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Abstract. Current research has introduced new automatic hyperpa-
rameter optimization strategies that are able to accelerate this opti-
mization process and outperform manual and grid or random search in
terms of time and prediction accuracy. Currently, meta-learning methods
that transfer knowledge from previous experiments to a new experiment
arouse particular interest among researchers because it allows to improve
the hyperparameter optimization.

In this work we further improve the initialization techniques for sequen-
tial model-based optimization, the current state of the art hyperparame-
ter optimization framework. Instead of using a static similarity prediction
between data sets, we use the few evaluations on the new data sets to cre-
ate new features. These features allow a better prediction of the data set
similarity. Furthermore, we propose a technique that is inspired by active
learning. In contrast to the current state of the art, it does not greedily
choose the best hyperparameter con�guration but considers that a time
budget is available. Therefore, the �rst evaluations on the new data set
are used for learning a better prediction function for predicting the simi-
larity between data sets such that we are able to pro�t from this in future
evaluations. We empirically compare the distance function by applying
it in the scenario of the initialization of SMBO by meta-learning. Our
two proposed approaches are compared against three competitor meth-
ods on one meta-data set with respect to the average rank between these
methods and show that they are able to outperform them.

1 Introduction

Most machine learning algorithms depend on hyperparameters and their opti-
mization is an important part of machine learning techniques applied in practice.
Automatic hyperparameter tuning is catching more and more attention by the
machine learning community for two simple but important reasons. Firstly, the
omnipresence of hyperparameters a�ects the whole community such that every-
one is a�ected by the time-consuming task of optimizing hyperparameters either
by manually tuning them or by applying a grid search. Secondly, in many cases
the �nal hyperparameter con�gurations decides whether an algorithm is state of
the art or just moderate such that the task of hyperparameter optimization is as



important as developing new models [2,4,13,17,20]. Furthermore, hyperparame-
ter optimization has shown to be able to also automatically perform algorithm
and preprocessing selection by considering this as a further hyperparameter [20].

Sequential model-based optimization (SMBO) [9] is the current state of the
art for hyperparameter optimization and has proven to outperform alternatives
such as grid search or random search [17,20,2]. Recent research try to improve
the SMBO framework by applying meta-learning on the hyperparameter opti-
mization problem. The key concept of meta-learning is to transfer knowledge
gained for an algorithm on past experiments on di�erent data sets to new exper-
iments. Currently, two di�erent, orthogonal ways of transferring this knowledge
exist. One possibility is to initialize SMBO by using hyperparameter con�gura-
tions that have been best on previous experiments [5,6]. Another possibility is
to use surrogate models that are able to learn across data sets [1,19,23].

We improve the former strategy by using an adaptive initialization strategy.
We predict the similarity between data sets by using meta-features and features
that express the knowledge gathered about the new data set so far. Having a
more accurate approximation of the similarity between data sets, we are able
to provide a better initialization. We provide empirical evidence that the new
features provide better initializations in two di�erent experiments.

Furthermore, we propose an initialization strategy that is based on the active
learning idea. We try to evaluate hyperparameter con�gurations that are non-
optimal for the short term but promise better results than choosing greedily the
hyperparameter con�guration that will provide the best result in expectation.
To the best of our knowledge, we are the �rst that propose this idea in context
of hyperparameter optimization for SMBO.

2 Related Work

Initializing hyperparameter optimization through meta-learning was proven to
be e�ective [5,7,15,6]. Reif et al. [15] suggests to choose those hyperparameter
con�gurations for a new data set that were best on a similar data set in the
context of evolutionary parameter optimization. Here, the similarity was de-
�ned through the distance among meta-features, descriptive data set features.
Recently, Feurer et al. [5] followed their lead and proposed the same initializa-
tion for sequential model-based optimization (SMBO), the current state of the
art hyperparameter optimization framework. Later, they extended their work
by learning a regression model on the meta-features that predicts the similarity
between data sets [6].

Learning a surrogate model, the component in the SMBO framework that
tries to predict the performance for a speci�c hyperparameter con�guration on
a data set, that is not only learned on knowledge of the new data set but ad-
ditionally across knowledge from experiments on other data sets [1,19,23,16] is
another option to transfer knowledge as well as pruning [22]. This idea is related
but orthogonal to our work and can bene�t from a good initialization and is no
replacement for a good initialization strategy.



