
An Autocomplete Input Box for
Semantic Annotation on the Web

Tuan-Dat Trinh, Peter Wetz, Ba-Lam Do,
Peb Ruswono Aryan, Elmar Kiesling, and A Min Tjoa

TU Wien, Vienna, Austria
{tuan.trinh,peter.wetz,ba.do,

peb.aryan,elmar.kiesling,a.tjoa}@tuwien.ac.at

Abstract. A large share of websites today allow users to contribute and
manage user-generated content. This content is often in textual form and
involves names, terms, and keywords that can be ambiguous and diffi-
cult to interpret for other users. Semantic annotation can be used to
tackle such issues, but this technique has been adopted by only a few
websites. This may be attributed to a lack of a standard web input com-
ponent that allows users to simply and efficiently annotate text. In this
paper, we introduce an autocomplete-enabled annotation box that sup-
ports users in associating their text with DBpedia resources as they type.
This web component can replace existing input fields and does not re-
quire particular user skills. Furthermore, it can be used by semantic web
developers as a user interface for advanced semantic search and data pro-
cessing back-ends. Finally, we validate the approach with a preliminary
user study.

1 Introduction

The interaction paradigm on the world wide web has changed dramatically in re-
cent years. Users are no longer limited to receiving information passively; rather,
they often create and manage their own textual content. A lot of such user-
generated content is in raw text format, which is typically entered via input
fields (e.g., via the html textarea element). In various contexts, users find it diffi-
cult to understand each others’ terms and expressions due to language ambigui-
ties and inconsistent terminology. Adding annotations such as names, attributes,
comments, descriptions, etc. to a selected part of the text allows users to more
explicitly express semantics and increase the precision of the statements made.

TripAdvisor1, for instance, provides more than 200 million traveler-created
reviews, opinions, and photos of tourist attractions and accommodations. Many
travelers use TripAdvisor to obtain information on points of interest such as
parks, museums, historic buildings, streets, etc. To make decisions about what
places to visit and to plan a trip, travelers spend a lot of time in search for
additional information on interesting places. This search for context information

1 http://www.tripadvisor.com/ (accessed 20 July 2015)

97



could be much more efficient if concepts in travel-related text were associated
with the respective DBpedia content. We will illustrate some travel-related use
cases in Section 3.

Although annotations can clarify meaning, provide a context for textual de-
scriptions, and hence facilitate search and automatic data processing, most web-
sites currently do not use them. This can at least partly be explained by the
lack of a suitable input component that can easily be integrated into existing
web sites. In this paper, we introduce a simple to use autocomplete-enabled an-
notation box as a replacement for traditional HTML textarea. Using this box,
users can quickly and easily enrich selected text with semantic annotations (i.e.,
DBpedia resources). The component is written in Java Script and can easily be
integrated by developers into their websites.

The remainder of this paper is organized as follows. We introduce the anno-
tation box and its implementation and workflow in Section 2. Section 3 analyzes
how users and developers can benefit from the features provided by the box, and
Section 4 presents our user study to validate the approach. Finally, we discuss
related work and draw conclusions in section 5.

2 Autocomplete Text Annotation

Fig. 1: Autocomplete-enabled annota-
tion box

Our annotation input box looks and
behaves similar to a standard HTML
text input. Behind the user interface,
however, there is a small processor
that allows users to quickly anno-
tate text. To create an annotation,
users invoke the processor by press-
ing Ctrl + Space. Next, the proces-
sor uses the selected words to gener-
ate a query that returns a list of rel-
evant resources (cf. Fig. 1). Users can
then select an item from the results
to associate their word with the re-
spective resource. To annotate a com-
pound word, users select and highlight related words and press Ctrl + Space.

To provide suitable suggestions, we need a common dataset to look up re-
sources from the given text. Because the expected user content and accompa-
nying contexts are arbitrary, the dataset used should cover various domains. To
query for related resources, we therefore use DBpedia [1], which can be consid-
ered the central hub of the LOD cloud.

From a Wikipedia page we can obtain the corresponding DBpedia resource
and vice versa. For instance, the matching DBpedia resource for https://en.wiki-
pedia.org/wiki/Swimming pool is http://dbpedia.org/resource/Swimming pool. As
a consequence, we can use either DBpedia or Wikipedia APIs to look up and
suggest resources from the given text to users. Available options are (i) DBpedia

An Autocomplete Input Box for Semantic Annotation on the Web

98



Lookup2, (ii) DBpedia Faceted Search3, (iii) Wikidata API4, (iv) and Wikipedia
API5. We performed an informal evaluation in order to decide which of these
APIs supports us in finding relevant LOD resources. As a result of our experi-
ments, we decided to use the Wikipedia API. We found that compared to the
others, this API responds faster and returns more relevant resources.

