The Potential Benefits of Data Set Filtering and
Learning Algorithm Hyperparameter Optimization

Michael R. Smith, Tony Martinez, and Christophe Giraud+@ar

Department of Computer Science, Brigham Young UniverBitgvo, UT 84602 USA
nmem t h@xon. ¢s. byu. edu, marti nez@s. byu. edu, cgc@s. byu. edu
http://axon. cs. byu. edu

Abstract. The quality of a model induced by a learning algorithm is chejeat
upon the training datand the hyperparameters supplied to the learning algo-
rithm. Prior work has shown that a model’s quality can be ificemtly improved
by filtering out low quality instances or by tuning the leamnialgorithm hyper-
parameters. The potential impact of filtering and hypenp&tar optimization
(HPO) is largely unknown. In this paper, we estimatefbtentialbenefits of in-
stance filtering and HPO. While both HPO and filtering sigaffity improve the
quality of the induced model, we find that filtering has a geeabtential effect
on the quality of the induced model than HPO, motivating feitwork in filtering.

1 Introduction

Given a set of training instances composed of input feataotors and corresponding
labels, the goal of supervised machine learning is to inducaccurate generalizing
function (hypothesis) that maps feature vectors to labiie quality of the induced
function is dependent on the learning algorithm’s hypeapeetersaand the quality of
the training data. It is known that no learning algorithm gpérparameter setting is
best for all data sets (no free lunch theorém [26]) and thatpgrformance of many
learning algorithms is sensitive to their hyperparameg#irgs. It is also well-known
that real-world data sets are typically noisy.

Prior work has shown that the generalization performancanofnduced model
can be significantly improved through hyperparameter apéition (HPO) [1], or by
increasing the quality of the training data using techngcgiech as noise correction[11],
instance weighting [17], or instance filteririg [20]. Seancjithe hyperparameter space
and improving the quality of the training data have gengtadlen examined in isolation
and the potential impact of their usage has not been examimgds paper, we compare
the effects of HPO with the effects of improving the qualifytte training data through
filtering. The results of our experiments provide insighoithe potential effectiveness
of both HPO and filtering.

We evaluate 6 commonly used learning algorithms and 46 ddasa We examine
the effects of HPO and filtering by: 1) using a standard apgrdiaat selects the hyper-
parameters of an algorithm by maximizing the accuracy orlidatéon set and 2) using
an optimistic approach that sets the hyperparameters faigorithm using the 10-
fold cross-validation accuracy. The standard and optioégtproaches are explained in
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more detail in Sectiop]4. Essentially, the optimistic agtoindicates how well a tech-
niquecould perform if the training set were representative of the testad provides
insight into thepotentialbenefit of a given technique. The standard approach prosides
representative view of HPO and filtering in their presentestand allows an evaluation
of how well current HPO and filtering techniques fulfill theintential.

Using the standard approach, we find that in most cases both &ifél filtering
significantly increase classification accuracy over usitgaaning algorithm with its
default parameters trained on unfiltered data. For the dgttarestimates of HPO and
filtering, we find thaffiltering significantly improves the classification accuyamver
HPO for all of the investigated learning algorithms—increadime accuracy more than
HPO for almost all of the considered data sets. HPO achiaves@rage accuracy of
84.8% while filtering achieves an average accuracy of 8914é.standard approach
for HPO and filtering achieves an average accuracy of 82.698ar0% respectively.
These results provide motivation for further research geweloping algorithms that
improve the quality of the training data.

2 Related Work

Smith et al. [[21] found that a significant number of instanaes difficult to classify
correctly, that the hardness of each instance is dependeitd celationship with the
other instances in the training set and that some instaacdsecdetrimental. Thus, there
is a need for improving how detrimental instances are hahdlging training as they
affect the classification of other instances. Improvingghality of the training data has
typically fallen into three approaches: filtering, cleamiand instance weightingl[7].