We propose to add features based on the performance of an algorithm on a
data set for a speci�c hyperparameter con�guration. Pfahringer et al. [12] pro-
pose to use landmark features. These features are estimated by evaluating simple
algorithms on the data sets of the past and new experiment. In comparison to
our features, these features are no by-product of the optimization process but
have to be computed and hence need additional time. Even though these are sim-
ple algorithms, these features are problem-dependent (classi�cation, regression,
ranking, structured prediction all need their own landmark features). Further-
more, �simple� classi�ers such as nearest neighbors as proposed by the authors
can become very time-consuming for large data sets which are those data sets
we are interested in.

Relative landmarks proposed by Leite et al. [10] are not and cannot be used
as meta-features. They are used within the hyperparameter optimization strat-
egy that is used instead of SMBO but are similar in that way that they are
also given as a by-product and are computed using the relationship between
hyperparameter con�gurations on each data set.

3 Background

In this section the hyperparameter optimization problem is formally de�ned. For
the sake of completeness, also the sequential model-based optimization frame-
work is presented.

3.1 Hyperparameter Optimization Problem Setup

A machine learning algorithm Aλ is a mapping Aλ : D → M where D is the
set of all data sets, M is the space of all models and λ ∈ Λ is the chosen
hyperparameter con�guration with Λ = Λ1 × . . .× ΛP being the P-dimensional
hyperparameter space. The learning algorithm estimates a model Mλ ∈M that
minimizes the objective function that linearly combines the loss function L and
the regularization term R:

Aλ

(
D(train)

)
:= arg min

Mλ∈M
L
(
Mλ, D

(train)
)
+R (Mλ) . (1)

Then, the task of hyperparameter optimization is �nding the hyperparameter
con�guration λ∗ that minimizes the loss function on the validation data set i.e.

λ∗ := argmin
λ∈Λ
L
(
Aλ

(
D(train)

)
, D(valid)

)
=: argmin

λ∈Λ
fD (λ) . (2)

3.2 Sequential Model-based Optimization

Exhaustive hyperparameter search methods such as grid search are becoming
more and more expensive. Data sets are growing, models are getting more com-
plex and have high-dimensional hyperparameter spaces Sequential model-based



optimization (SMBO) [9] is a black-box optimization framework that replaces
the time-consuming function f to evaluate with a cheap-to-evaluate surrogate
function Ψ that approximates f . With the help of an acquisition function such
as expected improvement [9], sequentially new points are chosen such that a
balance between exploitation and exploration is met and f is optimized. In our
scenario, evaluating f is equivalent to learning a machine learning algorithm on
some training data for a given hyperparameter con�guration and estimate the
models performance on a hold-out data set.

Algorithm 1 outlines the SMBO framework. It starts with an observation
history H that equals the empty set in cases where no knowledge from past
experiments is used [2,8,17] or is non-empty in cases where past experiments
are used [1,19,23] or SMBO has been initialized [5,6]. First, the surrogate model
Ψ is �tted to H where Ψ can be any regression model. Since the acquisition
function a usually needs some certainty about the prediction, common choices
are Gaussian processes [1,17,19,23] or ensembles such as random forests [8]. The
acquisition function chooses the next candidate to evaluate. A common choice
for the acquisition function is expected improvement [9] but further acquisition
functions exist such as probability of improvement [9], the conditional entropy
of the minimizer [21] or a multi-armed bandit based criterion [18]. The evalu-
ated candidate is �nally added to the set of observations. After T -many SMBO
iterations, the best currently found hyperparameter con�guration is returned.

Algorithm 1 Sequential Model-based Optimization

Input: Hyperparameter space Λ, observation history H, number of iterations T , ac-
quisition function a, surrogate model Ψ .

Output: Best hyperparameter con�guration found.
1: for t = 1 to T do

2: Fit Ψ to H
3: λ∗ ← argmaxλ∗∈Λ a (λ∗, Ψ)
4: Evaluate f (λ∗)
5: H ← H∪ {(λ∗, f (λ∗))}
6: return argmin(λ∗,f(λ∗))∈H f (λ

∗)

4 Adaptive Initialization

Recent initialization techniques for sequential model-based optimization com-
pute a static initialization hyperparameter con�guration sequence [5,6]. The ad-
vantage of this idea is that during the initialization there is no time overhead
for computing the next hyperparameter con�guration. The disadvantage is that
knowledge gained during the initialization about the new data set is not used for
further initialization queries. Hence, we propose to use an adaptive initialization
technique. Firstly, we propose to add some additional meta-features generated



from this knowledge, which follows the idea of landmark features [12] and rela-
tive landmarks [10], respectively. Secondly, we apply the idea of active learning
and try to choose the hyperparameter con�gurations that will allow to learn a
precise ranking of data sets with respect to their similarity to the new data set.

