
11th International Workshop on Scalable Semantic

Web Knowledge Base Systems (SSWS 2015)

At the 14th International Semantic Web Conference (ISWC2015),
Bethlehem, PA, USA October, 2015

SSWS 2015 PC Co-chairs’ Message

SSWS 2015 is the eleventh edition of the successful Scalable Semantic Web Knowledge Base Systems
workshop series. The workshop series is focussed on addressing scalability issues with respect to
the development and deployment of knowledge base systems on the Semantic Web. Typically, such
systems deal with information described in Semantic Web languages such as OWL and RDF(S),
and provide services such as storing, reasoning, querying and debugging. There are two basic re-
quirements for these systems. First, they have to satisfy the applications semantic requirements by
providing sufficient reasoning support. Second, they must scale well in order to be of practical use.
Given the sheer size and distributed nature of the Semantic Web, these requirements impose addi-
tional challenges beyond those addressed by earlier knowledge base systems. This workshop brought
together researchers and practitioners to share their ideas regarding building and evaluating scalable
knowledge base systems for the Semantic Web.

This year we received 6 submissions. Each paper was carefully evaluated by three workshop
Program Committee members. Based on these reviews, we accepted 5 papers for presentation. We
sincerely thank the authors for all the submissions and are grateful for the excellent work by the
Program Committee members.

October 2015 Thorsten Liebig
Achille Fokoue

Program Committee

Achille Fokoue
IBM Watson Research Center, USA

Raúl Garćıa-Castro
Univ. Politecnica de Madrid, Spain

Bernado Cuenca Grau
University of Oxford, UK

Volker Haarslev
Condordia University, Canada

Anastasios Kementsietsidis
Google Research, Mountain View, USA

Pavel Klinov
Complexible Inc., USA

Adila A. Krisnadhi
Wright State University, Ohio, USA

Thorsten Liebig
derivo GmbH, Germany

Raghava Mutharaju
Wright State University, Ohio, USA

Padmashree Ravindra
North Carolina State University, USA

Mariano Rodŕıguez-Muro
IBM Watson Research Center, USA

Boris Motik
University of Oxford, UK

Supriyo Chakaraborty
IBM Watson Research Center, USA

Takahira Yamaguchi
Keio University, Japan

Additional Reviewers

Zixi Quan
Condordia University, Canada

III

Table of Contents

Invited Talk: Making a Silk Purse . 1
David Mizell

The OWL Reasoner Evaluation (ORE) 2015 Competition Report . 2
Bijan Parsia, Nicolas Matentzoglu, Rafael Gonalves, Birte Glimm, and Andreas
Steigmiller

On the Evaluation of RDF Distribution Algorithms Implemented over Apache Spark 16
Olivier Cur, Hubert Naacke, Mohamed-Amine Baazizi, and Bernd Amann

Reifying RDF: What Works Well With Wikidata? . 32
Daniel Hernndez, Aidan Hogan, and Markus Krtzsch

Dynamic join order optimization for SPARQL endpoint federation . 48
Hongyan Wu, Atsuko Yamaguchi, and Jin-Dong Kim

Parallel Data Loading during Querying Deep Web and Linked Open Data with SPARQL . . . 63
Pauline Folz, Gabriela Montoya, Hala Skaf-Molli, Pascal Molli, and Maria-Esther
Vidal

Invited Talk: Making a Silk Purse

David Mizell

Cray Inc., USA

Abstract. In this talk, I’ll tell the history of the development of ”Urika”, Cray’s supercomputer-
based SPARQL query engine, from my point of view as the original prototyper and one of
the developers ever since. Urika evolved from some experimental ”lock-free synchronization”
prototypes in 2008 to a full-blown ”appliance” product in 2012. I’ll describe this evolution,
going into detail on some of the technical decisions we made, relate some of the product
decisions the suits made, and speculate on what we think the future may hold.

1

The OWL Reasoner Evaluation (ORE) 2015
Competition Report

Bijan Parsia, Nicolas Matentzoglu, Rafael Gonçalves, Birte Glimm, and
Andreas Steigmiller

{bijan.parsia, nicolas.matentzoglu}@manchester.ac.uk, rafael.goncalves@stanford.edu,
{birte.glimm, andreas.steigmiller}@uni-ulm.de

Abstract. The OWL Reasoner Evaluation (ORE) Competition is an
annual competition (with associated) workshop which pits OWL 2 com-
pliant reasoners against each other on various standard reasoning tasks
against corpora. The 2015 competition was the third of its sort and had
14 reasoners competing in 6 tracks comprising 3 tasks (consistency, clas-
sification, and realisation) over two profiles (OWL 2 DL and EL). In
this paper, we discuss the design, execution and results of the 2015 com-
petition with particular attention to lessons learned for benchmarking,
comparative experiments, and future competitions.

1 Introduction

The Web Ontology Language (OWL) is in its second iteration (OWL 2) and
has seen significant adoption especially in the Health Care and Life Sciences.
OWL 2 DL can be seen as a variant of the description logic SROIQ with the
various other profiles being either subsets (e.g., OWL 2 EL) or1 extensions (e.g.,
OWL 2 Full). Description logics generally are designed to be computationally
practical so that, even if they do not have tractable worst-case complexity for
key services, they nevertheless admit implementations which seem to work well
in practice [2]. Unlike the early days of description logics or even of the direct
precursors of OWL (DAML+OIL), the reasoner landscape [17, 8] for OWL is rich,
diverse, and highly compliant with the OWL spec. Thus, we have a large number
of high performance, production quality reasoners with similar core capacities
(with respect to language features and standard inference tasks).

Research on optimising OWL reasoning continues apace, though empirical
work still lags theoretical and engineering work in breath, depth, and sophisti-
cation. There is, in general, a lack of shared understanding of test cases, test
scenarios, infrastructure, or experiment design. A common strategy in research
communities to help address these issues is to hold competitions, that is, experi-
ments designed and hosted by third parties on an independent (often constrained,
but sometimes expanded) infrastructure. Such competitions (in contrast to pub-
lished benchmarks) typically do not directly provide strong empirical evidence

1 Some related standardised logics are subsets and extensions (e.g., RDFS) which are
proper subsets of OWL 2 Full.

2

about the competing tools. Instead, they serve two key functions: 1) they provide
a clear, motivating event that helps drive tools development (e.g., for correctness
or performance) and 2) components of the competition are useful for subsequent
research. Finally, competitions can be great fun and help foster a strong commu-
nity. They can be especially useful for newcomers by providing a simple way to
gain some prima facie validation of their tools without the burden of designing
and executing complex experiments themselves.

Toward these ends, we have been running a competition for OWL reasoners
(with an associated workshop): The OWL Reasoner Evaluation (ORE) compe-
tition. ORE has been running, in substantively its current form, for three years
and in this paper we describe the 2015 competition (held in conjunction with
the 28th International Description Logic Workshop (DL2015)2 in June 2015).

2 Competition Design

The ORE competition is inspired by and modelled on the CADE ATP System
Competition (CASC) [14, 22] which has been running for 25 years and been
heavily influential in the automated theorem proving community3 (esp. for first
order logic).

Key common elements:

1. A number of distinct tracks/divisions/disciplines characterised by problem
type (e.g., “effectively propositional” or “OWL 2 EL ontology”).

2. The test problems are derived from a large, neutral, updated yearly set of
problems (e.g., for CASC, the TPTP library [21]).

3. Reasoners compete (primarily) on number of problems solved with a tight
per problem timeout.

As description logics have a varied set of core inference services supported by
essentially all reasoners, ORE also has track distinctions based on task (e.g.,
classification or realisation). Other CASC inspired elements:

1. ORE 2015 consisted entirely of a “live” competition run during the DL
workshop.

2. There was a secondary competition among DL attendees to predict the re-
sults for various reasoners.

3. Competitors and organisers were given custom designed t-shirts.

We observe that central to such competitions is participation, thus various
incentives to participate are critical especially in the early years of the competi-
tion as it is trying to get established. Hence the importance of “fun” elements,
incentives (e.g., prizes, bragging rights), as well as a reasonable chance of winning
at least something.

2 The websites for DL2015 and ORE2015 are archived at http://dl.kr.org/dl2015/
and https://www.w3.org/community/owled/ore-2015-workshop respectively.

3 See the CASC website for details on past competitions: http://www.cs.miami.edu/

~tptp/CASC/. Also of interest, though not directly inspirational for ORE, is the SAT
competition http://www.satcompetition.org//

3

2.1 Tracks

ORE 2015 had 6 tracks based on three central reasoning services (consistency,
classification, and realisation) and two OWL profiles (OWL 2 DL and EL). Clas-
sification is, almost certainly, the most common and important reasoning service
for ontologies to date. Consistency is, in some sense, the most fundamental ser-
vice. Realisation gets us at least a minimal form of instance reasoning. These
services are not ubiquitously supported, with realisation not handled by some
reasoners. These have standard definitions (though any consequence equivalent
definition would do):

– An ontology O is consistent if O 6|= > v ⊥ and inconsistent otherwise.
– The classification of an ontology O (Cl(O)) is {α|α = A v B;A,B ∈ Nc ∪

{⊥,>};O |= α} where Nc is the set of class names in O.
– The realisation of an ontology O (Rl(O)) is {α|α = A(x);x ∈ Ni, A ∈
Nc;O |= α} where Nc is the set of class names, Ni is the set of individual
names in O.

We split out a track into a tractable profile when we have enough participants
which are specifically tuned for that profile. In prior years we have had an RL
and QL track, but the number of RL and QL specific reasoners is very low.
We believe this is, in part, due to the fact that RL and QL users tend to be
conjunctive query oriented. We hope to introduce a conjunctive query track
in future years, but see the discussion below for some of the challenges there.
All reasoners purporting to handle the entirety of OWL 2 DL are entered in all
tracks. Thus we have specialised EL reasoners competing against complete OWL
DL reasoners.

For each track, we award prizes to the top three participants for a total of
18 possible winners.

2.2 Corpus

The full competition corpus contains 1,920 ontologies, sampled from three source
corpora: A January 2015 snapshot of Bioportal [12] containing 330 biomedical
ontologies, the Oxford Ontology Library4 with 793 ontologies that were collected
for the purpose of ontology related tool evaluation and MOWLCorp [7], a cor-
pus based on a 2014 snapshot of a Web-Crawl containing around 21K unique
ontologies. Each competition comes with its own random stratified sample of on-
tologies from this base corpus - this means that not all 1,920 ontologies actually
made it into the live competition. Ontology processing was done using the OWL
API (3.5.1) [4].

As a first step, the ontologies of all three source corpora were collected and
serialised into OWL/XML with their imports closure merged into a single ontol-
ogy. The merging is, from a competition perspective, necessary to mitigate the
bottleneck of loading potentially large imports repeatedly over the network and

4 http://www.cs.ox.ac.uk/isg/ontologies/

4

because the hosts of frequently imported ontologies sometimes impose restric-
tions on the number of simultaneous accesses.5 After the collection, the entire
pool of ontologies is divided into three groups: (1) Ontologies with less than 50
axioms, (2) OWL 2 DL ontologies, (3) OWL 2 Full ontologies. The first group is
removed from the pool. As reasoner developers may chose to tune their reasoners
towards the ontologies in the three publicly available source corpora, we included
a number of approximations into our pool. The entire set of OWL 2 Full ontolo-
gies was approximated into OWL 2 DL, i.e., we used a (slightly modified) version
of the OWL API Profile checker to drop enough axioms so that the remainder is
in OWL 2 DL. As some degree of OWL Fullness comes from illegal axiom interac-
tion,6 we repeated the “DLification” process twice. The OWL DL group was then
approximated into OWL 2 EL and OWL 2 QL, using the approximation method
employed by TrOWL [15]. As the only syntax that is uniformly supported by
all reasoners participating the competition, we then serialised the current pool
(including the original OWL 2 DL ontologies, the EL/QL-approximated ontolo-
gies and the “DLified” OWL 2 Full ontologies) into Functional Syntax, and
gathered all relevant ontology metrics again. As some ontologies are included in
more than one of the source corpora, we excluded at this point (as a last pre-
processing step) all duplicates from the entire pool of ontologies and removed
ontologies with TBoxes containing less than 50 axioms. This left us with the
full competition dataset of 1,920 unique OWL 2 DL ontologies. The random
stratified sampling for the competition then was done as follows: All ontologies
were binned by size into the following groups: Very small (50-99 axioms), small
(100-999 axioms), medium (1,000-9,999 axioms), large (10,000-100,000 axioms)
and very large (more than 100,000 axioms). From each group, we attempted to
sample 60 original ontologies, and 15 approximated ones for each competition.
For the OWL 2 EL related track, the ontologies had to fall under the OWL 2 EL
profile, for the OWL 2 DL competition the ontologies had to fall under OWL 2
DL but not under any of the three OWL 2 profiles, and for the two realisation
challenges we only considered those ontologies that had at least 100 ABox ax-
ioms. This process resulted in the following six live competition corpora: 109 for
OWL 2 EL realisation, 298 for OWL 2 EL classification and consistency, 264 for
DL realisation and 306 for DL consistency and classification.

Figures 1 and 2 show the ontology sizes in terms of axiom counts and the
usage of constructs through the corpus.

The full competition corpus, and the execution order of the competition, can
be obtained from Zenodo [9].

5 Which may be exceeded considering that all reasoners in the competition run in
parallel.

6 For example, an added declaration might introduce an illegal punning.

5

classification consistency instantiation

0

10

20

30

0

10

20

30

el
pure_dl

1000 100000 1000 100000 1000 100000
TBox size

co
un

t
classification consistency instantiation

0

10

20

30

0

10

20

30

el
pure_dl

10 1000 100000 10000000 10 1000 100000 10000000 10 1000 100000 10000000
ABox size

co
un

t

Fig. 1. Ontology size distribution of the full competition corpus.

Fig. 2. Ontology size distribution of the full competition corpus.

2.3 Test Framework and Environment

The test framework used in ORE 2015 is a slightly modified version of the one
used for ORE 2014 which is open sourced under the LGPL and available on
Github.7

The framework takes a “script wrapper” approach to running reasoners in-
stead of, for example, requiring all reasoners to use (a specific version of) the
OWL API. While this puts some extra burden on established reasoners with good
OWL API bindings this, combined with the requirement only to handle some
OWL 2 standard syntax (with the very easy to parse and serialise Functional
Syntax [11] as a fairly common choice), makes it very easy for new reasoners
to participate even if they are written in hard-to-integrate with the JVM lan-
guages. The OWL API also is a very rich and rather heavyweight framework that
is not tightly integrated with most reasoners. For example, systems using the
OWL API generally consume more memory because they maintain the OWL
API level representation of the ontology and the reasoner internal one. Thus,
avoiding the OWL API can help competition performance. However, there is a
standard script for OWL API based reasoners so it is fairly trivial to prepare an
OWL API wrapped reasoner for competition.

7 https://github.com/andreas-steigmiller/ore-2014-competition-framework/.
A detailed description of the framework and how to run it is available there.

6

However, this is not necessarily a desirable outcome as encouraging reasoners
to provide good OWL API support (thus supporting access to those reasoners
by the plethora of tools which use the OWL API) is an outcome we want to
encourage.

Reasoners report times, results, and any errors through the invocation script.
Times are in wall clock time (CPU time is inappropriate because it will penalise
parallel reasoners) and exclude “standard” parsing and loading of problems (i.e.,
without significant processing of the ontology). The framework enforces (config-
urable) timeouts for each reasoning problem. Results are validated by comparison
between competitors with a majority vote/random tie breaking fallback strategy.
Note, unlike CASC, we do not require reasoners to produce proofs of their re-
sults as this is not a standard feature of description logic reasoners and for many
services (such as classification) it may be impractical. We are however experi-
menting with a more satisfactory justification-based technique for disagreement
resolution [6] for future competitions.

The framework supports both serial and parallel execution of a competition.
Parallel distributed mode is used for the live competition but serial mode is
sufficient for testing or offline experiments. The framework also logs sufficient
information to allow “replaying” the competition and includes scripts for a com-
plete replay as well as jumping to the final results.

The competition was run on a cluster of 19 machines: 1 master machine
that dispatched reasoners with problems to the 18 client machine as well as
collecting and serving up results to a live display. Each machine sported an
Intel Xeon 4-Core L5410 running at 2.33GHz with 12GB of RAM, for which
2GB were reserved for the operating system (i.e., 10GB could be used by the
reasoners). The operating system was Ubuntu 14.04.02 LTS and the Java version
was OpenJDK v1.7.0 64-bit. The reasoner execution was limited to 180s for
each ontology in each track, where only 150s were allowed for reasoning and 30s
could additionally be used for parsing and writing results in order to reduce the
penalisation of reasoners with slow parsers. Hence, only if the time reported by
the reasoner exceeded 150s was it interpreted as a timeout.

3 Participants

There were 14 reasoners participating with 11 purporting to cover OWL 2 DL
and 3 being OWL EL specific, see Table 1. There is no specific penalty or test
for being incomplete with respect to a profile and, indeed, one reasoner, TrOWL
is intentionally incomplete for performance reasons.

The number of participants is fairly stable over the past three years ranging
from 11 to 14. There is a stable core of participants with some fluctuation on the
margin. Some reasoners are not entered by their original developers (e.g., Pellet)
and ORE currently has no policy against that. We anticipate in the future that
more coalition reasoners will be made available, though currently only MORe
and Chainsaw use component reasoners (ELK and HermiT the former, FaCT++
the latter) which are also competing. MORe’s coalition involves partitioning the

7

ontology into an EL and DL part, dispatching each part to the respective tuned
reasoner, and combining the results [16, 25]. Coalition reasoners that do not
transform the ontology in any relevant way will need special consideration if
they arrive.

Given the presence of deliberately incomplete (with respect to their pur-
ported profile) reasoners we are considering whether to modify the voting pro-
cedure to discount those reasoners’ votes in certain cases. A full break-down of

Table 1. Participant list

Reasoner Profile supported New to ORE?

Chainsaw [25] DL No
ELepHant [18] EL No
ELK [5] EL No
FaCT++ [24] DL No
HermiT8 [1] DL No
jcel [10] EL No
Jfact [13] DL No
Konclude [20] DL No
MORe [16] DL No
PAGOdA [26] DL Yes
Pellet [19] DL Yes
Racer [3] DL Yes
TrOWL [23] DL No

all tracks and competing reasoners can be seen in Table 2.

Table 2. Breakdown of the competition by track.

Task Language Competitors Problems

Consistency OWL 2 EL 13 298
OWL 2 DL 10 306

Realisation OWL 2 EL 12 109
OWL 2 DL 10 264

Classification OWL 2 EL 13 298
OWL 2 DL 10 306

4 Results

Results, error reports and more details on the competition framework are avail-
able at http://dl.kr.org/ore2015. Figure 3 shows the results of all partici-

8 HermiT was submitted with OWL API 3 and OWL API 4 bindings

8

pants in all tracks as displayed during the live competition. During the compe-
tition, these charts are dynamically updated as problems are being solved and
reported.

Fig. 3. Results of the competition by track as displayed from the live competition dis-
play. Score indicates the number of problems solved out of total problems for that track.
The number of unsolved problems (whether by timeout, crash, or “wrong” results) are
displayed in the next column. Time indicates the time actually taken to complete solved
problems. Time is used to resolve ties in problems solved.

Out of the 6 competitions, 4 were won by the new hybrid reasoner Kon-
clude [20], and two (EL-consistency and EL-classification) were won by ELK [5].
Figures 4 and 5 show how well the winning reasoners did in terms of reasoning
time. There are a couple of observations to be made here. First, Konclude, the
winner of all three DL disciplines, is doing consistently better on the majority of
the easier ontologies, but towards the harder end on the right, other reasoners
catch up.

9

classification consistency realisation

0.1

1.0

10.0

100.0

Ontologies

R
ea

so
ni

ng
 ti

m
e

(s
ec

)
r

chainsaw

fact++

hermit

hermit−owlapiv4

konclude

MOReHermiT

Fig. 4. Reasoning time of the three winning reasoners in each category: DL profile.
Red line: Timeout. Ordered by speed of winning reasoner.

This is particularly obvious for the EL-classification competition. Up until a
certain point, Konclude is doing much (sometime up to an order of magntitude)
better than ELK (the winner of the discipline), but towards the harder end, ELK
overtakes Konclude. Some of this may be due to JVM overhead for ELK and
our “fire and forget” execution strategy. If we had a long running server based
approach it might be that the JVM overhead for easy cases would be effectively
amortised. Another interesting observation is the performance of ELepHants [18]
consistency check, which regularly outperforms both ELK and Konclude. We
speculate that this is due to differences in whether parsing time is incorporated
in the reported time (e.g., ELK does this for all tasks and Konclude does this
for consistency checking).

classification consistency realisation

0.1

10.0

Ontologies

R
ea

so
ni

ng
 ti

m
e

(s
ec

) r

elephant

elk

konclude

MOReHermiT

TrOWL

Fig. 5. Reasoning time of the three winning reasoners in each category: EL profile.
Red line: Timeout. Ordered by speed of winning reasoner.

A full break-down for all reasoners by competition can be seen in Table 3.

The competition is reasonably challenging: In only two tracks (EL consistency
and EL classification) did any reasoner solve all the problems in competition
conditions. Figure 6 shows a detailed breakdown of how many problems were
solved by how many reasoners (in percent).

10

Reasoner Task Success Timeout Error
DL EL DL EL DL EL

Chainsaw CL 122 191 168 94 16 13
Chainsaw CON 292 276 3 19 11 3
Chainsaw REAL 82 44 166 63 16 2
ELepHant CL NA 293 NA 5 NA 0
ELepHant CON NA 296 NA 2 NA 0
ELepHant REAL NA 109 NA 0 NA 0
ELK CL NA 298 NA 0 NA 0
ELK CON NA 298 NA 0 NA 0
ELK REAL NA 109 NA 0 NA 0
FaCT++ CL 202 244 87 51 17 3
FaCT++ CON 279 270 14 22 13 6
FaCT++ REAL 183 79 56 27 25 3
HermiT CL 241 273 63 25 2 0
HermiT CON 296 282 7 16 3 0
HermiT REAL 167 57 92 52 5 0
HermiT-4 CL 241 273 63 25 2 0
HermiT-4 CON 296 282 6 16 4 0
HermiT-4 REAL 165 57 93 52 6 0
jcel CL NA 134 NA 158 NA 6
jcel CON NA 262 NA 34 NA 2
Jfact CL 143 208 104 88 59 2
Jfact CON 174 229 80 69 52 0
Jfact REAL 128 66 89 43 47 0
Konclude CL 298 298 7 0 1 0
Konclude REAL 261 109 2 0 1 0
Konclude CON 305 298 1 0 0 0
MORe CL 266 296 38 2 2 0
MORe CON 264 295 40 3 2 0
Pagoda REAL 120 96 49 13 95 0
Pellet-4 CL 188 261 104 28 14 9
Pellet-4 REAL 187 75 53 32 24 2
Pellet-4 CON 280 286 26 12 0 0
Racer CL 218 260 86 38 2 0
Racer CON 257 258 48 40 1 0
Racer REAL 186 78 75 31 3 0
TrOWL CL 271 275 0 0 35 23
TrOWL CON 270 273 0 0 36 25
TrOWL REAL 221 87 0 0 43 22

Table 3. Full break-down of solved problems by reasoner and task. Note that “HermiT-
4” refers to the current version of HermiT wrapped in the OWL API version 4.

It is interesting to observe that the union of all reasoners successfully process
all EL reasoning problems. As one might expect, realisation is still challenging
for reasoners. But in all tracks, for the majority of reasoners, the ORE problems
provide a good target for optimisation. We know, from the results of the com-
petition, that these problems are (almost) all in principle solvable on a modest
machine in around 3 minutes.

