
OptiqueVQS: Ontology-based Visual Querying

Ahmet Soylu1,2, Evgeny Kharlamov3, Dmitriy Zheleznyakov3,
Ernesto Jimenez-Ruiz3, Martin Giese1, and Ian Horrocks3

1 Department of Informatics, University of Oslo, Norway
{ahmets, martingi}@ifi.uio.no

2 Faculty of Informatics and Media Technology, Gjøvik University College, Norway
ahmet.soylu@hig.no

3 Department of Computer Science, University of Oxford, United Kingdom
{name.surname}@cs.ox.ac.uk

Abstract. Visual methods for query formulation undertake the chal-
lenge of making querying independent of users’ technical skills and the
knowledge of the underlying textual query language and the structure
of data. In this paper, we demonstrate an ontology-based visual query
system, namely OptiqueVQS, which we have been developing for end
users within a large industrial project.

Keywords: Visual Query Formulation, Ontology, Usability, SPARQL.

1 Introduction

Query interfaces play an essential role by enabling end users to express their ad
hoc information needs. In this respect, visual query systems (VQSs) primarily
undertake the challenge of making querying independent of users’ technical skills
and the knowledge of the underlying textual query language and the structure
of data. To this end, we have been developing an ontology-based visual query
system for end users, namely OptiqueVQS [1], within a large industrial project
called Optique [2]. OptiqueVQS does not use a formal notation and syntax for
query representation, but still conforms to the underlying formalism. It employs
a formal approach projecting the underlying ontology into a graph for navigation,
which constitutes the backbone of the query formulation process.

In this paper, we first demonstrate OptiqueVQS from an end-user perspective,
and then present the ontology to graph projection approach.

2 OptiqueVQS

OptiqueVQS is meant for end users who have no or very limited technical skills
and knowledge, such as on programming, databases, query languages, and have
low/no tolerance, intention, nor time to use and learn formal textual query
languages. It is not our concern to reflect the underlying formality (i.e., query
language and ontology) per se; however, user behaviour is constrained so as
to enforce the generation of valid queries. Secondly, we are not interested in
providing full expressivity in order to reach a usability-expressivity balance.

91

2.1 User Interface

The OptiqueVQS interface is designed as a widget-based user-interface mashup
(UI mashup). Apart from flexibility and extensibility, such a modular approach
provides us with the ability to combine multiple representations, interaction, and
query formulation paradigms, and distribute functionality appropriately.

Fig. 1. An example query in visual mode is depicted.

Initially, three widgets appear in OptiqueVQS as depicted in Figure 1. The
first widget (W1 – see the bottom-left part of Figure 1) is menu-based and allows
users to navigate concepts by pursuing relationships between them. The second
widget (W2 – see the bottom-right part of Figure 1) is form-based and presents
the attributes of a selected concept for selection and projection operations. W1
and W2 provide view by focusing user to the active concept and provide means
for gradual and on-demand exploration and construction. The third widget (W3
– see the top part of Figure 1) is diagram-based and provides an overview of the
constructed query and functionality for manipulation.

Typically, a user first selects a kernel concept, i.e., the starting concept, from
W1, which initially lists all domain concepts. The selected concept appears on
the graph (i.e., W3) as a variable-node and becomes the pivot/active/focus node
(i.e., the node coloured in orange or highlighted). W2 displays its attributes in the
form of text fields, range sliders, etc. The user can select attributes to be included
in the result list (i.e., using the “eye” button) and/or impose constraints on them
through form elements in W2. Currently, the attributes selected for output appear
on the corresponding variable-node with a letter “o”, while constrained attributes
appear with letter “c”. The user can further refine the type of variable-node from

OptiqueVQS: Ontology-based Visual Querying

92

Fig. 2. An example query in textual mode and result view are depicted.

