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Abstract. The original purpose of component-based development was
to provide techniques to master complex software, through composition,
reuse, and parametrisation. However, such systems are rapidly moving
towards a level in which they become prevalently intertwined with (con-
tinuous) physical processes. A possible way to accommodate the latter in
component calculi relies on a suitable encoding of continuous behaviour
as (yet another) computational effect.

This paper reports such an encoding through a monad which, in the com-
positional development of hybrid systems, may play a role similar to the
one played by the maybe, powerset, and distribution monads in the char-
acterisation of partial, non deterministic and probabilistic components,
respectively.
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1 Introduction

Component-based software development is often explained through a visual
metaphor: a palette of computational units, and a blank canvas in which they
are dropped and interconnected by drawing wires abstracting different com-
position and synchronisation mechanisms. More and more, however, compo-
nents are not limited to traditional information processing units, but encapsu-
late some form of interaction with physical processes. The resulting systems,
referred to as hybrid, exhibit a complex dynamics in which loci of computation,
coordination, and control of physical processes interact, become mutually con-
strained, and cooperate to achieve specific goals.

One way of looking at components, proposed in [1,2], emphasises an ob-
servational semantics, through a signature of observers and methods, making
them amenable to a coalgebraic [3] characterisation as (generalisations of) ab-
stract Mealy machines. The resulting calculus is parametric on whatever be-
havioural model underlies a component specification. This captures, for exam-
ple, partial, non deterministic or probabilistic evolution of a component’s dy-
namics by encoding such behavioural effects as strong monads [4, 5].

This paper summarises a number of results developed in the context of the
author’s PhD project [6]. Namely, the introduction of a strong monad # [7] that
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subsumes continuous behaviour and the study of the corresponding Kleisli cat-
egory [8] as the mathematical space in which the underlying behaviour can be
isolated and its effect over different forms of composition studied. This work
may pave the way to the development of a coalgebraic calculus of hybrid compo-
nents.

Related work. A few categorial models for hybrid systems have been proposed.
For example, document [9] introduced an institution — in essence, a categorial
rendering of logic — for hybrid systems and provided basic forms of compo-
sition. Around the same time, Jacobs [10] suggested a coalgebraic framework
where hybrid systems are viewed as coalgebras equipped with a monoid ac-
tion. Some years later Haghverdi et. al [11] provided a formalisation of hybrid
systems using a conceptual framework that is closer to the coalgebraic perspec-
tive.

The monad reported in this paper captures the typical continuous behaviour
of hybrid systems. Actually, there is a close relationship between the work re-
ported here and Peter Hofner’s algebra of hybrid systems [12]: the latter’s main
operator and its laws are embedded in the (sequential) composition of K{#, the
Kleisli category for monad .

Since our approach, differently from Hoéfner’s calculus, is structured around
a monad that encodes continuous evolution, a number of canonical construc-
tions come for free. Moreover, the integration with other behavioural effects,
such as non determinism or probabilistic evolution, becomes more systematic.

Roadmap. After a brief detour on preliminaries and notation in Section 2, monad
H is described in Section 3. Section 4 gives some details about the correspond-
ing Kleisli category K1 H, characterising composition and some (co)limits. Fi-
nally, conclusions and possible future research directions are discussed in Sec-
tion 5. In this paper many calculations adopt a pointfree style in the spirit of the
Bird-Meertens formalism [13].

2 Preliminaries

2.1 The category of topological spaces

The typical continuous behaviour of hybrid systems suggests the category Top of
topological spaces and continuous functions as a suitable working environment
for developing the aforementioned results. In the sequel, if the context is clear,
a topological space will be denoted just by its underlying set. Also, assume
that spaces X x Y, X +Y correspond to the canonical product and coproduct
of X,Y, respectively, and that whenever Y is core-compact, space XY comes
with the exponential topology [14]. In this context, given a continuous function
f X xY — Z where Y is core-compact, we denote its curried version by
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A+ X — ZY. Moreover, we will use the following isomorphisms in Top:
a (X xY)XxZ=2Xx (Y xZ)
sw: X XY =2Y xX
i (X x Y)Ro = xRo y yRo

2.2 Notation

Arrows X — 1 to the final object in Top will be denoted by !, and a function
constantly yielding a value z by z. Given two functions f,g : X — Y, and a
predicate p, conditional expression f < p > g: X — Y is defined by

fz px

<f<p>mx=wx<px>gw={ .
gz otherwise

The continuous functions minimum A : Rx (R+1) — R and truncated subtraction
©:R x (R+1) — R play a key role in the sequel. They are defined as follows

r A (i1s)=(m < (L) > m)(r,s) r O (irs)=((-) < (>) > 0)(rs)
r A (igx)=r r O (ig%x) =0

where <, > are the usual ordering relations over the reals, and 1 introduces in-
finity. Set Ry denotes the non—negative real numbers. Then, we have (Aq4) r =
r A dand (Og) r = 7 © d. Finally, for any category C, |C| denotes the corre-
sponding class of objects.