5 Discussion

The top slots in all tracks have been dominated by Konclude (and to a lesser
extend by ELK) for two years now. Konclude is an highly optimised, very efficient
reasoner whose developers continuously test it against a vast set of available
ontologies. Even so, there is interesting jockeying around second and third place

11

classification consistency realisation

5 11
26 13 8 17 27 18

38 51

92

0 1 3 15 9 5
36

14 25

67

123

1 0 1 2 2 8 14 26 28

73

151

0 0 1 6 9 6 12 5 6
31

222
1 13 23

6 11

47
26 27 24

53
33

0 0 6
23

3 5 18
2 6 5

41

0

50

100

150

200

0

50

100

150

200

dl
el

0 30 60 90 0 30 60 90 0 30 60 90
Reasoning problems by percentage of reasoners who solved it

co
un

t

Fig. 6. Number of reasoning problems by percentage of reasoners solving them. For
example, 5 DL-classification tasks where not solved by any reasoner, and 123 EL-
classification tasks were solved by all reasoners.

for all tracks, and we were impressed with how well older reasoners, which have
not been updated recently (notably Pellet and Racer), fared.

The robustness experiments in [2] used a much longer timeout (up to 2 hours
per test), though the analysis clustered results by subdivisions of the timeout
period. That suggests that a slightly longer timeout might significantly increase
the total number of solved problems across reasoners. This needs to be balanced
by the increased running time of the competition (which is bounded by the
slowest reasoner). We prefer the bulk of the competition to be executed during a
single day of the DL workshop to facilitate engagement which imposes fairly tight
limits on the timeout and number of problems. (This year, due to technical issues,
we were not able to do that.) Having a separate offline competition remains an
option, but it is unclear that this extra significant effort produces much benefit.

However, the ORE workshop solicits “challenge” ontologies from ontology
developers partly in the hopes of directing reasoner developer attention to real
user performance needs. Unfortunately, we have not yet managed to do a “user
ontology” track, though we are hoping to do so as a satellite event at OWLED
2015. This will almost certainly have to be offline and, of course, many of the
submitted ontologies are currently unsolved by current reasoners.

The most important next expansion of tracks is to conjunctive query an-
swering (CQA). Setting up a meaningful CQA competition is significantly more
difficult, because we do not only have to consider ontologies, but also queries
and data. Gathering suitable (meaningful) queries is probably the most difficult
hurdle to overcome. However, we made significant progress toward a reasonable
design this year and hope to incorporate it in next year’s competition.

Another area of interest is application style benchmarks which would situate
the reasoning task in the context of a pattern of use characteristic of a real or
realistic application. This might include modification of the ontology or data
during the competition run.

12

6 Conclusion

The ORE 2015 Reasoner Competition continues the success of its predecessors.
Participants, workshop attendees, and interested bystanders all had fun, and the
ORE 2015 corpus, whether used with the ORE framework or in a custom test
harness, is a significant and distinct corpus for reasoner experimentation. Devel-
opers can easily rerun this years competition with new or updated reasoners to
get a sense of their relative progress and we believe that solving all the prob-
lems in that corpus in similar or somewhat relaxed time constraints is a reliable
indicator of a very high quality implementation.

Acknowledgments. The ORE competition has been the work of many people
over the years and we would like to especially acknowledge the contributions of
Ernesto Jiménez-Ruiz for running the very first primitive competition and being
a PC chair for all workshops; Samantha Bail for being a PC chair as well as
implementing the first “live results” screen; Ian Horrocks for helping getting the
project started; and Yevgeny Kasakov for helpful discussions on the competition
design as well as finding a critical bug just before the competition started. We
also would like to acknowledge the generous support of B2i Healthcare9 for
their repeated donations of prize money and the DBOnto project10 for funding
compeition T-Shirts.

Finally, the competition would not have been possible without the donation
of cluster time by Konstantin Korovin (funded by Royal Society research grant
RG080491).

References

1. Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe Wang. HermiT:
An OWL 2 Reasoner. J. Autom. Reasoning, 53(3):245–269, 2014.

2. Rafael S. Gonçalves, Nicolas Matentzoglu, Bijan Parsia, and Uli Sattler. The
Empirical Robustness of Description Logic Classification. In Proceedings of the
ISWC 2013 Posters & Demonstrations Track, Sydney, Australia, October 23, 2013,
pages 277–280, 2013.

3. Volker Haarslev, Kay Hidde, Ralf Möller, and Michael Wessel. The RacerPro
knowledge representation and reasoning system. Semantic Web, 3(3):267–277,
2012.

4. Matthew Horridge and Sean Bechhofer. The OWL API: A Java API for OWL
ontologies. Semantic Web, 2(1):11–21, 2011.

5. Yevgeny Kazakov, Markus Krötzsch, and Frantisek Simancik. The Incredible ELK -
From Polynomial Procedures to Efficient Reasoning with EL Ontologies. J. Autom.
Reasoning, 53(1):1–61, 2014.

6. Michael Lee, Nicolas Matentzoglu, Bijan Parsia, and Uli Sattler. A multi-reasoner,
justification-based approach to reasoner correctness. In International Semantic
Web Conference, 2015.

9 http://b2i.sg
10 http://www.cs.ox.ac.uk/projects/DBOnto/

13

7. Nicolas Matentzoglu, Samantha Bail, and Bijan Parsia. A Snapshot of the OWL
Web. In The Semantic Web - ISWC 2013 - 12th International Semantic Web
Conference, Sydney, NSW, Australia, October 21-25, 2013, Proceedings, Part I,
pages 331–346, 2013.

8. Nicolas Matentzoglu, Jared Leo, Valentino Hudhra, Uli Sattler, and Bijan Parsia.
A survey of current, stand-alone owl reasoners. In Michel Dumontier, Birte Glimm,
Rafael Gonçalves, Matthew Horridge, Ernesto Jiménez-Ruiz, Nicolas Matentzoglu,
Bijan Parsia, Giorgos Stamou, and Giorgos Stoilos, editors, Informal Proceedings
of the 4th International Workshop on OWL Reasoner Evaluation, volume 1387.
CEUR-WS, 2015.

9. Nicolas Matentzoglu and Bijan Parsia. ORE 2015 reasoner competition dataset
http://dx.doi.org/10.5281/zenodo.18578, June 2015.

10. Julian Mendez. jcel: A Modular Rule-based Reasoner. In Proceedings of the 1st
International Workshop on OWL Reasoner Evaluation (ORE-2012), Manchester,
UK, July 1st, 2012, 2012.

11. Boris Motik, Peter F Patel-Schneider, Bijan Parsia, Conrad Bock, Achille Fokoue,
Peter Haase, Rinke Hoekstra, Ian Horrocks, Alan Ruttenberg, Uli Sattler, and Mike
Smith. Owl 2 web ontology language: Structural specification and functional-style
syntax. W3C, 2009.

12. Natalya Fridman Noy, Nigam H. Shah, Patricia L. Whetzel, Benjamin Dai, Michael
Dorf, Nicholas Griffith, Clement Jonquet, Daniel L. Rubin, Margaret-Anne D.
Storey, Christopher G. Chute, and Mark A. Musen. BioPortal: ontologies and
integrated data resources at the click of a mouse. Nucleic Acids Research, 37(Web-
Server-Issue):170–173, 2009.

13. Ignazio Palmisano. JFact repository, 2015.
14. F.J. Pelletier, G. Sutcliffe, and C.B. Suttner. The Development of CASC. AI

Communications, 15(2-3):79–90, 2002.
15. Yuan Ren, Jeff Z. Pan, and Yuting Zhao. Soundness Preserving Approximation

for TBox Reasoning. In Proceedings of the Twenty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010, 2010.

16. Ana Armas Romero, Bernardo Cuenca Grau, and Ian Horrocks. MORe: Modular
Combination of OWL Reasoners for Ontology Classification. In The Semantic Web
- ISWC 2012 - 11th International Semantic Web Conference, Boston, MA, USA,
November 11-15, 2012, Proceedings, Part I, pages 1–16, 2012.

17. Uli Sattler and Nicolas Matentzoglu. List of Reasoners (owl.cs)
http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/. Modified: 01/09/2014.

18. Baris Sertkaya. The ELepHant Reasoner System Description. In Informal Pro-
ceedings of the 2nd International Workshop on OWL Reasoner Evaluation (ORE-
2013), Ulm, Germany, July 22, 2013, pages 87–93, 2013.

19. Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden
Katz. Pellet: A practical OWL-DL reasoner. J. Web Sem., 5(2):51–53, 2007.

20. Andreas Steigmiller, Thorsten Liebig, and Birte Glimm. Konclude: System de-
scription. J. Web Sem., 27:78–85, 2014.

21. G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF
and CNF Parts, v3.5.0. Journal of Automated Reasoning, 43(4):337–362, 2009.

22. G. Sutcliffe and C. Suttner. The State of CASC. AI Communications, 19(1):35–48,
2006.

23. Edward Thomas, Jeff Z. Pan, and Yuan Ren. TrOWL: Tractable OWL 2 Reasoning
Infrastructure. In The Semantic Web: Research and Applications, 7th Extended
Semantic Web Conference, ESWC 2010, Heraklion, Crete, Greece, May 30 - June
3, 2010, Proceedings, Part II, pages 431–435, 2010.

14

24. Dmitry Tsarkov and Ian Horrocks. FaCT++ Description Logic Reasoner: System
Description. In Automated Reasoning, Third International Joint Conference, IJ-
CAR 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, pages 292–297,
2006.

25. Dmitry Tsarkov and Ignazio Palmisano. Chainsaw: a Metareasoner for Large On-
tologies. In Proceedings of the 1st International Workshop on OWL Reasoner
Evaluation (ORE-2012), Manchester, UK, July 1st, 2012, 2012.

26. Yujiao Zhou, Yavor Nenov, Bernardo Cuenca Grau, and Ian Horrocks. Pay-as-
you-go OWL query answering using a triple store. In Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014, Québec City,
Québec, Canada., pages 1142–1148, 2014.

15

On the Evaluation of RDF Distribution Algorithms
Implemented over Apache Spark

Olivier Curé, Hubert Naacke, Mohamed-Amine Baazizi, Bernd Amann

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris,
CNRS, UMR 7606, LIP6, F-75005, Paris, France
{firstName.lastname}@lip6.fr

Abstract. Querying very large RDF data sets in an efficient and scalable man-
ner requires parallel query plans combined with appropriate data distribution
strategies. Several innovative solutions have recently been proposed for opti-
mizing data distribution with or without predefined query workloads. This paper
presents an in-depth analysis and experimental comparison of five representative
RDF data distribution approaches. For achieving fair experimental results, we
are using Apache Spark as a common parallel computing framework by rewrit-
ing the concerned algorithms using the Spark API. Spark provides guarantees
in terms of fault tolerance, high availability and scalability which are essential
in such systems. Our different implementations aim to highlight the fundamen-
tal implementation-independent characteristics of each approach in terms of data
preparation, load balancing, data replication and to some extent to query answer-
ing cost and performance. The presented measures are obtained by testing each
system on one synthetic and one real-world data set over query workloads with
differing characteristics and different partitioning constraints.

1 Introduction

During the last few years, an important number of papers have been published on data
distribution issues in RDF database systems, [14], [8], [24], [10] and [11] to name a few.
Repositories of hundreds of millions to billions of RDF triples are now more and more
frequent and the main motivation of this research movement is the efficient management
of ever growing size of produced RDF data sets. RDF being one of the prominent data
models of the Big data ecosystem, RDF repositories have to cope with issues such as
scalability, high availability, fault tolerance. Other systems addressing these issues like
NoSQL systems [21], generally adopt a scale-out approach consisting of distributing
both data storage and processing over a cluster of commodity hardware.

Depending on the data model, it is well-known that an optimal distribution in terms
of data replication rate (characterizing the number of copies of a given information
across the cluster), load balancing and/or query answering performance is hard to achieve.
RDF data encode large graphs and obtaining a balanced partitioning into smaller com-
ponents with specific properties is known to be an NP-hard problem in general. Hence,
most distributed RDF systems are proposing heuristic-based approaches for produc-
ing optimal data distributions with respect to specific query processing environments
and query workloads. In a distributed RDF data processing context, the total cost of

16

a distributed query evaluation process is often dominated by the data exchange cost
produced by a large number of triple pattern joins corresponding to complex SPARQL
graph pattern. Therefore, one of the supreme goals of all distributed RDF query process-
ing solutions is to limit the amount of data exchanged over the cluster network through
optimal data partitioning and replication strategies. Each such strategy also comes with
a set of data transformation, storage and indexing steps that are more or less cost inten-
sive.

The first systems considering distributed storage and query answering for RDF data
appeared quite early in the history of RDF. Systems like Edutella [18] and RDFPeers [2]
were already tackling partitioning issues in the early 2000s. More recent systems like
YARS2 [12], HadoopRDF [15] and Virtuoso [5] are based on hash partitioning schemes
for distributing RDF triple indexes on different cluster nodes. In 2011, [14], henceforth
denoted nHopDB, presented the first attempt to apply graph partitioning on RDF data
sets for distributed SPARQL query evaluation. In the following, the database research
community has proposed a large number of RDF triple data partitioning and replication
strategies for different distributed data and query processing environments. Recent sys-
tems are either extending the graph partitioning approach [13] or are complaining about
their limitations [17].

As a consequence of the plethora of distribution strategies, it is not always easy to
identify the most efficient solution for a given context. The first objective of this paper
is to clarify this situation by conducting evaluations of prominent RDF triple distribu-
tion algorithms. A second goal is to consider Apache Spark as the parallel computing
framework for hosting and comparing these implementations. This is particularly rel-
evant in a context where a large portion of existing RDF distributed databases, e.g.
nHopDB [14], Semstore [24], SHAPE [17], SHARD [20], have been implemented us-
ing Apache Hadoop, an open source MapReduce [4] reference implementation. These
implementations suffer from certain [22] limitations of MapReduce for processing large
data sets, some of them being related to the high rate of disk reads and writes. We have
chosen Spark since it is up to 100 times more efficient than Hadoop through Resilient
Distributed Datasets (RDD) implementing a new distributed and fault tolerant memory
abstraction.

Our experimentation is conducted over a reimplementation of five data distribution
approaches where two of them are hash-based, two of them are based on graph partition-
ing with and without query workload awareness and one is hybrid combing hash-based
partitioning and query workload awareness. Each system is evaluated over a synthetic
and a real-world data-set with varying cluster settings and on a total of six queries which
differ in terms of their shape, e.g., star and property chains, and selectivity. We present
and analyze experimentations conducted in terms of data preparation cost, distribution
load balancing, data replication rate and query answering performance.

2 Background knowledge

2.1 RDF - SPARQL

RDF is a schema-free data model that permits to describe data on the Web. It is usually
considered as the cornerstone of the Semantic Web and the Web of Data. Assuming

17

disjoint infinite sets U (RDF URI references), B (blank nodes) and L (literals), a triple
(s,p,o) ∈ (U ∪ B) x U x (U ∪ B ∪ L) is called an RDF triple with s, p and o respectively
being the subject, predicate and object. Since subjects and objects can be shared among
triples, a set of RDF triples generates an RDF graph.

SPARQL 1 is the standard query language for RDF graphs (triple collections) based
on graph patterns for extracting information from RDF graphs. Let V be an infinite
set of variables disjoint with U, B and L. Then, a triple tp ∈ (U ∪ V) x (U ∪ V) x (U
∪ V ∪ L) followed by a dot ’.’ is a SPARQL triple pattern. The semantics of a triple
pattern follows the standard matching semantics which consists in finding all mappings
µ : V → U ∪ B ∪ L such that µ(tp) is a triple in the input graphs. Graph patterns
are defined recursively. A possibly empty set of triple patterns is a basic graph pattern.
The semantics of a basic graph pattern gp is defined by the conjunctive extension of
the triple matching semantics (µ(gp) is a connected or disconnected subgraph of the
input graphs). If gp1 and gp2 are graph patterns, then {gp1} is a group pattern, gp1
OPTIONAL {gp2} is an optional pattern, {gp1} UNION {gp2} is a pattern alternative.
Finally, a graph pattern gp can contain any a constraint FILTER C where C is a built-in
condition to restrict the solutions of a graph pattern match according to the expression
C.

The complete SPARQL syntax follows the SELECT-FROM-WHERE syntax of
SQL queries. The SELECT clause specifies the variables appearing in the query re-
sult set, the optional FROM clause specifies the input graphs (an input graph can be
defined by default), the WHERE clause defines a graph pattern which is matched against
the input RDF graphs.

2.2 Apache Spark

Apache Spark [26] is a cluster computing framework whose design and implementa-
tion started at UC Berkeley’s AMPlab. Just like Apache Hadoop, Spark enables parallel
computations on unreliable machines and automatically handles locality-aware schedul-
ing, fault tolerance and load balancing tasks. While both systems are based on a data
flow computation model, Spark is more efficient than Hadoop’s MapReduce for appli-
cations requiring the reuse working data sets across multiple parallel operations. This
efficiency is due to Spark’s Resilient Distributed Dataset (RDD) [25], a distributed,
lineage supported fault tolerant memory abstraction that enables in-memory computa-
tions more efficiently than Hadoop (which is mainly disk-based). The Spark API also
simplifies data-centric programming by integrating set-oriented functions like join and
filter which are not natively supported in Hadoop.

2.3 METIS graph partitioner

Finding a graph partitioning which is optimal with respect to certain constraints is
an NP-hard problem which is practically solved by approximative algorithms like[7].
These algorithms are generally still not efficient for very large graphs hence motivating
a multi-level propagation approach where the graph is coarsened until its size permits

1 http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

18

to use one of the approximate solutions. The METIS system [16] follows this approach
and is known to reach its limits for graphs of about half a billion triples. METIS takes as
input an unlabeled, undirected graph and an integer value corresponding to the desired
number of partitions. Its output provides a partition number for each node of the graph.
As explained in the following section, nHopDB [14] and WARP [13] are two recent
systems that are using METIS to partition RDF graphs.

3 RDF data partitioning methods

In this section, we present the main features and design principles of the RDF data
partitioning methods we have chosen to compare with respect to their data preparation
cost, storage load balancing, data replication and query processing costs. It is obvious
that the performance results, and in particular the results concerning query processing
performance, have to be considered with caution. Our goal is not to rank the different
methods, but to analyze some general properties (including implementation effort) in
the context of Apache Spark, which is a common modern scalable distributed data pro-
cessing environment. More details about these implementations are described in Sec-
tion 6.

As a starting point, we consider four different data partitioning approaches which
can be characterized as hash and graph partitioning based. Each category is divided into
two approaches which have been used in various systems and described in conference
publications. Our fifth system corresponds to a new hybrid approach that mixes a hash-
based approach with a replication strategy that enables to efficiently process long chain
queries. Note that we do not consider range-based partitioning approaches since they
are rarely used in existing systems due to their inefficiency.

3.1 Hash-based RDF data partitioning

The two approaches defined in this section correspond to families of RDF database
systems rather than to specific systems (as in the next section). The basic of hash-
based Data partitioning consists in applying to each RDF triple a hash function which
returns for some triple-specific key value the node where the triple should be stored. One
advantage of hash-based approaches is that they do not require any additional structure
to locate the partition of a given triple except the hash function and the key value. Data
replication can be achieved by defining several hash functions.

Random hashing: In a distributed random hash-based solution, the partitioning key
does not correspond to a particular element of the data model like the graph, subject,
property or object of a triple. For instance, the key can correspond to an internal triple
identifier or to some other value obtained from the entire triple. The former solution is
the one adopted by the Trinity.RDF system [27]. Some other forms of random partition-
ing exist and may require an additional structure for directed lookups to cluster nodes
where triples are located, e.g. round-robin approach. We do not consider such random
partitioning approaches in our evaluation since they do not provide particularly useful
data placement properties for any of the query shapes (star, property chains, tree, cycle
or hybrid) used in our experiments (see Appendix A).

19

RDF triple element hashing: This approach has been adopted by systems like YARS2,
Virtuoso, Jena ClusteredTDB and SHARD. In these systems, the hashing key provided
to the hash function is composed of one or several RDF quadruple elements (graph,
subject, property, object). Partitioning by subject provides the nice property of ensur-
ing that star-shaped queries, i.e. queries composed of a graph where one node has an
out-degree greater than 1 and all other nodes are leaves, are performed locally on a
given machine. Nevertheless they do not provide guarantees for queries composed of
property chains or more complex query patterns. We will study the performance of a
subject-hash based partitioning in Section 6.

3.2 Graph-based partitioning approaches

Hash-based data partitioning methods are likely to require a high data exchange rate
over the network for more complex query patterns composed of longer property chains.
One way to address this issue is to introduce data replication and/or to use more struc-
tured hashing functions adapted for a given query workload. Of course, these extensions
come with at an additional processing cost which needs to be considered with attention.
Systems corresponding to each of these approaches are considered next.

nHopDB: The data partitioning approach presented in [14] is composed of two steps.
In a first stage, the RDF data set is transformed such that it can be sent to the METIS
graph partitioner. This transformation removes properties and adds inverted subject-
object edges to obtain an undirected graph. Then, the partitions obtained by METIS
are translated into triple allocations over the cluster (all triples of the same partition are
located on the same node). The partition state obtained at the end of this first stage is
denoted as 1-hop. The second stage starts and corresponds to an overlap strategy which
is performed using a so-called n-hop guarantee. Intuitively, for each partition, each leaf
l is extended with triples whose subject correspond to l. This second replication stage
can be performed several times on the successively generated partitions. Each execution
increases the n-hop guarantee by a single unit.

[14] describes an architecture composed of a data partitioner and a set of local query
engine workers implemented by RDF-3X [19] database instances. Some queries can be
executed locally on a single node and thus enjoy all the optimization machinery of RDF-
3X. For queries where the answer set spans multiple partitions, the Hadoop MapReduce
system is used to supervise query processing.

WARP: The WARP system [13] has been influenced by nHopDB and the Partout
system [8] (the two authors of WARP also worked on Partout). WARP borrows from
nHopDB its graph partitioning approach and 2-hop guarantee. Like Partout, it then re-
fines triple allocations by considering a given query workload of the most frequently
performed queries over the given data set. The system considers that this query work-
load is provided in one way or another. More exactly, each of these queries is trans-
formed into a set of query patterns (defining a class of equivalent queries) and WARP
guarantees that frequent queries can be distributed over the cluster nodes and processed
locally without exchanging data across machines (the final result is defined by the union

20

of locally obtained results). WARP proceeds as follows for partitioning and replicating
a RDF triple collection:

1. A first step partitions the transformed unlabeled and undirected RDF graph using
the METIS graph partitioner as described in nHopDB.

2. The RDF triples are fragmented according to the partitions of their subjects and
loaded into the corresponding RDF-3X [19] database instance.

3. A replication strategy is applied to ensure a 2-hop guarantee.
4. Finally, WARP chooses for each query pattern qp a partition which will receive

all triples necessary for evaluating pattern qp locally. For this, WARP decomposes
each query pattern obtained from the query workload into a set of sub-queries which
are potential starting points or seed queries for the evaluation of the entire query
pattern. Then, WARP estimates for each seed query and partition the cost of trans-
ferring missing triples into the current partition and selects the seed query candidate
that minimizes this cost. An example is presented in Section 4.3.

The WARP system implements its own distributed join operator to combine the
local sub-queries. Locally, the queries are executed using RDF-3X. As our experiments
confirm, most of the data preparation effort for WARP is spent in the graph partitioning
stage.

3.3 Hybrid partitioning approach

The design of this original hybrid approach has been motivated by our analysis of the
WARP system as well as some hash-based solutions. We have already highlighted (as
confirmed in the next section) that the hash-based solutions require short data prepa-
ration times but come with poor query answering performance for complex query pat-
terns. On the other hand, the WARP system proposes an interesting analysis of query
workloads which is translated into an efficient data distribution. We will present in our
experiments a hybrid solution which combines RDF triple element hashing using sub-
jects as hash keys with query workload aware triple replication is described in the last
step of WARP.

4 Spark system implementations

4.1 Data set loading and encoding

All data sets are first loaded on the cluster’s Hadoop File System(HDFS). The loading
rate in our cluster averages 520.000 triples per second which allows us to load large
data sets like LUBM 2K or Wikidata in less than 10 minutes.

