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Abstract. Machine learning processes consist in collecting data, ob-
taining a model and applying it to a given task. Given a new task, the
standard approach is to restart the learning process and obtain a new
model. However, previous learning experience can be exploited to as-
sist the new learning process. The two most studied approaches for this
are metalearning and transfer learning. Metalearning can be used for se-
lecting the predictive model to use over a determined dataset. Transfer
learning allows the reuse of knowledge from previous tasks. Our aim is
to use metalearning to support transfer learning and reduce the compu-
tational cost without loss in terms of performance, as well as the user
effort needed for the algorithm selection. In this paper we propose some
methods for mapping the transfer of weights between neural networks
to improve the performance of the target network, and describe some
experiments performed in order to test our hypothesis.

1 Introduction

Machine learning processes consist of 1) collecting training data for the new task;
2) obtaining a model; 3) applying the model to new data. This is done even when
the new task is related to one or more tasks previously solved, for example, when
there are relationships between variables or between the processes used to obtain
the models.

There are two approaches to taking advantage of previous learning experience
in new tasks: metalearning and transfer learning. Both transfer learning and
metalearning use information about a domain to learn efficiently and effectively
in a new one. Metalearning focuses on the choice of a learning algorithm and
transfer learning on experience obtained from previous tasks. This suggests that
transfer learning and metalearning may be used together.

Our aim is to investigate if metalearning can be used to support transfer
learning in tasks consisting of very diverse subtasks, reducing computational
cost without loss in predictive performance and cutting down the time data
scientists need to perform their tasks.



In this paper we describe some aspects of the state of the art in metalearning
and transfer learning. We propose some methods for mapping the transfer of
weights between neural networks and describe experiments performed to test
the hypothesis that the transfer of weights improves the results of the target
network.

2 Metalearning and Transfer Learning

This section presents the basic concepts related with our work. First we describe
metalearning, some of its methods and examples of use. After that, we present
transfer learning, its motivation, operation mode and some techniques used.
Finally, we describe some examples of the combination of metalearning and
transfer learning.

2.1 Metalearning

Metalearning aims at helping in the process of selecting a predictive algorithm
to use on a determined dataset. It also aims at taking advantage of the repetitive
use of a determined method over a set of similar tasks.

There are several applications for metalearning. It can be used in combining
base learners: using several learners together to create a composite model that
better predicts the result. Another application of metalearning is bias manage-
ment, mostly used for data streams (continuous flows of data, for example from
large and continuously growing databases) that require context adaptation due
to the fact that the domain is not static. Metalearning can also be used to trans-
fer metaknowledge across tasks. It is mostly used for the Algorithm Selection
Problem, described next.

Algorithm Recommendation Choosing the best algorithm for processing
a given dataset is a difficult process. Besides, the algorithms normally have
parameters that affect its efficiency and tuning them can be a difficult and slow
task. This constitutes the motivation for the Algorithm Selection Problem [1],
originally formulated by Rice [2].

This problem consists in determining the best algorithm to use for a certain
dataset. The metalearning approach takes advantage of information previously
obtained on several datasets and also on several algorithms. This knowledge is
used to build a metamodel that, given a new dataset, gives the system the ability
to recommend the best suited algorithm.

Earlier applications of metalearning addressed the most common tasks - clas-
sification [3], regression [4] and time series [11]. These approaches were then
extended to selecting parameter settings for a single algorithm [12], the whole
data mining process [13] and also to problems from domains other than machine
learning, e.g.: different optimization problems [14, 15]. More recently, they were
also used to deal with new problems in data mining: data streams [16].



2.2 Transfer Learning

A definition of transfer learning can be found in [17]: given a source domain DS

and a learning task TS , a target domain DT and a learning task TT , transfer
learning aims to help improve the learning of the target predictive function fT (.)
in DT using the knowledge in DS and TS , where DS 6= DT , or TS 6= TT .

Transfer learning allows the tasks and distributions used in training and
testing to be different. Here, the knowledge is transferred from one task, the
source task, to another, the target task. It is inspired in the logic used by the
human brain: the methods that allow, for example, someone to recognize pears
based on previous knowledge on recognizing apples.