Each technique within an approach differs in how detrimleinstances are iden-
tified. A common technique for filtering removes instancesrfra data set that are
misclassified by a learning algorithm or an ensemble of legralgorithms|[3]. Re-
moving the training instances that are suspected to be @oidfr outliers prior to
training has the advantage that they do not influence thecedimodel and generally
increase classification accuracy. A negative side-effefittering is that beneficial in-
stances can also be discarded and produce a worse moddiliaf the training data
had been used [18]. Rather than discarding the instancesdryaining set, noisy or
possibly corrupted instances can be cleaned or correct@dHbwever, this could arti-
ficially corrupt valid instances. Alternatively, weightjinveights suspected detrimental
instances rather than discards them and allows for an icstembe considered on a
continuum of detrimentality rather than making a binaryisieo [17].

Other methods exist for improving the quality of the tragpihata, such as feature
selection/extraction [8]. While feature selection and&stion can improve the quality
of the training data, we focus on improving quality via filtey — facilitating a compar-
ison between filtering and HPO on the same feature set.

Much of the previous work in improving the quality of the traig data artificially
corrupts training instances to determine how well an apgre#uld work in the pres-
ence of noisy or mislabeled instances. In some cases, a gpmoaclonly has a sig-
nificant impact when there are large degrees of artificias&din contrast, we do not
artificially corrupt a data set to create detrimental instsn Rather, we seek to identify
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the detrimental instances that are already contained iteesgddand show that correctly
labeled, non-noisy instances calsobe detrimental for inducing a model of the data.
Properly handling detrimental instances can result ini@mt gains in accuracy.

The grid search and manual search are the most common typi#®techniques
in machine learning and a combination of the two approacteesanmonly used [12].
Bergstra and Bengid [1] proposed to use a random search bf/fierparameter space.
The premise of random HPO is that most machine learning ighgos have very few
hyperparameters that considerably affect the final moddewhe other hyperparam-
eters have little to no effect. Random search provides aereariety of the hyperpa-
rameters that considerably affect the model. Given the sanwaint of time constraints,
random HPO has been shown to outperform a grid search. Rasearoh, while pro-
viding improvements over a grid-search, is unreliable minig the hyperparameters
for some learning algorithms such as deep belief network$@yesian optimization
has also been used to search the hyperparameter spaced28i@ optimization tech-
niques model the dependence of an error funcfiom the hyperparameteksasp(£|\)
using, for example, random forests [10] or Gaussian precg@3].

3 Preliminaries

Let T represent a training set composed of a set of input veéfors{z1, za,...,2,}
and corresponding label vectdrs= {y1,y2,...,yn}, .6, T = {{z;,y;) : 2; € X A
y; € Y'}. Given that in most cases, all that is known about a task itagoed in the set
of training instance®’, at least initially, the training instances are generatigsidered
equally. Most machine learning algorithms seek to inducgmthesis: : X — Y that
minimizes a specified loss functiofy-). As most real-world data sets contain some
level of noise, there is generally a model-dependent reigakion termR (-) added to
L(+) that penalizes more complex models and aids in overfit ancielaThe noise in
T may arise from errors in the data collection process suclasstor errors in data
collection equipment. In addition to noise from errors réhmay be non-noisy outlier
instances due to the stochastic nature of the task. A hypisthis induced by a learning
algorithmg trained onl” with hyperparameters (h = g(T', A)), such that:

h* = argmin 1 Z L(h(z:),y:) + aR(h) 1)

her |T| (ziyi)€T

whereq is a regularization parameter greater than or equal to Odiigrmines how
much weight to apply to the regularization term drfe returns the predicted class for a
given input. The quality of the induced hypothesis characterized by its empirical er-
ror for a specified error functichon atestsev’: E(h,V) = %V‘ 2t ynyev (i), yi)
whereV can beT” or a disjoint set of instances. kafold cross-validation, the empirical
error is the average empirical error from théolds (i.e.,1/k E(h;, V;)).

Characterizing the success of a learning algorithm at tie skt level (e.g., accu-
racy or precision) optimizes over the entire training set ararginalizes the impact of
a single training instance on an induced model. Some setsstdrices can be more
beneficial than others for inducing a model of the data andesocam even be detri-
mental. Bydetrimental instancesve mean instances that have a negative impact on
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the induced model. For example, outliers or mislabelecaimsts are not as beneficial
as border instances and are detrimental in many cases. itioagdther instances can
be detrimental for inducing a model of the data even if theylabeled correctly. For-
mally, a setD of detrimental instances is a subset of the training datia Wizen used
in training, increases the empirical error, i.B(g(T,\),V) > E(g(T — D, A), V).

