ⊆
v for all non-empty vectors v. The typing rules of the relational operations in
combination with the initialisation of v by OX11 leads to the typing s, v, p : X↔11
and also X↔11 as type of the constant L of the guard of the loop. The vector v
is used to collect the vertices contained in the present indepentend set, that is
modeled by the vector s, and also their neighbours.

In the remainder the conjunction of the following two formulae is used as
loop invariant Inv(R, k, s, v):

(1) (R ∩ v;vT);s ⊆ s (2) R;s ∪ s = v

Here formula (1) is a generalisation of the formula R;s ⊆ s of the post-condition
Post(R, k, s) and formula (2) is simply an auxiliary formula saying that v mod-
els the union of the set modeled by s with its neighbours.

We now prove the four proof obligations of assertion-based verification with
respect to the above speficied pre- and post-condition. We start with the estab-
lishment of the loop invariant by the initialisation of s and v.

Lemma 4.1 If R : X↔X and k ∈ N with Pre(R, k), then Inv(R, k, O,O). ut

We omit the trivial proof. With the next lemma we prove the maintainence of
the loop invariant.

Relational Approximation of Maximum Independent Sets 57

Lemma 4.2 Given R : X↔X , s, v : X↔11 and k ∈ N such that Inv(R, k, s, v) and
v 6= L, we have Inv(R, k, s ∪ p, v ∪ p ∪R;p), for all p ∈ Pv .

Proof. First, we verify that the first formula of the loop invariant holds for the
new values of s and v, i.e., that (R∩ (v ∪ p∪R;p);(v ∪ p ∪R;p)T);(s∪ p) ⊆ s ∪ p.
It is easy to see that showing the following four inclusions is sufficent:

(R ∩ (v ∪ p ∪R;p);(v ∪ p ∪R;p)T);s ⊆ s

(R ∩ (v ∪ p ∪R;p);(v ∪ p ∪R;p)T);s ⊆ p

(R ∩ (v ∪ p ∪R;p);(v ∪ p ∪R;p)T);p ⊆ s

(R ∩ (v ∪ p ∪R;p);(v ∪ p ∪R;p)T);p ⊆ p.

Because of (2) we have R;s ⊆ v and s ⊆ v and, moreover, because of p ⊆ v we
have R;s ⊆ p and s ⊆ p. Furthermore, we get

R;s ⊆ p ⇐⇒ RT;p ⊆ s ⇐⇒ R;p ⊆ s

using one of the Schröder rules in the first and the second formula of the pre-
condition in the second step. With these auxiliary facts the second and third of
the above inclusions follow immediately. Since the point p is injective and R is
irreflexive due to the first formula of the pre-condition, we obtain R;p ⊆ p, such
that the last of the above inclusions holds. Verifying the first inclusion is more
comprehensive since the following three inclusions have to be proved:

(R ∩ (v ∪ p ∪R;p);vT);s ⊆ s

(R ∩ (v ∪ p ∪R;p);pT);s ⊆ s

(R ∩ (v ∪ p ∪R;p);pT;RT);s ⊆ s

We omit the proofs of these inclusions since they are very similar to these of the
previous inclusions.

The maintenance of the second formula of the loop invariant is easy to
prove, since by using (2) we get R;(s∪p)∪(s∪p) = R;s∪R;p∪s∪p = v∪p∪R;p.

ut

For the third proof obligation we verify the error-free termination of the pro-
gram (W). A consequence of the guard of the loop is that each call of the partial
operation point is defined. For this reason and the assumed finiteness of the set
X , it suffices to show that the loop terminates, i.e., that v is strictly enlarged by
each execution of the body of the loop.

Lemma 4.3 If v : X↔11 with v 6= L, we have v ⊂ v ∪ p ∪R;p, for all p ∈ Pv .

Proof. Since v ⊆ v ∪ p ∪ R;p holds obviously, we show v 6= v ∪ p ∪ R;p by
contradiction. We start with

v = v ∪ p ∪R;p ⇐⇒ p ∪R;p ⊆ v =⇒ p ⊆ v.