Transfer learning allows algorithms to adapt to new tasks based on the knowl-
edge obtained in previous ones, and the three main research issues in this topic
are related to what, how and when to transfer.

What to transfer? This question concerns the type of information transferred
between problems: instance-transfer, where instances from the source domain are
used together with the ones on the target domain, to improve the performance
of the target model, as in TrAdaBoost [20] algorithm; feature-representation-
transfer, where a set of feature representations is extracted from the source
domain and transferred, obtaining a feature representation of the target domain
as in [21]; parameter-transfer that is done by calculating the source model, ex-
tracting its parameters and, assuming that the models for related tasks share
some parameters, transferring them to build the target model as in [22]; and
relational-knowledge-transfer, that consists in trying to transfer the knowledge
about data between the domains, as is the case of the TAMAR [23] algorithm.

How to transfer? After knowing the information that should be transferred,
the focus is on how to transfer?, that is, on the development of learning algo-
rithms to perform the transfer. For example, the DBT (Discriminability-based
transfer) algorithm [24] consists in modifying the neural network weights ob-
tained in the source classification task in order to use them on a target net-
work. In [25], a ”transfer-aware” naive Bayes classification algorithm is proposed.
In [26], first order decision trees are used for reinforcement learning, and some
tree statistics are transferred from the source to the target problem. In [27],
graph-based transferability is determined: it automatically determines the pa-
rameters to transfer between biased logistic regression tasks. The Kolmogorov
complexity between tasks is used in [28] to transfer knowledge between bayesian
decision trees. [29] introduces a context-sensitive multi task learning that helps
improving performance in neural networks for classification. In [30] the authors
use clustering to perform a feature selection to be transferred, improving the
performance of a Bayesian algorithm.

When to transfer? The last question means to know in which situations
the transfer should be performed. Ultimately, the objective is to avoid negative



transfer : when the transfer can harm the learning process in the target task.
This issue is referred in [25], where the authors wish to identify when transfer
learning will hurt the performance of the algorithm instead of improving it.

2.3 Metalearning and Transfer Learning

Some work has been performed in using metalearning together with transfer
learning. We analyzed some literature related to classification tasks that is de-
scribed next.

Metafeatures are used in [31] for calculating similarities between the datasets.
The algorithms used for this task is the k-nearest neighbors. In [32, 33] there is
no use of metafeatures, since the transfers are made without choosing the best
source dataset to use with a certain target dataset. In [32], metalearning is used
to find matrix transformations capable of producing good kernel matrices for
the source tasks. The matrices are then transferred to the target tasks.

The results are evaluated by performance measures as accuracy [33] and more
precisely by the area under the ROC curve in [31,32].

The transferred objects found on the studied papers are SVM parameter
settings in [31], the kernel matrices in [32] and the parameter function (respon-
sible for mapping statistics to parameters in ”bag-of-words” text classification
problems) in [33].

3 Mapping of variables for transfer

We now propose some methods for mapping variables for transfer and show the
results of applying the methods in some experiments, using neural networks with
three neurons on the hidden layer. The transfer is made from one variable on the
source dataset to another one on the target dataset. In a neural network each
neuron corresponds to a variable on the dataset, and has a connection to all the
neurons on the hidden layer.

The methods proposed are described next:

1. Random: the weights are randomly ordered. We repeat this 100 times and
generate 100 sets of randomly ordered weights.

2. Direct: the weights are transferred directly between corresponding variables,
when the datasets have the same structure.

3. Mapped: the weights are ordered according to some criteria:
(a) Kullback-Leibler divergence: we obtain the KL divergence between

all the attributes of the source dataset and and all the attributes of the
target dataset. The transfer is made between the attributes with smaller
divergence.

(b) Pearson, Spearman and Kendall correlations: we obtain the corre-
lation between every attribute in each dataset and its target. The transfer
is made between the attributes with the most similar correlation to the
respective target.