Like in most RDF stores, each data set is encoded by providing a distinct integer
value to each node and edge of the graph (see Chapter 4 in [3] for a presentation of
RDF triple encoding methods). The encoding is performed in parallel in one step using
the Spark framework.2 The encoded data sets, together with their dictionaries (one for
the properties and another for subjects and objects) are also loaded into HDFS.

2 More implementation details can be found at http://www-
bd.lip6.fr/wiki/doku.php?id=site:recherche:logiciels:rdfdist.

21

4.2 Hash-based data distribution

The implementation of hash-based partitioning approaches in Spark is relatively straight-
forward since the Spark API directly provides hash-based data distribution functionali-
ties. We achieve random-hash partitioning by using the whole RDF triple as hash key.
Triple element hashing is obtained by using the triple subject URI. In our experiments,
we do not provide replication by adding other hashing function. The query answering
evaluation is performed forthrightly following a translation from SPARQL to Spark
scripts requiring a mix of map, filter, join and distinct methods performed
over RDDs.

4.3 Graph partitioning-based data distribution

The two approaches in this partitioning category, nHopDB and WARP, require three
METIS related steps for the preparation, computation and transformation of the re-
sults. Since METIS only can deal with unlabeled and undirected graphs, we start by
removing predicates from the data sets and appending the reversed subject/object edges
to the graph. Using METIS also imposes limitations in terms of accepted graph size.
Indeed, the largest graph that can be processed contains about half a billion nodes. Con-
sequently, we limit our experimentations to data sets of at most 250 million RDF triples
provided that their undirected transformation yields graphs of 500 million nodes. The
output of METIS is a set of mapping assertions between nodes and partitions. Based
on these mappings, we allocate a triple to the partition of its subject. In terms of data
encoding, we extend triples with partition identifiers yielding quads. Note that at this
stage, the partition identifier can be considered as ’logical’ and not ’physical’ since the
data is not yet stored on a given cluster node. We would like to stress that the prepara-
tion and transformation phases described above are performed in parallel using Spark
programs.

nHopDB: In the Spark implementation of nHopDB, the n-hop guarantee is computed
over the RDD corresponding to the generated quads. This Spark program can be exe-
cuted (n-1) times to obtain an n-hop guarantee.

WARP: Our implementation of WARP analyzes the query workload generalization
using Spark built-in operators. For instance, consider the following graph pattern of a
query denoted Q1:

?x advisor ?y . ?y worksFor ?z . ?z subOrganisation ?t

For processing this pattern, the system uses the filter operator to select all
triples that match the advisor, worksFor and subOrganization properties.
Then, the join operator is used to perform equality join predicates on variables y
and z. The query result is a set of variable bindings. We extend the notion of vari-
able bindings with the information regarding the partition identifier of each triple. For
instance, an extract of a Q1’s result (in an decoded readable form) is represented as
{(Bob,Alice,1), (Alice, DBteam,3),(DBteam, Univ1,1)}. The re-
sult for pattern ?y worksFor ?z contains the triple binding {(Alice, DBteam,

22

3)} which means that "Alice" and "DBTeam" are bound to variables ?x and ?y
and the triple is located on partition 3. The two other triples for triple patterns ?x
advisor ?y and ?z subOrganisation ?t are located on partition 1. It is easy
to see that by choosing the seed query ?x advisor ?y or ?z subOrganisation
?t, we need to copy only triple (Alice, worksFor, DBteam) in partition 3 to
partition 1 whereas by choosing pattern ?y worksFor ?z two triples have to be
copied to partition 1. As specified earlier in Section 3.2, we consider all the candidate
seeds to choose the seed that implies the minimal number of triples to replicate.

Finally, for querying purposes, each query is extended with a predicate enforcing
local evaluation by joining triples with the same partition identifier.

4.4 Hybrid approach

This approach is mixing the subject-based hashing method with the WARP workload-
aware processing. Hence, using our standard representations of triples and quads to-
gether with Spark’s data transformation facilities made our coding effort for this exper-
iment relatively low.

5 Experimental setting

5.1 Data sets and queries

In this evaluation, we are using one synthetic and one real world data set. The synthetic
data set corresponds to the well-established LUBM [9]. We are using three instances
of LUBM, denoted LUBM1K, LUBM2K and LUBM10K which are parameterized re-
spectively with 1000, 2000 and 10000 universities. The real world data set consists in
Wikidata [23], a free collaborative knowledge base which will replace Freebase [1] in
2015. Table 2 presents the number of triples as well as the size of each of these data
sets.

Data set #triples nt File Size
LUBM 1K 133 M 22 GB
LUBM 2K 267 M 43 GB

LUBM 10K 1,334 M 213 GB
Wikidata 233 M 37 GB

Table 1. Data set statistics of our running examples

Concerning queries, we have selected three SPARQL queries from LUBM (namely
queries #2, #9 and #12 respectively denoted Q2, Q3 and Q4) extended by a new query,
denoted Q1, which requires a 3-hop guarantee to be performed locally on the nHopDB,
WARP and hybrid implementations. To complement the query evaluation, we have cre-
ated two queries for the Wikidata experiments, resp. Q5 and Q6. The first one takes

23

the form of a 3-hop property chain query that shows to be much more selective than
the LUBM ones, the second one is shaped as a simple star and was motivated by the
absence of such a form in our query set. All six queries are presented in Appendix A.

5.2 Computational environment

Our evaluation was deployed on a cluster consisting of 21 DELL PowerEdge R410
running a Debian distribution with a 3.16.0-4-amd64 kernel version. Each machine has
64GB of DDR3 RAM, two Intel Xeon E5645 processors each of which is equipped with
6 cores running at 2.40GHz and allowing to run two threads in parallel (hyperthread-
ing). Hence, the number of virtual cores amounts to 24 but we used only 15 cores per
machine. In terms of storage, each machine is equipped with a 900GB 7200rpm SATA
disk. The machines are connected via a 1GB/s Ethernet Network adapter. We used Spark
version 1.2.1 and implemented all experiments in Scala, using version 2.11.6. The Spark
setting requires that the total number of cores of the cluster to be specified. Since in our
experiments we considered clusters of 5, 10 and 20 machines respectively, we had to
set the number of cores to 75, 150 and 300 cores respectively.

6 Experimentation

Since we could not get any query workloads for Wikidata, it was not possible to conduct
any experimentation with WARP and the hybrid approach over this data sets. Moreover,
since METIS is limited to data sets of half a million edges, it was not possible to handle
nHopDB and WARP over LUBM10K. Given the fact that the hybrid system relies on
subject hashing, and not METIS, it was possible to conduct this experimentation over
LUBM10K for that system.

6.1 Data preparation costs

Figure 1 presents the data preparation processing times for the different systems. As
one would expect, the hash-based approaches are between 6 and 30 times faster (de-
pending on the number of partitions) than the graph partition-based approaches. This
is mainly due to the fact that METIS runs on a single machine (we have not tested
parMETIS, a parallelized version of METIS) while the hash operations are being per-
formed in parallel on the Spark cluster. The evaluation also emphasizes that the hybrid
approach presents an interesting compromise between these distribution method fami-
lies. By evaluating the different processing steps in each of the solutions, we also could
find out that, for hash-based approaches, around 15% of processing time is spent on
loading the data sets whereas the remaining 85% of time is spent on partitioning the
data. For the graph partitioning approaches, 85 to 90% corresponds to the time spent by
METIS for creating the partitions; the durations increase with the larger data set sizes.
This explains that the time spent by graph partitioning approaches are slightly increas-
ing even when more machines are added. This does not apply for the other solutions
where more machines lead to a reduction of the preparation processing time.

24

Fig. 1. Data preparation times

6.2 Storage load balancing

Load balancing is an important aspect when distributing data for storage and querying
purposes. In Figure 2, we present the standard deviations over all partition sizes (in
log scale) for the different implementation. For the graph partitioning-based and hybrid
approaches, we only consider the standard deviation of the partition sizes at the end of
the partitioning process, i.e., METIS partitioning and n-hop guarantee application.

The two hash-based approaches and the hybrid approach are the best solutions and
are close to each other. This is rather obvious since the hash partitioning approaches are
concentrating on load balancing while a graph partitioning tries to reduce the number
of edges cut during the fragmentation process. The hybrid approach is slightly less bal-
anced due to the application of the WARP query workload-aware strategy. The random-
based hashing has 5 to 12% less deviation than subject hashing. This is due to high
degree nodes that may increase the size of some partitions. The nHopDB approach is
the less efficient graph partitioning solution when considering load balancing. We be-
lieve that this is highly related to the structure and the number of queries one considers
in the query workload. We consider that further analysis needs to be conducted on real
world data sets and query workloads to confirm these nevertheless interesting conclu-
sions.

25

Fig. 2. Standard deviation

6.3 Data replication

Intrinsically, all solutions present some node replications since a given node can be
an object in one partition and a subject in another one. This corresponds to the 1-hop
guarantee that ensures validity of data, i.e., no triples are lost during the partitioning
phase. In this section, we are only interested in triple replication. Only the nHopDB,
WARP and hybrid solutions present such replications.

Table 2 provides the replication rates for each of these systems for the LUBM 1K
and 2K data sets. Several conclusions can be drawn from this table. First, METIS-based
approaches are more efficient than the subject-hashing of the hybrid system. Remember
that by minimizing edge cut, a graph partitioner groups the nodes that are close to
each other in the input graph. Secondly, the more partitions the cluster contains, the
more overall replication one obtains. The n-hop guarantee replicates less than the query
workload-aware method of WARP. Finally, we can stress that the replication of the
hybrid approach can be considered quite acceptable given the data replication duration
highlighted in Section 6.1.

6.4 Query processing

In order to efficiently process local queries and to fairly support performance compar-
ison in a distributed setting, we must use the same computing resources for local and
distributed runs. A parallel query runs locally when every machine only has to access its

26

Part. scheme nHopDB WARP Hybrid
Data set 5 part. 10 part. 20 part. 5 part. 10 part. 20 part. 5 part. 10 part. 20 part.

LUBM 1K 0.12 0.16 0.17 0.26 0.54 0.57 0.54 1.33 1.84
LUBM 2K 0.12 0.16 0.18 0.34 0.52 0.54 0.54 1.33 1.94

Table 2. Replication rate comparison for three partitioning schemes and three cluster sizes

own partition (inter-partition parallelism). To fully exploit the multi-core machines on
which we perform our experiments, it would be interesting to consider not only inter-
partition parallelism but intra-partition parallelism exploiting all cores as well. Unfor-
tunately, intra-partition parallelism is not fully supported in Spark since a partition is
the unit of data that one core is processing. Thus, to use 15 cores on a machine, we
must split a partition into 15 sub partitions. Spark does not allow to specify that such
sub-partitions must reside together on the same machine3. In the absence of any triple
replication, the hash-based solutions are not impacted by this limitation. This is not the
case for the systems using replication and where local queries might be evaluated on
different partitions. For the two query workload-aware solutions (i.e., WARP and hy-
brid), we conducted our experiment using a workaround that forces Spark to use only
one machine for processing one partition: for each local query, we run Spark with only
one slave node. Then we load only the data of one partition and process the query using
all the cores of the slave node. To be fair and take into account the possibility that the
execution time of a local query might depend on the choice of the partition, we repeat
the experiment for every partition and report the maximum response time. The case of
nHopDB is more involved and requires to develop a special dedicated query processor,
specialized for Spark, to fully benefit from the data fragmentation. In a nutshell, that
system would have to combine intra and inter-partition query processors. The former
would run for query subgraphs that can run locally and the second one would perform
joins over all partitions with retrieved temporary results. Since the topic of this paper
concerns the evaluation of distribution strategies, we do not detail the implementation
of such a query processor in this work and hence we do not present any results for the
nHopDB system.

Table 3 presents the query processing times for our data set. Due to space limitation,
we only present the execution time obtained over the 20 partitions experiment. The web
site companion (see [6]) highlights that the more partitions are used the more efficient is
the query processing. The table clearly highlights that the WARP systems are more ef-
ficient than the hash-based solutions. Obviously, the simpler the query, e.g. Q4 and Q6,
run locally while the others require inter-partition communication. Spark version 1.2.1
shuffle read measure indicates the total information exchange (locally on a node
and globally over the network) and we could not measure the inter node information
communication cost.

3 We expect that future version of Spark will allow such a control.

27

Fig. 3. Query Evaluation on 20 partitions

7 Other related work

Some other interesting works have recently been published on the distribution of RDF
data. Systems such as Semstore [24] and SHAPE [17] take some original position.

Instead of using the common query workload, Semstore divides a complete RDF
graph into a set of paths which cover all the original graph nodes, possibly with node
overlapping between paths. These paths are denoted Rooted Sub Graph (RSG in short)
since they are generated starting from nodes with a null in-degree, i.e., roots, to all their
possible leaves. A special workaround is used to handle cycles that may occur at the root
position, i.e., cycles that are not reachable from any root. The idea is then to regroup
these RSG into different partitions. This is obviously a hard problem for which the
authors propose an approximated solution. Their solution uses the K-means clustering
approach which regroups RSG with common segments together in the same partition.
A first limitation of this approach is the high dimensionality of the vectors handled by
the K-means algorithm, i.e., the size of any vector corresponds to the number of nodes
in the graph. A second limitation is related to the lack of an efficient balancing of the
number triples across the partitions. In fact, the system operates at the coarse-grained
level of RSG and provides a balancing at this level only. Semstore is finally limited in
terms of join patterns. It can efficiently handle S-O (subject-object) and S-S (subject-
subject) join patterns but other patterns, such as O-O (object-object) may require inter
node communication.

The motivation of the SHAPE system is that graph partitioning approaches do not
scale. Just like in our hybrid solution, they propose to replace the graph partitioning
step by a hash partitioning one. Then, just like in the nHopDB system, they replicate
according to the n-hop guarantee. Hence, they do not consider any query workload and
take the risk of inter-partition communication for long chain queries longer than their
n-hop guarantee.

8 Conclusions and perspectives

This paper presents an evaluation of different RDF graph distribution methods which
are ranging over two important partitioning categories: hashing and graph partitioning.

28

We have implemented five different approaches over the Apache Spark framework. Due
to its efficient main memory usage, Spark is considered to provide better performances
than Hadoop’s MapReduce. While several RDF stores have been designed on top of
Hadoop, we are not aware of any systems running on top of Spark. The main motiva-
tion of the experiments is that existing partitioning solutions do not scale gracefully to
several billion triples. For instance, the METIS partitioner is limited to less than half a
billion triples and SemStore (cf. related works section) relies on K-Means clustering of
vectors whose dimension amount to the number of nodes of the data to be processed
(i.e., 32 millions in the case of LUBM1K). Computing a distance at such high dimen-
sion is currently not possible within Spark, even when using sparse vectors. Moreover,
applying a dimension reduction algorithm to all the vectors is not tractable.

The conclusion of our experiment is that basic hash-based partitioning solutions
are viable for scalable RDF management: they come at no preparation cost, i.e. only
require to load the triples into the right machine, and are fully supported by the under-
lying Spark system. As emphasized by our experimentation, Spark scales out to several
billion triples by simply adding extra machines. Nevertheless, without any replication,
these systems may hinder availability and reduce the parallelism of query processing.
They also involve a lot of network communications for complex queries which require
to retrieve data from many partitions. Nonetheless, by making intensive use of main
memory, we believe that Spark provides a high potential for these systems. Clearly,
with the measures we have obtained in this evaluation, we can stress that if one needs a
fast access to large RDF data sets and is, to some extent, ready to sacrifice the perfor-
mance of processing complex query patterns then the hash-based solution over Spark is
a good compromise.

Concerning the nHopDB and WARP approaches, we consider that using a graph
partitioning system like METIS has an important drawback due to the performance
limitations. Based in these observations, we investigated the hybrid candidate solution
which does not involve a heavy preparation step and retains the interesting query work-
load aware replication strategy. This approach may be particularly interesting for data
warehouses where the most common queries (materialized views) are well identified.
With this hybrid solution we may get the best of worlds, the experiments clearly em-
phasize that the replication overhead compared to the pure WARP approach is marginal
but the gain in data preparation is quite important.

Concerning Spark, we highlighted that it can process distributed RDF queries effi-
ciently. Moreover, the system can be used for the two main steps, data preparation and
query processing, in an homogeneous way. Rewriting SPARQL queries into the Scala
language (supported by Spark) is rather easy and we consider that there is still much
room for optimization. The next versions of Spark which are supposed to provide more
feedback on data exchange over the network should help fine-tune our experiments and
design a complete production-ready system.

References

1. K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: A collaboratively
created graph database for structuring human knowledge. In Proceedings of the 2008 ACM

29

SIGMOD International Conference on Management of Data, SIGMOD ’08, pages 1247–
1250, New York, NY, USA, 2008. ACM.

2. M. Cai and M. Frank. RDFPeers: A scalable distributed RDF repository based on a structured
peer-to-peer network. In Proc. 13th International World Wide Web Conference, New York
City, NY, USA, May 2004.

3. O. Curé and G. Blin. RDF Database Systems, 1st Edition. Morgan Kaufmann, Nov. 2014.
4. J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. In 6th

Symposium on Operating System Design and Implementation (OSDI 2004), San Francisco,
California, USA, December 6-8, 2004, pages 137–150, 2004.

5. O. Erling. Virtuoso, a hybrid rdbms/graph column store. IEEE Data Eng. Bull., 35(1):3–8,
2012.

6. http://webia.lip6.fr/∼baazizi/research/iswc2015eval/expe.html.
7. C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network par-

titions. In Proceedings of the 19th Design Automation Conference, DAC ’82, Las Vegas,
Nevada, USA, June 14-16, 1982, pages 175–181, 1982.

8. L. Galarraga, K. Hose, and R. Schenkel. Partout: A distributed engine for efficient RDF
processing. CoRR, abs/1212.5636, 2012.

9. Y. Guo, Z. Pan, and J. Heflin. Lubm: A benchmark for owl knowledge base systems. J. Web
Sem., 3(2-3):158–182, 2005.

10. S. Gurajada, S. Seufert, I. Miliaraki, and M. Theobald. Triad: a distributed shared-nothing
RDF engine based on asynchronous message passing. In International Conference on Man-
agement of Data, SIGMOD 2014, USA, June 22-27, 2014, pages 289–300, 2014.

11. M. Hammoud, D. A. Rabbou, R. Nouri, S. Beheshti, and S. Sakr. DREAM: distributed RDF
engine with adaptive query planner and minimal communication. PVLDB, 8(6):654–665,
2015.

12. A. Harth, J. Umbrich, A. Hogan, and S. Decker. YARS2: A federated repository for querying
graph structured data from the web. In The Semantic Web, 6th International Semantic Web
Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November 11-15, 2007., pages 211–
224, 2007.

13. K. Hose and R. Schenkel. WARP: workload-aware replication and partitioning for RDF. In
Workshops Proceedings of the 29th IEEE International Conference on Data Engineering,
ICDE 2013, pages 1–6, 2013.

14. J. Huang, D. J. Abadi, and K. Ren. Scalable SPARQL querying of large RDF graphs.
PVLDB, 4(11):1123–1134, 2011.

15. M. F. Husain, J. McGlothlin, M. M. Masud, L. R. Khan, and B. M. Thuraisingham.
Heuristics-Based Query Processing for Large RDF Graphs Using Cloud Computing. IEEE
Transactions on Knowledge and Data Engineering, 23:1312–1327, 2011.

16. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput., 20(1):359–392, Dec. 1998.

17. K. Lee and L. Liu. Scaling queries over big RDF graphs with semantic hash partitioning.
PVLDB, 6(14):1894–1905, 2013.

18. W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmér, and
T. Risch. EDUTELLA: a P2P networking infrastructure based on RDF. In Proceedings of
the Eleventh International World Wide Web Conference, WWW 2002, USA, pages 604–615,
2002.

19. T. Neumann and G. Weikum. The rdf-3x engine for scalable management of rdf data. VLDB
J., 19(1):91–113, 2010.

20. K. Rohloff and R. E. Schantz. High-performance, massively scalable distributed systems
using the mapreduce software framework: The shard triple-store. In Programming Support
Innovations for Emerging Distributed Applications, PSI EtA ’10, pages 4:1–4:5, New York,
NY, USA, 2010. ACM.

30

21. P. J. Sadalage and M. Fowler. NoSQL Distilled: A Brief Guide to the Emerging World of
Polyglot Persistence. Addison-Wesley Professional, 1st edition, 2012.

22. M. Stonebraker, D. J. Abadi, D. J. DeWitt, S. Madden, E. Paulson, A. Pavlo, and A. Rasin.
Mapreduce and parallel dbmss: friends or foes? Commun. ACM, 53(1):64–71, 2010.

23. D. Vrandecic and M. Krötzsch. Wikidata: a free collaborative knowledgebase. Commun.
ACM, 57(10):78–85, 2014.

24. B. Wu, Y. Zhou, P. Yuan, H. Jin, and L. Liu. Semstore: A semantic-preserving distributed
rdf triple store. In Proceedings of the 23rd ACM International Conference on Conference on
Information and Knowledge Management, CIKM ’14, pages 509–518, New York, NY, USA,
2014. ACM.

25. M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J. Franklin, S. Shenker,
and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2012, San Jose, CA, USA, April 25-27, 2012, pages 15–28, 2012.

26. M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster com-
puting with working sets. In 2nd USENIX Workshop on Hot Topics in Cloud Computing,
HotCloud’10, Boston, MA, USA, June 22, 2010, 2010.

27. K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang. A distributed graph engine for web scale
RDF data. PVLDB, 6(4):265–276, 2013.

A Appendix : Query workload

Q1: (property path)
SELECT ?x ?y ?z WHERE { ?x lubm:advisor ?y.
?y lubm:worksFor ?z. ?z lubm:subOrganisation ?t. }

Q2: (typed, star and property path)
SELECT ?x ?y ?z WHERE {
?x rdf:type lubm:GraduateStudent.
?y rdf:type lubm:University.
?z rdf:type lubm:Department. ?x lubm:memberOf ?z.
?z lubm:subOrganizationOf ?y.
?x lubm:undergraduateDegreeFrom ?y }

Q3: (typed, star and property path)
SELECT ?x ?y ?z WHERE { ?x rdf:type lubm:Student.
?y rdf:type lubm:Faculty. ?z rdf:type lubm:Course.
?x lubm:advisor ?y. ?y lubm:teacherOf ?z.
?x lubm:takesCourse ?z }

Q4: (typed, property path)
SELECT ?x ?y WHERE { ?x rdf:type lubm:Chair.
?y rdf:type lubm:Department. ?x lubm:worksFor ?y.
?y lubm:subOrganizationOf <http://www.University0.edu>
}

Q5: (property path)
SELECT ?x ?y ?z WHERE { ?x entity:P131s ?y.
?y entity:P961v ?z. ?z entity:P704s ?w }

Q6: (star)
SELECT ?x ?y ?z WHERE { ?x entity:P39v ?y.
?x entity:P580q ?z. ?x rdf:type ?w }

31

Reifying RDF: What Works Well With Wikidata?

Daniel Hernández1, Aidan Hogan1, and Markus Krötzsch2

1 Department of Computer Science, University of Chile
2 Technische Universität Dresden, Germany

Abstract. In this paper, we compare various options for reifying RDF
triples. We are motivated by the goal of representing Wikidata as RDF,
which would allow legacy Semantic Web languages, techniques and tools
– for example, SPARQL engines – to be used for Wikidata. However,
Wikidata annotates statements with qualifiers and references, which re-
quire some notion of reification to model in RDF. We thus investigate
four such options: (1) standard reification, (2) n-ary relations, (3) single-
ton properties, and (4) named graphs. Taking a recent dump of Wikidata,
we generate the four RDF datasets pertaining to each model and discuss
high-level aspects relating to data sizes, etc. To empirically compare the
effect of the different models on query times, we collect a set of bench-
mark queries with four model-specific versions of each query. We present
the results of running these queries against five popular SPARQL imple-
mentations: 4store, BlazeGraph, GraphDB, Jena TDB and Virtuoso.