The last inclusion and the assumption p ⊆ v imply p = O, but this contradicts
the fact that points are non-empty. ut

58 I. Stucke

Finally, we consider the last proof obligation, i.e., that if v = L holds, then
the loop invariant implies the post-condition. Therefore, we also need the pre-
condition, in particular the maximum-degree condition, for the proof.

Lemma 4.4 Given R : X↔X , k ∈ N and s, v : X↔11 such that Pre(R, k), v = L
and Inv(R, k, s, v), we have Post(R, k, s).

Proof. Formula (1) of the loop invariant Inv(R, k, s, v) and v = L yield R;s ⊆ s,
which is the first formula of Post(R, k, s).

To verify the second formula of Post(R, k, s), let t : X↔11 be an arbitrary
vector such that R;t ⊆ t. Then we can calculate as follows:

|t| ≤ |LX11| t : X↔11, monotonicity cardinality
= |v| since v = LX11

= |R;s ∪ s| formula (2) of Inv(R, k, s, v)
≤ |R;s|+ |s| cardinality axiom (C3)
= |R;

⋃
p∈Ps

p|+ |s| by Lemma 2.1
= |s|+ |

⋃
p∈Ps

R;p|
≤ |s|+

∑
p∈Ps

|R;p| Ps finite, cardinality axiom (C3)
≤ |s|+

∑
p∈Ps

k second formula of Pre(R, k)
= |s|+ k|s| by Lemma 3.3
= (k + 1)|s| �

5 Conclusion and Future Work

By modelling graphs via adjacency relations we developed a relational pro-
gram based on Wei’s algorithm for approximating maximum independent sets
in graphs. Therefore, we used vectors and points to model subsets of the ver-
tices. Based on Kawahara’s characterisation of the cardinality of relations and
further consequences of it we were able to prove facts about their cardinality. In
the following, we proved the correctness of the developed program by classical
reasoning about the specified pre- and postconditions and loop-invariant. Es-
pecially the approximation bound was proved in a purely calculational manner
by using Kawahara’s and our results about the cardinality of relations.

As future work we plan an exhaustive investigation of the cardinatily op-
eration. We hope to come upon useful laws which can be applied, for exam-
ple, in the context of correctness proofs of further approximation algorithms.
Due to the positive experiences we gained with theorem prover with regard
to program verification, we plan an embedding of the cardinality operation in
existing libraries for relation algebra as for Isabelle/HOL (see [1]) or Coq (see
[10]).

Acknowledgement. I thank P. Höfner and, in particular, R. Berghammer for
drawing my attention to this particular research topic and valuable discussions
and comments.

Relational Approximation of Maximum Independent Sets 59

References

1. Armstrong, A., Foster, S., Struth, G., Weber, T.: Relation algebra. Archive of Formal
Proofs, 2014. http://afp.sf.net/entries/Relation_Algebra.shtml

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to algorithms. The MIT
Press (1990)

3. Francez, N.: Program verification. Addison-Wesley (1992)
4. Furusawa, H.: Algebraic formalisations of fuzzy relations and their representation

theorems. Ph.D. thesis, Department of Informatics, Kyushu University (1998)
5. Gries, D.: The science of programming. Springer (1981)
6. Höfner, P., Struth, G.: On automating the calculus of relations. In: Armando, A.,

Baumgartner, P., Dowek, G. (eds.) Automated Reasoning. LNAI, vol. 5195, pp. 50-
66. Springer (2008)

7. Kawahara, Y.: On the cardinality of relations. In: Schmidt, R.A. (ed.): Relations and
Kleene Algebra in Computer Science. LNCS, vol. 4136, pp. 251-265. Springer (2006)

8. Maddux, R.: Relation algebras. In: Brink, C., Kahl, W., Schmidt, G. (eds.): Relational
Methods in Computer Science. Advances in Computing Science, pp. 22-38. Springer
(1997)