4.1 Adaptive Initialization Using Additional Meta-Features

Feurer et al. [5] propose to improve the SMBO framework by an initialization
strategy as shown in Algorithm 2. The idea is to use the hyperparameter con�g-
urations that have been best on other data sets. Those hyperparameter con�g-
urations are ranked with respect to the predicted similarity to the new data set
Dnew for which the best hyperparameter con�guration needs to be found. The
true distance function d : D × D → R between data sets is unknown such that
Feurer et al. [5] propose to approximate it by d̂ (mi,mj) = ‖mi −mj‖p where

mi is the vector of meta-features of data set Di. In their extended work [6], they

propose to use a random forest to learn d̂ using training instances of the form(
(mi,mj)

T
, d (Di, Dj)

)
. This initialization does not consider the performance

of the hyperparameters con�gurations already evaluated on the new data set.
We propose to keep Feurer's initialization strategy [6] untouched and only

add additional meta-features that capture the information gained on the new
data set. Meta-features as de�ned in Equation 3 are added to the set of meta-
features for all hyperparameter con�gurations λk,λl that are evaluated on the
new data set. The symbol ⊕ denotes an exclusive or. An additional di�erence is
that now after each step the meta-features and the model d̂ needs to be updated
(before Line 2).

mDi,Dj ,λk,λl
= I

(
fDi

(λk) > fDi
(λl)⊕ fDj

(λk) > fDj
(λl)

)
(3)

We make here the assumption that the same set of hyperparameter con�gu-
rations were evaluated across all training data sets. If this is not the case, this
problem can be overcome by approximating the respective value by learning sur-
rogate models for the training data sets as well. Since for these data sets much
information is available, the prediction will be reliable enough. For simplicity,
we assume that the former is the case.

The target d can be any similarity measure that re�ects the true similarity
between data sets. Feurer et al. [6] propose to use the Spearman correlation
coe�cient while we are using the number of discordant pairs in our experiments,
i.e.

d (Di, Dj) :=

∑
λk,λl∈Λ I

(
fDi

(λk) > fDi
(λl)⊕ fDj

(λk) > fDj
(λl)

)
|Λ| (|Λ| − 1)

(4)

where Λ is the set of hyperparameter con�gurations observed on the training
data sets. This change will have no in�uence on the prediction quality for the
traditional meta-features but is better suited for the proposed landmark features
in Equation 3.



Algorithm 2 Sequential Model-based Optimization with Initialization

Input: Hyperparameter space Λ, observation history H, number of iterations T , ac-
quisition function a, surrogate model Ψ , set of data sets D, number of initial hy-
perparameter con�gurations I, prediction function for distances between data sets
d̂.

Output: Best hyperparameter con�guration found.
1: for i = 1 to I do
2: Predict the distances d̂ (Dj , Dnew) for all Dj ∈ D.
3: λ∗ ← Select best hyperparameter con�guration on the i-th closest data set.
4: Evaluate f (λ∗)
5: H ← H∪ {(λ∗, f (λ∗))}
6: return SMBO(Λ,H, T − I, a, Ψ)

4.2 Adaptive Initialization Using Active Learning

We propose to extend the method from the last section by investing few initial-
ization steps by carefully selecting hyperparameter con�gurations that will lead
to good additional meta-features and provide a better prediction function d̂. An
additional meta-feature is useful if the resulting regression model d̂ predicts the
distances of the training data sets to the new data set such that the ordering
with respect to the predicted distances re�ects the ordering with respect to the
true distances. If I is the number of initialization steps and K < I is the number
of steps to choose additional meta-features, then the K hyperparameter con�g-
urations need to be chosen such that the precision at I −K with respect to the
ordering is optimized. The precision at n is de�ned as

prec@n :=
|{n closest data sets to Dnew wrt. d}∩{n closest data sets to Dnew wrt. d̂}|

n (5)

Algorithm 3 presents the method we used to �nd the best �rst K hyperparame-
ter con�gurations. In a leave-one-out cross-validation over all training data sets
D the pair of hyperparameter con�gurations (λj ,λk) is sought that achieves the
best precision at I−K on average (Lines 1 to 7). Since testing all di�erent com-
binations ofK di�erent hyperparameter con�gurations is too expensive, only the
best pair is searched. The remaining K − 2 hyperparameter con�gurations are
greedily added to the �nal set of initial hyperparameter con�gurations Λactive as
described in Lines 8 to 15. The hyperparameter con�guration is added to Λactive
that performs best on average with all hyperparameter con�gurations chosen so
far. After choosing K hyperparameter con�gurations as described in Algorithm
3, the remaining I−K hyperparameter con�gurations are chosen as described in
Section 4.1. The time needed for computing the �rst K hyperparameter highly
depends on the size of Λ. To speed up the process, we reduced Λ to those hyper-
parameter con�gurations that have been best on at least one training data set.