1 Introduction

Wikidata is a collaboratively edited knowledge-base under development by the
Wikimedia foundation whose aim is to curate and represent the factual informa-
tion of Wikipedia (across all languages) in an interoperable, machine-readable
format [20]. Until now, such factual information has been embedded within mil-
lions of Wikipedia articles spanning hundreds of languages, often with a high
degree of overlap. Although initiatives like DBpedia [15] and YAGO [13] have
generated influential knowledge-bases by applying custom extraction frameworks
over Wikipedia, the often ad hoc way in which structured data is embedded in
Wikipedia limits the amount of data that can be cleanly captured. Likewise,
when information is gathered from multiple articles or multiple language versions
of Wikipedia, the results may not always be coherent: facts that are mirrored
in multiple places must be manually curated and updated by human editors,
meaning that they may not always correspond at a given point in time.

Therefore, by allowing human editors to collaboratively add, edit and curate
a centralised, structured knowledge-base directly, the goal of Wikidata is to keep
a single consistent version of factual data relevant to Wikipedia. The resulting
knowledge-base is not only useful to Wikipedia – for example, for automatically
generating articles that list entities conforming to a certain restriction (e.g.,
female heads of state) or for generating infobox data consistently across all lan-
guages – but also to the Web community in general. Since the launch of Wikidata

32

in October 2012, more than 80 thousand editors have contributed information on
18 million entities (data items and properties). In comparison, English Wikipedia
has around 6 million pages, 4.5 million of which are considered proper articles.
As of July 2015, Wikidata has gathered over 65 million statements.

One of the next goals of the Wikidata project is to explore methods by which
the public can query the knowledge-base. The Wikidata developers are currently
investigating the use of RDF as an exchange format for Wikidata with SPARQL
query functionality. Indeed, the factual information of Wikidata corresponds
quite closely with the RDF data model, where the main data item (entity) can
be viewed as the subject of a triple and the attribute–value pairs associated with
that item can be mapped naturally to predicates and objects associated with the
subject. However, Wikidata also allows editors to annotate attribute–value pairs
with additional information, such as qualifiers and references. Qualifiers provide
context for the validity of the statement in question, for example providing a time
period during which the statement was true. References point to authoritative
sources from which the statement can be verified. About half of the statements
in Wikidata (32.5 million) already provide a reference, and it is an important
goal of the project to further increase this number.

Hence, to represent Wikidata in RDF while capturing meta-information such
as qualifiers and references, we need some way in RDF to describe the RDF
triples themselves (which herein we will refer to as “reification” in the general
sense of the term, as distinct from the specific proposal for reification defined in
the 2004 RDF standard [3], which we refer to as “standard reification”).

In relation to Wikidata, we need a method that is compatible with existing
Semantic Web standards and tools, and that does not consider the domain of
triple annotation as fixed in any way: in other words, it does not fix the domain
of annotations to time, or provenance, or so forth [22]. With respect to general
methods for reification within RDF, we identify four main options:

standard reification (sr) whereby an RDF resource is used to denote the
triple itself, denoting its subject, predicate and object as attributes and
allowing additional meta-information to be added [16,4].

n-ary relations (nr) whereby an intermediate resource is used to denote the
relationship, allowing it to be annotated with meta-information [16,8].

singleton properties (sp) whereby a predicate unique to the statement is cre-
ated, which can be linked to the high-level predicate indicating the relation-
ship, and onto which can be added additional meta-information [18].

Named Graphs (ng) whereby triples (or sets thereof) can be identified in a
fourth field using, e.g., an IRI, onto which meta-information is added [10,5].

Any of these four options would allow the qualified statements in the Wiki-
data knowledge-base to be represented and processed using current Semantic
Web norms. In fact, Erxleben et al. [8] previously proposed an RDF represen-
tation of the Wikidata knowledge-base using a form of n-ary relations. It is
important to note that while the first three formats rely solely on the core RDF
model, Named Graphs represents an extension of the traditional triple model,

33

adding a fourth element; however, the notion of Named Graphs is well-supported
in the SPARQL standard [10], and as “RDF Datasets” in RDF 1.1 [5].

Thus arises the core question tackled in this paper: what are the relative
strengths and weaknesses of each of the four formats? We are particularly inter-
ested in exploring this question quantitatively with respect to Wikidata. We thus
take a recent dump of Wikidata and create four RDF datasets: one for each of
the formats listed above. The focus of this preliminary paper is to gain empirical
insights on how these formats affect query execution times for off-the-shelf tools.
We thus (attempt to) load these four datasets into five popular SPARQL engines
– namely 4store [9], BlazeGraph (formerly BigData) [19], GraphDB (formerly
(Big)OWLIM) [2], Jena TDB [21], and Virtuoso [7] – and apply four versions of
a query benchmark containing 14 queries to each dataset in each engine.

2 The Wikidata Data-model

Figure 1a provides an example statement taken from Wikidata describing the
entity Abraham Lincoln. We show internal identifiers in grey, where those begin-
ning with Q refer to entities, and those referring to P refer to properties. These
identifiers map to IRIs, where information about that entity or relationship can
be found. All entities and relationships are also associated with labels, where
the English versions are shown for readability. Values of properties may also be
datatype literals, as exemplified with the dates.

The snippet contains a primary relation, with Abraham Lincoln as subject, po-
sition held as predicate, and President of the United States of America as object. Such
binary relations are naturally representable in RDF. However, the statement is
also associated with some qualifiers and their values. Qualifiers are property
terms such as start time, follows, etc., whose values may scope the validity of the
statement and/or provide additional context. Additionally, statements are often
associated with one or more references that support the claims and with a rank
that marks the most important statements for a given property. The details are
not relevant to our research: we can treat references and ranks as special types
of qualifiers. We use the term statement to refer to a primary relation and its
associated qualifications; e.g., Fig. 1a illustrates a single statement.

Conceptually, one could view Wikidata as a “Property Graph”: a directed
labelled graph where edges themselves can have attributes and values [11,6]. A
related idea would be to consider Wikidata as consisting of quins of the form
(s, p, o, q, v), where (s, p, o) refers to the primary relation, q is a qualifier prop-
erty, and v is a qualifier value [12]. Referring to Fig. 1a again, we could encode a
quin (:Q91, :P39, :Q11696, :P580, "1861/03/14"^^xsd:date), which states that
Abraham Lincoln had relation position held to President of the United States of Amer-
ica under the qualifier property start time with the qualifier value 4 March 1861. All
quins with a common primary relation would constitute a statement. However,
quins of this form are not a suitable format for Wikidata since a given primary
relation may be associated with different groupings of qualifiers. For example,
Grover Cleveland was President of the United States for two non-consecutive

34

terms (i.e., with different start and end times, different predecessors and succes-
sors). In Wikidata, this is represented as two separate statements whose primary
relations are both identical, but where the qualifiers (start time, end time, follows,
followed by) differ. For this reason, reification schemes based conceptually on
quins – such as RDF* [12,11] – may not be directly suitable for Wikidata.

A tempting fix might be to add an additional column and represent Wikidata
using sextuples of the form (s, p, o, q, v, i) where i is an added statement identifier.
Thus in the case of Grover Cleveland, his two non-consecutive terms would be
represented as two statements with two distinct statement identifiers. While in
principle sextuples would be sufficient, in practice (i) the relation itself may
contain nulls, since some statements do not currently have qualifiers or may
not even support qualifiers (as is the case with labels, for example), (ii) qualifier
values may themselves be complex and require some description: for example,
dates may be associated with time precisions or calendars.3

For this reason, we propose to view Wikidata conceptually in terms of two
tables: one containing quads of the form (s, p, o, i) where (s, p, o) is a primary
relation and i is an identifier for that statement; the other a triple table storing
(i) primary relations that can never be qualified (e.g., labels) and thus do not
need to be identified, (ii) triples of the form (i, q, v) that specify the qualifiers as-
sociated to a statement, and (iii) triples of the form (v, x, y) that further describe
the properties of qualifier values. Table 1 provides an example that encodes some
of the data seen in Fig. 1a – as well as some further type information not shown
– into two such tables: the quads table on the left encodes qualifiable primary
relations with an identifier, and the triples table on the right encodes (i) qual-
ifications using the statement identifiers, (ii) non-qualifiable primary relations,
such as those that specify labels, and (iii) type information for complex values,
such as to provide a precision, calendar, etc.

Compared to sextuples, the quad/triple schema only costs one additional
tuple per statement, will lead to dense instances (even if some qualifiable primary
relations are not currently qualified), and will not repeat the primary relation
for each qualifier; conversely, the quad/triple schema may require more joins for
certain query patterns (e.g., find primary relations with a follows qualifier).

Likewise, the quad/triple schema is quite close to an RDF-compatible encod-
ing. As per Fig. 1b, the triples from Table 1 are already an RDF graph; we can
thus focus on encoding quads of the form (s, p, o, i) in RDF.

3 From Higher Arity Data to RDF (and back)

The question now is: how can we represent the statements of Wikidata as triples
in RDF? Furthermore: how many triples would we need per statement? And
how might we know for certain that we don’t lose something in the translation?

The transformation from Wikidata to RDF can be seen as an instance of
schema translation, where these questions then directly relate to the area of
3 See https://www.wikidata.org/wiki/Special:ListDatatypes; retr. 2015/07/11.

35

https://www.wikidata.org/wiki/Special:ListDatatypes

Abraham Lincoln [Q91]
position held [P39] President of the United States of America [Q11696]

start time [P580] “4 March 1861”
end time [P582] “15 April 1865”
follows [P155] James Buchanan [Q12325]
followed by [P156] Andrew Johnson [Q8612]

(a) Raw Wikidata format

:X1

:Q12325
:P155

:Q8612
:P166

:D1

:P580

:D2

:P582

1861-03-04
:time

1865-04-15
:time

11

:timePrecision

:timePrecision

:Q1985727

:preferredCalendar

:preferredCalendar

(b) Qualifier information common to all formats

:X1:Q91
r:subject

:P39

r:predicate

:Q11696
r:object

(c) Standard reification

:Q91 :X1
:P39s

:Q11696
:P39v

:P39

:valueProperty:statementProperty

(d) n-ary relations

:Q91 :Q11696
:X1

:P39

:singletonPropertyOf

(e) Singleton properties

:X1

:Q91 :Q11696
:P39

(f) Named Graphs

Fig. 1: Reification examples

36

Table 1: Using quads and triples to encode Wikidata

Quads

s p o i

:Q91 :P39 :Q11696 :X1
.

Triples

s p o

:X1 :P580 :D1
:X1 :P582 :D2
:X1 :P155 :Q12325
:X1 :P156 :Q8612
.
:D1 :time "1861-03-04"^^xsd:date
:D1 :timePrecision "11"
:D1 :preferredCalendar :Q1985727
.
:Q91 rdfs:label "Abraham Lincoln"@en
.

relative information capacity in the database community [14,17], which studies
how one can translate from one database schema to another, and what sorts
of guarantees can be made based on such a translation. Miller et al. [17] relate
some of the theoretical notions of information capacity to practical guarantees
for common schema translation tasks. In this view, the task of translating from
Wikidata to RDF is a unidirectional scenario: we want to query a Wikidata
instance through an RDF view without loss of information, and to recover the
Wikidata instance from the RDF view, but we do not require, e.g., updates on
the RDF view to be reflected in Wikidata. We therefore need a transforma-
tion whereby the RDF view dominates the Wikidata schema, meaning that the
transformation must map a unique instance of Wikidata to a unique RDF view.

We can formalise this by considering an instance of Wikidata as a database
with the schema shown in Table 1. We require that any instance of Wikidata
can be mapped to a RDF graph, and that any conjunctive query (CQ; select-
project-join query in SQL) over the Wikidata instance can be translated to a
conjunctive query over the RDF graph that returns the same answers. We call
such a translation query dominating. We do not further restrict how translations
are to be specified so long as they are well-defined and computable.

A query dominating translation of a relation of arity 4 (R4) to a unique
instance of a relation of arity 3 (R3) must lead to a higher number of tuples in
the target instance. In general, we can always achieve this by encoding a quad
into four triples of the form (s, py, oz), where s is a unique ID for the quad, py
denotes a position in the quad (where 1 ≤ y ≤ 4), and oz is the term appearing
in that position of the quad in R4.

Example 1. The quad :Q91 :P39 :Q11696 :X1 can be mapped to four triples:

:S1 :P1 :Q91
:S1 :P2 :P39
:S1 :P3 :Q11696
:S1 :P4 :X1

37

Any conjunctive query over any set of quads can be translated into a conjunctive
query over the corresponding triple instance that returns the same answer: for
each tuple in the former query, add four tuples to the latter query with a fresh
common subject variable, with :P1 . . . :P4 as predicate, and with the correspond-
ing terms from the sextuple (be they constants or variables) as objects. The fresh
subject variables can be made existential/projected away. �

With this scheme, we require 4k triples to encode k quads. This encoding can
be generalised to encode database tables of arbitrary arity, which is essentially
the approach taken by the Direct Mapping of relational databases to RDF [1].

Quad encodings that use fewer than four triples usually require additional as-
sumptions. The above encoding requires the availability of an unlimited amount
of identifiers, which is always given in RDF, where there is an infinite supply of
IRIs. However, the technique does not assume that auxiliary identifiers such as
:S1 or :P4 do not occur elsewhere: even if these IRIs are used in the given set of
quads, their use in the object position of triples would not cause any confusion.
If we make the additional assumption that some “reserved” identifiers are not
used in the input quad data, we can find encodings with fewer triples per quad.

Example 2. If we assume that IRIs :P1 and :P2 are not used in the input
instance, the quad of Example 1 can be encoded in the following three triples:

:S1 :P1 :Q91
:S1 :P2 :P39
:S1 :Q11696 :X1

The translation is not faithful when the initial assumption is violated. For ex-
ample, the encoding of the quad :Q91 :P39 :P1 :Q92 would contain triples :S2
:P1 :Q91 and :S2 :P1 :Q92, which would be ambiguous. �

The assumption of some reserved IRIs is still viable in practice, and indeed
three of the encoding approaches we look at in the following section assume
some reserved vocabulary to be available. Using suitable naming strategies, one
can prevent ambiguities. Other domain-specific assumptions are also sometimes
used to define suitable encodings. For example, when constructing quads from
Wikidata, the statement identifiers that are the fourth component of each quad
functionally determine the first three components, and this can be used to sim-
plify the encoding. We will highlight these assumptions as appropriate.

4 Existing Reification Approaches

In this section, we discuss how legacy reification-style approaches can be lever-
aged to model Wikidata in RDF, where we have seen that all that remains is to
model quads in RDF. We also discuss the natural option of using named graphs,
which support quads directly. The various approaches are illustrated in Fig. 1,
where 1b shows the qualifier information common to all approaches, i.e., the
triple data, while 1c–1f show alternative encodings of quads.

38

Standard Reification The first approach we look at is standard RDF reifica-
tion [16,4], where a resource is used to denote the statement, and where addi-
tional information about the statement can be added. The scheme is depicted in
Fig. 1c. To represent a quad of the form (s, p, o, i), we add the following triples:
(i, r:subject, s), (i, r:predicate, p), (i, r:object, o), where r: is the RDF vo-
cabulary namespace. We omit the redundant declaration as type r:Statement,
which can be inferred from the domain of r:subject. Moreover, we simplify
the encoding by using the Wikidata statement identifier as subject, rather than
using a blank node. We can therefore represent n quadruples with 3n triples.

n-ary Relation The second approach is to use an n-ary relation style of mod-
elling, where a resource is used to identify a relationship. Such a scheme is
depicted in Fig. 1d, which follows the proposal by Erxleben et al. [8]. Instead
of stating that a subject has a given value, the model states that the subject
is involved in a relationship, and that that relationship has a value and some
qualifiers. The :subjectProperty and :valueProperty edges are important to
be able to query for the original name of the property holding between a given
subject and object.4 For identifying the relationship, we can simply use the state-
ment identifier. To represent a quadruple of the form (s, p, o, i), we must add the
triples (s, ps, i), (i, pv, o), (pv, :valueProperty, p), (ps, :statementProperty, p),
where pv and ps are fresh properties created from p. To represent n quadruples
of the form (s, p, o, i), with m unique values for p, we thus need 2(n+m) triples.
Note that for the translation to be query dominating, we must assume that
predicates such as :P39s and :P39v in Fig. 1c, as well as the reserved terms
:statementProperty and :valueProperty, do not appear in the input.

Singleton Properties Originally proposed by Nguyen et al. [18], the core idea
behind singleton properties is to create a property that is only used for a sin-
gle statement, which can then be used to annotate more information about the
statement. The idea is captured in Fig. 1e. To represent a quadruple of the
form (s, p, o, i), we must add the triples (s, i, o), (i, :singletonPropertyOf, p).
Thus to represent n quadruples, we need 2n triples, making this the most con-
cise scheme so far. To be query dominating, we must assume that the term
:singletonPropertyOf cannot appear as a statement identifier.

Named Graphs Unlike the previous three schemes, Named Graphs extends
the RDF triple model and considers sets of pairs of the form (G,n) where G is
an RDF graph and n is an IRI (or a blank node in some cases, or can even be
omitted for a default graph). We can flatten this representation by taking the
union over G × {n} for each such pair, resulting in quadruples. Thus we can
encode a quadruple (s, p, o, i) directly using N-Quads, as illustrated in Fig. 1f.
4 Referring to Fig. 1c, another option to save some triples might be to use the original
property :P39 (position held) instead of :P39s or :P39v, but this could be conceptually
ugly since, e.g., if we replaced :P39s, the resulting triple would be effectively stating
that (Abraham Lincoln,position held,[a statement identifier]).

39

Table 2: Number of triples needed to model quads (n = 57, 088, 184, p = 1, 311)

Schema: sr (3n) nr (2(n+ p)) sp (2n) ng (n)

Tuples: 171,264,552 114,178,990 114,176,368 57,088,184

Other possibilities? Having introduced the most well-known options for reifi-
cation, one may ask if these are all the reasonable alternatives for representing
quadruples of the form (s, p, o, i) – where i functionally determines (s, p, o) – in
a manner compatible with the RDF standards. As demonstrated by singleton
properties, we can encode such quads into two triples, where i appears somewhere
in both triples, and where s, p and o each appear in one of the four remaining
positions, and where a reserved term is used to fill the last position. This gives
us 108 possible schemes5 that use two triples to represent a quad in a similar
manner to the singleton properties proposal. Just to take one example, we could
model such a quad in two triples as (i, r:subject, s), (i, p, o)—an abbreviated
form of standard reification. As before, we should assume that the properties p
and r:subject are distinct from qualifier properties. Likewise, if we are not so
concerned with conciseness and allow a third triple, the possibilities increase fur-
ther. To reiterate, our current goal is to evaluate existing, well-known proposals,
but we wish to mention that many other such possibilities do exist in theory.

5 SPARQL Querying Experiments

We have looked at four well-known approaches to annotate triples, in terms of
how they are formed, what assumptions they make, and how many triples they
require. In this section, we aim to see how these proposals work in practice,
particularly in the context of querying Wikidata. Experiments were run on an
Intel E5-2407 Quad-Core 2.2GHz machine with a standard SATA hard-drive and
32 GB of RAM. More details about the configuration of these experiments are
available from http://users.dcc.uchile.cl/~dhernand/wrdf/.

To start with, we took the RDF export of Wikidata from Erxleben et al. [8]
(2015-02-23), which was natively in an n-ary relation style format, and built the
equivalent data for all four datasets. The number of triples common to all formats
was 237.6 million. With respect to representing the quads, Table 2 provides a
breakdown of the number of output tuples for each model.

5 There are 3! possibilities for where i appears in the two triples: ss, pp, oo, sp, so,
po. For the latter three configurations, all four remaining slots are distinguished so
we have 4! ways to slot in the last four terms. For the former three configurations,
both triples are thus far identical, so we only have half the slots, making 4 × 3
permutations. Putting it all together, 3× 4! + 3× 4× 3 = 108.

40

http://users.dcc.uchile.cl/~dhernand/wrdf/

0 200 400
0

2,000

4,000

6,000

8,000

4store

0 200 400
0

50

100

150

200

BlazeGraph

0 200 400
0

2,000

4,000

6,000

8,000
GraphDB

0 200 400
0

50

100

Jena

0 200 400
0

50

100

Virtuoso
Standard Reification

n-ary Relations

Singleton Properties

Named Graphs

x-axes: Statements (×103)

y-axes: Index Size (MB)

Fig. 2: Growth in index sizes for first 400,000 statements

Loading data: We selected five RDF engines for experiments: 4store, Blaze-
Graph, GraphDB, Jena and Virtuoso. The first step was to load the four datasets
for the four models into each engine. We immediately started encountering prob-
lems with some of the engines. To quantify these issues, we created three collec-
tions of 100,000, 200,000, and 400,000 raw statements and converted them into
the four models.6 We then tried to load these twelve files into each engine. The
resulting growth in on-disk index sizes is illustrated in Figure 2 (measured from
the database directory), where we see that: (i) even though different models lead
to different triple counts, index sizes were often nearly identical: we believe that
since the entropy of the data is quite similar, compression manages to factor
out the redundant repetitions in the models; (ii) some of the indexes start with
some space allocated, where in fact for BlazeGraph, the initial allocation of disk
space (200MB) was not affected by the data loads; (iii) 4store and GraphDB
both ran into problems when loading singleton properties, where it seems the
indexing schemes used assume a low number of unique predicates.7 With respect
to point (iii), given that even small samples lead to blow-ups in index sizes, we
decided not to proceed with indexing the singleton properties dataset in 4store
or GraphDB. While later loading the full named graphs dataset, 4store slowed
to loading 24 triples/second; we thus also had to kill that index load.8

6 We do not report the times for full index builds since, due to time constraints, we
often ran these in parallel uncontrolled settings.

7 In the case of 4store, for example, in the database directory, two new files were
created for each predicate.

8 See https://groups.google.com/forum/#!topic/4store-support/uv8yHrb-ng4;
retr. 2015/07/11.

41

https://groups.google.com/forum/#!topic/4store-support/uv8yHrb-ng4

Benchmark queries: From two online lists of test-case SPARQL queries, we
selected a total of 14 benchmark queries.9 These are listed in Table 3; since we
need to create four versions of each query for each reification model, we use
an abstract quad syntax where necessary, which will be expanded in a model-
specific way such that the queries will return the same answers over each model.
An example of a quad in the abstract syntax and its four expansions is provided
in Table 4. In a similar manner, the 14 queries of Table 3 are used to generate
four equivalent query benchmarks for testing, making a total of 56 queries.

In terms of the queries themselves, they exhibit a variety of query features
and number/type of joins; some involve qualifier information while some do not.
Some of the queries are related; for example, Q1 and Q2 both ask for information
about US presidents, and Q4 and Q5 both ask about female mayors. Importantly,
Q4 and Q5 both require use of a SPARQL property path (:P31/:P279*), which
we cannot capture appropriately in the abstract syntax. In fact, these property
paths cannot be expressed in either the singleton properties model or the stan-
dard reification model; they can only be expressed in the n-ary relation model
(:P31s/:P31v/(:P279s/:P279v)*), and the named graph model (:P31/:P279*)
assuming the default graph can be set as the union of all graphs (since one cannot
do property paths across graphs in SPARQL, only within graphs).

