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Abstract. Faceted search represents one of the most practical ways to
browse a large corpus of information. Information is categorized automat-
ically for a given query and the user is given the opportunity to further
refine his/her query. Many search engines offer a powerful faceted search
engine, but only on the textual level. Faceted Search in the context of
Math Search is still unexplored territory.
In this paper, we describe one way of solving the faceted search problem
in math: by extracting recognizable formula schemata from a given set of
formulae and using these schemata to divide the initial set into formula
classes. Also, we provide a direct application by integrating this solution
with existing services.

1 Introduction

The size of digital data has been growing tremendously since the invention of
the Internet. Today, the ability to quickly search for relevant information in the
vast amount of knowledge available is essential in all domains. As a consequence,
search engines have become the prevalent tool for exploring digital data.

Although text search engines (e.g. Google or DuckDuckGo [3]) seem to be
sufficient for the average user, they are limited when it comes to finding scientific
content. The limitation arises because STEM1 documents are also relevant for
the mathematical formulae they contain and math cannot be properly indexed
by a textual search engine. Math comprises of tokens that are expressed as
structural markup (fractions, square-roots, subscripts and superscripts), which
are not captured by simply indexing the text content of a page.

A good math search engine is therefore needed in several applications. For
example, a large airline manufacturer may have many ongoing research projects
and could significantly improve efficiency if they had a way of searching for
formulae in a corpus containing all their previous work in the fields of physics
and mathematics. The same holds for all large physics-oriented research centers,
such as CERN. Valuable time would be saved if scientists would have a fast,
reliable and powerful math search engine to analyse previous related work. As
a third application, university students should be mentioned. Their homework,
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research and overall study process would be facilitated once they are provided
with more than textual search. For all these applications, we first need a strong
math search engine and second, a large corpus of math to index.

The Cornell e-Print Archive, arXiv, is an example of such a corpus, con-
taining over a million STEM documents from various scientific fields (Physics,
Mathematics, Computer Science, Quantitative Biology, Quantitative Finance
and Statistics) [1]. Given such a high number of documents, with several mil-
lion formulae, the search engine must provide an expressive query language and
query-refining options to be able to retrieve useful information. One service that
provides both of these is the Zentralblatt Math service [14].

Zentralblatt Math now employs formula search for access to mathematical
reviews [7]. Their database contains over 3 million abstract reviews spanning all
areas of mathematics. To explore this database they provide a powerful search
engine called “structured search”. This engine is also capable of faceted search.
Figure 1 shows a typical situation: a user searched for a keyword (here an author
name) and the faceted search generated links for search refinements (the facets)
on the right. Currently, facets for the primary search dimensions are generated
– authors, journals, MSC2, but not for formulae. In this way, the user is given
the ability to further explore the result space, without knowing in advance the
specifics of what he/she is looking for. Recently, formula search has been added as
a component to the structured search facility. However, there is still no possibility
of faceted search on the math content of the documents.

There are multiple ways in which we could understand a “math facet”. One
way would be through the MSC classification [10]. However, this would be rather
vague because it will only provide information about the field of mathematics to
which an article belongs. If the authors use formulae from another field in their
paper, the results will suffer a drop in relevance.

We are attempting to solve this problem by extracting formula schemata
from the query hits, as formula facets. A math facet consists of a set of formula
schemata generated to further disambiguate the query by refining it in a new
dimension. For instance, for the query above we could have the formulae in
Figure 2, which allows the user to drill in on i) variation theory and minimal
surfaces, ii) higher-order unification, and iii) type theory. Following the MWS
(see 2.1) tradition, the red identifiers stand for query variables, their presence
making the results formula schemata.

These formula schemata were manually created to judge the feasibility of
using schemata as recognizable user interface entities, but for an application we
need to generate them automatically from the query. Moreover, each schema
should further expand to show the formula class it represents. Formula classes
would consist of all formulae sharing the same schema. This is the algorithmic
problem we explore in this paper.
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Fig. 1: Faceted Search in ZBMath∫
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Fig. 2: formula facets
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2 Preliminaries

In this section we describe the existent systems on which our work will be based,
with the intention of making this paper self-contained.

2.1 MathWebSearch

At its core, the MathWebSearch [12] system (MWS) is a content-based search
engine for mathematical formulae. It indexes MathML [9] formulae, using a tech-

35



nique derived from automated theorem proving: Substitution Tree Indexing [6].
Recently, it was augmented with full-text search capabilities, combining keyword
queries with unification-based formula search. The engine serving text queries
is Elasticsearch 2.2. From now on, in order to avoid confusion, we will refer to
the core system (providing just formula query capability) as MWS and to the
complete service (MWS + Elasticsearch) as TeMaSearch (Text + Math Search).