W2, by selecting appropriate subclasses, which are treated as a special attribute
(named “Type”) and presented as a multi-selection combo-box form element. Note
that once there is a pivot node, W1 does not purely list concepts anymore but a
set of (sub)paths. Each item/path in W1 represents a combination of a possible
relationship with its range concept pertaining to the pivot (i.e., indeed a path of
length one). The user can select any available item from the list; this results in
a new path with a new variable-node of type specified by the selected item, a
join between the pivot and the new variable-node over the specified relationship,
and a move in focus to the new variable-node (i.e., pivoting). The user has to
follow the same steps to involve new concepts in the query and can always jump
to a specific part of the query by clicking on the corresponding variable-node in
W3. The arcs that connect variable-nodes do not have any direction, but it is
implicitly left to right. In W3, a tree-shaped query representation is employed to
avoid a graph representation for simplicity.

The user can delete nodes, access the query catalogue, save/load queries, and
undo/redo actions by using the buttons at the bottom part of W3. The user can
also switch to editable textual SPARQL mode by clicking on “SPARQL Query”
button at the bottom-right part of the W3 as depicted in Figure 2. The textual
mode enables collaboration between end users and technology experienced users.

Finally, we recently extended OptiqueVQS with two new widgets, which
provide an evidence on how a widget-based architecture allows us to hide complex
functionality behind layers and combine different paradigms. The first widget is
tabular result widget (W4 – see Figure 2). It provides an example result list from
the current query and also means for aggregation and sequencing operations.
The second widget is a map widget (W5 – see Figure 3). It allows end users to

OptiqueVQS: Ontology-based Visual Querying

93

Fig. 3. An example query with the map widget is depicted.

constrain geospatial attributes by selecting an input value from the map. For this
purpose, a button with a pin icon is placed next to every appropriate attribute.

2.2 Navigation Graph

Intuitively, OptiqueVQS allows users to construct tree-shaped conjunctive queries
where each path is of the form: Person(x), livesIn(x, y),City(y), ... Each such
path essentially ‘connects’ classes like Person and City via properties like livesIn.
At each query construction step OptiqueVQS suggests the user classes and
properties that are semantically relevant to the already constructed partial query.
We determine this relevance by exploiting the input OWL 2 ontology: we project
the input ontology onto a graph structure that is called navigation graph [3]
and use this graph at query construction time. More precisely, for each class
in the partial query OptiqueVQS suggests only those properties and classes
which are reachable in the navigation graph in one step. Note that OWL 2
ontologies are essentially sets of first-order logic axioms and thus there is no
immediate relationship between them and a graph. This makes projection of
OWL 2 ontologies onto a navigation graph a non-trivial task.

In the remaining part of this section we will formally introduce navigation
graph, define when a query is meaningful with respect to it, and finally we define
the grammar of queries that users can construct with the help of OptiqueVQS.

The nodes of a navigation graph are unary predicates and constants, and
edges are labelled with possible relations between such elements, that is, binary
predicates or a special symbol type. The key property of a navigation graph is
that every X-labelled edge (v, w) is justified by a rule or fact entailed by O ∪D

OptiqueVQS: Ontology-based Visual Querying

94

which “semantically relates” v to w via X. We distinguish three kinds of semantic
relations: (i) existential, where X is a binary predicate and (each element of) v
must be X-related to (an element of) w in the models of O ∪D; (ii) universal,
where (each instance of) v is X-related only to (instances of) w in the models of
O ∪D; and (iii) typing, where X = type, and (the constant) v is entailed to be
an instance of (the unary predicate) w. Formally:

Definition 1. Let O be an OWL 2 ontology and D a knowledge graph. A navi-
gation graph for O and D is a directed labelled multigraph G having as nodes
unary predicates or constants from O and D and s.t. each edge is labelled with
a binary predicate from O or type. Each edge e is justified by a fact or rule αe

s.t. O ∪ C |= αe and αe is of the form given next, where c, d are constants, A,B
unary predicates, and R a binary predicate:
(i) if e is c R−→ d, then αe is of the form R(c, d) or ∀y.[R(c, y)→ y ≈ d];
(ii) if e is c R−→ A, then αe is a rule of the form >(c)→ ∃y.[R(c, y) ∧A(y)] or
∀y.[R(c, y)→ A(y)];

(iii) if e is A R−→ B, then αe is a rule of the form ∀x.[A(x)→ ∃y.[R(x, y)∧B(y)]]
or ∀x, y.[A(x) ∧R(x, y)→ B(y)];

(iv) if e is A R−→ c, then αe is a rule of the form ∀x.[A(x) → R(x, c)] or
>(c)→ ∃y.[R(y, c) ∧A(y)] or ∀x, y.[A(x) ∧R(x, y)→ y ≈ c];

(v) if e is c type−−→ A, then αe = A(c).

