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Abstract. Recently several methods were proposed for the improve-
ment of multi-label classification performance by using constraints on
labels. Such constraints are based on dependencies between classes often
present in multi-label data and can be mined as association rules from
training data. The rules are then applied in a post-processing step to
correct the classifier predictions. Due to properties of association rule
mining these improvement methods often achieve low improvement ex-
pressed mostly in the better prediction of large classes. In the presence of
class ontologies this is undesirable because larger classes correspond to
higher levels in hierarchies presenting general concepts and can thus be
trivial. In this paper we overcome the problem by focusing on improving
multi-label classification performance on small classes. We present a new
method of improvement based on mining cross-ontology association rules
which is best suited for classification with multiple class ontologies, but
can also be applied to multi-label classification with one class taxonomy.

1 Introduction

The increasing popularity of ontologies in different areas has led to the availabil-
ity of data that can be annotated with multiple classes coming from different
class taxonomies. This is a special case of multi-label classification. Generally,
combining information from the ontologies providing different insights into a do-
main can be helpful in discovering new cross-ontology associations not evident
from only one ontology. For example, if a film is classified by its genre in a genre
ontology and by the producing company in an ontology of producers, one can find
a possible interesting relation between a certain genre and a producing company,
specialized in this genre. Recently, data mining techniques such as association
analysis were applied to finding valuable cross-ontology Association Rules (ARs)
between multiple ontologies corresponding to distinct categorizations of genes in
bioinformatics [2, 9].

On the other hand, useful information from such cross-ontology rules can be
successfully employed to improve performance in multi-label classification: ARs
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found among classes of multiple ontologies can be used to correct predicted labels
because the presence of a certain class or classes can be helpful for predicting
another one. For example, a proper application of the association between a
certain genre and a producing company specializing in this genre, as discussed
above, can increase the probability of correctly predicting a genre, providing the
corresponding company has been already correctly predicted. Thus it should lead
to an improvement in classification performance. This is especially important
with respect to very large ontologies with many thousands of classes, which are
usually difficult to deal with.

Another problem with class ontologies that has not yet been dealt with suf-
ficiently in recent research is that classifier performance in such a case is largely
dominated by more general classes higher in the hierarchy because they are more
present in the data and hence simpler to predict for a classifier. On the other
hand, such general classes do not often provide interesting information and are
sometimes trivial. For this reason, in mining cross-ontology rules rare associa-
tion rules [14] are preferred, especially in large ontologies [2]. Similarly, in the
improvement of multi-label classification performance, prediction improvement
is more interesting for small and more specific classes in comparison to larger
ones. As existing methods have not yet addressed this problem, our paper will
focus on mining rare cross-ontology ARs and applying them to the multi-label
classification improvement on small classes. For this purpose, a special interest-
ingness measure well-suited for mining rare rules is utilized.

An important difference between our approach and several state-of-the-art
methods discussed in the next section is that they use constraints for labels of
one labelset and not two different class ontologies. Further, our approach focuses
on rare labels, i.e. the ones with low support, since they are normally the greater
part of the labelset.

The rest of the paper is organized as follows. A brief overview of the ap-
proaches to multi-label improvement with ARs is given in Section 2. Afterwards,
our approach is explained in Section 3, followed by the experiments of Section
4. In Section 5 we conclude the paper.

2 Related Work

Recently several approaches to improving multi-label classification performance
were proposed that dealt with dependencies between classes present in multi-
label data. Some of them belong to the field of multi-label classification with
constraints and apply constraints on labels to performance improvement usually
in a post-processing step. The constraints are often mined in form of ARs from
training data [8, 10].

The initial work was devoted to prediction corrections within the ranking by
pairwise comparison framework [10]. The constraints were in the form of many-
to-one ARs labelset→label , i.e. implications from a labelset to a single label.
They could be positive or negative which involves either setting or removing
a consequent label as a result of the presence of an antecedent label combina-
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tion. The constraint rules were extracted using a standard support-confidence
AR mining framework in order to change the predicted rankings. The results
of the method obtained on real-world datasets were negative: no improvement
in comparison to the baseline performance was observed. For this reason, this
method will not be used for comparison with the proposed method below.