The effect of training with detrimental instances is dentiated in the hypothetical
two-dimensional data set shown in Figlife 1. Instances A anepBesent detrimental
instances. The solid line represents the “actual” clasgifio boundary and the dashed
line represents a potential induced classification boynttzstances A and B adversely
affect the induced classification boundary because thelf"thee classification bound-
ary and cause several other instances to be misclassifiguttieawise would have been
classified correctly.

Fig. 1. Hypothetical 2-dimensional data set that shows the pateaffects of detrimental in-
stances in the training data on a learning algorithm.

Despite most learning algorithms having a mechanism tadaweérfitting, the pres-
ence of detrimental instances may still affect the inducedehfor many learning algo-
rithms. Mathematically, the effect of each instance on ttiiced hypothesis is shown
in Equation1. The loss from each instancelinincluding detrimental instances, is
equally weighted. Detrimental instances have the mosifgignt impact during the
early stages of training where it is difficult to identify thel6]. The presence ob
may also affect the value g2(h). For example, removin@ from 7" could produce a
“simpler” h that reduceR (h).

3.1 Hyperparameter Optimization

The quality of an induced model by a learning algorithm dejsén part on the learning
algorithm’s hyperparameters. With hyperparameter ogttion (HPO), the hyperpa-
rameter spacd is searched to minimize the empirical errorién

argmin E(g(T, \), V). (2)
A€A
The hyperparameters can have a significant effect on théyjoéthe induced model
as well as suppressing the effects of detrimental instarfkmrsexample, in a support
vector machine|[4] use the ramp-loss function which litlisspenalty on instances that
are too far from the decision boundary rather than the maoieay0-1 loss function to
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handle detrimental instances. Suppressing the effecetofitbntal instances with HPO
improves the induced model, but does not change the faadétidmental instancestill
affect the model. Each instance is still considered dutiegearning process though its
influence may be lessened. We describe the method we use @irHBectiof 4.1.

3.2 Filtering

The quality of an induced model also depends on the qualitiyeofraining data where,
for example, the quality of the training data can be meadoyebe amount of detrimen-
tal instances present. Low quality training data resultevver quality induced models.
Improving the quality of the training data involves seanghthe training set space to
find an optimal subset that minimizes the empirical error:

argmin F(g(t, A), V)
teP(T)

wheret is a subset of andP(T') is the power set of". The removed instances obvi-
ously have no effect on the induced model. In Sedfioh 4.2,eseribe how we identify
detrimental instances and search for an optimal subsetedfréiining data that mini-
mizes empirical error.

4 Implementation Details

4.1 Bayesian Hyperparameter Optimization

In this paper, we use Bayesian optimization for HPO. Spedificwe usesequential
model-based optimizatiofEMBO) [10] as it has been shown to yield better perfor-
mance than grid and random seaichl([23,24]. SMBO is a staclmtmization frame-
work that builds a probabilistic mode\1 that captures the dependenceéobn .
SMBO first initializesM. After initializing M, SMBO searches the search space by 1)
gueryingM for a promising\ to evaluate, 2) evaluating the lo§of using configura-
tion ), and then 3) updatingt with A and€. Once the budgeted time is exhausted, the
hyperparameter configuration with the minimal loss is medal:

To select a candidate hyperparameter configuration, SMB€&sren an acquisition
functionan; : A — R which uses the predictive distribution g¢ff to quantify how
useful knowledge about would be. SMBO maximizes ., over A to select the most
useful hyperparameter configurationto evaluate next. One of the most prominent
acquisition functions is thpositive expected improvemg(il) over an existing error
rate £,,in [19]. If £(N) represents the error rate of hyperparameter configuragon
then the EI function oveE, ., is: Elg, . (\) = maz{Emin — E(A),0}. ASE(N) is
unknown, the expectation 6f \) with respect to the current mod&t can be computed
asEnEle,,,,(N)] = [T maz{ i — €,0} - p(ENdE.