Query results: For each engine and each model, we ran the queries sequentially
(Q1–14) five times on a cold index. Since the engines had varying degrees of
caching behaviour after the first run – which is not the focus of this paper – we
present times for the first “cold” run of each query.10 Since we aim to run 14×
4×5×5 = 1, 400 query executions, to keep the experiment duration manageable,
all engines were configured for a timeout of 60 seconds. Since different engines
interpret timeouts differently (e.g., connection timeouts, overall timeouts, etc.),
we considered any query taking longer than 60 seconds to run as a timeout. We
also briefly inspected results to see that they corresponded with equivalent runs,
ruling queries that returned truncated results as failed executions.11

The query times for all five engines and four models are reported in Figure 3,
where the y-axis is in log scale from 100 ms to 60,000 ms (the timeout) in all
cases for ease of comparison. Query times are not shown in cases where the
query could not be run (for example, the index could not be built as discussed
previously, or property-paths could not be specified for that model, or in the
case of 4store, certain query features were not supported), or where the query
failed (with a timeout, a partial result, or a server exception). We see that in
terms of engines, Virtuoso provides the most reliable/performant results across
all models. Jena failed to return answers for singleton properties, timing-out on
all queries (we expect some aspect of the query processing does not perform well

9 https://www.mediawiki.org/wiki/Wikibase/Indexing/SPARQL_Query_Examples
and http://wikidata.metaphacts.com/resource/Samples

10 Data for other runs are available from the web-page linked earlier.
11 The results for queries such as Q5, Q7 and Q14 may (validly) return different answers

for different executions due to use of LIMIT without an explicit order.

42

https://www.mediawiki.org/wiki/Wikibase/Indexing/SPARQL_Query_Examples
http://wikidata.metaphacts.com/resource/Samples

Table 3: Evaluation queries in abstract syntax
#Q1: US presidents and their wives

SELECT ?up ?w ?l ?wl WHERE { <:Q30 :P6 ?up _:i1> . <?up :P26 ?w ?i2> . OPTIONAL {
?up rs:label ?l . ?w rs:label ?wl . FILTER(lang(?l) = "en" && lang(?wl) = "en") } }

#Q2: US presidents and causes of death
SELECT ?h ?c ?hl ?cl WHERE { <?h :P39 :Q11696 ?i1> . <?h :P509 ?c ?i2> . OPTIONAL {
?h rs:label ?hl . ?c rs:label ?cl . FILTER(lang(?hl) = "en" && lang(?cl) = "en") } }

#Q3: People born before 1880 with no death date
SELECT ?h ?date WHERE { <?h :P31 :Q5 ?i1> . <?h :P569 ?dateS ?i2> . ?dateS :time ?date .
FILTER NOT EXISTS { ?h :P570s [:P570v ?d] . }
FILTER (datatype(?date) = xsd:date && ?date < "1880-01-01Z"^^xsd:date) } LIMIT 100

#Q4: Cities with female mayors ordered by population
SELECT DISTINCT ?city ?citylabel ?mayorlabel (MAX(?pop) AS ?max_pop) WHERE {
?city :P31/:P279* :Q515 . <?city :P6 ?mayor ?i1> . FILTER NOT EXISTS { ?i1 :P582q ?x }
<?mayor :P21 :Q6581072 _:i2> . <?city :P1082 ?pop _:i3> . ?pop :numericValue ?pop .
OPTIONAL { ?city rs:label ?citylabel . FILTER (LANG(?citylabel) = "en") }
OPTIONAL { ?mayor rs:label ?mayorlabel . FILTER (LANG(?mayorlabel) = "en") } }

GROUP BY ?city ?citylabel ?mayorlabel ORDER BY DESC(?max_pop) LIMIT 10

#Q5: Countries ordered by number of female city mayors
SELECT ?country ?label (COUNT(*) as ?count) WHERE { ?city :P31/:P279* :Q515 .
<?city :P6 ?mayor ?i1> . FILTER NOT EXISTS { ?i1 :P582q ?x }
<?mayor :P21 :Q6581072 ?i2> . <?city :P17 ?country ?i3> . ?pop :numericValue ?pop .
OPTIONAL { ?country rs:label ?label . FILTER (LANG(?label) = "en") } }

GROUP BY ?country ?label ORDER BY DESC(?count) LIMIT 100

#Q6: US states ordered by number of neighbouring states
SELECT ?state ?label ?borders WHERE { { SELECT ?state (COUNT(?neigh) as ?borders)

WHERE { <?state :P31 :Q35657 ?i1> . <?neigh :P47 ?state _:i2> .
<?neigh :P31 :Q35657 ?i3 > . } GROUP BY ?state }

OPTIONAL { ?state rs:label ?label . FILTER(lang(?label) = "en") } } ORDER BY DESC(?borders)

#Q7: People whose birthday is “today”
SELECT DISTINCT ?entity ?year WHERE { <?entityS :P569 ?value ?i1> . ?value :time ?date .
?entityS rs:label ?entity . FILTER(lang(?entity)="en")
FILTER(date(?date)=month(now()) && date(?date)=day(now())) } LIMIT 10

#Q8: All property–value pairs for Douglas Adams
SELECT ?property ?value WHERE { <:Q42 ?property ?value ?i> }

#Q9: Populations of Berlin, ordered by least recent
SELECT ?pop ?time WHERE { <:Q64 wd:P1082 ?popS ?i> . ?popS :numericValue ?pop .
?i wd:P585q [:time ?time] . } ORDER BY (?time)

#Q10: Countries without an end-date
SELECT ?country ?countryName WHERE { <?country wd:P31 wd:Q3624078 ?i> .
FILTER NOT EXISTS { ?g :P582q ?endDate } ?country rdfs:label ?countryName .
FILTER(lang(?countryName)="en") }

#Q11: US Presidents and their terms, ordered by start-date
SELECT ?president ?start ?end WHERE { <:Q30 :P6 ?president ?i > .
?g :P580q [:time ?start] ; :P582q [:time ?end] . } ORDER BY (?start)

#Q12: All qualifier properties used with "head of government" property
SELECT DISTINCT ?q_p WHERE { <?s :P6 ?o ?i > . ?g ?q_p ?q_v . }

#Q13: Current countries ordered by most neighbours
SELECT ?countryName (COUNT (DISTINCT ?neighbor) AS ?neighbors) WHERE {
<?country :P31 :Q3624078 ?i1> . FILTER NOT EXISTS { ?i1 :P582 ?endDate }
?country rs:label ?countryName FILTER(lang(?countryName)="en") OPTIONAL {
<?country :P47 ?neighbor ?i2 > <?neighbor :P31 :Q3624078 ?i3> .
FILTER NOT EXISTS { ?i3 :P582q ?endDate2 } } }

GROUP BY(?countryName) ORDER BY DESC(?neighbors)

#Q14: People who have Wikidata accounts
SELECT ?person ?name ?uname WHERE { <?person :P553 wd:Q52 ?i > .
?i :P554q ?uname . ?person rs:label ?name . FILTER(LANG(?name) = "en") . } LIMIT 100

43

Table 4: Expansion of abstract syntax quad for getting US presidents
abstract syntax: <:Q30 :P6 ?up ?i> .

std. reification: ?i r:subject :Q30 ; r:predicate :P6 ; r:object ?up .
n-ary relations: :Q30 :P6s ?i . ?i :P6v ?up .
sing. properties: :Q30 ?i ?up . ?i1 r:singletonPropertyOf :P6 .
named graphs: GRAPH ?i { :Q30 :P6 ?up . }

assuming many unique predicates). We see that both BlazeGraph and GraphDB
managed to process most of the queries for the indexes we could build, but with
longer runtimes than Virtuoso. In general, 4store struggled with the benchmark
and returned few valid responses in the allotted time.

Returning to our focus in terms of comparing the four reification models,
Table 5 provides a summary of how the models ranked for each engine and
overall. For a given engine and query, we look at which model performed best,
counting the number of firsts, seconds, thirds, fourths, failures (fa) and cases
where the query could not be run (nr). For example, referring back to Figure 3,
we see that for Virtuoso, Q1, the fastest models in order were standard reification,
named graphs, singleton properties, n-ary relations. Thus, in Table 5, under
Virtuoso, we add a one to standard reification in the 1st column, a one to named
graphs in the 2st column, and so forth. Along these lines, for example, the score
of 4 for singleton-properties (sp) in the 1st column of Virtuoso means that this
model successfully returned results faster than all other models in 4 out of the 14
cases. The total column then adds the positions for all engines. From this, we see
that looking across all five engines, named graphs is probably the best supported
(fastest in 17/70 cases), with standard reification and and n-ary relations not far
behind (fastest in 16/70 cases). All engines aside from Virtuoso seem to struggle
with singleton properties; presumably these engines make some (arguably naive)
assumptions that the number of unique predicates in the indexed data is low.

Although the first three RDF-level formats would typically require more joins
to be executed than named graphs, the joins in question are through the state-
ment identifier, which is highly selective; assuming “equivalent” query plans,
the increased joins are unlikely to overtly affect performance, particularly when
forming part of a more complex query. However, additional joins do complicate
query planning, where aspects of different data models may affect established
techniques for query optimisation differently. In general, we speculate that in
cases where a particular model was much slower for a particular query and en-
gine, that the engine in question selected a (comparatively) worse query plan.

6 Conclusions

In this paper, we have looked at four well-known reification models for RDF:
standard reification, n-ary relations, singleton properties and named graphs. We
were particularly interested in the goal of modelling Wikidata as RDF, such that

44

Table 5: Ranking of reification models for query response times

№ 4store BlazeGraph GraphDB Jena Virtuoso Total
sr nr sp ng sr nr sp ng sr nr sp ng sr nr sp ng sr nr sp ng sr nr sp ng

1st 2 3 0 0 6 2 0 3 2 2 0 7 2 7 0 3 4 2 4 4 16 16 4 17
2rd 2 1 0 0 1 3 2 4 5 2 0 4 6 0 0 5 5 2 1 6 19 8 3 19
3rd – – – – 3 3 1 2 4 7 0 0 2 2 0 3 3 3 2 3 12 15 3 8
4th – – – – 0 1 6 2 – – – – 0 0 0 0 2 4 4 1 2 5 10 3
FA 5 5 0 0 4 3 3 3 3 1 0 3 4 3 12 3 0 1 1 0 16 13 16 9
NR 5 5 14 14 0 2 2 0 0 2 14 0 0 2 2 0 0 2 2 0 5 13 34 14

it can be indexed and queried by existing SPARQL technologies. We sketched a
conceptual overview of a Wikidata schema based on quads/triples, thus reducing
the goal of modelling Wikidata to that of modelling quads in RDF (quads where
the fourth element functionally specifies the triple), and introduced the four
reification models in this context. We found that singleton-properties offered the
most concise representation on a triple level, but that n-ary predicates was the
only model with built-in support for SPARQL property paths. With respect to
experiments over five SPARQL engines – 4store, BlazeGraph, GraphDB, Jena
and Virtuoso – we found that the former four engines struggled with the high
number of unique predicates generated by singleton properties, and that 4store
likewise struggled with a high number of named graphs. Otherwise, in terms of
query performance, we found no clear winner between standard reification, n-ary
predicates and named graphs. We hope that these results may be insightful for
Wikidata developers – and other practitioners – who wish to select a practical
scheme for querying reified RDF data.

Acknowledgements This work was partially funded by the DFG in projects DIA-
MOND (Emmy Noether grant KR 4381/1-1) and HAEC (CRC 912), by the Millennium
Nucleus Center for Semantic Web Research under Grant No. NC120004 and by Fonde-
cyt Grant No. 11140900.

References

1. Arenas, M., Bertails, A., Prud’hommeaux, E., Sequeda, J. (eds.): Direct Mapping
of Relational Data to RDF. W3C Recommendation (27 September 2012), http:
//www.w3.org/TR/rdb-direct-mapping/

2. Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., Velkov, R.:
OWLIM: a family of scalable semantic repositories. Sem. Web J. 2(1), 33–42 (2011)

3. Brickley, D., Guha, R. (eds.): RDF Vocabulary Description Language 1.0: RDF
Schema. W3C Recommendation (10 February 2004), http://www.w3.org/TR/
rdf-schema/

4. Brickley, D., Guha, R. (eds.): RDF Schema 1.1. W3C Recommendation (25 Febru-
ary 2014), http://www.w3.org/TR/rdf-schema/

5. Cyganiak, R., Wood, D., Lanthaler, M., Klyne, G., Carroll, J.J., McBride, B. (eds.):
RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation (25 February
2014), http://www.w3.org/TR/rdf11-concepts/

45

6. Das, S., Srinivasan, J., Perry, M., Chong, E.I., Banerjee, J.: A tale of two graphs:
Property Graphs as RDF in Oracle. In: EDBT. pp. 762–773 (2014), http://dx.
doi.org/10.5441/002/edbt.2014.82

7. Erling, O.: Virtuoso, a hybrid RDBMS/graph column store. IEEE Data Eng. Bull.
35(1), 3–8 (2012)

8. Erxleben, F., Günther, M., Krötzsch, M., Mendez, J., Vrandečić, D.: Introducing
Wikidata to the linked data web. In: ISWC. pp. 50–65 (2014)

9. Harris, S., Lamb, N., Shadbolt, N.: 4store: The design and implementation of a
clustered RDF store. In: Workshop on Scalable Semantic Web Systems. CEUR-
WS, vol. 517, pp. 94–109 (2009)

10. Harris, S., Seaborne, A., Prud’hommeaux, E. (eds.): SPARQL 1.1 Query
Language. W3C Recommendation (21 March 2013), http://www.w3.org/TR/
sparql11-query/

11. Hartig, O.: Reconciliation of RDF* and Property Graphs. CoRR abs/1409.3288
(2014), http://arxiv.org/abs/1409.3288

12. Hartig, O., Thompson, B.: Foundations of an alternative approach to reification in
RDF. CoRR abs/1406.3399 (2014), http://arxiv.org/abs/1406.3399

13. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: A spatially and
temporally enhanced knowledge base from Wikipedia. Artif. Intell. 194, 28–61
(2013)

14. Hull, R.: Relative information capacity of simple relational database schemata. In:
PODS. pp. 97–109 (1984)

15. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - A large-
scale, multilingual knowledge base extracted from Wikipedia. Sem. Web J. 6(2),
167–195 (2015)

16. Manola, F., Miller, E. (eds.): Resource Description Framework (RDF): Primer.
W3C Recommendation (10 February 2004), http://www.w3.org/TR/rdf-primer/

17. Miller, R.J., Ioannidis, Y.E., Ramakrishnan, R.: Schema equivalence in heteroge-
neous systems: bridging theory and practice. Inf. Syst. 19(1), 3–31 (1994)

18. Nguyen, V., Bodenreider, O., Sheth, A.: Don’t like RDF reification? Making state-
ments about statements using singleton property. In: WWW. pp. 759–770. ACM
(2014)

19. Thompson, B.B., Personick, M., Cutcher, M.: The Bigdata® RDF graph database.
In: Linked Data Management, pp. 193–237. Chapman and Hall/CRC (2014)

20. Vrandečić, D., Krötzsch, M.: Wikidata: A free collaborative knowledgebase. Comm.
ACM 57, 78–85 (2014)

21. Wilkinson, K., Sayers, C., Kuno, H.A., Reynolds, D., Ding, L.: Supporting scalable,
persistent Semantic Web applications. IEEE Data Eng. Bull. 26(4), 33–39 (2003)

22. Zimmermann, A., Lopes, N., Polleres, A., Straccia, U.: A general framework for
representing, reasoning and querying with annotated Semantic Web data. J. Web
Sem. 11, 72–95 (2012)

46

http://dx.doi.org/10.5441/002/edbt.2014.82
http://dx.doi.org/10.5441/002/edbt.2014.82
http://arxiv.org/abs/1409.3288
http://arxiv.org/abs/1406.3399

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14
102

103

104

R
u
n
ti
m
e
(s
)

Virtuoso

std. reification n-ary relations sing. properties named graphs

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14
102

103

104

R
u
n
ti
m
e
(m

s)

4store

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14
102

103

104

R
u
n
ti
m
e
(m

s)

BlazeGraph

Q1 Q2 Q3 Q6 Q7 Q8 Q9 Q10 Q11 Q13 Q14
102

103

104

R
u
n
ti
m
e
(m

s)

GraphDB

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14
102

103

104

R
u
n
ti
m
e
(m

s)

Jena

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14
102

103

104

R
u
n
ti
m
e
(m

s)

Virtuoso

Fig. 3: Query results for all five engines and four models (log scale)

47

Dynamic join order optimization for SPARQL
endpoint federation

Hongyan Wu, Atsuko Yamaguchi, and Jin-Dong Kim

Database Center for Life Science, Research Organization of Information and Systems,
Japan

{wu,atsuko,jdkim}@dbcls.rois.ac.jp

Abstract. The existing web of linked data inherently has distributed
data sources. A federated SPARQL query system, which queries RDF
data via multiple SPARQL endpoints, is expected to process queries on
the basis of these distributed data sources. During a federated query,
each data source may consist of a search space of nontrivial size. There-
fore, finding the optimal join order to minimize the size of intermediate
results from different sources is key to optimizing the performance of
such federated queries. In this study, we present a dynamic optimiza-
tion approach to determining join order, which can find more optimized
join plans than static optimization approaches. Our experimental results
show that our proposed approach stably improves the performance of a
federated query as the query becomes increasingly complex.

Keywords: linked data, SPARQL, federated query, dynamic join order
optimization

1 Introduction

Linked data technology has substantially contributed to the freeing of data con-
fined in individual silos; however, searching over such data is still performed
within a single SPARQL endpoint, making it difficult to truly affirm that data
are truly freed from their respective silos even in the linked data space.

A number of federated query systems have been developed to enable search
across multiple endpoints. Although it is difficult to assert that the performance
of these query systems is close to production level, the research community is
continuously trying to improve such performance [2,3,5,6,8,10]. In this paper, we
propose a novel technique, i.e., dynamic join order optimization, to significantly
improve the performance of federated search.

A federated query inherently has to explore multiple endpoints, and while
traversing these endpoints, results from one endpoint must be joined with results
from the next endpoint and so on. Here each endpoints may consist of a search
space of nontrivial size. To efficiently perform the search across these multiple
search spaces, determining the optimal join order is key to good performance.

Join order optimization has been a research topic for a number of years [4,11–
13]; however, in these studies, the common approach is to somehow try to find

48

2 Hongyan Wu, Atsuko Yamaguchi, and Jin-Dong Kim

the optimal join order before beginning actual exploration into the endpoints.
We therefore call this static join optimization. Considering the importance of join
order on the performance of a SPARQL query, we argue that join order cannot be
sufficiently optimized at the onset of the query; further, by utilizing intermediate
results obtained during search, join order can be significantly improved. We
present a simple algorithm for dynamic join order optimization as well as an
implementation in the form of an extension to FedX.

Our experimental results show that dynamic join order optimization is effec-
tive in controlling the search space size, thereby avoiding explosions in size. We
also developed a new benchmark for evaluating the join optimization of federated
query performance. This benchmark is developed to include more complex join
operations than those introduced in FedBench [8]. Our experimental results here
show that our dynamic join order approach stably improves the performance of
federated search.

2 Related work

In relational databases, associated data entries are maintained in tables consist-
ing of any number of columns; in RDF, data pieces are maintained in triples,
the smallest unit of representation for typed binary relationships. Therefore, join
operations generally occur much more frequently when processing a SPARQL
query than when processing a corresponding SQL query.

(a) Static approach (b) Dynamic approach (c) Final results for two ap-
proaches

Fig. 1. Intermediate results for the static and dynamic approaches

Suppose we have a query that can be decomposed into three subqueries, Qa,
Qb, and Qc, which have answers Ra, Rb, and Rc, respectively, from three dif-
ferent endpoints. Then, final answers are to be those that satisfy the constraints

49

Dynamic join order optimization for SPARQL endpoint federation 3

set by the three subqueries. In Figure 1(c), the three circles Ra, Rb, and Rc
represent the sets of results of the three subqueries, with the gray area repre-
senting the final results. To reach the set of final results, there are six distinct
join orders, i.e., (1) A → B → C; (2) A → C → B; (3) B → A → C; (4) B → C
→ A; (5) C → A → B; and (6) C → B → A. Regardless of which join order is
selected, the final set of results is the same; however, the number of intermedi-
ate results that must be handles varies on the basis of the different join orders.
For example, if subquery Qc is executed first, Rc must be handled as the initial
set of intermediate results; however, we would like to avoid that choice because
|Rc| produces the largest set of intermediate results among the three possible
subqueries.

If the size of the intermediate results is known or can be estimated in advance,
the join order may be optimized. For example, the result size of the individual
subqueries may be estimated in advance as |Ra| < |Rb| < |Rc|. Based on this
information, the join order may be optimized as A → B → C. Below are the
necessary operations that must occur in the given order:

1. Receive result set Ra.
2. Bind variables in query Qb using result set Ra and then submit intermediate

results to Eb.
3. Receive result set Ra ∩Rb.
4. Bind variables in query Qc using result set Ra ∩ Rb and then submit inter-

mediate results to Ec.
5. Receive final result Ra ∩Rb ∩Rc.

With the given join order, the size of the intermediate result sets that must
be handled is |Ra| + |Ra ∩ Rb|. This is more or less the scenario in which most
federated search systems have been developed in terms of join order optimization,
i.e., to better optimize the join order, attempt to estimate the result set sizes of
individual subqueries with heuristics or statistical information.

In this paper, we argue that even if the initial estimation is performed per-
fectly, there is still large room for further optimization. Note that after Qa is first
executed, there are two choices for the next execution, i.e., Qb and Qc. Although
|Rb| is estimated to be smaller than |Rc|, choosing Qc for the next execution
is in fact a more optimal choice because |Ra ∩ Rc| (i.e., Figure 1(b)) is smaller
than |Ra ∩ Rb| (i.e., Figure 1(a)). To select the optimal choice in this case, we
propose a dynamic join order optimization approach that evaluates queries as
follows: (1) evaluate the size of all subqueries, obtaining |Ra| < |Rb| < |Rc|; (2)
evaluate Qa, then apply Ra to Qb and Qc, noting that |Ra ∩ Rc| is less than
|Ra ∩ Rb|; (3) evaluate |Ra ∩ Rc|; and (4) join Qc. Therefore, the join order is
A → C → B. Here the dynamic approach obviously performs better than the
static approach because the intermediate result space |Ra|+ |Ra ∩Rc| is smaller
than the static approach space (i.e., |Ra| + |Ra ∩Rb|).

To date, research regarding join order optimization, both in relational database
and RDF data management systems, has been centered on static optimization
in which optimization is performed only once before queries are actually exe-
cuted. As an example, FedX builds a subquery for a group of triple patterns

50

4 Hongyan Wu, Atsuko Yamaguchi, and Jin-Dong Kim

in which each triple exclusively shares a single relevant source. FedX assumes
this type of exclusive subquery, and the subquery with fewer free variables has
a high selectivity ranking. The assumed selectivity ranking and variable count-
ing technologies are not suitable for all situations as queries become complex.
DARQ [6], SPLENDID [3], ADERIS [5], Avalanche [2], and other similar systems
use pre-computed information, such as service description or VoID, to estimate
selectivity and optimize join order; however, none of these can overcome the
fragility of static optimization techniques. More specifically, the search space
changes as the query is processed. Based on this and the frequency of join op-
erations in a SPARQL query, we argue that join order should be optimized by
utilizing intermediate results with a dynamic approach.

3 Dynamic join order optimization model

3.1 Static join order optimization

To best introduce our dynamic join order optimization algorithm, we first show
a simple algorithm that uses the static join order strategy. Here we assume the
existence of a sortSubQueries operation to sort subqueries by some measure and
an evaluateQuery operation to output a set preResults of results for variables
appearing in a given SPARQL query.

Algorithm 1 Query execution with static join order optimization

1: function StaticJoin(setSubQueries: a set of subqueries)
2: listSubQueries← sortSubQueries(setSubQueries)
3: preResult← ∅
4: while listSubQueries is not empty do
5: curSubQuery ← pop(listSubQueries)
6: preResult← evaluateQuery(preResult, curSubQuery)
7: end while
8: return preResult
9: end function

Algorithm 1 shows the flow of query execution when a static join order op-
timization scheme is applied. Given the setSubQueries set of subqueries, the
algorithm first sorts the subqueries on the basis of estimations of their result
sizes and then executes the subqueries in the given order. In other words, the
optimal join order is determined before the execution of any subqueries, and the
join order does not change during execution, which is why we call it a ”static”
optimization strategy.