A more recent approach of [8] used only one-to-one ARs labeli → labelj in
order to improve SVM performance in the Binary Relevance (BR) setting. The
rules to apply were chosen by minimizing the Ranking Loss performance mea-
sure through a cross-validation process on the training data. The selected rules
were then applied to predicted label rankings in the test phase, if an antecedent
label was set, boosting the score of the corresponding consequent label. The
improved results were obtained for two real-world datasets Yeast and Reuters.
AR mining was based on the standard support-confidence framework. A subse-
quently extended approach [6] differs in that it uses subsets of labels gathered by
clustering, and also extracts negative and many-to-one ARs. Still the evaluation
of the extended approach was restricted to smaller datasets than in the earlier
paper (e.g. the Reuters dataset was not included), perhaps pointing to a higher
complexity of the algorithm, making it probably inapt to be applied to large
datasets. Taking this into account, we selected only the initial method of [8] for
comparison and will refer to it as Label Constraints for SVMs (LCS).

In contrast to the discussed post-processing methods evaluated in a certain
multi-label classification setting (either pairwise or BR), a more general ap-
proach, Label Reduction with Association Rules (LRwAR), was proposed in [5].
It includes pre- and post-processing for the reduction of the label dimensionality.
First, ARs are extracted and those labels that are only in the consequents of
rules are removed from the data to be learned. Then a multi-label classifier is
applied to the classification problem with a reduced labelset. After classification,
the rules are applied to recover missing labels. An advantage of this approach
is a shorter time needed to train a classifier on a smaller labelset. It also used
the standard support-confidence framework to mine ARs, although its recent
extension [4] proposed Conviction instead of Confidence. However it was not
shown to provide significantly better results. The base method was evaluated on
different multi-label classifiers including ML-kNN, BP-MLL and C4.5 (the latter
in BR and label powerset settings) as well as six datasets. On several of them
it showed either minimal (e.g. 0.6% relative improvement on the Yeast data) or
no improvement at all. The performance of the extended method measured in
terms of two performance measures was lower on the Yeast data in comparison
to the baseline classifiers and it was generally inferior or equal to them in more
than half of all experiments (79 from 140).

3 Improvement with Rare Association Rules

Besides relatively low improvement demonstrated by the existing methods, they
have the problem of using the standard support-confidence framework for AR
mining, which normally extracts high support rules that often exist between
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large classes. So they ignore small classes as a potential source for improvement
because minimum support filtering can remove not only noise but also rare
classes. The greatest problem of Confidence in such a setup is that associations
of small classes to large ones are normally ranked very high. In the case of a
class ontology these ARs simply show hierarchical parent-child relations, i.e.
that one label a is more specific than another b. The rule extracted would be
a→b, which means that if label a appears, then label b should appear too. Such
obvious relations can be derived from an extracted hierarchy, on the one hand,
as in [3] and are misleading for classification improvement, on the other. The
reason being that applying such rules in the case of LRwAR [5] for removing
classes with a high support and setting them based on predictions of classes with
a lower support, is prone to error. An example would be if class A appeared only
10 times, class B appeared 100 times and both appeared together 10 times,
so a rule A→B would be extracted. LRwAR would then imply that B should
be removed from the labelset and only in the post-processing step reinserted
based on the prediction of A. Although in [4] Conviction was used instead of
Confidence, it is still closely related to Confidence and behaves similarly.

Another problem with the standard AR framework is choosing the thresh-
olds for Support and Confidence which is done manually and can therefore be
suboptimal. So, the first issue to be dealt with improving multi-label classifica-
tion performance by constraints is the acquisition of high-quality rules. In the
proposed approach we solve this problem by omitting the minimum support
threshold and using a special interestingness measure which is well-suited for
rare rules. Additionally we tune its threshold automatically depending on the
range of values for extracted rules. The idea is to use rare ARs between classes
that is from a small class to another small one and that classes belong to two or
more ontologies describing different aspects of a dataset. In this case hierarchical
relations between the classes of one ontology will not be taken into account. In
such a setting, training data are annotated with categories of both ontologies.
Then mined rules are used to improve class predictions for one of both ontolo-
gies. So, rare cross-ontology rules can be helpful in order to solve the described
problems.