SMBO is dependent on the model class used\tarFollowing [24], we use sequen-
tial model-based algorithm configuration (SMAC)[10] fot with El asa 4, although
others could be used such as the tree-structured ParzeratzstiTo modep(E|\), we
use random forests as they tend to perform well with dis@etecontinuous input data.
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Using random forests, SMAC obtains a predictive mgarand variance; of p(€|\)
calculated using the predictions from the individual treethe forest for\. p(£])) is
then modeled as a Gaussian distributdty., o3 ). To create diversity in the evaluated
configurations, every second configuration is selectednaloia as suggested [24]. For
k-fold cross-validation, thetandard approachfinds the hyperparameters that mini-
mize the error for each of thievalidation sets as shown in Equat{dn 2. Tdygimistic
approach finds the hyperparameters that minimize ta#old cross-validation error:
argminye 4 +E(9(T;, ), V;) whereT; andV; are the training and validation sets for
theith fold. The hyperparameter spades searched using Bayesian hyperparameter
optimization for both approaches.

4.2 Filtering

Identifying detrimental instances is a non-trivial taskllff searching the space of sub-
sets of training instances genera®®$ subsets of training instances whekeis the
number of training instances. Even for small data sets,dbiaputationally infeasible
to induce2”¥’ models to determine which instances are detrimental. Tisare known
way to determine how a set of instances will affect the indudassification function
from a learning algorithm without inducing a classificatimmction with the investi-
gated set of instances removed from the training set.

The Standard Filtering Approach (G-Filter) Previous work in noise handling has
shown that class noise (e.g. mislabeled instances) is netrengntal than attribute
noise [15]. Thus, searching for detrimental instancesahatikely to be misclassified
is a natural place to start. In other words, we search foairests where the proba-
bility of the class label is low given the feature values.(ilew p(y;|z;)). In general,
p(y;|x;) does not make sense outside the context of an induced hyimtiibus, using
an induced hypothesisfrom a learning algorithm trained df, the quantityp(y;|z;)
can be approximated asy;|z;, h). After training a learning algorithm off, the class
distribution for an instance; can be estimated based on the output from the learn-
ing algorithm. Prior work has examined removing instanbes are misclassified by a
learning algorithm or an ensemble of learning algorithnjs\[& filter instances using
an ensemble filter that removes instances that are midataissy more than:% of the
algorithms in the ensemble.

The dependence @f(y;|z;, h) on a particulat can be lessened by summing over
the space of all possible hypotheses:

p(yilz:) = Z p(yilzi, h)p(h|T). 3)
heH
However, this formulation is infeasible to compute in mosiqtical applications as
p(h|T) is generally unknown an# is large and possibly infinite. To sum ovHr, one
would have to sum over the complete set of hypotheses, ae Big- ¢(7', ), over the
complete set of learning algorithms and their associatgefparameters.
The quantityp(y;|z;) can be estimated by restricting attention to a diverse set of

representative algorithms (and hyperparameters). Thergify of the learning algo-
rithms refers to the likelihood that the learning algorighahassify instances differently.
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Table 1. Set of learning algorithmg used to estimate(y;|z;).

LEARNING ALGORITHMS
* M ULTILAYER PERCEPTRON TRAINED WITHBACK PROPAGATION(MLP)
* DECISIONTREE(C4.5)
* L oCALLY WEIGHTEDLEARNING (LWL)
* 5-NEARESTNEIGHBORS(5-NN)
* NEARESTNEIGHBOR WITH GENERALIZATION (NNGE)
* NAIVE BAYES (NB)
* RIPPLEDOWN RULE LEARNER (RIDOR)
* RANDOM FOREST(RANDFOREST)
* REPEATEDINCREMENTAL PRUNING TO PRODUCEERRORREDUCTION (RIPPER)

A natural way to approximate the unknown distributip(h|T) is to weight a set of
representative learning algorithms, and their associhygerparameters;, a priori
with an equal, non-zero probability while treating all atkearning algorithms as hav-
ing zero probability. We select a diverse set of learningatms using unsupervised
metalearning (UML)[[1B] to get a good representatiorihfand hence a reasonable
estimate op(y;|x;). UML uses Classifier Output Difference (COD) [16] measuhes t
diversity between learning algorithms as the probabilitgttthe learning algorithms
make different predictions. UML clusters the learning aidons based on their COD
scores with hierarchical agglomerative clustering. Hereconsider 20 commonly used
learning algorithms with their default hyperparametersetsn Wekal[9]. A cut-point
of 0.18 was chosen to create nine clusters and a represengdgorithm from each
cluster was used to creafeas shown in Tablel1.