3.2 Dynamic join order optimization

Algorithm 2 shows the flow of query execution with dynamic join order opti-
mization. Unlike the static optimization strategy described above, the optimal

51

Dynamic join order optimization for SPARQL endpoint federation 5

subquery to be executed next is determined at each step of query execution by
considering the intermediate results obtained thus far. We therefore call this
approach a ”dynamic” optimization strategy.

Algorithm 2 Query execution with static join order optimization

1: function DynamicJoin(setSubQueries: a set of subqueries)
2: preResult← ∅
3: while setSubQueries is not empty do
4: curSubQuery ← findOptimalSubQuery(setSubQueries, preResult)
5: preResult← evaluateQuery(preResult, curSubQuery)
6: setSubQueries← setSubQueries− {curSubQuery}
7: end while
8: return preResult
9: end function

In the algorithm, findOptimalSubQuery finds the subquery with the high-
est selectivity among all subqueries (line 4). On line 6, the executed subquery is
removed from the subquery set, and then this process repeats until all subqueries
finish.

Finding the optimal subquery In Algorithm 3, we apply a greedy strategy
at each step to find the subquery that has the smallest result size.

Algorithm 3 Finding the optimal subquery

1: function findOptimalSubQuery(setSubQueries, preResult)
2: optimalSubQuery ← setSubQueries[0]
3: minSize←MAX V ALUE
4: for each subQuery in setSubQueries do
5: if |setSubQueries| equals 1 then
6: break
7: end if
8: size← estimateResultSize(subQuery, preResult)
9: if size < minSize then

10: optimalSubQuery ← subQuery
11: minSize← size
12: end if
13: end for
14: return optimalSubQuery
15: end function

Estimating result size There are many approaches for estimating the result
size of a subquery, for example, using pre-computed statistical information. In

52

6 Hongyan Wu, Atsuko Yamaguchi, and Jin-Dong Kim

this paper, our implementation uses COUNT queries that do not need any pre-
computed information. More specifically, we bind previous subquery results to
each remaining subquery, construct a COUNT query, and send it on the fly
to the relevant sources to determine under the current conditions how many
intermediate results they will produce.

Note that a COUNT query is a SPARQL query with the form “select count(*)...”
that evaluates the result size of a subquery. We construct COUNT queries for all
subqueries as follows: (1) search the triple pattern with a bound value from pre-
vious results preResult; (2) bind the variables in the remaining subqueries, i.e.,
setSubQueries, with their corresponding values; and (3) use UNION keywords
to combine multiple small queries for a subquery into a large query to decrease
the number of COUNT queries. An example of our approach here is shown in
Figure 2; note that this example comes from our benchmark Q7 and that the
bold font portion represents the bound variable and its value.

SELECT count(*)
WHERE{
{?enzyme kegg :substrate <http://bio2rdf.org/kegg:D06880> .
?enzyme rdf:type kegg:Enzyme>.
?reaction kegg:enzyme ?enzyme . }
UNION
…
UNION
{?enzyme kegg :substrate <http://bio2rdf.org/kegg:C11613> .
?enzyme rdf:type kegg:Enzyme>.
?reaction kegg:enzyme ?enzyme . }
}

?enzyme kegg:substrate ?cpd.
?enzyme rdf:type kegg:Enzyme.
?reaction kegg:enzyme ?enzyme.

?drug drugbank:category ?category.
?drug drugbank:x‐kegg ?cpd.

(c) COUNT query: bound with the values
of ?cpd from the previous subquery(b) The subquery to estimate its selectivity

(a) The evaluated previous subquery

cpd=<http://bio2rdf.org/kegg:D06880>
…
cpd=<http://bio2rdf.org/kegg:C11613>

bind variable
?cpd

unionized into
one query

Fig. 2. An example using a COUNT query to evaluate selectivity for a subquery

For dynamic join order optimization, the system must apply all previous
query results to the candidate subqueries; however, when there are a large num-
ber of values in the intermediate results, it is costly to bind all values to the
remaining subqueries and execute the large query. Note that for join order opti-
mization, we need only a rough estimate of the size of the query results on which
the subqueries may be ordered. This estimation does not need to be very precise
because a small difference in the size of results will not significantly impact the
overall performance.

Thus, rather than exhaustively consider the entire set of intermediate results,
we take a small sample of size n and order the subqueries by the size of the results
after binding relevant variables with the sample values. In this work, we simply
set the size of n to be 3. While it may be necessary to estimate the optimal
sample size, at this point, we assume that it is not a critical factor for the reason
noted above.

Instead of estimating the cost of expressions with VoID as SPLENDID, the
estimateResultsSize function actually sends the COUNT query to its relevant
data sources. Here, we note two important observations: (1) the performance cost

53

Dynamic join order optimization for SPARQL endpoint federation 7

of a COUNT query at its local endpoint is not very large and (2) a COUNT
query returns only one number, which is far less information than that if a full
result set was returned.

4 Evaluation

4.1 Evaluation of join optimization

We investigated how dynamic join optimization influences the query performance
in comparison with the static join. As we noted above, FedX is the fastest en-
gine among the current federated SPARQL endpoint query systems according
to recent benchmarks. We therefore implemented all the functions, including
source selection, on the basis of the FedX system, and compared the differences
before and after using dynamic join optimization in conjunction with the FedX
system. Further, we evaluated SPLENDID, which is expected to produce a good
join order plan using statistical information and optimizing plans on the basis
of dynamic programming techniques.

FedBench is a comprehensive benchmark suite for federated semantic data
that considers the evaluation of UNION, FILTER, and OPTIONAL clauses;
however, we note that almost all queries in this benchmark have a common
characteristic, i.e., they include a single triple pattern with two bound variables
and only one free variable, as shown in the query below from Cross Domain
evaluation CD6.

SELECT ?name ?location ?news
WHERE {
?artist <http://xmlns.com/foaf/0.1/name> ?name . (1)
?artist <http://xmlns.com/foaf/0.1/based_near> ?location . (2)
?location <http://www.geonames.org/ontology#parentFeature> ?germany . (3)
?germany <http://www.geonames.org/ontology#name> ’Federal Republic of Germany’ (4)
}

Triple pattern (4) with two bound variables usually has a higher selectivity. A
good join optimization plan should execute this type of triple pattern at an
earlier stage in a sequence of joins; however, this type of triple pattern can be
simply identified even with very simple optimization technologies, such as the
variable counting technique used in the FedX system to count the number of
bound variables. To better evaluate the influence of dynamic and static joins,
we designed a benchmark to evaluate join optimization for federated SPARQL
endpoint queries.

Benchmark setup For our benchmarks, we used five real biological SPARQL
endpoints from the Bio2RDF project [1], which is a different setup than Fed-
Bench [8], SP2Bench [9], and the fine-grained evaluation of SPARQL endpoint
federation systems [7], all of which use a simulated federated environment and
synthetic data or a subset of real data. For the life science field, FedBench uses
three biological datasets, namely KEGG, ChEBI, and Drugbank. Because the

54

8 Hongyan Wu, Atsuko Yamaguchi, and Jin-Dong Kim

SPARQL endpoint for CHEBI in the Bio2RDF project [1] is still under construc-
tion, we selected KEGG, Drugbank, SIDER, OMIM, and PharmGKB.

These datasets connect to one another closely by relationships between gene,
drug, disease, reaction, side effect, and others. Table 1 presents the details of each
dataset. The data are far more complicated than the FedBench life science data.
The largest biological dataset in FedBench is a subset of ChEBI that includes
7.33 million triples, 28 predicates, and a single type. In the Bio2RDF project, the
server of each endpoint is set to return a maximum of 10,000 results at a time,
regardless of the real result size. This restriction is commonplace to lessen the
burden on the server. Note that all settings in the Bio2RDF servers are beyond
our control.

Table 1. Bio2RDF dataset

Dataset Endpoint #Triples(M) #Pred #Types

Drugbank http://cu.kegg.bio2rdf.org/sparql 3.48 105 91

OMIM http://cu.drugbank.bio2rdf.org/sparql 8.35 101 34

SIDER http://cu.pharmgbk.bio2rdf.org/sparql 16.81 39 16

KEGG http://cu.sider.bio2rdf.org/sparql 47.87 141 63

PharmGKB http://cu.omim.bio2rdf.org/sparql 265.17 88 50

This benchmark focuses on testing the join operation in the SPARQL end-
point federation. We consider the following points in designing the queries: (1)
the number of triple patterns (#Tp) varies from two to nine; (2) the number
of queried endpoints (#Src) has a size ranging from two to five; and (3) the
number of returned results (#Res) ranges from 1 k to 109 k. Queries returning
large result set sizes are very useful when integrating data from multiple data
sources. Table 2 shows the query characteristics in detail.

Table 2. Bio2RDF query characteristics

Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

#Tp 2 4 4 4 8 9 6 8

#Src 2 2 2 2 5 5 5 5

#Res 1 5 5 5 9492 132 32003 111962

In addition, the query set considers the numbers of variables in a triple
pattern. RDF data could connect to each other via different paths, which brings
about more free variables. The fewer bound variables, the more difficult it is
to estimate selectivity. Here Q2 and Q3 include one triple pattern in which all
variables are free, Q3 changes the position of the triple pattern, and Q4 increases
another such triple pattern. The rest of the queries consider the influence of the
triple pattern with two bound variables. In this case, Q5, Q7, and Q8 have
only one triple pattern with two bound variables, whereas Q6 has two such

55

Dynamic join order optimization for SPARQL endpoint federation 9

triple patterns. Next, Q7 is a variation of LS4 from FedBench, with Q7 obtained
by slightly modifying the bound variables, thereby increasing the result size.
Further, Q5 is a variation of Q7 obtained by changing the connected dataset and
constructing a more complicated star Q8 subquery. Here Q6 tests a query with
complicated star subqueries, evaluating the query connecting three datasets.
Finally, Q1 is designed to evaluate the extreme case with only two join triple
patterns.

We sequentially executed each query five times, removing the largest and
smallest values, calculating the mean value of the three remaining values.

Query performance Figure 3 summarizes query performance, and Table 3
shows how intermediate results changed. Dynamic join optimization outper-
formed the original static FedX system during all queries, except for Q5. As
for the time cost, for Q1, Q2, Q6, and Q8, the dynamic approach was faster
than the original FedX system. FedX failed on Q4, which has two triple pat-
terns in which all variables are free 1. With regard to the result completeness,
the dynamic approach returned all results for all queries, whereas Fedx returned
incomplete results for Q2, Q3, Q6, and Q7. Finally, SPLENDID returned all
results for Q1, Q2, and Q4, in which Q2 and Q4 were slower than the dynamic
join and Q1 was slightly faster; note that SPLENDID failed all other queries by
reaching the one-hour timeout limitation.

Intermediate results shown in Table 3 detail the query performance of both
FedX and our dynamic join approach. Intermediate results for the first step,
namely the results of the first subquery, show the selectivity of the first subquery.
In the table, the number outside the bracket shows the real intermediate result
size that the subquery should return, whereas the number inside the bracket
shows the actual intermediate size returned within the 10,000-result limitation
of the server.

The real intermediate result sizes of Q1, Q2, Q3, Q4, Q6, Q7, and Q8 of FedX
were far larger than those of the dynamic join optimization; therefore, FedX was
much slower for queries Q1, Q2, Q6, and Q8. For Q7, because of the restrictions
on the returned size, the returned intermediate results size was 10,000 (though
it should be 80,460), which was less than that of the dynamic join; therefore,
the query seemed faster; however, Fedx returned incomplete results, while our
dynamic approach returned all results. For Q3, Fedx failed in the second step
because this step returned zero results, while our dynamic join approach suc-
cessfully finished the query in the third step. For Q5, FedX and our dynamic
approach produced the same number of intermediate results and the same join
plan. In this case, the dynamic approach needed an additional join order opti-
mization cost and was therefore a little slower. We did not measure the details
of the intermediate results for SPLENDID.

1 A SPARQL compiler error occurs when FedX joins a certain intermediate result
with another subquery. The dynamic join avoids this problem because the number
of intermediate results is much less than that of FedX.

56

10 Hongyan Wu, Atsuko Yamaguchi, and Jin-Dong Kim

0.1

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

El
as
pe

d
tim

e(
se
c)
:
 lo
g
sc
al
e

FedX

SPLENDID

DynaJoin

time out time out time
out

time
out

result zero

result zero

result zero

result incom
plete

error

Fig. 3. Bio2RDF results

Table 3. Intermediate results of
the first two steps

1st step 2nd step

FedX Dyna Fedx Dyna

Q1
14609
(10000)

2 1 1

Q2
95443
(10000)

1
95443
(10000)

3

Q3
91656866
(10000)

1 0 10000

Q4
14609
(10000)

1
14609
(10000)

3

Q5 19 19 9492 9492

Q6
70115
(10000)

2 0 132

Q7
80406
(10000)

4323 >10000a 32077

Q8 36 36 60362 27

a The exact size could not be mea-
sured because its previous step
was not completely executed.

We investigated why Fedx returned no results for Q2. Figure 4(a) and 4(b)
illustrate the produced join plan of Q2. In the figures, the number inside the
bracket shows the intermediate result after executing the operation. The first
evaluation produced by FedX was the exclusive group. With the limitation of
the OMIM server, the evaluation returned 10,000 intermediate results that con-
tributed no final results; here the actually produced intermediate result size was
95,443. The dynamic join approach sends COUNT queries; thus, determining
the fourth triple pattern has the highest selectivity, thereby returning only one
result. It then binds the results of variable ?o2 to the other triple patterns, con-
structs the COUNT queries, and sends them to the relevant endpoints. In this
case, the dynamic approach judged the third triple pattern to have fewer results
and finally joined the exclusive group. The reason why Q3 and Q6 returned no
results is similar to that of Q2.

For Q7 and Q8, it was more difficult to make a join order plan. There is
a single triple pattern with two bound variables, which seemingly has higher
selectivity. For Q7, FedX first produced a larger initial search space of 80,406,
which partially contributed to the final results and therefore returned only part
of the results. The dynamic join first evaluated the group (i.e., 4323 results from
the fourth and sixth triple patterns), with the search space size being far less
than that of Fedx. Consequently, FedX returned only part of the results, whereas
the dynamic join returned all results.

57

Dynamic join order optimization for SPARQL endpoint federation 11

(?gene rdf:type
omim:Gene)

(?gene omim:refers‐to ?o1)

(pharm:PA446359
pharm:x‐snomedct ?o2)

⋈ (?o1 ?p2 ?o2)

(a) FedX for Q1

⋈

∑

(pharm:PA446359
pharm:x‐snomedct ?o2)

⋈

⋈

(b)DynaJoin for Q1

(?gene rdf:type
omim:Gene)

(?gene omim:refers‐
to ?o1)

∑

(?o1 ?p2 ?o2)

(10000)
(1)

(10000)

(1)

(3)

(5)
(0)

select ?gene ?o1 ?o2 where{
?gene rdf:type omim:Gene. (1)
?gene omim:refers‐to ?o1. (2)
?o1 ?p2 ?o2. (3)
pharm:PA446359 pharm:x‐snomedct ?o2 } (4)

Fig. 4. Join order and intermediate result sizes (inside the brackets) for Q2.

For Q8, 111,962 results were returned-the largest size in this group of queries.
The query was evaluated across three endpoints, as shown in Figure 5. Both FedX
and our dynamic join first evaluated the exclusive group (i.e., the first three
triple patterns) at the Drugbank endpoint. Next, FedX evaluated the second
exclusive group (i.e., the fourth and fifth triple patterns); however, the dynamic
join approach judged the second exclusive group to have more results than the
third exclusive group (i.e., the seventh and eighth triple patterns). Evaluating the
third exclusive group earlier substantially reduced the size of the intermediate
results, thereby accelerating the query.

⋈

(b) DynaJoin for Q8(the first two steps)

(36)

(?s1drugbank:category
drugbank:Anticonvuls
ants)

(?s1 drugbank:
affected‐organism
?affected)

∑

(?s1 drugbank:
 x-pubchem.compound
?pathway)

(?drug
sider:side‐effect
?side)

(?drug
sider:pubchem‐flat‐
compound‐id ?cpd)

∑

(60362)

⋈

(36)

(?s1drugbank:category
drugbank:Anticonvuls
ants)

(?s1 drugbank:
affected‐organism
?affected)

∑

(?s1 drugbank:
affected‐organism
?affected)

(?s2 kegg:x‐
pubchem.comp
ound ?cpd)

(?s2 kegg:pathway
?pathway)

∑

(27)

(a) FedX and SPLENDID for Q8(the first two steps)(a) FedX and SPLENDID for Q8.

⋈

(b) DynaJoin for Q8(the first two steps)

(36)

(?s1drugbank:category
drugbank:Anticonvuls
ants)

(?s1 drugbank:
affected‐organism
?affected)

∑

(?s1 drugbank:
affected‐organism
?affected)

(?drug
sider:side‐effect
?side)

(?drug
sider:pubchem‐flat‐
compound‐id ?cpd)

∑

(60362)

⋈

(36)

(?s1drugbank:category
drugbank:Anticonvuls
ants)

(?s1 drugbank:
affected‐organism
?affected)

∑

(?s1 drugbank:
 x-pubchem.compound
?pathway)

(?s2 kegg:x‐
pubchem.comp
ound ?cpd)

(?s2 kegg:pathway
?pathway)

∑

(27)

(a) FedX and SPLENDID for Q8(the first two steps)

(b) DynaJoin for Q8.

Fig. 5. Join order and intermediate result sizes (inside the brackets) for Q8.

For Q5, FedX and our dynamic approach produced the same join plan. The
dynamic approach needed an additional join order optimization cost; therefore,
FedX was slightly faster. Table 4 shows the additional overhead and their corre-
sponding percentages accounting for the total query time in detail. The largest
overhead here was 3.74 seconds for Q5. Consequently, the size increased and the
query became heavier, thereby causing the optimization cost to no longer seem
insignificant.

In addition, our evaluation shows that SPLENDID cannot produce a bet-
ter join plan than our dynamic approach despite using pre-computed statistical
information. More specifically, we checked the join plan produced by SPLEN-
DID. For Q7 and Q8, SPLENDID produced the same join order as FedX, which
generated far larger intermediate results than our dynamic approach. For other
queries, SPLENDID produced the same join order plan as our dynamic join

58

12 Hongyan Wu, Atsuko Yamaguchi, and Jin-Dong Kim

Table 4. Additional overhead of our dynamic join approach

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

time(sec) 0.4 2.33 2.96 3.49 3.74 1.29 1.09 2.24

% 40.5 73.9 7.7 65.8 3.0 19.5 0.8 0.4

approach. The additional cost of the dynamic approach for Q1 resulted from
the two COUNT queries, while SPLENDID used pre-computed information to
evaluate the selectivity of the two triple patterns.

We also checked the difference when using an index cache; however, we do not
provide details here because the cache was not used in the dynamic join order
procedure. Here source selection was implemented in the same way as that in
case of FedX, which does not impact performance; therefore, the aforementioned
conclusions still hold.

4.2 Fedbench benchmark

As mentioned in the above section, the FedBench benchmark cannot measure
the performance of join optimization in the federated query well because of its
simplicity in producing a join plan; however, in this section, we still provide
evaluation results with the Fedbench benchmark as a reference.

Our experiments were conducted on the AWS platform, with five m3.2xlarge
instances for the Cross Domain dataset and four instances for life science data.
These instances were configured with Intel(R) Xeon(R) CPU E5-2670 v2 2.50
GHz 4 Core CPU with 30 GB RAM and high network performance property
(AWS standards) with a 64-bit GNU/Linux operating system and the 64-bit
Java VM 1.7.0 75. All datasets were stored with an 8 GiB general purpose SSD
EBS, except for the Geonames dataset, which used a 100 GiB one. Endpoints
used open-source Virtuoso 07.00.3203.

Table 5 summarizes the FedBench dataset, while Table 6 presents query
characteristics. #Tp., #Src, and #Res represent the number of triple patterns,
data sources, and results, respectively. Figure 6 presents our experimental results.

Except for query LS6, FedX was slightly faster than our approach, with a
maximum difference of less than 0.5 seconds. Our proposed dynamic join eventu-
ally generated the same join plan as FedX. Therefore, the cost difference mainly
came from the additional optimization cost of our proposed dynamic optimiza-
tion algorithm. Overall, the additional cost is not substantial. Further, as the
queries in the life science field become heavier than queries in the cross domain,
the additional cost will decrease.

CD1 shows an extreme case in which only two triple patterns were joined.
In this query, Fedx simply identified the triple pattern with higher selectivity.
Our dynamic join approach seemed to experience a large cost (0.5 seconds) for
optimization; however, the evaluation of Q1 in our designed benchmark, which
also joined two triple patterns, showed our dynamic join approach to be much
faster than FedX. In such cases, they applied different join order plans. LS6

59

Dynamic join order optimization for SPARQL endpoint federation 13

illustrated a special case in which our dynamic join outperformed FedX. The
results of this query are different from what was described in the FedX paper;
the FedX team has confirmed these results with our current dataset and settings.
We are jointly investigating the reasons why these inconsistencies exist.

Table 5. FedBench datasets

Dataset #Triples(M) #Pred #Types

DBpedia subset 43.6M 1063 248

GeoNames 108M 26 1
LinkedMDB 6.15M 222 53
Jamendo 1.05M 26 11
New York Times 335k 36 2

KEGG 1.09M 21 4
ChEBI 7.33M 28 1
Drugbank 767k 119 8

Table 6. Query characteristics

Cross Domain(CD) Life Science (LS)

Query #Tp. #Src #Res #Tp #Src #Res

1 3 2 90 2 2 1159

2 3 2 1 3 4 333

3 5 5 2 5 3 9054

4 5 5 1 7 2 3

5 4 5 2 6 3 393

6 4 4 11 5 3 28

7 4 5 1 5 3 144

0.01

0.1

1

10

CD1 CD2 CD3 CD4 CD5 CD6 CD7

El
ap

se
d

 t
im

e(
se

c)
: l

o
g

sc
al

e

FedX

SPLENDID

DynaJoin

0.01

0.1

1

10

100

LS1 LS2 LS3 LS4 LS5 LS6 LS7

El
ap

se
d

 t
im

e(
se

c)
: l

o
g

sc
al

e

FedX

SPLENDID

DynaJoin

0.01

0.1

1

10

CD1 CD2 CD3 CD4 CD5 CD6 CD7

El
ap

se
d

 t
im

e(
se

c)
: l

o
g

sc
al

e

FedX

SPLENDID

DynaJoin

0.01

0.1

1

10

100

LS1 LS2 LS3 LS4 LS5 LS6 LS7

El
ap

se
d

 t
im

e(
se

c)
: l

o
g

sc
al

e

FedX

SPLENDID

DynaJoin

Fig. 6. FedBench results

5 Conclusions

In this paper, we proposed a novel dynamic join order optimization technique.
Because the search space of SPARQL queries is always changing, we believe that
the join order should be dynamically optimized during query execution, con-
sidering the frequency and importance of the join operation in such SPARQL
queries. We perform a SPARQL query by executing a group of subqueries in
which we optimize the join order by binding the variable values from previous
subqueries to the remaining subqueries and then evaluating the next intermedi-
ate result size and selecting the plan with the minimum intermediate result size.
Both the Fedbench benchmark and our heavier federated biological benchmark
proved that in comparison with the static optimization approach, our proposed

60

14 Hongyan Wu, Atsuko Yamaguchi, and Jin-Dong Kim

dynamic approach engine can stably present an optimal join plan and therefore
improve the performance of a federated query, with the degree of improvement
becoming clearer as the query becomes more complex. Our dynamic approach
does introduce additional overhead with its multiple updates of the join plan,
with the overhead being significant in queries that return a small number of
results and therefore have join orders that are not complex; however, as queries
become more complex and result sizes increase, the optimization cost becomes
increasingly insignificant.