Algorithm 3 Active Initialization

Input: Set of training data sets D, set of observed hyperparameter con�gurations
on D Λ, number of active learning steps K, number of initial hyperparameter
con�gurations I.

Output: List of hyperparameter con�gurations that will lead to good predictors for
d̂.

1: for i = 1 to |D| do
2: Dtest ← {Di}
3: Dtrain ← D \ {Di}
4: for all λj ,λk ∈ Λ, j 6= k do

5: Train d̂ on Dtrain using the additional feature m·,·,λj ,λk (Eq. 3)

6: Estimate the precision at I −K of d̂ on Dtest.
7: Λactive ← {λj ,λk} with highest average precision.
8: for k = 1 to K − 2 do

9: for i = 1 . . . |D| do
10: Dtest ← {Di}
11: Dtrain ← D \ {Di}
12: for all λ ∈ Λ \ Λactive do
13: Train d̂ on Dtrain using the additional features (Eq. 3) implied by Λactive∪

{λ}.
14: Estimate the precision at I −K of d̂ on Dtest.
15: Add λ with highest average precision to Λactive.
16: return Λactive

5 Experimental Evaluation

5.1 Initialization Strategies

Following initialization strategies will be considered in our experiments.

Random Best Initialization (RBI) This initialization is a very simple initializa-
tion. I training data sets from the training data sets D are chosen at random
and its best hyperparameter con�gurations are used for the initialization.

Nearest Best Initialization (NBI) This is the initialization strategy proposed by
Reif et al. and Feurer et al. [5,15]. Instead of choosing I training data sets at
random, they are chosen with respect to the similarity between the meta-features
listed in Table 1. Then, like for RBI, the best hyperparameter con�gurations on
these data sets are chosen for initialization.

Predictive Best Initialization (PBI) Feurer et al. [6] propose to learn the distance
between data sets using a regression model based on the meta-features. These
predicted distances are used to �nd the most similar data sets to the new data
set and like before, the best hyperparameter con�gurations on these data sets
are chosen for initialization.



Adaptive Predictive Best Initialization (aPBI) This is our extension to PBI
presented in Section 4.1 that adapts to the new data set during initialization by
including the features de�ned in Equation 3.

Active Adaptive Predictive Best Initialization (aaPBI) Active Adaptive Predic-
tive Best Initialization is described in Section 4.2 and extends aPBI by using
the �rst K steps to choose hyperparameter con�gurations that will result in
promising meta-features. After the �rst K iterations, it behaves equivalent to
aPBI.

Table 1. List of all meta-features used.

Number of Classes Class Probability Max
Number of Instances Class Probability Mean
Log Number of Instances Class Probability Standard Deviation
Number of Features Kurtosis Min
Log Number of Features Kurtosis Max
Data Set Dimensionality Kurtosis Mean
Log Data Set Dimensionality Kurtosis Standard Deviation
Inverse Data Set Dimensionality Skewness Min
Log Inverse Data Set Dimensionality Skewness Max
Class Cross Entropy Skewness Mean
Class Probability Min Skewness Standard Deviation

5.2 Meta-Features

Meta-features are supposed to be discriminative for a data set and can be esti-
mated without evaluating f . Many surrogate models [1,19,23] and initialization
strategies [5,15] use them to predict the similarity between data sets. For the
experiments, the meta-features listed in Table 1 are used. For an in-depth ex-
planation we refer the reader to [1,11].

5.3 Meta-Data Set

For creating the two meta-data sets, 50 classi�cation data sets from the UCI
repository are chosen at random. All instances are merged in cases there were
already train/test splits, shu�ed and split into 80% train and 20% test. A
support vector machine (SVM) [3] was used to create the meta-data set. The
SVM was trained using three di�erent kernels (linear, polynomial and Gaus-
sian) and the labels of the meta-instances were estimated by evaluating the
trained model on the test split. The total hyperparameter dimension is six,
three dimensions for indicator variables that indicates which kernel was cho-
sen, one for the trade-o� parameter C, one for the width γ of the Gaussian
kernel and one for the degree of the polynomial kernel d. If the hyperparam-
eter is not involved, e.g. the degree if the Gaussian kernel was used, it is set



to 0. The test accuracy is precomputed on a grid C ∈
{
2−5, . . . , 26

}
, γ ∈{

10−4, 10−3, 10−2, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, 50, 102, 103
}

and d ∈ {2, . . . , 10}
resulting into 288 meta-instances per data set. The meta-data sets is extended
by the meta-features listed in Table 1.