The annotation box is an HTML5 div area whose editableContent attribute
is set to true. To enforce compatibility with various browsers, we had to deal
with a number of technical challenges. For example, when we edit the text and
press enter to go from one line to the next, Firefox will add a br element to the
div, while Internet Explorer and Chrome use p and a sub div, respectively. We
also needed to standardize the final content of the box so that it can be saved
consistently into a data base. It consists of div elements where each represents
a line in the box; each div element contains only span and a elements for un-
annotated and annotated text, respectively. This structure allows developers
to easily extract DBpedia resources from the input content to perform further
processing in the back-end. Other implementation challenges were: (i) The box
processor needs to calculate the correct location of the text cursor in pixels
to present the resource list at a reasonable position (i.e., right below the first
character of the selected word). (ii) Allowing to replace selected text by the
selected link leading to the desired LOD resource.

3 Benefits of the Annotation Box

The annotation box supports two major use cases: (i) to replace HTML text
controls in a data input form, and (ii) to be used as a search box – an element
often required on web pages. In both cases, it reduces the ambiguity of natural
language text and helps the processor (i.e., the back-end of websites) or other
users to correctly understand a term.

Annotations associated with text lay the foundation for automatic data pro-
cessing in the back-end. Suppose that TripAdvisor makes use of our annotation
box; it could then easily extract annotated geographic places, historic buildings,
parks, or museums from users’ collected comments and reviews. This would, for
instance, make it possible to perform evaluations on the popularity of these en-
tities in different seasons of the year. The knowledge gained in the process could
be used to automatically suggest users the best time period to travel to a given
city, or list the most popular places that travelers should visit.

Moreover, the box facilitates search. It enhances precision of the result, be-
cause besides text matching, it allows for LOD resource mappings in the back-end
by leveraging owl:sameAs properties.

A website equipped with annotation boxes is capable of performing queries
on top of LOD resources. For example, if every geographic place listed in the

2 https://github.com/dbpedia/lookup (accessed 20 July 2015)
3 http://dbpedia.org/fct/ (accessed 20 July 2015)
4 https://www.wikidata.org/w/api.php (accessed 20 July 2015)
5 https://en.wikipedia.org/w/api.php (accessed 20 July 2015)

An Autocomplete Input Box for Semantic Annotation on the Web

99



travel guides of a city would be associated with DBpedia resources, we can access
these resources and get the construction year of each place. From that, we can
calculate the average age of every city spot mentioned in a travel guide. Assume
that a traveler visits the TripAdvisor website to find a city in a country to visit.
We can then ask users for their preference (i.e., modern or antique city) to infer
and recommend the most appropriate place for them.

Finally, the annotation box is simple to use. It requires no additional technical
expertise, and takes end users only a few seconds to enrich their words with
DBpedia resources. Developers can replace the traditional HTML input with the
annotation box and empower the back-end with intelligent search and automatic
data processing. The box is written in JavaScript and published on GitHub6.

4 User Study

We conducted a small-scale user study to evaluate the annotation box. We chose
eight subjects aged between 25 and 35; all generally spend at least one hour
per day on the internet and can be characterized as being experienced in work-
ing with computers. We explained to the subjects how words can be annotated
by using the box. After that, we asked the subjects to perform three tasks of
increasing complexity as follows. (i) Simple annotation. The subjects annotate
predefined text, that is: “Vienna is the capital of Austria”. As they type, they are
asked to annotate Vienna and Austria with the respective Wikipedia resources.
(ii) Compound word annotation. We present the subjects a predefined sentence,
that is “Do not confuse it with another Vienna, which is a town in Virginia,
United States”. They are asked to annotate two single words (i.e., Vienna and
Virginia) and a compound word (i.e., United States). (iii) Single and compound
word annotation. The subjects are asked to annotate all places mentioned in the
following sentence: “When travelling to Vienna, Austria, we visited Rathaus,
Graben, St. Stephen’s Cathedral, Vienna Ring Road, Hundertwasserhaus, Hof-
burg Palace, Schönbrunn Palace, Belvedere, Naschmarkt”. If some place is not
available in the list containing suggested annotations, the subjects should man-
ually search and tie the Wikipedia link to the text.

Fig. 2 and 3 show the results of the experiment. While the first two tasks
are designed to help the subjects getting used to the box, we mainly use the
third to evaluate the usability of the box. It contains eleven terms needed to
annotate. The subjects needed 138 seconds on average to complete this task,
which means they spent 12.5 seconds per term. Most of the spent time is used
for locating the relevant resources. The task completion time plot leads us to the
conclusion that adding annotations to text can be done with little effort even
for a high number of annotations. Moreover, the time needed for completing the
tasks does not vary significantly between the subjects, indicating that the process
of creating annotations is efficient and straightforward. The subjects typically
made one mistake in the second task as they confused Vienna, Austria with

6 https://github.com/datsat/Annotating-Box (accessed 20 July 2015)

An Autocomplete Input Box for Semantic Annotation on the Web

100



0
25
50
75

100
125
150
175

Task 1 Task 2 Task 3

Ta
sk

 c
o

m
p

le
ti

o
n

 t
im

e 
(s

ec
o

n
d

s)

Fig. 2: Task completion time

0

20

40

60

80

100

Task 1 Task 2 Task 3

C
o

rr
ec

t 
ra

te
 (

%
)

Fig. 3: Median correct rate

Vienna, USA. This can be seen in the bar chart for Task 2 where the median of
correct annotations is at 67%. For the other tasks the median is at 100%.