Given a segj of learning algorithms, we approximate Equafidn 3 to théofeing:

1G]
p(yilas) ~ ﬁ S ol 65T, V) (4)
j=1

wherep(h|T') is approximated a%‘ andg; is the {" learning algorithm frong. As not
all learning algorithms produce probabilistic outputs, tlistributionp(y; |z, g, (T, X))
is estimated using the Kronecker delta function in this pape

The Optimistic Filtering Approach ( .A-Filter) To measure th@otentialimpact of
filtering, we need to know how removing an instance or set sfainces affects the
generalization capabilities of the model. We measure thidymamically creating an
ensemble filter frong using a greedy algorithm for a given data set and learningralg
rithm. This allows us to find a specific ensemble filter thatasttfor filtering a given
data set and learning algorithm combination. The adaptigemble filter is constructed
by iteratively adding the learning algorithgnfrom G that produces the highest cross-
validation classification accuracy wheiis added to the ensembile filter. Because we are
using the probability that an instance will be misclassifiaither than a binary yes/no
decision (Equationl4), we also use a threshitd determine which instances are detri-
mental. Instances with a(y;|x;) less thang are discarded from the training set. A
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constant threshold value faris set to filter the instances for all iterations. The basgelin
accuracy for the adaptive approach is the accuracy of theiteaalgorithm without
filtering. The search stops once adding one of the remaiegning algorithms to the
ensemble filter does not increase accuracy, or all of thailegualgorithms inG have
been used.

Even though all of the detrimental instances are include@valuation, the adap-
tive filter (A-Filter) overfits the data since the cross-validation aacwuiis used to de-
termine which set of learning algorithms to use in the endefilker. This allows us to
find the detrimental instances to examine the effects thet ¢n have on an induced
model. This is not feasible in practical settings, but pdegi insight into the potential
improvement gained from filtering.

5 Filtering and HPO

In this section, we compare the effects of filtering with thag HPO using the op-

timistic and standard approaches presented in Sedtionetoptimistic approach pro-
vides an approximation of the potential of HPO and filteringaddition to reporting the

average classification accuracy, we also report the aveaadgeof each approach. The
average accuracy and rank for each algorithm is determisied % by 10-fold cross-

validation. Statistical significance between pairs of athms is determined using the
Wilcoxon signed-ranks test (as suggested by [5]) with ahal@lue of 0.05.

5.1 Experimental Methodology

For HPO, we use the version of SMAC implemented in auto-WER4 fas described
in Section[4.]l Auto-WEKA searches the hyperparameter spfsethe learning al-
gorithms in the Weka machine learning toolkit [9] for a sfied amount of time. To
estimate the amount of time required for a learning algorith induce a model of the
data, we ran our selected learning algorithms with ten ramkigperparameter settings
and calculated the average and max running times. On avezagedel was induced
in less than 3 minutes. The longest time required to inducedeivas 845 minutes.
Based on this analysis, we run auto-WEKA for one hour for nebshe data sets. An
hour long search explores more than 512 hyperparametegcoations for most of the
learning algorithm/data set combinations. The time lim#djusted accordingly for the
larger data sets. Following [24], we run four runs with diéfet random seeds provided
to SMAC.

For filtering using the ensemble filteF {filter), we use thresholds of 0.5, 0.7, and
0.9. Instances that are misclassified by more ##nof the learning algorithms are
removed from the training set. Tlikfilter uses all of the learning algorithms in the set
G (Table[1). The accuracy on the test set from the valug thfat produces the highest
accuracy on the training set is reported.