5.4 Experiments

Two di�erent experiments are conducted. First, state of the art initialization
strategies are compared with respect to the average rank after I initial hyper-
parameter con�gurations. Second, the long term e�ect on the hyperparameter
optimization is compared. Even though the initial hyperparameter con�guration
lead to good results after I results, the ultimate aim is to have good results at
the end of the hyperparameter optimization after T iterations.

We evaluated all methods in a leave-one-out cross-validation per data set.
All data sets but one are used for training and the data set not used for training
is the new data set. The results reported are the average over 100 repetitions.
Due to the randomness, we used 1,000 repetitions whenever RBI was used.
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Fig. 1. Five di�erent tuning strategies are compared. Our strategy aPBI is able to
outperform the state of the art. Our second strategy aaPBI is executed under the
assumption that it has 10 initial steps. The �rst steps are used for active learning and
hence the bad results in the beginning are not surprising.

Comparison to Other Initialization Strategies For all our experiments
10 initialization steps are used, I = 10. In Figure 1 the di�erent initialization
strategies are compared with respect to the average rank in the left plot. Our
initialization strategy aPBI bene�ts from the new, adaptive features and is able
to outperform the other initialization strategies. Our second strategy aaPBI uses
three active learning steps, K = 3. This explains the behavior in the beginning.
After these initial steps it is able to catch up and �nally surpass PBI but it
is not as good as aPBI. Furthermore, a distance function learned on the meta-
features (PBI) provides better results than a �xed distance function (NBI) which
con�rms the results by Feurer et al. [6]. All initialization strategies are able to



outperform RBI which con�rms that the meta-features contain information that
concludes information about the similarity between data sets. The right plot
shows the average misclassi�cation (MCR) rate where the MCR is scaled to 0
and 1 for each data set.

Comparison with Respect to the Long Term E�ect To have a look at
the long term e�ect of the initialization strategies, we compare the di�erent
initialization strategies in the SMBO framework using two common surrogate
models. One is a Gaussian process with a squared exponential kernel with au-
tomatic relevance determination [17]. The kernel parameters are estimated by
maximizing the marginal likelihood on the meta-training set [14]. The second
is a random forest [8]. Again, aPBI provides strictly better results than PBI
for both surrogate models and outperforms any other initialization strategy for
the Gaussian process. Our alternative strategy aaPBI performs mediocre for the
Gaussian process but good for the random forest.
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Fig. 2. The e�ect of the initialization strategies on the further optimization process in
the SMBO framework using a Gaussian process (left) and a random forest (right) as a
surrogate model is investigated. Our initialization strategy aPBI seems to be strictly
better than PBI while aaPBI performs especially well for the random forest in the later
phase.

6 Conclusion and Future Work

Predicting the similarity between data sets is an important topic for hyperpa-
rameter optimization since it allows to successfully transfer knowledge from past
experiments to a new experiment. We have presented an easy way of achieving
an adaptive initialization strategy by adding a new kind of landmark features.
We have shown for two popular surrogate models that these new features im-
prove over the same strategy without these features. Finally, we introduced a
new idea that in contrast to the current methods considers that there is a limit
of evaluations. It tries to exploit this knowledge by applying a guided exploita-
tion at �rst that will lead to worse decisions for the short term but will deliver
better results when the end of the initialization is reached. Unfortunately, the



results for this method are not fully convincing but we believe that it can be a
good idea to choose hyperparameter con�gurations in a smarter way but always
assuming that the next hyperparameter con�guration chosen is the last one.

In this work we were able to provide a more accurate prediction of the sim-
ilarity between data sets and used this knowledge to improve the initialization.
Since not only initialization strategies but also surrogate models rely on an exact
similarity prediction, we plan to investigate the impact on these models. For ex-
ample Yogatama and Mann [23] use a kernel that measures the distance between
data sets by using the p-norm between meta-features of data sets only. A better
distance function may help to improve the prediction and will help to improve
the SMBO beyond the initialization.
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