Note that the overhead of the COUNT queries could be further controlled
by parallelizing the COUNT queries and setting timeout limitations. For the
first returned COUNT query, we could assume that it has less of a join cost
because the amount of data, the scale of server computational ability, or the
degree of network cost is better than others. We plan to implement this in the
future to gain a better understanding here. In addition, although we implemented
selectivity estimation via COUNT queries in this paper, other approaches are
available. With fine-grained metadata, selectivity estimation could be estimated
with less cost, although previous results provide concrete instances.

Acknowledgements

This work was supported by the National Bioscience Database Center (NBDC)
of the Japan Science and Technology Agency (JST). We also thank the continued
support from the FedX team for evaluating FedBench.

References

1. Bio2rdf, http://bio2rdf.org/
2. Basca, C., Bernstein, A.: Avalanche: Putting the spirit of the web back

into semantic web querying. In: 9th International Semantic Web Confer-
ence (ISWC2010) (November 2010), http://data.semanticweb.org/conference/
iswc/2010/paper/527

3. Grlitz, O., Staab, S.: Splendid: Sparql endpoint federation exploiting void descrip-
tions. In: In Proceedings of the 2nd International Workshop on Consuming Linked
Data (2011)

4. Haas, P.J., Naughton, J.F., Seshadri, S., Swami, A.N.: Selectivity and cost estima-
tion for joins based on random sampling. Journal of Computer and System Sciences
52(3), 550 – 569 (1996), http://www.sciencedirect.com/science/article/pii/
S0022000096900410

5. Lynden, S.J., Kojima, I., Matono, A., Tanimura, Y.: Aderis: Adaptively in-
tegrating rdf data from sparql endpoints. In: Kitagawa, H., Ishikawa, Y., Li,
Q., Watanabe, C. (eds.) DASFAA (2). Lecture Notes in Computer Science,
vol. 5982, pp. 400–403. Springer (2010), http://dblp.uni-trier.de/db/conf/

dasfaa/dasfaa2010-2.html#LyndenKMT10

6. Quilitz, B., Leser, U.: Querying distributed rdf data sources with sparql. In: Pro-
ceedings of the 5th European Semantic Web Conference on The Semantic Web:
Research and Applications. pp. 524–538. ESWC’08, Springer-Verlag, Berlin, Hei-
delberg (2008), http://dl.acm.org/citation.cfm?id=1789394.1789443

61

Dynamic join order optimization for SPARQL endpoint federation 15

7. Saleem, M., Khan, Y., Hasnain, A., Ermilov, I., Ngonga Ngomo, A.C.: A fine-
grained evaluation of SPARQL endpoint federation systems. Semantic Web Journal
(2014), http://svn.aksw.org/papers/2014/fedeval-swj/public.pdf

8. Schmidt, M., Grlitz, O., Haase, P., Ladwig, G., Schwarte, A., Tran, T.: Fedbench:
A benchmark suite for federated semantic data query processing. In: Aroyo, L.,
Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N.F., Blomqvist,
E. (eds.) International Semantic Web Conference (1). Lecture Notes in Computer
Science, vol. 7031, pp. 585–600. Springer (2011), http://dblp.uni-trier.de/db/
conf/semweb/iswc2011-1.html#SchmidtGHLST11

9. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: Sp2bench: A sparql performance
benchmark. CoRR abs/0806.4627 (2008)

10. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: Fedx: A federation
layer for distributed query processing on linked open data. In: The Semanic Web:
Research and Applications - 8th Extended Semantic Web Conference, ESWC 2011,
Heraklion, Crete, Greece, May 29 - June 2, 2011, Proceedings, Part II. pp. 481–486
(2011), http://dx.doi.org/10.1007/978-3-642-21064-8_39

11. Steinbrunn, M., Moerkotte, G., Kemper, A.: Optimizing join orders. Citeseer
(1993)

12. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: Sparql basic
graph pattern optimization using selectivity estimation. In: Proceedings of the 17th
International Conference on World Wide Web. pp. 595–604. WWW ’08, ACM, New
York, NY, USA (2008), http://doi.acm.org/10.1145/1367497.1367578

13. Swami, A., Schiefer, K.: On the estimation of join result sizes. In: Jarke, M.,
Bubenko, J., Jeffery, K. (eds.) Advances in Database Technology EDBT ’94, Lec-
ture Notes in Computer Science, vol. 779, pp. 287–300. Springer Berlin Heidelberg
(1994), http://dx.doi.org/10.1007/3-540-57818-8_58

62

Parallel Data Loading during Querying Deep
Web and Linked Open Data with SPARQL

Pauline Folz1,2, Gabriela Montoya1,3, Hala Skaf-Molli1, Pascal Molli1, and
Maria-Esther Vidal4

1 LINA– Nantes University, France
{pauline.folz,gabriela.montoya,hala.skaf,pascal.molli}@univ-nantes.fr

2 Nantes Métropole - Direction Recherche, Innovation et Enseignement Supérieur,
France

3 Unit UMR6241 of the Centre National de la Recherche Scientifique (CNRS), France
4 Universidad Simón Boĺıvar, Venezuela

{mvidal}@ldc.usb.ve

Abstract. Web integration systems are able to provide transparent and
uniform access to heterogeneous Web data sources by integrating views
of Linked Data, Web Service results, or data extracted from the Deep
Web. However, given the potential large number of views, query engines
of Web integration systems have to implement execution techniques able
to scale up to real-world scenarios and efficiently execute queries. We
tackle the problem of SPARQL query processing against RDF views,
and propose a non-blocking query execution strategy that incrementally
accesses and merges the views relevant to a SPARQL query in a parallel
fashion. The proposed strategy is implemented on top of Jena 2.7.4, and
empirically compared with SemLAV, a sequential SPARQL query engine
on RDF views. Results suggest that our approach outperforms SemLAV
in terms of the number of answers produced per unit of time.

1 Introduction

Linked Open Data initiatives have motivated the integration of a large number
of RDF datasets into the Linking Open Data (LOD) cloud [4]. Different Web-
based interfaces are available to access these publicly accessible Linked Data
sets, e.g., SPARQL endpoints and Linked Data fragments [17]. However, the
Deep Web which has around 500 times the size of the Surface Web [11, 10]
has not been integrated as part of LOD cloud. Performing SPARQL queries
without considering the Deep Web can potentially deliver incomplete results. For
example, the execution of the SPARQL query: Which members of the Semantic
Web community are interested in Dalai Lama, Barack Obama, or Rihanna? (cf.
Figure 2) without the integration of the Deep Web will provide no answers [8].
Nevertheless, if data from social networks such as Twitter, Facebook, or LinkedIn
were considered, the query execution could return some answers.

Two main approaches exist for data integration: data warehousing, and the
virtual mediators [7]. Semantic data-warehouses such as Virtuoso with the Sponger

63

feature [1] allow for the implementation of wrappers able to create RDF data
from unsemantified data sources, e.g., Web services, CSV files; but this approach
may suffer from the freshness problem [2], i.e., data may become stale when data
sources are updated.

On the other hand, a mediator relies on a global schema to provide a uniform
interface for accessing the data sources. Global-As-View (GAV) and Local-As-
View (LAV), are the main paradigms for mapping data sources and the global
schema. In GAV mediators, entities of the global schema are described using
views over the data sources, but including or updating data sources may require
the modification of a large number of views [16]. Whereas, in LAV mediators,
the sources are described as views over the global schema, and adding new
data sources can be easily done [16]. Despite of its expressiveness and flexibility,
LAV query re-writting is in general intractable, i.e., NP-complete for conjunctive
queries [3]. State-of-the-art LAV query rewriters efficiently solve some families of
the query rewriting problem [3, 12]; nevertheless, they may not equally perform
on SPARQL queries [13]. Recently, SemLAV [13], the first scalable LAV-based
approach for SPARQL query processing, was proposed. Instead of enumerating
the query rewritings of a SPARQL query, SemLAV selects the most relevant LAV
views, accesses the selected views according to their relevance, and materializes
the downloaded data into an integrated RDF graph. Then, the SPARQL query
is executed against the integrated RDF graph.

SemLAV provides a new paradigm to execute SPARQL queries against LAV
views, but because relevant views are loaded sequentially, SemLAV may get
blocked loading large views. In the worst case, if the first loaded view is huge and
it does not provide relevant data for the query answer, SemLAV will be blocked
without producing any answer. Following a sequential view loading strategy may
reduce the number of answer produced per unit of time, i.e., throughput, and
the time for first answer. Loading several views in parallel may overcome these
limitations. However, a parallel view loading strategy will introduce the problem
of concurrent writing on the integrated RDF graph. In this paper, we propose
a non-blocking query execution strategy to integrate the data from the relevant
views into the integrated RDF graph in a parallel fashion. We implement the
proposed non-blocking strategy on the top of Jena 2.7.4; we name this new
SPARQL query engine parallel SemLAV. Further, an empirical evaluation is
conducted to study the new parallel strategy with respect to SemLAV. The
Berlin Benchmark [5] and queries and views designed by Castillo-Espinola [6] are
used to evaluate both query engines. Results suggest that the parallel SemLAV
outperforms SemLAV with respect to answers produced per time unit.

The paper is organized as follows. Section 2 describes background and mo-
tivation. Section 3 presents strategies for integrating relevant views into the
integrated RDF graph in a parallel fashion. Section 4 reports our experimental
results. Finally, conclusions and future work are outlined in Section 5.

64

Fig. 1: SemLAV a mediator and wrapper architecture

2 Background and Motivation

SemLAV follows a mediator and wrapper architecture [18] where data from the
sources are virtually integrated by SemLAV in a global schema composed by
several RDF vocabularies, as shown in Figure 1. Sources are described by LAV
views and can be heterogeneous, e.g., from the Deep Web, RDF data sets, or
relational tables. SPARQL queries are expressed in terms of the global schema
and posed against the SemLAV mediator. A wrapper is specific for a data source,
and retrieves data on demand; the retrieved data are transformed to match the
global schema. Wrappers can be generated by tools like Karma [15] or OPAL [9].
The global schema is the interface between users and the data sources.

2.1 SemLAV Overview

Given a query and a set of views, SemLAV computes a ranked set of relevant
views for answering the query, no statistics are used to rank the views. Relevant
views are ranked based on the number of triple patterns of the original query
that each view covers [13]. Views are materialized by calling the wrappers, and
each time a new view is fully materialized, the original query is executed.

The benefits of SemLAV are illustrated in the following example [8]. Suppose
SemLAV global schema comprises different RDF vocabularies, e.g., foaf 5 and

5 http://xmlns.com/foaf/0.1/

65

p r e f i x r d f s : <ht tp : //www.w3 . org /2000/01/ rd f−schema#>
p r e f i x f o a f : <ht tp : // xmlns . com/ f o a f /0.1/>

SELECT DISTINCT ∗
WHERE {

?P f o a f : member ?C .
?C r d f s : l a b e l ” Semant ic Web” .
?P f o a f : knows ?WKP .
?WKP f o a f : name ?N .
FILTER (?N=”Da l a i Lama” | | ?N=”Barack Obama” | | ?N=”Rihanna ”)

}

Fig. 2: A SPARQL query over Deep Web and Linked Data

rdfs 6. Figure 2 presents a SPARQL query expressed using the global schema.
Views are expressed as conjunctive queries, where RDF predicates are repre-
sented by binary predicates, e.g., label(C,L) corresponds to ?C rdf:label ?L and
?P foaf:name ?N is expressed as name(P,N). Listing 1 defines five LAV views.
Triple patterns in the query are also seen as binary predicates and BGPs are
represented as conjunctive queries; the running SPARQL query is composed
of four subgoals on the predicates: member(P,C), label(C, “Semantic Web”),
knows(P,WKP), and name(WKP,N). The filter expression is modeled as a dis-
junction of atomic expressions on the equality comparison operator.

Listing 1: Views s1-s5 for Query Q

v1 (P ,A, I , C , L):−made (P ,A) , a f f i l i a t i o n (P , I) , member (P ,C) , l a b e l (C , L)
v2 (A,T,P ,N,C):− t i t l e (A,T) ,made (P ,A) , name(P ,N) ,member (P ,C)
v3 (P ,N,R ,M):−name(P ,N) , name(R ,M) , knows (P ,R)
v4 (P ,N,G,R ,C):−name(P ,N) , gender (P ,G) , knows (P ,R) ,member (P ,C)
v5 (P ,N,R ,C , L):−name(P ,N) , knows (P ,R) ,member (P ,C) , l a b e l (C , L)

Given a subgoal sg of a conjunctive query, e.g., label(C,“Semantic Web”), a
view v is relevant for sg, if sg is part of the body of v, e.g., v1(P,A,I,C,L) and
v5(P,N,R,C,L) are relevant for label(C,“Semantic Web”). Table 1a presents the
set of relevant views for each query subgoal of query in Figure 2.

SemLAV sorts relevant views according to the number of the subgoals of the
query that the view defines, e.g., view v5 is sorted first since it defines all the
subgoals. Table 1b represents the sorted relevant views for query in Figure 2.

SemLAV identifies and ranks the relevant views of a query, and executes the
query over the data collected from the relevant views. Different strategies can
be followed to contact the views and load the data. For example, following a
blocking strategy, views are contacted one by one in order, and a view is not
contacted until all the data from the previous contacted view have been down-
loaded completely. This is the strategy followed by SemLAV, which is illustrated
in the Figure 3a, we can see that this strategy can be blocking if the first view
is huge. While the view v5 is loading we are not able to perform the query. This
blocking issue can have a negative impact on the performance of the query en-

6 "http://www.w3.org/2000/01/rdf-schema

66

Table 1: Relevant views of query Q (cf. Figure 2), and views from Listing 1.
(a) Unsorted relevant views

member(P, C) label(C, L) knows(P, WKP) name(WKP, N)

v1(P,A,I,C,L) v1(P,A,I,C,L) v3(P,N,R,M) v2(A,T,P,N,C)

v2(A,T,P,N,C) v5(P,N,R,C,L) v4(P,N,G,R,C) v3(P,N,R,M)

v4(P,N,G,R,C) v5(P,N,R,C,L v4(P,N,G,R,C)
v5(P,N,R,C,L) v5(P,N,R,C,L)

(b) Sorted relevant views

member(P, C) label(C, L) knows(P, WKP) name(WKP, N)

v5(P,N,R,C,L) v5(P,N,R,C,L) v5(P,N,R,C,L) v5(P,N,R,C,L)
v4(P,N,G,R,C) v1(P,A,I,C,L) v4(P,N,G,R,C) v4(P,N,G,R,C)
v1(P,A,I,C,L) v3(P,N,R,M) v2(A,T,P,N,C)
v2(A,T,P,N,C) v3(P,N,R,M)

gine if the performance is measured in terms of the number of answers produced
per unit of time, i.e., throughput.

To illustrate this problem, consider Figure 3a, where v5 is loaded first. Even
if v5 covers all the query subgoals, loading v5 first reduces the throughput,
because v5 is the biggest view and does not contribute to the result. On the other
hand, loading both v1 and v4, which together cover all the subgoals takes less
time and may produce query answers. If relevant views were loaded in parallel
following a non-blocking strategy, this situation would not affect the query engine
performance. This solution is illustrated in Figure 3b, where there are five threads
and each of them loads one of the first five top ranked views at the time; views are
allocated in different threads. Time to load v5 is greater than the time required
to load v4 and v1 in parallel. Additionally, v4 and v1 cover all the subgoals of
our running query; thus, answers are produced before loading v5 completely.

We propose a non-blocking strategy for executing SPARQL queries against
views. Like SemLAV, this approach does not rely on statistics to rank and select
the relevant views. The proposed strategy prevents the query engine from getting
blocked until all the data are retrieved from the relevant views.

3 Our Approach

A non-blocking strategy to access the views in a parallel fashion is defined. Al-
though this strategy improves the performance of a query engine, loading the
retrieved data into the integrated RDF graph in parallel, may generate con-
currency problems, i.e., many processes may simultaneously add data to the
integrated RDF graph. So, we define a new concurrent model for RDF, and we
propose a non-blocking query execution strategy able to adapt query execution
to different criteria, e.g., a query is executed after a certain number of triples

67

v5

v4

v1

v3

v2

Query Q

Query Q

Query Q

Query Q

(a) Sequential loading

v5

v4
v1

v3
v2 Query Q

Query Q

Query Q

(b) Parallel loading

Fig. 3: Views loading and Query execution. For sequential loading just one thread
is used, while for parallel loading five threads are used

are loaded into the integrated RDF graph. We implement the concurrency model
and the non-blocking query execution strategy on top of Jena 2.7.4 7 .

3.1 A Concurrency Model for the Integrated RDF Graph

Regarding our approach, we need a model that can handle concurrent insertions.
However, RDF stores like Jena do not handle concurrent insertions, they are only
able to favor one type of operation, e.g., reads or insertions. This strategy is im-
plemented thanks to locks, but read and insert locks are mutually exclusive,
i.e., they cannot be simultaneously activated. Existing RDF stores assume that
there are more readers than writers and follow the multiple-readers/single-writer
strategy (MRSW)8. According to MRSW, many readers may read simultane-
ously, while a writer must have exclusive access. MRSW assumes writers have
the priority to keep data up-to-date. Nevertheless, in our proposed approach,
data insertions are going to be more frequent than data reads. A reader is the
query engine that accesses the integrated RDF graph during query execution,
while writers are the wrappers of the relevant views which load the data into the
integrated RDF graph. The query engine cannot execute the query more often
than loading views into the integrated RDF graph, because executing the query
is expensive, and doing so too often may lead to performance degradation.

In other words, our proposed approach prioritizes read operations over inser-
tions, i.e., a single-reader/multiple-writers strategy (SRMW) [14] is followed to

7 http://jena.apache.org/
8 https://jena.apache.org/documentation/notes/concurrency-howto.html

68

manage concurrency on the integrated RDF graph. So the reader, e.g., a query
execution engine, will have a higher priority rather than a writer, e.g., a wrapper
loading a view. Additionally, two insert locks cannot be activated at the same
time due to the specification of the integrated RDF model. However, the query
engine divides each view into blocks of n triples to allow for the loading of por-
tions of several views at the same time. A lock is requested before starting a
block loading, and it is released after n triples have been loaded completely. In
our example, the first block of v5 is loaded, then the first block of v4, and to load
the second block of v5, it may be necessary to wait until all the first blocks of the
currently loading views are already loaded. However, this order may fluctuate
depending on the system time allocation among the threads.

3.2 A Non-Blocking Strategy for SPARQL Query Execution

We implement a non-blocking strategy that is able to execute a query according
to the following criteria; the selection of the criteria can be either configured or
provided by the user during query execution.

– View dependent: the reader is woken up after a new view is loaded; thus, if v
is a new loaded view, then the query engine will re-execute the query against
the integrated RDF graph. If enough data is loaded into the integrated RDF
graph from v, then the query engine will be able to generate new results
when it is executed. This criterion is also implemented by SemLAV.

– Time dependent: the reader is woken up after a period of time t, i.e., if
t is n milliseconds, the query engine will re-execute the query against the
RDF graph every n milliseconds. If enough data is loaded into the integrated
RDF graph during the period t, the query engine will be able to generate
new results. But, the concurrency model prioritizes the reader over writers;
thus, if the writers are stopped and not able to load enough data into the
integrated RDF graph, the query will be inefficiently executed.

– Data dependent: the reader is woken up after a certain number n of triples
are inserted into the integrated RDF graph by the writers; thus, the query
engine will re-execute the query against the RDF graph whenever n new
triples are integrated. If the n new triples contribute to the results, then the
query engine will be able to generate new answers when it is executed.

– Two-phase execution: the reader is woken up either after a period of time t
or a certain number n of triples are inserted into the integrated RDF graph
by the writers. In the first phase, the reader performs ASK queries to check
if new results can be produced, if the answer is true, the second phase is
launched. The second phase strategy will directly execute the query, then the
reader will be woken up either after a period of time t or a certain number
n of new triples have been inserted into the integrated RDF graph.

4 Experimental Evaluation

The Berlin SPARQL Benchmark (BSBM) [5], and queries and views proposed by
Espinola-Castillo [6] are used to compare the performance of parallel SemLAV

69

with respect to SemLAV. Our goal is to reproduce the experiments reported by
Montoya et al. [13]; therefore, we used the Berlin Benchmark dataset composed of
10,000,736 triples using a scale factor of 28,211 products, 16 out of 18 queries, and
nine out of the ten defined views proposed by Espinola-Castillo [6]. In SemLAV
experiments, some queries and views were not considered because they included
constants and some of the evaluated rewriters only process queries with variables.
Five additional views were defined to cover all the predicates in the evaluated
queries, i.e., 14 views were evaluated. Furthermore, 476 views were produced by
horizontally partitioning each original view into 34 parts, such that each part
produces 1/34 of the answers given by the original view.

Queries and views are described in Tables 2a and 2b. The size of the complete
answer is computed by including all the views into the Jena RDF triple store
and by executing the queries against this centralized RDF dataset. The Jena
2.7.4 library with main memory setup is used to store and query the integrated
RDF graphs. We executed parallel SemLAV with a timeout of 10 minutes.

Table 2: Queries and their answer size, number of subgoals, and views size,
source [13]

(a) Query information

Query Answer Size # Subgoals

Q1 6.68E+07 5
Q2 5.99E+05 12
Q4 2.87E+02 2
Q5 5.64E+05 4
Q6 1.97E+05 3
Q8 5.64E+05 3
Q9 2.82E+04 1
Q10 2.99E+06 3
Q11 2.99E+06 2
Q12 5.99E+05 4
Q13 5.99E+05 2
Q14 5.64E+05 3
Q15 2.82E+05 5
Q16 2.82E+05 3
Q17 1.97E+05 2
Q18 5.64E+05 4

(b) Views size

Views Size

V1-V34 201,250
V35-V68 153,523
V69-V102 53,370
V103-V136 26,572
V137-V170 5,402
V171-V204 66,047
V205-V238 40,146
V239-V272 113,756
V273-V306 24,891
V307-V340 11,594
V341-V374 5,402
V375-V408 5,402
V409-V442 78,594
V443-V476 99,237
V477-V510 1,087,281

Experiments are also run on the same platform than SemLAV experiments,
i.e., on a Linux server with 128 GB of memory, 124 processors where 20 GB
of RAM are allocated for the experiments. Wrappers are implemented for each
view and to load data from RDF files, i.e., 476 wrappers are available.

70

4.1 Implementation

We use critical section and lock to implement the single-reader/multiple-writers
SRMW concurrency model in Jena 2.7.4. The number of threads impacts the
SPARQL engine performance; thus, we consider this number as one of the inde-
pendent parameters of our study.

Table 3: Result of SemLAV and parallel SemLAV on BSBM using the View
Dependent Criterion with 20 threads (bold font is used to highlight the values
where parallel SemLAV outperforms SemLAV)

SemLAV parallel SemLAV

Query TT TFA Throughput #EQ TT TFA Throughput #EQ

1 606,697 6,370 37.3501 15 604,254 30,481 88.7036 7

2 600,656 260,333 0.9823 66 605,729 72,515 0.9883 16

4 660,938 104,501 0.0004 47 359,635 288,558 0.0008 20

5 632,809 116,037 0.8916 28 457,269 257,097 1.2339 14

6 625,173 43,306 0.1892 24 273,662 211,313 0.7203 9

8 627,612 5,393 0.8990 42 318,475 24,877 1.7716 7

9 5,107 1,235 5.5240 18 2,453 1,839 11.5006 3

10 607,841 9,810 4.9243 44 439,562 32,438 6.8094 15

11 601,042 8,352 4.9800 43 105,684 31,660 28.3219 6

12 609,509 5,784 0.9822 121 372,481 15,542 1.6072 16

13 671,893 183,844 0.8910 124 392,147 41,799 1.5266 20

14 636,387 29,201 0.5419 24 333,754 201,864 1.6905 14

15 645,172 2,911 0.4373 37 388,061 20,016 0.7270 18

16 648,826 2,531 0.4348 46 306,694 15,390 0.9198 7

17 644,090 1,504 0.3060 32 278,330 5,894 0.7082 7

18 651,094 > 600,000 0.0000 12 509,646 259,598 1.1071 13

4.2 Impact of the Non-Blocking Query Execution Criteria

The goal of the experiment is to study the impact of the non-blocking query ex-
ecution criteria on the query engine performance. We hypothesize that parallel
SemLAV will outperform SemLAV in terms of throughput and time for the first
answer. We measure the following metrics: i) total time (TT) in milliseconds;
ii) time for first answer (TFA) in milliseconds; iii) throughput (answer/millisec-
ond); and iv) number of times the original query is executed (#EQ).