3 A Monad for Continuity

Formally, we see continuous systems as arrows of the type
I - 0% xD

where D = Ry + 1 and I, O are the input and output spaces, respectively. The
intuition is that outputs of such systems are continuous evolutions (also known
as trajectories) with a specific (possibly infinite) duration d € D.

Definition 1 H : Top — Top is a functor such that, for any objects X,Y & |Top|
and any continuous function g : X =Y,

HX ={(f,d) e X xD|f-ra=[}
Hg=g-x1id

where (g <) h = g - h. Condition f - Aq = f tells that function f must become
constant after reaching its duration; more formally, for any € Ry such that
r >d, fr = f d. Hence, continuous systems become arrows of the type

I — HO
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also denoted as I — O.
The crucial step now is to equip H with a monad structure, i.e. with natural
transformations

n:ld > H, p:HH = H.
First,
Definition 2 Given any X € |Top|, define nx : X — HX such that
nx © = (z,i1 0)
in pointfree notation nx = (Amy,i1 + 0).
The definition of ;1 is more demanding.

Definition 3 Define the continuous functions g : HHX x Ry — X%, h: HHX x
Ry — Rq such that

g((f,d),7) = (o - f) (r A d),
h(f,d),r)=rod

Next, we have fly : HHX — X®o where fl; = A(ev - (g, h)). In pointwise notation,
fly is defined as

fu(f,d) =ev-(m - f+ Aq,Oa)
Then, define function fls : H2X — D such that
fla (f,d) =((m2- f)d Q(d g 1) > izx)+d
Finally, we define for any X € |Top|, px = (fl1, fl2).

Intuitively, operation px ‘concatenates’ functions: given a pair (f,d) € HHX,
px concatenates function (mq - f) - 0:[0,d] — X with (71 - f) d - : [0,d'] = X,
and sums the corresponding durations.

Theorem 1 The triple (M, n, 1) forms a monad.

Proof. In document [7].

4 The Category of Continuous Behaviours

4.1 Kleisli Composition

The Kleisli category for H (K1) provides an interesting setting to study the re-
quirements placed by continuity over different forms of composition; actually,
the envisaged component calculus for hybrid systems is essentially its calculus.
This motivates the study of K1 #, summmarised in the current section.

The definition of Kleisli composition in K # suggests a relevant distinction
between continuous systems.
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Definition 4 A continuous system ¢ : I — HI is passive if the following diagram
commutes

112 R

X le’u-(id,O)

I
where f. = 7 - c. It is active otherwise.

Intuitively, the diagram tells that any evolution triggered by c ’starts” at the
point given as input. To see why such a distinction is relevant, let us consider
two continuous systems ¢; : I — HK, co : K — HO. Through Kleisli composi-
tion we obtain component c; e ¢; : I — HO whose behaviour is computed as
follows:

w1 (co @ 1)

{ Kleisli composition }

7T1'M'HCQ’C1.’L’

{ Cancellation x }
fli-Hes 1 x
= { Definition of H (takingd = (w2 - ¢1) z) }
fli(e2 - (fe, x),d)
= { Application }
ev-(m - ez (fe, @) Aa, Oa)
= { Notation }
ev - (fe, * (fe, @)+ Aa, Oa)
Going pointwise,
ev -« (fe, * (fe, ) * ke, ©a) t
= { Application }
foo (feyw (t X d)) (tOd)
= { Notation }
Joo (fazt)0(t<d)> fo, (fozd) (t—d)
= { If ¢, is passive }
foxt<a(t<d)p fo, (foxd) (t—d)

Assuming that ¢, is passive, the last expression tells that given an input ¢ €
I the resulting evolution corresponds to the evolution of the first component
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fe, @ ensued by the evolution of the second, which receives as input the ‘last’
point of evolution f., i. Therefore, when c; is passive Kleisli composition may
be alternatively called sequential composition or concatenation. On the other
hand if ¢, is active, Kleisli composition tells that ¢, can alter the evolution of
¢1 and then proceed with its own evolution. This is illustrated in the following
examples.

Example 1. Given two signal generators c1, co : R — HR defined as

c1r=(r+sin-,3m),
cor=(r+sin(3x -),3m)

the signal given by c; o (c2 o c1) 0 yields the plot below

c1 @ (cy ®cy)0

This type of signal is common in the domain of frequency modulation, where the
varying frequency is used to encode information for electromagnetic transmis-
sion.