The second important issue is deciding when to apply a rule. Is the predicted
label trusty enough to insert an additional label based on its presence? The worst
case scenario would be that the rule is applied on the basis of a false positive
inserting an additional false positive. Another undesirable outcome would be
that the antecedent label is a true positive but applying a rule would create a
false positive, i.e. the prediction of the classifier should not be overruled. The
desirable decision is only to use a true positive to add another true positive, i.e.
that a rule corrects the missclassification of a label. In [8] the rules are applied
to all labels in the rules, assuming that all antecedents were reliably predicted.
Although the rules were used before to optimize the Ranking Loss, it was not
clear if the antecedent’s ranking was high enough to be predicted. In order to
solve this problem, the control of the quality of classifier predictions is proposed
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to create a basis for application of a rule. The detailed discussion of the proposed
approach is presented in the next two subsections.

3.1 Selection of Rules

To extract pairwise ARs, we performed experiments with the interestingness
measures well-suited for mining rare rules [14]. Such measures should possess
the important property of null-transaction invariance [1]. Due to the lack of
space we will focus here only on the Kulczynski measure (Kulc) which showed
good results:

Kulc(A,B) =
PAB

2
∗ (

1

PA
+

1

PB
).

In order to select only the best rules, adaptive thresholding without a prede-
fined value was applied as follows: After calculating Kulc of all rules, the values
are sorted in descending order as a curve C. We assume that there will be a
slope between a few high scored rules and the rest. In order to select these rules
the curve C is smoothed into S and only the part with a relatively low variance
is analyzed. Thus we need first to determine whether the variance of the curve
S is high:

CV =
MEAN (S)−VAR(S)

MEAN (S)
> ρm (1)

where MEAN (S) is the average value of the curve S and VAR(S) its variance.
If the condition of Eq. (1) is true, we use only the values in the slope of the
curve and calculate the median that defines a Threshold Value TV for the most
interesting rules:

TV = CMEDIAN ({i|DIFF(Si)>MEAN (DIFF(S))})

where DIFF (S) is the difference between two neighbor values in the curve S.
Since the step size between two values is 1, DIFF (S) can also be seen as the
derivative of S. Otherwise, i.e. if the variance is high, the average of the values
not much lower than the mean of the entire curve is taken:

TV = MEAN (Sj )
j∈{i|Si>MEAN (S)∗ρt}

.

Defining the threshold in this manner, we select only those rules that have
Kulc values above TV as good enough to be applied to prediction improvement.

ρm and ρt should be set so that the changes are significant and the only high
valued rules are selected, respectively.

3.2 Application of Rules

As discussed above, applying a rule for insertion of a label without taking the
corresponding classifier’s judgment into account can lead to no improvement
or even poorer prediction performance. A better way would be to use rankings
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produced by the classifier. An attempt was proposed in [8] where the scores
provided by the classifier for each label were used to optimize a parameter w
varied from 0 to 1 for each pair of labels i and j. For a rule i→j, new rankings of
label j were calculated for each sample x as: pj(x) = w ∗ pj(x) + (1−w) ∗ pi(x),
where pi(x) is the score assigned to a label i, analogously for j. by its respective
BR classifier for that sample. These new rankings were used to minimize Ranking
Loss by varying w during cross-validation on a validation set. However the label
i was chosen in the test phase, only if its score was above a threshold t used
to turn predicted rankings into classes (also called decision boundary later on).
Thus the rule i→j could not be applied otherwise.

A drawback of this method is that it relies on individual parameter opti-
mization for each rule through a cost-intensive calculation of the Ranking Loss.
This is not viable for large datasets as the later work [6] shows by using a fixed
parameter value.