9. Maddux, R.: Relation algebras. Studies in Logic and the Foundations of Mathemat-
ics, vol. 150. Elsevier (2006)

10. Pous, D.: Relation algebra and KAT in Coq.
http://perso.ens-lyon.fr/damien.pous/ra/

11. Schmidt, G., Ströhlein, T.: Relation algebras: Concept of points and representability.
Discrete Mathematics 34, 83-97 (1985)

12. Schmidt, G., Ströhlein, T.: Relations and graphs, Discrete mathematics for computer
scientists, EATCS Monographs on Theoretical Computer Science. Springer (1993)

13. Schmidt, G.: Relational mathematics. Encyclopedia of Mathematics and its Applica-
tions, vol. 132. Cambridge University Press (2010)

14. Tarski, A.: On the calculus of relations. Journal of Symbolic Logic 6, 73-89 (1941)
15. Tarski, A., Givant, S.: A formalization of set theory without variables. Colloquium

Publications 41, American Mathematical Society (1987)
16. Wei, V.K.: A lower bound for the stability number of a simple graph. Bell Lab. Tech.

Memor. 81-11217-9 (1981)

60 RAMiCS 2015 – Student Track

A Generic Matrix Manipulator

Dylan Killingbeck

Department of Computer Science,
Brock University,

St. Catharines, Ontario, Canada, L2S 3A1
dk10qt@brocku.ca

Abstract. In this paper we describe a generic matrix manipulator system
that performs operations on matrices in a flexible way using a graphical
user interface. A user defines allowable data entries called a basis, as well
as n-ary operations defined on basis elements. These operations can be
used in multiple ways to define operations on matrices. A basis and n-
ary operations can be entered into the system by various ways including
predefined, Java datatypes, JavaScript, and various XML formats defining
certain mathematical structures.

Keywords: Allegory, Matrix Manipulation, Semiring, Sup-Semiring

1 Introduction

It is well known that matrices can be used in several key areas of science to
provide meaning to data. Often these matrices can be manipulated to provide
a solution, based upon the data that they hold and the operations defined be-
tween the coefficients. Relations can be represented as graphs, or more specifi-
cally as a matrices that defines the relationships between nodes and vertices [7,
p. 6]. Using this method of representation an observer can verify a qualitative
relationship between elements associated within the relation, and then preform
further study using relation algebraic definitions and constructions. For exam-
ple matrices can be used to represent a relation given as a graph and determine
if a Hamiltonian cycle exists. Matrices in generalized linear algebra can also
be used to represent quantitative information, and similarly this can provide
further information about the meaning of the data. To provide an example, a
matrix can represent an interconnected network by which the probability for
success of a message traveling between two nodes is represented by a value on
the unit interval.

Between the matrix representations of qualitative and quantitative informa-
tion, it is complex to find meaning, and as such a generic system with user
specified parameters is required to further study their behavior. A generic sys-
tem that is able to flexibly manipulate matrices by user defined operations
lifted from the coefficients to matrices, with the inclusion of a user defined data
sets (or basis) will allow for an observer to reason between matrices more eas-
ily. This generic system will perform similar to the RelView system (see [1])

62 D. Killingbeck

through a graphical user interface, however it will expand further upon matrix
operations, and representations. Primarily, this generic system will focus on au-
tomatically inferencing types of operations, and checking the results to ensure
compatibility, expanding on RelViews limitations. The remainder of this paper
will discuss the mathematical preliminaries, and finally the implementation of
this generic matrix manipulator system in detail.

2 Mathematical Preliminary

This section will define the basic definitions of concepts and properties associ-
ated with the quantitative and qualitative aspect of matrices. We will start with
the quantitative aspect by introducing semirings as a very general approach to
linear algebra.

2.1 Semirings

We want to provide a structure that capture the quantitative and qualitative in-
formation as discussed in the introduction. We summarize the theory presented
in [5] and start with the definition of a semiring.