Internal to MWS, each mathematical expression is encoded as a set of substi-
tutions based on a depth-first traversal of its Content MathML tree. Furthermore,
each tag from the Content MathML tree is encoded as a TokenID, to lower the
size of the resulting index. The (bijective) mapping is also stored together with
the index and is needed to reconstruct the original formula. The index itself is
an in-memory trie of substitution paths.

To facilitate fast retrieval, MWS stores FormulaIDs in the leaves of the sub-
stitution tree. These are integers uniquely associated with formulae, and they
are used to store the context in which the respective expressions occurred. These
identifiers are stored in a separate LevelDB [8] database.

MathWebSearch exposes a RESTful HTTP API which accepts XML queries.
A valid query must obey the Content MathML format, potentially augmented
with qvar variables which match any subterms. A qvar variable acts as a wildcard
in a query, with the restriction that if two qvars have the same name, they must
be substituted in the same way.

2.2 Elasticsearch

Elasticsearch [4] is a powerful and efficient full text search and analytics engine,
built on top of Lucene. It can scale massively, because it partitions data in
shards and is also fault tolerant, because it replicates data. It indexes schema-
free JSON documents and the search engine exposes a RESTful web interface.
The query is also structured as JSON and supports a multitude of features via
its domain specific language: nested queries, filters, ranking, scoring, searching
using wildcards/ranges and faceted search.

2.3 LATEXML

An overwhelming majority of the digital scientific content is written using LATEX
or TEX, due to its usability and popularity among STEM researchers. However,
formulae in these formats are not good candidates for searching because they do
not display the mathematical structure of the underlying idea. For this purpose,
conversion engines have been developed to convert LATEX expressions to more
organized formats such as MathML.

An open source example of such a conversion engine is LATEXML [11]. The
MathWebSearch project relies heavily on it, to convert arXiv documents from
LATEX to XHTML which is later indexed by MWS. It exposes a powerful API,
accepting custom definition files which relate TEX elements to corresponding
XML fragments that should be generated. For the scope of this project, we are
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more interested in another feature of LATEXML: cross-referencing between Presen-
tation MathML and Content MathML. While converting TEX entities to Presen-
tation MathML trees, LATEXML assigns each PMML element a unique identifier
which is later referenced from the corresponding Content MathML element. In
this manner, we can modify the Content MathML tree and reflect the changes in
the Presentation MathML tree which can be displayed to the user.

3 Schematization of Formula Sets & Implementation

In this section, we provide a theoretical description of the problem of generating
formula schemata and a practical implementation.

3.1 Formalizing the Problem

Let us now formulate the problem at hand more carefully.

Definition 1. Given a set D of documents (fragments) – e.g. generated by a
search query, a coverage 0 < r ≤ 1, and a width n, the Formula Schemata
Generation (FSG) problem requires generating a set F of at most n formula
schemata (content MathML expressions with qvar elements for query variables),
such that F covers D with coverage r.

Definition 2. We say that a set F of formula schemata covers a set D of
document fragments, with coverage r, iff at least r · |D| formulae from D are
an instance σ(f) of some f ∈ F for a substitution σ.

3.2 Defining a Cutoff Heuristic

To generate formula schemata, we must define a “cutoff heuristic”, which tells
the program when two formulae belong to the same schema class. If there is
no heuristic, two formulae would belong to the same class, only if they were
identical. However, we want formulae that have something in common to be
grouped together, even if they are not perfectly identical.

We experimented with several possibilities for the heuristic and found out
that a dynamic cutoff which preserves the operators is optimal. We can identify
the operators by looking at the first child of the apply token in the CMML tree.
The user is given the option to have an absolute (fixed) or relative (depending
on the depth of the CMML tree) cutoff for the operands.

Figure 3 illustrates this heuristic at depth 1. The divide element was kept,
because it was the first child of apply, while the other children were removed.
If we were to use a depth of 2, the plus element would also be included in the
schema.
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Fig. 3: Dynamic Cutoff

Fig. 4: FS Engine Architecture

3.3 Design Overview

The full faceted search system comprises of the following components: the For-
mula Schematizer 3.4, Elasticsearch, a proxy to mediate communication between
the Schematizer and Elasticsearch and a Web front-end. The architecture of the
system is shown in Figure 4.

Once the user enters a query (which consists of keywords and a depth), the
front-end forwards the request to a back-end proxy. The proxy sends the text
component of the query to Elasticsearch and receives back math contained in
matching documents. Afterwards, it sends the retrieved math and the depth
parameter (from the original query) to the Schematizer. The Schematizer will
respond with a classification of the math in formula classes, as well as the cor-
responding schema for each class. Finally, the proxy forwards the result to the
front-end which displays it to the user.