At the end of the experiment, we asked the subjects to fill out a questionnaire
in order to get feedback on the usability experience. They agreed that the box is
relatively easy to use, but it would be easier if they could initiate the annotation
process by right clicking or by pressing a single key. They also suggested to
improve the process of locating resources which are not in the suggestion list.
For instance, they would prefer not having to manually search and add the
link to the text. The subjects enjoyed reading the annotations as it provided
them additional information. However, they would only add annotations to their
posts if it is really necessary, because it requires time and effort. All in all the
results of this preliminary user study validate the efficiency and usability of the
annotation box. Based on the feedback, we plan to further improve its usability
and functionality.

5 Related Work and Conclusion

In the semantic web community semantic annotation has been an active field
of research for several years. Semantic annotation describes a more granular
approach than the tagging or the use of folksonomies [3] (i.e., a system of clas-
sification derived from collaborative or social tagging). The latter approaches
assign keywords or terms to a whole document, speeding up search and helps
us to find relevant and precise information. In contrast, semantic annotation
enriches a word or a part of a document with context that is further linked to
structured knowledge (e.g., a DBpedia page that provides information on a re-
source). Annotations are more informative than tags and allow to show results
that are not explicitly related to the original search.

RDFace7 is an online RDFa content editor that uses existing semantic web
APIs to help users manage and embed RDFa contents to a web article. Users
can manually add a triple, or simply select one or more NLP APIs to per-
form automatic named entity extraction [2]. Compared to enriching text with
LOD resources using our annotation box, RDFa annotation requires specialized
knowledge, meaning that users need to be familiar with semantic web concepts.

7 http://wiki.aksw.org/Projects/RDFaCE (accessed 20 July 2015)

An Autocomplete Input Box for Semantic Annotation on the Web

101



RDFace is appropriate for skilled users in a web content management system;
However, it is not relevant for general users to quickly create simple web content
(e.g., comments or posts). WYMeditor8 is another WYSIWYM (What-You-See-
Is-What-You-Mean) tool that allows for editing RDFa content; the functionality,
however, seems not to be complete and development is already discontinued.

PoolParty thesaurus 9 is an example for a similar product that is already
commercially available. It is a WordPress plugin that allows users to import a
controlled vocabulary or retrieve a thesaurus from a SPARQL endpoint. It au-
tomatically analyzes a post to find words and phrases that match labels of a
concept in the thesaurus. When hoovering annotated texts it displays respective
tooltips. PoolParty also developed similar plugins for SharePoint and Drupal.
The differences between PoolParty and our annotation box are: (i) PoolParty
employs a high-level thesaurus whereas our box makes use of DBpedia resources.
(ii) PoolParty only annotates text that matches limited concepts of the thesaurus
whereas we annotate arbitrary text to DBpedia resources. (iii) We focus on real-
time annotating while PoolParty annotates the whole text content after it is
created. (iv) Because of the large number of DBpedia resources, we support
manual annotating to enhance precision; the autocomplete feature will com-
pensate the annotating time. Meanwhile, PoolParty implements an automatic
approach where text is annotated without users interaction.

The idea of an autocomplete annotation box can also be found in services such
as Facebook10, ChatGrape11 or Slack12. Users, when inputting text for a post or
a chat message, can link text to resources such as friends, cloud documents, or
calendar entries. However, these applications and their input boxes do not make
use of semantic annotation; the added context is limited to their own resources.

To conclude, in this paper, we introduce an autocomplete-enabled annotation
web component that can replace html text input areas. It enriches user-generated
content with annotations of DBpedia resources to facilitate use cases such as
semantic search and automatic data processing in the back-end.

References

1. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: Dbpedia - A large-
scale, multilingual knowledge base extracted from wikipedia. Semantic Web 6(2),
167–195 (2015)

2. Mihalcea, R., Csomai, A.: Wikify!: Linking Documents to Encyclopedic Knowledge.
In: Proceedings of the 16th ACM Conference on Information and Knowledge Man-
agement. pp. 233–242. CIKM ’07, ACM, New York, NY, USA (2007)

3. Peters, I., Becker, P.: Folksonomies: Indexing and Retrieval in Web 2.0. Knowledge
& information : studies in information science, De Gruyter/Saur (2009)

8 http://wymeditor.github.io/wymeditor/ (accessed 20 July 2015)
9 https://wordpress.org/plugins/poolparty-thesaurus/ (accessed 20 July 2015)

10 https://facebook.com/ (accessed 20 July 2015)
11 https://chatgrape.com/ (accessed 20 July 2015)
12 https://slack.com/ (accessed 20 July 2015)

An Autocomplete Input Box for Semantic Annotation on the Web

102