Definition 1. xR,+,�,0R,1Ry denotes a semiring if:

1. R is a commutative monoid, i.e. we have:
(a) x+0R=x for all xPR , (Identity)
(b) x+(y+z)=(x+y)+z for all x,y,zPR , (Associativity)
(c) x+y=y+x for all x,yPR , (Commutativity)

2. R is a monoid i.e., we have:
(a) x�1R= 1R�x = x for all xPR , (Identity)
(b) x�(y�z)=(x�y)�z for all x,y,zPR , (Associativity)

3. Multiplication will distribute over addition, from both the left and the right:
(a) x�(y+z) = x�y+x�z , (Left Distributivity)
(b) (x+y)�z = x�z+y�z , (Right Distributivity)

4. 0R is the annihilator for multiplication over R, meaning:
(a) 0R�x=0R=0R�x for all xPR , (Annihilator Law)

A commutative semiring is a semiring where the monoid xR, �, 1Ry is commu-
tative. An additively idempotent semiring is a semiring so that x � x � x for
all x P R, similarily a multiplicatively idempotent semiring is semiring so that
x �x � x2 � x for all x P R. We will denote the set of multiplicative idempotent
elements of a semiring R by IpRq.

Semirings are widely used in theoretical computer science, for example in
parsing formal languages [3], or if a semiring is commutative and idempotent
(multiplicatively) then it forms a lower semilattice with respect to multiplica-
tion. A generalization of this property is stated in the first theorem below [5].

Theorem 1. Let xR,�, �, 0, 1y be a commutative semiring. Then xIpRq, �, 0, 1y is a
lower semilattice with least element 0 and greatest element 1.

A Generic Matrix Manipulator 63

2.2 Allegory

An allegory is the generalization of the category of binary relations between
two sets. A morphism R from source A and target B is denoted as R : A Ñ
B, from category R, with all the possible morphisms denoted as RrA,Bs [2].
Composition is denoted by ;, for example R;S, which reads first R and then S.
IA denotes the identity morphism for an object A.

Definition 2. A categoryR is an allegory if:

1. The class of morphismsRrA,Bs form a lower semilattice, with meet denoted by [
and the induced ordering by �. Elements within this class are called relations.

2. For all relations Q, there is a converse such that R:AÑB and S:BÑC the following
holds: pQ;Sq! = S!;Q!, and pQ!q! = Q.

3. For all relations Q: AÑB, R, S:BÑC, then Q;(R[S) � Q;R[Q;S.
4. For all relations Q:AÑB, R:BÑC and S:AÑC, the modular law

Q;R [S � Q;(R [Q!;S) holds.

Finally RrA,Bs is a distributive allegory if RrA,Bs is a distributive lattice with join
\ and least element KKAB , satisfying the additional properties:

5. Q;KKBC�KKAC for all relations Q : A Ñ B,
6. Q; pR \ Sq � Q;R \Q;S for all relations Q : A Ñ B, R,S : B Ñ C.

Rel, the category of binary relations between sets as well as the category L-Rel
of L-valued relations between sets form a distributive allegory.

2.3 Matrices over Semirings

Matrices of size m�n will form over a semiring of equal size, induced by addi-
tion, denoted by �, for example if R is a semiring denoted by xR,�, �, 0R, 1Ry
and M is an m�n matrix, then M � raijsmn where coefficients aij are elements
from R. Regular matrix addition and multiplication is respectively defined by:

[aijsmn+[bijsmn = [aij+bijsmn, and [aijsmn � rbjksnp = r
n°

j�1

aij � bjksmp

Similarly we can define the transpose of a matrix, and the Hadamard product
of two equal sized matrices, respectively defined by:

raijs
!

mn = rajismn, and raijsmn � rbijsmn = raij � bijsmn

0R is defined as the zero matrix r0smn, and 1R is defined at r1smn. M � r0smn �
M , and M � r0smn � r0smn. Additionally as + is commutative then M � M 1 �
M 1�M , and as + is associative M �pM 1+M2) = (M �M 1q�M2. A matrix that
consists of only multiplicatively idempotent elements as coefficients is idempo-
tent with respect to the Hadamard product.

It is a well-known fact that matrices over a lower semilattice form an alle-
gory which leads to the following theorem.