The first (resp., second) option for each αe in (i)-(iii) encodes the existential
(resp., universal) R-relation between nodes in e; the first and second (resp., third)
options for each αe in (iv) encode the existential (resp., universal) R-relation
between nodes in e; and (v) encodes typing. A graph may not contain all justifiable
edges, but rather those that are deemed relevant to the given application.

To realise the idea of ontology and data guided navigation, we require that
interfaces conform to the navigation graph. We assume that all the following
definitions are parametrised with a fixed ontology O and a knowledge graph D.

Definition 2. Let Q be a conjunctive query. The graph of Q is the smallest
multi-labelled directed graph GQ with a node for each term in Q and a directed
edge (x, y) for each atom R(x, y) occurring in Q, where R is different from ≈.
We say that Q is tree-shaped if GQ is a tree. Moreover, a variable node x is
labelled with a unary predicate A if the atom A(x) occurs in Q, and an edge
(t1, t2) is labelled with a binary predicate R if the atom R(t1, t2) occurs in O.

Finally, we are ready to define the notion of conformation.

Definition 3. Let Q be a conjunctive query and G a navigation graph. We say
that Q conforms to G if for each edge (t1, t2) in the graph GQ of Q the following
holds:
– If t1 and t2 are variables, then for each label B of t2 there is a label A of t1

and a label R of (t1, t2) such that A R−→ B is an edge in G.

OptiqueVQS: Ontology-based Visual Querying

95

– If t1 is a variable and t2 is a constant, then there is a label A of t1 and a
label R of (t1, t2) such that A R−→ t1 is an edge in G.

– If t1 is a constant and t2 is a variable, then for each label B of t2 there is a
label R of (t1, t2) such that t1

R−→ t2 is an edge in G.
– If t1 and t2 are constants, then a label R of (t1, t2) such that t1

R−→ t2 is an
edge in G.

OptiqueVQS allows to construct conjunctive tree-shaped queries. The gen-
eration is done via reasoning over the navigation graph which contain edges of
types (iii)-(v) (see Definition 1).

Now we describe the class of queries that can be generated using OptiqueVQS
and show that they conform to the navigation graph underlying the system. First,
observe that the OptiqueVQS queries follow the following grammar:

query ::= A(x)(∧ constr(x))∗(∧ expr(x))∗

expr(x) ::= sug(x, y)(∧ constr(x))∗(∧ expr(y))∗

constr(x) ::= ∃yR(x, y) | R(x, y) | R(x, c)
sug(x, y) ::= Q(x, y) ∧A(y)

where A is an atomic class, R is an atomic data property, Q is an object property,
and c is a data value. The expression of the form A(∧ B)∗ designates that
B-expressions can appear in the formula 0, 1, and so on, times. An OptiqueVQS
query is constructed using suggestions sug and constraints constr, that are
combined in expressions expr. Such queries are conjunctive and tree-shaped. All
the variables that occur in classes and object properties are output variables and
some variables occurring in data properties can also be output variables.

3 Conclusion

OptiqueVQS enables non-experienced users to formulate comparatively complex
queries at a conceptual level. The future work includes implementation of more
features without compromising the usability, such as optionals.

Acknowledgements. This research is funded by “Optique” (EC FP7 318338),
as well as the EPSRC projects Score!, DBOnto, and MaSI3.

References

1. Soylu, A., et al.: Experiencing OptiqueVQS: a multi-paradigm and ontology-based
visual query system for end users. Universal Access in the Information Society (in
press)

2. Giese, M., et al.: Optique: Zooming in on Big Data. IEEE Computer Magazine
48(3) (2015)

3. Arenas, M., et al.: Faceted Search over Ontology-Enhanced RDF Data. In: CIKM’14.
(2014)

OptiqueVQS: Ontology-based Visual Querying

96