3.4 The Formula Schematizer

The Schematizer is the core part of our system. It receives a set of formulae in
their Content MathML representation, generates corresponding formula schemata
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and classifies the formulae according to the generated schemata. It provides an
HTTP endpoint and is therefore self-contained, i.e. it can be queried indepen-
dently, not only as part of the faceted search system. As a consequence, the
Schematizer displays a high degree of versatility, and can be integrated seam-
lessly with other applications.

The central idea behind the schematization process is to generate signatures
from formulae which can be used to identify formula classes. We use the Math-
WebSearch encoding for MathML nodes, where each node is assigned an integer
ID based on its tag and text content. If the node is not a leaf, then only the tag
is considered. The signature will be a vector of integer IDs, corresponding to the
pre-order traversal of the Content MathML tree.

Naturally, the signature depends on the depth chosen for the cutoff heuristic.
At depth 0, the signature consists only of the root token of the Content MathML
expression. At full depth (the maximum depth of the expression), the signature
is the same as the depth-first traversal of the Content MathML tree.

Based on these computed signatures, we divide the input set of formulae into
formula classes, i.e. all formulae with the same signature belong to the same class.
For this operation we keep an in-memory hash table, where the keys are given
by the signatures and the values are sets of formulae which have the signature
key. After filling the hash table, we sort it according to the number of formulae
in a given class, since the signatures which cover the most formulae should come
at the beginning of the reported result.

The Schematizer caller can place an optional limit on the maximum number
of schemata to be returned. If such a limit was specified, we apply it to our
sorted list of signatures and take only the top ones.

As a last step, we need to construct Content MathML trees from the signa-
tures, to be able to show the schemata as formulae to the user. We are able to do
this because we know the arity of each token and the depth used for cutoff. The
tree obtained after the reconstruction might be incomplete, so we insert query
variables in place of missing subtrees. We finally return these Content MathML
trees with query variables (the formula schemata), together with the formulae
which they cover.

3.5 The Front-End

To show the capabilities of the Schematizer we have prepared two demos. The
first one is a text-only search engine which returns the math from the match-
ing documents, after running it through the Schematizer. This is the demo for
showcasing the schematization process. The second one is a direct application
of the Schematizer into a Math Search Engine which is capable of mathematical
faceted search.

SchemaSearch
The SchemaSearch front-end provides just a textual search input field. It is in-
tended for users who want an overview of the formulae contained in a corpus.
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The user can enter a set of keywords for the query, as well as a schema depth,
which defaults to 3. The maximum result size is not accessible to the user, to
prevent abuses and reduce server load. There is also an “R” checkbox which
specifies if the cutoff depth should be absolute or relative. If relative, the depth
should be given in percentages.

TemaV2
The TemaV2 front-end extends TeMaSearch to be able to perform mathematical
faceted search. It is intended for users who want to filter query results based
on a given facet (formula schema in this case). The look and feel is similar to
the previous version of TeMaSearch, where the first input field is used to specify
keywords and the second one is used to specify LATEX-style formulae for the
query. When returning results, a “Math Facets” menu will be presented to the
user. We discuss this in Section 4.2.

3.6 Presentation by Replacement

After obtaining the schemata and formula classes, we need to be able to display
the result to the user. One possibility would be to have the Schematizer return
Content MathML expressions for the schemata and use an XSL stylesheet [13]
to convert them to Presentation MathML. This approach would unfortunately
generate unrecognizable schemata due to the inherent ambiguity of CMML. For
instance, a csymbol element can be represented in several different ways de-
pending on the notation being used. Additionally, we cannot reliably foresee all
possible rules that should be implemented in the stylesheet and as a consequence
some formulae will be wrongly converted.

Since the XSL conversion is unreliable, we will make use of the cross reference
system provided by LATEXML, as discussed in Section 2.3. Instead of returning
Content MathML expressions, the Schematizer will use the first formula in each
class as a template and “punch holes into it”, effectively returning the ID of the
nodes that are to be substituted with query variables. We will use this IDs to
replace the referenced PMML nodes with <mi> nodes representing the qvars.

Figure 5 shows the presentation by replacement technique for a given schema.
The Schematizer returned a schema which was checked against the first formula
in its class ( 2

x+3 ) to generate two substitutions, marked with red on the left side.
Due to the cross-reference system provided by LATEXML, we are able to find
the corresponding PMML elements and substitute them with <mi> tokens. The
result will be displayed to the user as ?x

?y .