Theorem 2. Consider the category of matrices with coefficients from a commutative
semiring. Then the subcategory of idempotent matrices with respect to the Hadamard
product forms an allegory.

64 D. Killingbeck

2.4 Sup-Semiring

Recall idempotent elements from a semiring form a lower-semilattice, alterna-
tives matrices with idempotent coefficients form an allegory. We will use these
concepts to formulate a new structure, to derive a distributive lattice, and a
distributive allegory.

Definition 3. xD,�, �,\, 0D, 1Dy denotes a sup-semiring if:

1. xD,�, �, 0D, 1Dy is a commutative semiring.
2. xD,\y is a commutative semigroup, then

(a) x\ py \ zq � px\ yq \ z for all x,y,zPD, (Associativity)
(b) x\ y � y \ x for all x,yPD, (Commutativity)

3. px\ yq � px\ yq � x\ y for all x,yPD, (Relative Idempotency)
4. x � px\ yq � x for all x,yPD, (Absorption)
5. if x2 � x, then x\ px � yq � x for all x,yPD, (Relative Absorption)
6. if x2 � x, y2 � y and z2 � z,

then x � py \ zq � x � y \ x � z for all x,y,zPD. (Relative Distributivity)

In the case of a sup-semiring we are able to strengthen Theorem 1:

Theorem 3. Let xD,�, �,\, 0, 1y be a sup-semiring. Then the structure xIpDq, �,\, 0, 1y
is a distributive lattice.

Similarly, in the case of a sup-semiring, we are able to strengthen Theorem 2 as
follows.

Theorem 4. Consider the category of matrices with coefficients from a sup-semiring.
Then the subcategory of idempotent matrices with respect to the Hadamard product
forms a distributive allegory.

3 Brief Description of the System

As already mentioned in the introduction, a generic matrix manipulator system
will be required to carry out various operations and provide meaning to these
combined structures. This section will outline the various features, implemen-
tations and user interactions provided by the system. The matrix manipulator
system is constructed using the Java environment as it offers flexibility to the
developer, which can be passed on to the user. This system has previously been
started by Milene Santos Teixeira as a project [6]. During this project the basic
matrix operations such as matrix multiplication, addition etc have been im-
plemented as methods that use operations on the coefficients of the matrix as
parameters. The coefficients and their operations are loaded from user-defined
files in XML format. Currently the system is further developed by the author as
part of his MSc. thesis.

A Generic Matrix Manipulator 65

3.1 User Input

The heart of the system relies on input provided by a user. A user must supply
information about two components of the system. The first, a basis to outline co-
efficients (elements), as well as operations between these coefficients. Secondly,
operations between matrices must also be defined. Once these components are
defined, a user can supply commands to the system to manipulate matrices.
The manipulation possibilities includes:

1. Performing operations on coefficients (elements) within a matrix
2. Performing operations between matrices
3. Storing results, recalling results through executing equations.

Essentially a user will use the graphical user interface to facilitate the input of
the basis component and any desirable operations.

Once information has been loaded into the system, the user is free to manip-
ulate the constructed environment within the system as desired, through the
graphical user interface, as well as inputting commands through an input field.
This input field will accept only valid input based on stored matrices (vari-
ables), and the user defined operations between matrices. In order to facilitate
such input a flexible parser must be constructed at runtime to parse user in-
put, based on the environment. JParsec, an implementation of Haskell Parsec,
is used as it is a two stage parser that provides the flexibility required to parse
user input at runtime, given operators with specified operator priority [8].

3.2 User Defined Matrix

Matrices represented in this generic system can be of various forms to provide
flexibility. A user may specify the values of the coefficients that correspond
specifically to the source (row) and the target (column) values. To be even more
general, a matrix can consists of only 1 object type A, and having morphisms
that such that F is a morphism, then F : A Ñ A. This type of matrix is con-
venient to represent Boolean matrices, matrices with real coefficients, or even
matrices with integer coefficients. To be more specific, matrices within the sys-
tem can also represent homogeneous relations, or heterogeneous relations. To
provide an example, the following figure below demonstrates a relation with
sources along the rows, and targets along the columns.