4 Experiments performed

Some experiments have been performed to study if the transfer of knowledge
improves the performance of an algorithm. The aim is to measure the success
of transferring the weights of a neural network learned on a source dataset to a
new neural network that will be trained on a target dataset. All the weights are
transferred, according to some mapping, and are used to initialize the network
in a non-random way. The resulting error is compared to the one obtained with
random initial weights, to assess in which cases occurs an improvement.

In the experiments, the source and target datasets may be unrelated or re-
lated (e.g. generated by the same process in different times or generated by
processes with the same structure). Weight transfer is performed from one vari-
able in the source model to one variable in the target model. The datasets used
were retrieved from UCI [34] and different experiments have been made.

4.1 Experiment 1

The objective of this experiment is to study the behavior of the transfer of
knowledge between tasks. We compared random transfer (made between ran-
domly chosen variables) with direct transfer (performed between correspondent
variables, in related datasets).

Experiment Description In this experiment, source and target datasets may
be unrelated or related (e.g. generated by the same process in different times or
generated by processes with the same structure). Weight transfer is performed
from one variable in the source model to one variable in the target model. The
mapping of variables for the transfer can be random or between corresponding
variables.

To perform this experiment the datasets used were:

1. Forest Fires
2. Concrete Compressive Strength
3. Wine Quality (red wine)
4. Challenger USA Space Shuttle O-Ring (erosion only)
5. Concrete Slump Test
6. Computer Hardware
7. Breast Cancer Wisconsin (Prognostic) (Wisconsin Breast Cancer Database)
8. Breast Cancer Wisconsin (Prognostic) (Wisconsin Prognostic Breast Cancer)
9. Parkinsons Telemonitoring

10. Communities and Crime
11. Airfoil Self-Noise
12. Buzz in Social Media (Toms Hardware)
13. Energy efficiency
14. Yacht Aerodinamics
15. Communities and Crime Unnormalized



One of the datasets used, Communities and Crime Unnormalized, has 18
target variables. It was used to generate new datasets using the same original
independent variables. These datasets are, then, related to each other. The other
datasets are, in principle, independent among themselves. All the datasets were
normalized in a preprocessing phase.

For this experiment we ran each dataset through a neural network with three
neurons in the hidden layer, using ten-fold cross-validation. First the networks
are trained with a random initial set of weights, and we measure the Mean
Squared Error,MSE = 1

n

∑n
i=1 (ŷi − yi)

2
. Then each network is trained with the

best set of weights found for the other networks and we also measure the MSE
for each network. For each network we compare the error obtained with random
initial weights (MSER) with the ones obtained with the weights transferred
from other networks (MSET ). We consider that the transfer has improved the
result when MSER is bigger than MSET .

For the unrelated datasets, the transfer was performed randomly. For the
related datasets the transfer was performed in two different ways: randomly and
also directly between corresponding variables.

Results Figures 1 to 3 show the distribution of the improvements for the ex-
periments. In the x and y axis we have the source and target datasets, respec-
tively. We calculated the number of times when transfer improves the MSE. In
these charts the color of the squares represents the number of times the trans-
fer between those datasets improved the performance on the target task: darker
squares represent a higher probability of reducing the error when using transfer
of weights.
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Fig. 1. Distribution of the number of improvements for the first variant of the experi-
ment
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Fig. 2. Distribution of the number of
improvements for the second variant of
the experiment
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Fig. 3. Distribution of the number of
improvements for the third variant of
the experiment

In Figures 2 and 3, the values inside the squares represent the Pearson Cor-
relation of the target variables for each pair of datasets.

Figure 4 shows boxplots with the distributions of improvements for the 20
runs of each variant of the experiment. This chart shows that in the first variant
the improvement is lowest. Note that datasets used in the second and third
variants of the experiment are related, unlike the ones used in the first.

A plausible cause for the last variant of the experiment being the one with
more improvements is that not only the datasets are related, but also the transfer
of weights is made directly between corresponding variables from one dataset to
another, because the structure of the neural network is the same.

The improvement obtained was near 50% for the random transfer between
unrelated datasets. This means that random transfer has the same probability
of improving the result as it has of deteriorating it. The random and direct
transfers between related datasets (with the same attributes but different target
variables) show, respectively, around 60% and 70% of improvements. This means
that the transfer between related datasets increases the probability of improv-
ing the result of a neural network. This probability increases even more when
the transfer is made directly between corresponding variables, showing that the
transfer between similar (in this case, the same) variables is advantageous.