To show the effect of filtering detrimental instances and HiP@n induced model,
we examine filtering and HPO in six commonly used learning@aigms (MLP trained
with backpropagation, C4.5NN, Naive Bayes, Random Forest, and RIPPER) on a set
of 46 UCI data sets [14]. The LWL, NNge, and Ridor learningoaitihms are not used
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Table 2. Results for maximizing the 10-fold cross-validation aeayrfor HPO and filtering.

MLP cas kNN NB RF RIP
ORIG  82.28(2.98) 81.30 (2.91) 80.56 (2.74) 77.66 (2.70) 82.9892 79.86 (2.96)
HPO  86.37 (1.87) 84.25 (1.96) 83.89 (2.22) 80.89 (1.96) 81885) 82.08 (1.80)

VSORIG  45,0,1 42,1,3 34,1,11  34,0,12 44,0,2 46,0,0
A-FILTER 89.96 (1.13) 88.74 (1.09) 91.14 (1.02) 82.74 (1.30) 91.02Q). 88.16 (1.24)
VSORIG  46,0,0 46,0,0 46,0,0 44,20 43,3,0 44,0,2

VSHPO  39,1,6 41,1,4 45,0,1 32,0,14 37,0,9 37,0,9

for analysis because they do not scale well with the larger slets—not finishing due to
memory overflow or large amounts of running tifhe.

5.2  Optimistic Approach

The optimistic approach indicates how well a modelld generalize on novel data.
Maximizing the cross-validation accuracy is a type of ovtnfy. However, using 10-
fold cross-validation accuracy for HPO and filtering, essdly measures the general-
ization capability of a learning algorithm for a given dag¢d. s

The results comparing the potential benefits of HPO andifiljesire shown in Ta-
ble[2. Each section gives the average accuracy and avenalgéoraeach learning al-
gorithm as well as the number of times the algorithm is gretten, equal to, or less
than a compared algorithm. HPO and the adaptive filter s@amifly increase the clas-
sification accuracy for all of the investigated learningagithms. The values in bold
represent if HPO or the adaptive filter is significantly geedhan the other. For all of
the investigated learning algorithms, thefilter significantly increases the accuracy
over HPO. The closest the two techniques come to each otfmriNB, where theA4-
filter achieves an accuracy of 82.74% and an average ranB@fahile HPO achieves
an accuracy of 80.89% and an average rank of 1.96. For afliteaalgorithms other
than NB, the average accuracy is about 89% for filtering artd 8t HPO. Thus, fil-
tering has a greater potential for increase in generadimatccuracy. The difficulty lies
in how to find the optimal set of training instances.

As might be expected, there is no set of learning algorithmasis the optimal en-
semble filter for all algorithms and/or data sets. Table 3whihe frequency for which
a learning algorithm with default hyperparameters wascsedefor filtering by theA-
filter. The greatest percentage of cases an algorithm istséldor filtering for each
learning algorithm is in bold. The column “ALL" refers to tlzerage from all of the
learning algorithms as the base learner. No instances tneélin 5.36% of the cases.
Thus, given the right filter, filtering to some extent incresthe classification accuracy
in about 95% of the cases. Furthermore, random forest, NMg®, and C4.5 are the
most commonly chosen algorithms for inclusion in the enderfitter. However, no
one learning algorithm is selected in more than 27% of thesaghe filtering algo-
rithm that is most appropriate is dependent on the data sethe&nlearning algorithm.

! For the data sets on which the learning algorithms did firttsi effects of HPO and filtering
on LWL, NNge, and Ridor are consistent with the other leagratgorithms.
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Table 3. The frequency of selecting a learning algorithm when aglafgticonstructing an ensem-
ble filter. Each row gives the percentage of cases that amithigowas included in the ensemble
filter for the learning algorithm in the column.