M �

� A B A A

A 1 3 2 1
B 2 4 3 1

�

Fig. 1. Typical matrix with sources A and B and targets A,B,A and A

Source and target objects, along with their morphisms must produce a result
that is defined and allowable in the system, which is enforced by the user de-
fined basis.

66 D. Killingbeck

3.3 User Defined Basis

As previously outlined, a user defines a basis which specifies the allowable en-
vironment values and n-ary operations between the elements (coefficients). For
example, if the basis is defined as the set N, then possible operations could be
addition, multiplication, etc. as defined for natural number. Operations defined
within the basis must be closed on the given environment. In other words, the
operations must accept arbitrary values from then environment as arguments
and must return a value within the environment as a result. To make the system
as generic as possible, these operations can be loaded into the system through
various ways:

1. Java datatypes, i.e., int, double, boolean...
2. XML formats, i.e., lattice structures, graphs...

Below is a typical explicit example, whereby the user defined basis is supplied
by .xml files. The first .xml file defines the allowable objects, and data types for
the various source and target morphisms (integer in this case):

<?xml version="1.0" encoding="UTF-8"?>

<basis name="Example Basis" type="explicit">
<objects type="String">

A,B
</objects>
<morphisms type="Integer" symmetric="true">

<morSet source="A" target="A">1,2</morSet>
<morSet source="A" target="B">1,2,3</morSet>
<morSet source="B" target="B">1,2,3,4,5</morSet>

</morphisms>
</basis>

Above we can see that this basis is defined for only A and B objects, and is
explicitly defined. Morphism maps are defined for each source and target object
as per above, that is to say with a source A and a target A, the resulting value
can only be an integer, with a value of 1 or 2. Since this explicit morphism is
defined as symmetric, a source A and a target B is the same as a source B and a
target A.

In addition to the user supplied basis .xml file, the user must provide op-
eration for the matrix coefficients, as mentioned above. A typical user defined
operation in .xml format is supplied below:

<?xml version="1.0" encoding="UTF-8"?>

<unaryOP name="My Op" basis="Example Basis"
code="+" notation="postfix">

<objectMap type="explicit">
(A,A),(B,B)

A Generic Matrix Manipulator 67

</objectMap>
<morphismMap type="explicit" symmetric="true">

<morMap source="A" target="A">
(1,2),(2,1)

</morMap>
<morMap source="A" target="B">

(1,2),(2,1),(3,3)
</morMap>
<morMap source="B" target="B">

(1,2),(2,4),(3,2),(4,5),(5,1)
</morMap>

</morphismMap>
</unaryOP>

Above we can see that the operation is a unary operator, with a name, code,
notation type and corresponding basis. The notation maps the first value of the
tuple, to the given second value in the tuple. For example, if the source is A and
the target is A and the value is 1, the resulting value of the � operation is 2.

To make the system more convenient, various mathematical structures can
be automatically generated by the user. For example, if the user provides a
Hasse diagram, then it can be used to generate the corresponding matrix repre-
sentation, and basis.

3.4 User Defined Operations

Recall, a user is able to specify operations between matrices. These operations
have an arbitrary number of parameters, hence the operations can theoretically
be n-ary operators, keeping the concept of being generic. These operations be-
tween matrices are comprised of the operations defined within the basis. Fur-
thermore, there are two ways that these n-ary operators can be evaluated on
matrice. First, operations can be evaluated component wise as defined above,
for example matrix addition defined for elements in Mp2, Rq (the set of all 2� 2
matrices with real coefficients), or more specifically the Hadamard product is
component wise multiplication. Secondly, operations between two matrices can
be defined similar to regular matrix multiplication, as defined above. This type
of operation requires two binary operations, the first to provide a result be-
tween two coefficients, and the second combines the results of the first opera-
tion. An example of this can be observed through regular matrix multiplication
in Mp2, Rq, where regular multiplication is the first operation, and the second
operation is addition.