4 Evaluation

4.1 SchemaSearch Front-end

Figure 6a shows the formula schemata at depth 3, over the arXiv corpus, for a
query containing the keyword “Kohlhase”. By default, the top 40 schemata are
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Fig. 5: Presentation by Replacement

(a) Faceted Results at depth 3 (b) Expansion of a Formula Class

shown, but the results are truncated for brevity. The bold number on the left
side of each result item indicates how many formulae are present in each formula
class. For instance, the third schema represents a formula class containing 10
formulae. The entities marked in blue are query variables (qvars).

Figure 6b shows the expansion of a formula class. There are 22 formulae in
the class given by this particular math schema, as indicated by the count on the
left upper side, out of which only ten are shown to the user (for brevity the class
is truncated to 5 formulae).

We can see 2 unnamed query variables marked with blue as ?a and ?b. By
seeing the schema, the user can form an impression about the general structure
of the formulae from that class. After expanding the class, the listing of concrete
formulae appears. If the user clicks on one of them, he is redirected to the source
document from which that expression was extracted.

4.2 TemaV2 Front-end

Figure 7 shows the results of a query for “Fermat” and ?a?n + ?b?n = ?c?n.
Besides the regular TeMaSearch results, the user is also presented with a “Math
Facets” section.

When the “Math Facets” section is expanded the user can see the top 10
schemata (ranked with respect to their coverage), as shown in Figure 8 (results
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Fig. 7: TeMa v2 Query Results

truncated for brevity). We have also implemented a “search-on-click” function-
ality that allows the user the do a fresh search using the clicked schema and the
initial keyword, which effectively filters the current results.

4.3 Performance of the Schematizer

We designed the Schematizer to be a very lightweight daemon, both as memory
requirements and as CPU usage. To test if we achieved this goal, we benchmarked
it on a server running Linux 3.2.0, with 10 cores (Intel Xeon CPU E5-2650
2.00GHz) and 80 GB of RAM.

We obtained the 1123 expressions to be schematized by querying Elastic-
search with the keyword “Fermat”. While the overall time taken by the faceted
search engine was around 5 seconds, less than a second was spent in the Schema-
tizer. Also, the CPU utilized by the Schematizer never rose higher than 15% (as
indicated by the top utility). Asymptotically, the algorithm would run in O(N)
time, where N is the number of input formulae. We are able to reach linear time
performance, because each formula is processed exactly once and the signature
is stored in a hash table, as discussed in Section 3.4.

Due to its implementation, the Schematizer is indefinitely scalable, because
it does not require shared state between formulae and can therefore be im-
plemented as a MapReduce [2] job, where mappers compute the signature of
assigned formulae and reducers assemble the signature hash table.
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Fig. 8: Math Facets in TeMa v2

5 Future Work

One application of the faceted search engine can be providing mathematical def-
initions with the help of NNexus [5]. NNexus is an auto-linker for mathematical
concepts from several encyclopedias, e.g. PlanetMath, Wikipedia. Assuming we
are able to generate relevant schemata in response to keyword queries, we can
target the faceted search engine with all the concepts stored by NNexus and
store a schema for each such concept. Afterwards, for a given query, we can
obtain the schema and check it against our stored set of schemata. If we find it,
we can link the given expression to its mathematical definition. Given a large
number of stored concepts and a high schemata relevance, the user should be
able to see the definition of any encountered formulae on the Web. For example,
hovering over a2 + b2 = c2 will show the definition of the Pythagorean theorem.

Another, more direct, application of the Schematizer would be Similarity
Search. One could create a MathWebSearch based search engine, which accepts
an input formula and a similarity degree (between 0% and 100%). The engine
would then create a formula schema at a relative depth corresponding to the
similarity degree and use this schema to search the corpus. This approach defines
the similarity between two formulae as the percentage of the CMML tree depth
that they share.

6 Conclusion

We have presented the design and implementation of a system capable of math-
ematical faceted search. Moreover, we have described a general purpose scalable
Schematizer which can generate intuitive and recognizable formula schemata and
divide expressions into formula classes according to said schemata.

Although the Schematizer provides recognizable formulae, some queries to
SchemaSearch (e.g. using an author as keyword) provide hits with a very low
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relevance. This is because we cannot distinguish between the work of the au-
thor and work where the author is cited at the textual level. As a consequence,
searching for “Fermat” would also show formulae from papers where Fermat was
cited and if these papers are numerous, as it happens with known authors, would
provide the user with misleading results. This suggests that a better source of
mathematical expressions might be required for the SchemaSearch demo.
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