ALL MLP C4.5 ENN NB RF RIP

NoNE 5.36 2.69 295 3.08 5.64 577 1.60
MLP 18.33 16.67 15.77 20.0®5.26 23.72 16.36
C4.5 17.17 17.82 15.26 22.82 14.49 13.33 20.74
5NN 12,59 11.92 14.23 1.28 10.00 17.18 16.89
LWL 6.12 3.59 3.85 4.36 23.72 3.33 3.59
NB 7.84 577 6.54 8.08 5.13 10.26 4.92
NNGE 19.49 26.67 21.15 21.03 11.1524.74 23.40
RF 21.14 22.95 26.54 23.3315.77 15.1324.20
RID 14.69 14.87 16.79 18.33 11.92 16.54 12.77
RIP 8.89 7.82 7.69 8.85 13.08 7.44 4.39

This coincides with the findings frond [18] that the efficacyrafise filtering in the
nearest-neighbor classifier is dependent on the charstaterof the data set. Under-
standing the efficacy of filtering and determiniwgichfiltering approach to use for a
given algorithm/data set is a direction of future work.

Analysis. In some cases HPO achieves a lower accuracy than orig, stpdien
complexity of HPO. Thed-Filter, on the other hand, never fails to improve the accyira
Thus, higher quality data can compensate for hyperparauisettengs and suggests that
the instance space may be less complex and/or richer thamnypgeparameter space.
Of course, filtering does not outperform HPO in all casesijtlildes so in the majority
of cases.

5.3 Standard Approach

The previous results show the potential impact of filtering &PO. We now examine
HPO and filtering using the standard approach to highlighttbed for improvement
in filtering. The results comparing tiigfilter, HPO, and using the default hyperparam-
eters trained on the original data set are shown in Tdble @ bignificantly increases
the classification accuracy over not using HPO for all of #erhing algorithms. Fil-
tering significantly increases the accuracy for all of theestigated algorithms except
for random forests. Comparing HPO and the G-Filter, only HBOnhaive Bayes and
random forests significantly outperforms thdilter.

Analysis. In their current state, HPO and filtering generally imprdve tjuality of
the induced model. The results justify the computationatbead required to run HPO.
Despite these results, using the default hyperparametsudt iin higher classification
accuracy for 11 of the 46 data sets for C4.5, 126N, and 12 for NB, highlighting
the complexity of searching over the hyperparameter spaceéhe effectiveness of
HPO is dependent on the data set as well as the learning thigorTypically, as was
done here, a single filtering technique is used for a set @ sletis with no model of
the dependence of a learning algorithm on the training imc&ts. The accuracies for
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Table 4. Performance comparison of using the default hyperparame#®O, and thg-filter.

MLP cas kNN NB RF RIP
ORIG  82.28(2.54) 81.3(2.13) 80.56 (2.26) 77.66 (2.28) 82.9282.79.86 (2.46)
HPO  83.08 (1.78) 82.42 (1.76) 82.85 (1.58).11 (1.63) 84.72 (1.5491.15 (1.74)
VSORrRiG 32,0,14  29,1,16 31,510  31,2,13  34,0,12  30,2,14
G-FILTER 84.17 (1.61) 81.9 (1.96) 81.61 (2.00) 79.49 (2.02) 83.49(281.25 (1.72)
VSORIG  39,0,7 23,518  27,1,18  28,1,17  25,0,21 37,0,9
VSHPO 22,321 19,1,26  17,1,28 16,0,30  13,0,33  20,2,24

filtering and HPO are significantly lower than the optimigtgtimate given in Section
motivating future work in HPO and especially in filtering

6 Conclusion

In this paper, we compared the potential benefits of filteviith HPO. HPO may re-
duce the effects of detrimental instances on an induced hioadiehe detrimental in-
stances are still considered in the learning processriRidfeon the other hand, removes
the detrimental instances—completely eliminating thif&ats on the induced model.

We used an optimistic approach to estimate the potentialracg of each method.
Using the optimistic approach, both filtering and HPO sigaffitly increase the classi-
fication accuracy for all of the considered learning aldonis. Howevefiltering has a
greater potential effecbn average, increasing the classification accuracy fror@980.
to 89.1% on the observed data sets. HPO increases the awtaagdication accuracy
to 84.8%. Future work includes developing models to undasthe dependence of
the performance of learning algorithms given the instamses! for training. To better
understand how instances affect each other, we are exagiiméresults from machine
learning experiments stored in repositories that inclutieElvinstances were used for
training and their predicted clads [25,22]. We hope thatptiessented results provide
motivation for improving the quality of the training data.
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