Operations between matrices must rely on the underlying operations de-
fined in the basis. This is to ensure that the operations between matrices pro-
duce results containing elements defined by the basis. For example, using reg-
ular addition defined for matrices with real coefficients, implies that the addi-
tion between coefficients is also defined within the basis. These operations can
therefore be described as higher order functions, or functions built by using
previously defined functions.

68 D. Killingbeck

Similar to a user defined basis, a user may define these operations between
matrices through various methods to increase convenience and usability. A user
can define an operation by several methods including:

1. XML formats, i.e. explicitly defined.
2. JavaScript, i.e., user defined functions parsed from JavaScript.
3. Java built-in operations, i.e. addition, multiplication, min, max...
4. Special mathematical structures such as lattices, additive cyclic groups Z�

n

modulo an integer n, or multiplicative monoids/groups Z�

n modulo an in-
teger n.

A user defined operation between matrices must require a symbol to represent
the operation for user command input, this symbol is required as part of the
operation definition. To further enhance the flexibility of the system, operations
can either be in prefix, infix or postfix format.

Finally, operations defined by this system do not require special properties
such as associativity or commutativity. The system is more general then re-
quired to investigate matrices over semirings or sup-semirings, and in fact any
arbitrary matrices can be used, with corresponding user provided operations.

3.5 Graphical User Interface

Another important component of the matrix manipulator system is the graphi-
cal user interface (GUI). The GUI allows the user to have a visual representation
of the data set they are working with, and also input commands into the sys-
tem. Overall, the matrix manipulator system will have a comparable interface
molded after the RelView system [1]. The GUI is written using Java Swing com-
ponents to provide a familiar interface, rich component listing as well as reduce
developer complexity. The user is able to modify the working space to modify
the representations of matrices, for example they can modify the font, size and
spacing of coefficients within the matrix. The GUI will provide feedback to the
user in the form of a visual display, and also provide feedback be denoting
working conditions such as the operations defined, or basis loaded.

4 Conclusion

In order to investigate and simplify matrix manipulation, the creation of a for-
mal system is required. This paper has outlined the requirements, and other-
wise desirable features as needed to facilitate such a system. The more flexible
the generic matrix manipulator system is, the more use it will be to those re-
quiring such a tool to investigate structures. In closing, the system is currently
in development as part of the author’s MSc. thesis.

References

1. Berghammer R.: Relview System. http://www.informatik.uni-kiel.de/
�progsys/relview/: Christian-Albrechts-University of Kiel (2012).

A Generic Matrix Manipulator 69

2. Freyd P., Scedrov A.: Categories, Allegories. North-Holland (1990).
3. Goodman J.: Semiring Parsing. Computational Linguistics, 25(4), 573-605 (1999).
4. Hebisch U., & Weinert H.: Semirings. World Scientific (1998).
5. Killingbeck D., Santos Teixeira M., Winter M.: Relations among Matrices over a Semir-

ing. In Kahl W., Oliveira J.N., Winter M. (Eds.): Relational and Algebraic Methods in
Computer Science (RAMiCS 15), LNCS 9348, 96-113 (2015).

6. Santos Teixeira M.: A Generic Matrix Manipulator. Undergraduate Project (COSC
3P99), Brock University (2014).

7. Schmidt G., Ströhlein T.: Relations And Graphs. Springer (1993).
8. Yu B.: JParsec. https://github.com/jparsec/jparsec/: GitHub (2014).

	Preface
	Contents
	Decision Methods for Concurrent Kleene Algebra with Tests: Based on Derivative (Yoshiki Nakamura)
	RLE-based Algorithm for Testing Biorders (Oliver Lanzerath)
	Relational Equality in the Intensional Theory of Types (Victor Miraldo)
	Loop Analysis and Repair (Nafi Diallo)
	Monoid Modules and Structured Document Algebra (Andreas Zelend)
	On a Monadic Encoding of Continuous Behaviour (Renato Neves)
	Relational Approximation of Maximum Independent Sets (Insa Stucke)
	A Generic Matrix Manipulator (Dylan Killingbeck)