4.2 Experiment 2

The objective of this experiment was to study the behavior of the transfer of
knowledge between similar variables, comparing it to the random transfer of
knowledge.
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Experiment description In this experiment, source and target datasets are
in principle unrelated. The datasets used were the ones considered as unrelated
on Experiment 1.

1. Concrete Compressive Strength

2. Wine Quality (red wine)

3. Challenger USA Space Shuttle O-Ring (erosion only)

4. Concrete Slump Test5

5. Airfoil Self-Noise

6. Energy efficiency6

7. Yacht Aerodynamics

Before running the experiment, the datasets were subject to a preprocessing
phase, which included the normalization. For this experiment we ran the datasets
through a neural network with three neurons in the hidden layer, using ten-fold
cross-validation.

First, the initial set of weights fed to each neural network is composed by
values generated randomly between 0 and 1. In order to outwit the randomness
of the weight generation, the whole processed is repeated 100 times for each
dataset. The dataset and weights are fed to the neural network and, using ten-
fold cross-validation, we obtain the Mean Squared Error and the Aggregated
Weights (mean of the ten sets of weights obtained from the network).

5 This dataset has 3 target variables. For this experiment only one of them was used:
SLUMP (cm).

6 This dataset has 2 target variables. For this experiment only one of them was used:
Y1.



These aggregated weights are transfered to other neural networks to try to
improve their performance. The transfer is performed in two ways: random and
mapped and the weights are fed to the neural network, together with the target
dataset. The learning process occurs and the resulting mean squared error is
saved.

The errors obtained in the first learning process (with randomly generated
weights - MSER) are compared with the ones obtained in the second learning
process (with the weights transferred from the other datasets - MSET ). For this,
we calculate: MSEO−MSET

MSEO
.

For each pair of datasets, we repeat the transfer several times: 10000×
(100×100) for random transfer and 100× for mapped transfer.

Results The chart in Figure 5 shows the probability of improving the perfor-
mance of the neural network by transferring the weights using the same dataset
as source and target.

We can see in the chart that the transfer of the same set of weights generates
more improvements than using a new random set of weights. This is because the
first is equivalent to running the neural network for twice the iterations, leading
to a better fitting of the result.

The charts in Figures 6 to 10 show the results for the different types of
mapping: random, using Kullback-Leibler divergence, Pearson, Spearman and
Kendall correlations, respectively.

For the random mapping the figure shows, in the left, the mean number of
times the transfer improves the predictions and, in the right, the histograms of
the same information, where the colors match the ones on the images on the
left: gray tones for when the transfer increases the error and the other colors for
when there is an improvement.

The same information is shown in the charts that refer to the other types of
mappings used. For these, we added a chart, in the middle, that shows the dif-
ference, in terms of improvement, between the measured mapping methods and
the random mapping method. The colors also match the ones in the histogram.

In all cases the proportion of improvements is below (but near) 50%. Our
aim is to find the proper features that allow this proportion to increase.

5 Conclusions and Future Work

We can use related variables to identify characteristics of the model that can be
transfered with the advantage of reducing the computational cost and the user
effort on the process.

In this paper we described methods for mapping the transfer of weights
between neural networks. We also show results of some experiments performed
to test the hypothesis that the transfer of weights will improve the results of the
neural network.

In the first experiment we obtained an improvement near 50% for the random
transfer between unrelated datasets and around 60% and 70% of improvements
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random and direct transfers between related datasets, respectively. This shows
that the transfer between similar datasets is advantageous, and the advantages
increase even more when the transfer is performed between similar variables.

In the second experiment, that was performed with unrelated datasets, we
obtained probabilities of improvement below (but near) 50% for all the mappings
considered. We aim to find the proper features that allow increasing this value.
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11. Prudêncio, R.B.C., Ludermir, T.B.: Meta-learning approaches to selecting time
series models. Neurocomputing 61 (2004) 121–137
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