Example 2. Suppose the temperature of a room is to be requlated according to the
following discipline: starting at 10 °C, seek to reach and maintain 20 °C, but in no case
surpass 20.5 °C. To realise such a system, three components have to work together: c
to raise the temperature to 20 °C, component cy to maintain a given temperature, and
component cg to ensure the temperature never goes over 20.5 °C. Formally,

az=((z+-),200z),
cox=(x+(sin -), 00),
csz=(z < (x<205) > 20.5,0)

One may then compose ¢, ¢; into co e c¢i, which results in a component able
to read the current temperature, raise it to 20 °C, and then keep it stable, as
shown by the plot below on the left. If, however, temperatures over 20.5 °C
occur, composition c3 e ¢y ® ¢; puts the system back into the right track as the
plot below on the right illustrates.
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On a different note, for any X € |Top|, arrow nx is a frivial system in the sense
that its evolutions always have duration zero and the only point in the trajecto-
ries is the input given. For this reason we will refer to nx by copyx, and often
omit the subscript. Setting up K1 yields the following laws

copy e ¢y =, 1)
c1 e copy = c (2)
(c3 ®cy) @ cp=c3 @ (ca @) 3)

for any arrows ¢, ¢z, c3 in K1 H.

4.2 (Co)limits and Tensorial Strength
(Co)limits are a main tool to build ‘new” arrows from ‘old’ ones, which in the

case of K| H translates to new forms of (continuous) component composition.
One important colimit is the coproduct, which provides the choice operator:

Definition 5 Given two components ¢y : 11 — HO, ca : Io — HO component
[01,62] L+ 1, — HO
behaves as ¢y if input I is chosen, and as cq otherwise. Diagrammatically,

)

\c; vl o

where, for any continuous function f : X — Y, symbol " f ' denotes copy - f.

2‘\

14) I+ 1o (*l I

I
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Since the choice operator comes from a colimit, a number of laws are given; one
example is the following equation

C3 ® [01,02} = [03 ® C1,C3 ® CQ] (4)

An important limit of K1 # is the pullback below, which brings parallelism up
front.

C2

/\.
I
( v,»_.‘7.<cl7cQ>

i [
K xO 0
ey " [P ‘ l!’l‘l
™ !
1 1
K — 1

A

for y((f1, d), (f2,d)) = ({f1, f2), d).

Intuitively, the diagrams states that whenever two components c;,c; are
compatible — in the sense that for any input the duration of their evolutions
coincide (commutativity of the outer square) — we can define component 7 -
(1, c2) whose output corresponds to the (paired) evolutions of ¢; and cs.

Note that functions "; ', "7y " introduce trajectory elimination, due to their
ability to remove one side of the paired evolution. Note also that "A™ : X —
H(X x X) duplicates trajectories, for A : X — (X x X) the diagonal function,
and "sw ' swaps evolutions.

Definition 6 Given two compatible components ¢; : I — HOy, co : I — HO:
component

<<01,CQ>> =" <01,CQ> I — H(Ol X 02)
is the parallel execution of ¢y, ca.

Since parallelism comes from a limit, we have again a number of laws for free;
for instance

({cr,02)) @ d=((c1 @ d;cz 0 d)) ®)
Example 3. Consider two signal generators, c1, co such that

cprx = (x4 (sin -),20),
cox = (z+sin(3x -),20)

For input 0, their parallel evolution ({c1,c2)) is illustrated in the plot below on the
left. Moreover, we can combine signals. For example, to add incoming signals, take the
active component cz, formally defined as c3(x,y) = (« + y,0). For input 0, the system
cz o {(c1,ca)) yields the plot shown below, on the right.
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({e1,¢2)) 0 c3 o ((c1,¢2)) 0

|
0 5 10 15 20 0 5 10 15 20
T T

We close this section introducing a tensorial strength for monad H — which
turns out to be an essential mechanism for the generation of a calculus for hy-
brid components.

Definition 7 Tensorial strength for monad H is a natural transformation
TIHX XY S H(X XY)

defined as 7 = (f1, f2) where fi : HX x Y — (X x Y)*o, fi((f,d),y) = (f,y), and
f2 T HX XY — Drf?((fad)ay) =d.

Theorem 2 (H,n, ) is a strong monad.

Proof. In document [7].

5 Conclusions and future work

Software systems are becoming prevalently intertwined with (continuous) phys-
ical processes. This renders their rigorous design (and analysis) a difficult chal-
lenge that calls for a wide, uniform framework where ‘Continuous” Mathemat-
ics and Computer Science must work together. As a first step towards a calculus
of hybrid components in the spirit of [2], this paper showed how continuous be-
haviour can be encoded in the form of a strong topological monad, and briefly
explored the corresponding Kleisli category.

Our current research investigates how hybrid behaviour can be rendered
by arrows typed as (¢,p) : S x I — S x HO, where ¢ : § x I — S is a discrete
arrow (S comes equipped with the discrete topology) and p : S x I — HO isa
continuous system. This paves the way to extending the component calculus in
[2] to hybrid systems.
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