We evaluate parallel SemLAV for the non-blocking query execution criteria
defined in Section 3 with different number of threads, i.e., the number of writ-
ers and the configuration of the non-blocking query execution strategy. We use
setups with different number of threads 5, 10, and 20. Results suggest that 20
threads is the best number for writers. All the results are available at the project
web site https://sites.google.com/site/semanticlav.

71

Table 4: Result of SemLAV and parallel SemLAV on BSBM using the View
Dependent Criterion with 5 threads (bold font is used to highlight the values
where parallel SemLAV outperforms SemLAV)

SemLAV parallel SemLAV

Query TT TFA Throughput #EQ TT TFA Throughput #EQ

1 606,697 6,370 37.3501 15 601,221 13,235 35.3143 8

2 600,656 260,333 0.9823 66 646,416 87,166 0.9261 25

4 660,938 104,501 0.0004 47 406,008 91,383 0.0007 50

5 632,809 116,037 0.8916 28 601,055 88,752 0.9387 29

6 625,173 43,306 0.1892 24 317,213 61,451 0.6214 25

8 627,612 5,393 0.8990 42 410,306 7,202 1.3751 12

9 5,107 1,235 5.5240 18 2,687 987 10.4991 4

10 607,841 9,810 4.9243 44 631,503 11,438 4.7398 31

11 601,042 8,352 4.9800 43 300,244 9,879 9.9691 13

12 609,509 5,784 0.9822 121 508,837 9,048 1.1765 37

13 671,893 183,844 0.8910 124 532,783 54,758 1.1236 40

14 636,387 29,201 0.5419 24 463,967 62,251 1.2161 28

15 645,172 2,911 0.4373 37 600,885 8,390 0.4695 36

16 648,826 2,531 0.4348 46 462,310 4,820 0.6102 12

17 644,090 1,504 0.3060 32 311,895 2,533 0.6320 17

18 651,094 > 600,000 0.0000 12 600,102 264,917 0.9402 37

Table 5: Result of BSBM over SemLAV and parallel SemLAV using the View
Dependent Criterion with 10 threads (bold font is used to highlight the values
where parallel SemLAV outperforms SemLAV)

SemLAV parallel SemLAV

Query TT TFA Throughput #EQ TT TFA Throughput #EQ

1 606,697 6,370 37.3501 15 602,508 17,819 41.3346 8

2 600,656 260,333 0.9823 66 608,174 70,504 0.9843 25

4 660,938 104,501 0.0004 47 332,060 127,329 0.0009 50

5 632,809 116,037 0.8916 28 505,404 128,097 1.1164 29

6 625,173 43,306 0.1892 24 272,134 98,736 0.7243 25

8 627,612 5,393 0.8990 42 323,938 11,994 1.7418 12

9 5,107 1,235 5.5240 18 2,479 1,489 11.3800 4

10 607,841 9,810 4.9243 44 601,192 17,710 4.9787 31

11 601,042 8,352 4.9800 43 168,108 16,997 17.8051 13

12 609,509 5,784 0.9822 121 390,470 11,081 1.5331 37

13 671,893 183,844 0.8910 124 409,106 39,892 1.4633 40

14 636,387 29,201 0.5419 24 326,745 91,049 1.7268 28

15 645,172 2,911 0.4373 37 496,533 11,419 0.5682 36

16 648,826 2,531 0.4348 46 321,641 9,723 0.8771 12

17 644,090 1,504 0.3060 32 252,595 3,643 0.7803 17

18 651,094 > 600,000 0.0000 12 600,785 221,434 0.9391 37

72

The View Dependent Criterion: The thread which executes the query is woken
up when a new view is loaded. Table 3 shows the result of SemLAV and parallel
SemLAV using the view strategy, i.e., re-execute the query after a new view is
loaded. Parallel SemLAV outperforms SemLAV in terms of throughput and total
execution time. But surprisingly, the time for first answer is increased, for all
queries except queries 2, 13, and 18; for these queries the time for the first answer
is at most half of the SemLAV time. In most queries the time for first answer is
increased because the number of times the original query is executed (#EQ) in
parallel SemLAV is less than in SemLAV; furthermore, parallel SemLAV breaks
the views ranking established by SemLAV, i.e., SemLAV starts by loading the
view ranked in first place and executes the query. However, parallel SemLAV
loads views in parallel, and the query is re-executed when a new view is loaded,
which is not necessarily the first ranked view by SemLAV. In setups with 5
and 10 threads, the time for first answer is better than for 20 threads, but the
throughput is lower as shown in Tables 4 and 5.

Table 6: Result of BSBM over SemLAV and parallel SemLAV using the Time
Dependent Criterion with 20 threads; queries are executed every 500 msecs
(bold font is used to highlight the values where parallel SemLAV outperforms
SemLAV)

SemLAV parallel SemLAV

Query TT TFA Throughput #EQ TT TFA Throughput #EQ

1 606,697 6,370 37.3501 15 604,465 28,033 67.3762 16

2 600,656 260,333 0.9823 66 602,164 73,074 0.9941 17

4 660,938 104,501 0.0004 47 370,372 262,367 0.0008 102

5 632,809 116,037 0.8916 28 465,548 254,253 1.2119 27

6 625,173 43,306 0.1892 24 266,556 184,145 0.7395 83

8 627,612 5,393 0.8990 42 334,311 18,176 1.6877 17

9 5,107 1,235 5.5240 18 2,343 1,772 12.0405 4

10 607,841 9,810 4.9243 44 460,109 31,589 6.5054 28

11 601,042 8,352 4.9800 43 114,680 23,886 26.1002 19

12 609,509 5,784 0.9822 121 357,470 15,481 1.6746 22

13 671,893 183,844 0.8910 124 363,735 41,237 1.6458 24

14 636,387 29,201 0.5419 24 305,013 161,527 1.8498 94

15 645,172 2,911 0.4373 37 412,315 20,019 0.6842 23

16 648,826 2,531 0.4348 46 302,547 12,336 0.9325 14

17 644,090 1,504 0.3060 32 235,062 5,910 0.8386 21

18 651,094 > 600,000 0.0000 12 509,085 276,665 1.1083 99

The Time Dependent Criterion: The thread which executes the query is woken
up each 500 milliseconds. Table 6 shows the result of SemLAV and parallel
SemLAV using the time dependent strategy for 20 threads. The results also
show that parallel SemLAV outperforms SemLAV in terms of throughput and

73

total execution time; however, the time for first results is increased as when the
view dependent criterion is executed.

Table 7: Result of BSBM over SemLAV and parallel SemLAV using the Data
Dependent Criterion with 20 threads; queries are executed whenever 500 triples
have been inserted in the integrated RDF graph (bold font is used to highlight
the values where parallel SemLAV outperforms SemLAV)

SemLAV parallel SemLAV

Query TT TFA Throughput #EQ TT TFA Throughput #EQ

1 606,697 6,370 37.3501 15 604,668 27,306 62.8580 10

2 600,656 260,333 0.9823 66 603,706 68,132 0.9916 14

4 660,938 104,501 0.0004 47 343,267 234,513 0.0008 21

5 632,809 116,037 0.8916 28 431,564 162,773 1.3074 16

6 625,173 43,306 0.1892 24 248,937 165,997 0.7918 14

8 627,612 5,393 0.8990 42 318,207 17,766 1.7731 8

9 5,107 1,235 5.5240 18 2,717 1,731 10.3831 4

10 607,841 9,810 4.9243 44 459,995 24,917 6.5070 15

11 601,042 8,352 4.9800 43 112,908 25,505 26.5099 7

12 609,509 5,784 0.9822 121 377,970 15,762 1.5838 15

13 671,893 183,844 0.8910 124 385,730 42,222 1.5520 24

14 636,387 29,201 0.5419 24 304,364 163,948 1.8538 17

15 645,172 2,911 0.4373 37 410,031 13,808 0.6880 19

16 648,826 2,531 0.4348 46 315,466 13,349 0.8943 8

17 644,090 1,504 0.3060 32 297,911 4,792 0.6616 9

18 651,094 > 600,000 0.0000 12 520,845 302,575 1.0833 13

The Data Dependent Criterion: The query thread is woken up each time the
integrated RDF graph grows up to 500 new triples. Table 7 shows the results
of SemLAV and parallel SemLAV using data dependent strategy for 20 threads.
As in previous experiments, parallel SemLAV outperforms SemLAV in terms of
throughput and total execution time for all queries; but the time for the first
result is increased for the majority of the queries.

The Two-phase Criterion: The first phase of this strategy performs an ASK query
and when it returns true, the second phase is conducted. First, the second phase
executes the original query, then the query engine will be woken up either each
n milliseconds or when n triples are inserted into the integrated RDF graph.
Table 8 reports on the results for the two-phase strategy when the query is exe-
cuted whenever 500 triples are inserted into the integrated RDF graph. Parallel
SemLAV outperforms SemLAV in terms of throughput for all the queries, but
throughput values of parallel SemLAV are lower than in previous experiments.

74

Table 8: Result of SemLAV and parallel SemLAV on BSBM using the Two-phase
Criterion with 20 threads; queries are executed whenever 500 triples have been
inserted in the integrated RDF graph (bold font is used to highlight the values
where parallel SemLAV outperforms SemLAV)

SemLAV parallel SemLAV

Query TT TFA Throughput #EQ TT TFA Throughput #EQ

1 606,697 6,370 37.3501 15 604,693 26,624 62.4690 4

2 600,656 260,333 0.9823 66 603,290 72,463 0.9923 8

4 660,938 104,501 0.0004 47 358,149 261,954 0.0008 11

5 632,809 116,037 0.8916 28 441,166 169,437 1.2789 13

6 625,173 43,306 0.1892 24 275,440 186,320 0.7156 6

8 627,612 5,393 0.8990 42 329,872 24,852 1.7104 7

9 5,107 1,235 5.5240 18 2,572 1,966 10.9685 3

10 607,841 9,810 4.9243 44 475,523 25,193 6.2945 15

11 601,042 8,352 4.9800 43 111,739 25,490 26.7872 7

12 609,509 5,784 0.9822 121 396,899 16,209 1.5083 14

13 671,893 183,844 0.8910 124 369,586 44,197 1.6197 10

14 636,387 29,201 0.5419 24 308,277 155,879 1.8302 10

15 645,172 2,911 0.4373 37 400,752 14,299 0.7040 18

16 648,826 2,531 0.4348 46 330,846 12,741 0.8527 8

17 644,090 1,504 0.3060 32 274,087 5,984 0.7192 8

18 651,094 > 600,000 0.0000 12 517,814 285,958 1.0896 13

Table 9: Throughput of SemLAV and parallel SemLAV (PS) using the Data-
Dependent Criterion each 500 triples (DDC), Time-Dependent Criterion each
500 milliseconds (TDC), and Two-phase Criterion that combines ASK queries
with DDC. With 20 threads for each criterion (bold font is used to highlight
the values where parallel SemLAV outperforms SemLAV)

Throughput

Query SemLAV PS PS+DDC PS+TDC PS+DDC+ASK

1 37.3501 88.7036 62.8580 67.3762 62.4690

2 0.9823 0.9883 0.9916 0.9941 0.9923

4 0.0004 0.0008 0.0008 0.0008 0.0008

5 0.8916 1.2339 1.3074 1.2119 1.2789

6 0.1892 0.7203 0.7918 0.7395 0.7156

8 0.8990 1.7716 1.7731 1.6877 1.7104

9 5.5240 11.5006 10.3831 12.0405 10.9685

10 4.9243 6.8094 6.5070 6.5054 6.2945

11 4.9800 28.3219 26.5099 26.1002 26.7872

12 0.9822 1.6072 1.5838 1.6746 1.5083

13 0.8910 1.5266 1.5520 1.6458 1.6197

14 0.5419 1.6905 1.8538 1.8498 1.8302

15 0.4373 0.7270 0.6880 0.6842 0.7040

16 0.4348 0.9198 0.8943 0.9325 0.8527

17 0.3060 0.7082 0.6616 0.8386 0.7192

18 0.0000 1.1071 1.0833 1.1083 1.0896

75

4.3 Discussion

Table 9 summarizes the results of the throughput with 20 threads in the different
empirical evaluations. In all experiments, parallel SemLAV outperforms SemLAV
in terms of the throughput and total execution time. However, none of the defined
execution criterion dominates other criterion. For instance, parallel SemLAV
with query execution every 500 milliseconds is the best execution strategy for
query2; whereas parallel SemLAV with execution strategy whenever 500 triples
have been inserted into the integrated RDF graph is the most suitable strategy
for query5. We repeat the experiments with different number of threads. In setup
with 20 threads, parallel SemLAV outperforms SemLAV in terms of throughput
and total execution time but it increases time for first answer. Preliminary results
suggest that there is a tradeoff between throughput and time for first answer. To
confirm these results, in the future, we plan to evaluate parallel SemLAV with
different time and data setups.

5 Conclusions and Future Work

We tackle the problem of executing SPARQL queries against LAV views in a
parallel fashion. The query execution model relies on an RDF graph that tempo-
rally materializes the data retrieved from the relevant views of a SPARQL query.
The query engine respects a concurrency model that prioritizes the execution of
queries against the integrated RDF graph over loading data from the views. Ad-
ditionally, a non-blocking query execution strategy allows for the execution of a
SPARQL query on an RDF graph depending on different criteria. Similarly than
SemLAV, our proposed parallel query execution model, named parallel SemLAV,
was implemented on top of Jena. We empirically compared parallel SemLAV and
SemLAV in terms of the impact of the non-blocking strategy on the query engine
throughput. The observed results suggest that independently of the criterion fol-
lowed by the non-blocking query engine strategy, parallel SemLAV outperforms
SemLAV in terms of throughput. One limitation of our current implementation
is inherent from the techniques implemented by Jena to handle concurrent inser-
tions in an RDF graph. To overcome this limitation, we plan to consider a graph
database engine as the RDF store backend, in order to provide more robust
concurrency management of the RDF graph for incremental query processing.

Acknowledgement

We thank Maxime Pauvert and Nicolas Brondin, both students of the Com-
puter Science Department at the University of Nantes for implementing the
non-blocking strategy.

References

1. Virtuoso sponger. White paper, OpenLink Software.

76

2. S. Abiteboul, I. Manolescu, P. Rigaux, M.-C. Rousset, and P. Senellart. Web Data
Management. Cambridge University Press, New York, NY, USA, 2011.

3. Y. Arvelo, B. Bonet, and M.-E. Vidal. Compilation of query-rewriting problems
into tractable fragments of propositional logic. In AAAI, pages 225–230. AAAI
Press, 2006.

4. C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the story so far. Int. J.
Semantic Web Inf. Syst., 5(3):1–22, 2009.

5. C. Bizer and A. Schultz. The berlin sparql benchmark. Int. J. Semantic Web Inf.
Syst., 5(2):1–24, 2009.

6. R. Castillo-Espinola. Indexing RDF data using materialized SPARQL queries. PhD
thesis, Humboldt-Universität zu Berlin, 2012.

7. A. Doan, A. Y. Halevy, and Z. G. Ives. Principles of Data Integration. Morgan
Kaufmann, 2012.

8. P. Folz, G. Montoya, H. Skaf-Molli, P. Molli, and M. Vidal. Semlav: Querying
deep web and linked open data with SPARQL. In The Semantic Web: ESWC
2014 Satellite Events - ESWC 2014 Satellite Events, Anissaras, Crete, Greece,
May 25-29, 2014, Revised Selected Papers, pages 332–337, 2014.

9. T. Furche, G. Gottlob, G. Grasso, X. Guo, G. Orsi, and C. Schallhart. OPAL:
automated form understanding for the deep web. In Proceedings of the 21st World
Wide Web Conference 2012, WWW 2012, Lyon, France, April 16-20, 2012, pages
829–838, 2012.

10. T. Furche, G. Gottlob, G. Grasso, X. Guo, G. Orsi, C. Schallhart, and C. Wang.
DIADEM: thousands of websites to a single database. PVLDB, 7(14):1845–1856,
2014.

11. B. He, M. Patel, Z. Zhang, and K. C.-C. Chang. Accessing the Deep Web. Com-
mun. ACM, 50(5):94–101, 2007.

12. G. Konstantinidis and J. L. Ambite. Scalable query rewriting: a graph-based ap-
proach. In T. K. Sellis, R. J. Miller, A. Kementsietsidis, and Y. Velegrakis, editors,
SIGMOD Conference, pages 97–108. ACM, 2011.

13. G. Montoya, L. D. Ibáñez, H. Skaf-Molli, P. Molli, and M.-E. Vidal. SemLAV:
Local-As-View Mediation for SPARQL. Transactions on Large-Scale Data- and
Knowledge-Centered Systems XIII, Lecture Notes in Computer Science, Vol. 8420,
pages 33–58, 2014.

14. G. L. Peterson and J. E. Burns. Concurrent reading while writing II: the multi-
writer case. In 28th Annual Symposium on Foundations of Computer Science, Los
Angeles, California, USA, 27-29 October 1987, pages 383–392, 1987.

15. M. Taheriyan, C. A. Knoblock, P. A. Szekely, and J. L. Ambite. Rapidly integrating
services into the linked data cloud. In P. Cudré-Mauroux, J. Heflin, E. Sirin,
T. Tudorache, J. Euzenat, M. Hauswirth, J. X. Parreira, J. Hendler, G. Schreiber,
A. Bernstein, and E. Blomqvist, editors, International Semantic Web Conference
(1), volume 7649 of Lecture Notes in Computer Science, pages 559–574. Springer,
2012.

16. J. D. Ullman. Information integration using logical views. Theor. Comput. Sci.,
239(2):189–210, 2000.

17. R. Verborgh, O. Hartig, B. D. Meester, G. Haesendonck, L. D. Vocht, M. V. Sande,
R. Cyganiak, P. Colpaert, E. Mannens, and R. V. de Walle. Querying datasets
on the web with high availability. In The Semantic Web - ISWC 2014 - 13th
International Semantic Web Conference, Riva del Garda, Italy, October 19-23,
2014. Proceedings, Part I, pages 180–196, 2014.

18. G. Wiederhold. Mediators in the architecture of future information systems. IEEE
Computer, 25(3):38–49, 1992.

77

16 Hongyan Wu, Atsuko Yamaguchi, and Jin-Dong Kim

Appendix: Query Set

Q1: Find out the gene resource related to "ADRAR".
select ?gene ?p
where{
?gene <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://bio2rdf.org/omim_vocabulary:Gene>.
?gene ?p "ADRAR"^^<http://www.w3.org/2001/XMLSchema#string>
}
Q2: Find out the genes related to diabetes.
select ?gene ?o1 ?o2 where{
?gene <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://bio2rdf.org/omim_vocabulary:Gene>.
?gene <http://bio2rdf.org/omim_vocabulary:refers-to> ?o1.
?o1 ?p2 ?o2.
<http://bio2rdf.org/pharmgkb:PA446359> <http://bio2rdf.org/pharmgkb_vocabulary:x-snomedct> ?o2 }
Q3: Find out the genes related to diabetes.
select ?gene ?o1 ?o2 where{
?gene <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://bio2rdf.org/omim_vocabulary:Gene>.
?gene ?p1 ?o1.
?o1 <http://bio2rdf.org/omim_vocabulary:x-snomed> ?o2.
<http://bio2rdf.org/pharmgkb:PA446359> <http://bio2rdf.org/pharmgkb_vocabulary:x-snomedct> ?o2 }
Q4: Find the genes related to diabetes.
select ?gene ?o1 ?o2 where{
?gene <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://bio2rdf.org/omim_vocabulary:Gene>.
?gene ?p1 ?o1.
?o1 ?p2 ?o2.
<http://bio2rdf.org/pharmgkb:PA446359> <http://bio2rdf.org/pharmgkb_vocabulary:x-snomedct> ?o2}
Q5: Find out the generic name ,title, side effect for all the anti-allergic agents.
select * where{
?drug <http://bio2rdf.org/sider_vocabulary:generic-name> ?generic.
?drug <http://purl.org/dc/terms/:title> ?drug_name .
?drug <http://bio2rdf.org/sider_vocabulary:side-effect> ?side.
?drug <http://bio2rdf.org/sider_vocabulary:pubchem-flat-compound-id> ?cpd.
?generic <http://purl.org/dc/terms/title> ?generic_name.
?side <http://purl.org/dc/terms/title> ?side_effect.
?drug_drugbank <http://bio2rdf.org/drugbank_vocabulary:category>
<http://bio2rdf.org/drugbank_vocabulary:Anti-Allergic-Agents>.
?drug_drugbank <http://bio2rdf.org/drugbank_vocabulary:x-pubchemcompound> ?cpd }
Q6: Find out clinical phenotype features, general and specific functions, and omim articles about F8 gene.
select * where {
?s <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://bio2rdf.org/omim_vocabulary:Phenotype> .
?s <http://www.w3.org/2000/01/rdf-schema#label> ?o.
?s <http://bio2rdf.org/omim_vocabulary:clinical-features> ?clinicFeature.
?s <http://bio2rdf.org/omim_vocabulary:article> ?article.
?s <http://bio2rdf.org/omim_vocabulary:x-uniprot> ?protein.
?drug <http://bio2rdf.org/drugbank_vocabulary:gene-name> "F8"^^<http://www.w3.org/2001/XMLSchema#string>.
?drug <http://bio2rdf.org/drugbank_vocabulary:x-uniprot> ?protein.
?drug <http://bio2rdf.org/drugbank_vocabulary:general-function> ?genFunction.
?drug <http://bio2rdf.org/drugbank_vocabulary:specific-function> ?speFunction }
Q7: Find out all the drugs, which are substrate of some enzyme, their category and reaction.
select * where {
?enzyme <http://bio2rdf.org/kegg_vocabulary:substrate> ?cpd.
?enzyme <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://bio2rdf.org/kegg_vocabulary:Enzyme>.
?reaction <http://bio2rdf.org/kegg_vocabulary:enzyme> ?enzyme.
?drug <http://bio2rdf.org/drugbank_vocabulary:category> ?category.
?drug <http://purl.org/dc/terms:description> ?desc.
?drug <http://bio2rdf.org/drugbank_vocabulary:x-kegg> ?cpd }
Q8: Find out side effects and pathways of all the anticonvulsants medicine.
select * where{
?s1 <http://bio2rdf.org/drugbank_vocabulary:category>
<http://bio2rdf.org/drugbank_vocabulary:Anticonvulsants>.
?s1 <http://bio2rdf.org/drugbank_vocabulary:affected-organism> ?affected.
?s1 <http://bio2rdf.org/drugbank_vocabulary:x-pubchemcompound> ?cpd.
?drug <http://bio2rdf.org/sider_vocabulary:side-effect> ?side.
?drug <http://bio2rdf.org/sider_vocabulary:pubchem-flat-compound-id> ?cpd.
?side <http://purl.org/dc/terms/title> ?side_effect.
?s2 <http://bio2rdf.org/kegg_vocabulary:x-pubchem.compound> ?cpd.
?s2 <http://bio2rdf.org/kegg_vocabulary:pathway> ?pathway }

78

	Title
	Table of Contents
	Invited Talk: Making a Silk Purse
	The OWL Reasoner Evaluation (ORE) 2015
	On the Evaluation of RDF Distribution Algorithms
	Reifying RDF: What Works Well With Wikidata?
	Dynamic join order optimization for SPARQLendpoint federation
	Parallel Data Loading during Querying DeepWeb and Linked Open Data with SPARQL