We propose a similar approach. The antecedent A of a rule A→B should be
already positively predicted, i.e. should have a score greater than the threshold
t, but an additional criterion should hold: VB

VA
> 0.5, i.e. the score of the conse-

quent should be at least 50% of the value of the antecedent in order to set the
consequent.

As emphasized before, our approach was designed to work on classification
problems with two different multi-label sets coming from two ontologies, but it
can still be applied to the problems with only one class taxonomy in order to
compare to other methods, as is shown in the next section.

4 Experiments

4.1 Data

We used two multi-label real-world datasets: Reuters and Yeast. The first one
was used with two class ontologies “Topics” and “Industries” for mining cross-
ontology ARs as well as in a simplified version with only “Topics” labels in order
to compare our method to the results of other improvement methods published
elsewhere.

The two-ontology Reuters dataset was formed by preprocessing with stop-
word removal and stemming the original data provided by http://trec.nist.

gov/data/reuters/reuters.html. We used the 5000 most frequent terms in the
training set and applied tf-idf weighting as well as column-wise normalization
performed separately on training and test data. In the original 800k samples only
300k contained at least one “Industries” label. From these we selected random
30k samples and split them into a training and a test set with the ratio of 2:1,
i.e. 20k training samples and 10k test samples. In total there were 103 “Topics”
labels and 364 “Industries” labels. We will denote this dataset as Reuters 10k
below.

The simplified version (Reuters 5k with only “Topics” classes) consisted of
5000 training and 5000 test samples chosen randomly from the original 23k
training set. The data preprocessing was performed as described above.

85



For the sake of comparison, the Yeast dataset was also taken from the MEKA
package [11]. It contains only 14 labels in one non-hierarchical label set and is
therefore not very interesting for our experiments, but it is often used in the
works on multi-label classification. From its 2417 samples, 1500 were selected
randomly for training and the rest for test. We did not use cross-validation since
certain aspects would be more difficult to analyze, for example, the graphs.

4.2 Experiment Setting

As a baseline classifier we used LIBLINEAR [7] in the BR setting, and on single
class ontology datasets also ML-kNN as well as Classifier Chains (CC) based
on LIBLINEAR. A crucial complication with LIBLINEAR is that the choice
of the threshold t can be difficult. Normally, the value of 0.5 is recommended
but in the work of [8] a different value and individual for each dataset (0.45
for Yeast and 0.47 for Reuters) was chosen. We also used different values for
each dataset and additionally compared the results to the results of an adaptive
method for selecting t, which automatically adjusts it to be close to the dataset
label cardinality [13]. We will refer here to this method as Label Cardinality
Approach (LCA). ML-kNN and CC were not used with two class ontologies
because they do not scale well on large datasets, specially with LCS.

For LRwAR we also implemented a variation using rankings for all classes and
only inserting new labels. We use the acronym OF (only fill) for this variation.
The original method foresees deleting rankings of classes in the consequent of a
rule as well.

Parameters of LRwAR and LCS were set as in their original works [5, 8],
whereas the Confidence threshold was used to obtain the best results for both
methods. In particular, we changed it for Reuters 5k so that the h-loss perfor-
mance measure was comparable to the value of the baseline classifier.

Parameters for adaptive thresholding were set to ρm = 0.2 and ρt = 0.75.
These values were obtained by the manual experimentation on the Reuters
dataset and are, in our opinion, general enough to be used for all datasets.

4.3 Performance measures

We used the F-1 measure, which is the harmonic mean of Recall and Preci-
sion. It can be calculated in several ways depending on averaging [15]. First,
we used instance-based averaging, i.e. we calculated F-1 for every single in-
stance and then took the mean value (denoted as IF1). Additionally we used
label-based F-1 both in micro-averaged version mF1 and in macro-averaged one
LF1= 1

Q

∑
i=1...Q

2∗tpi
2∗tpi+fni+fpi

. Here Q is the number of labels and tpi, fpi and
fni are, respectively, the number of true, false positives and false negatives for
a label i. Micro-averaged mF1 is known to be dominated by the performance on
large classes. Also Hamming Loss (h-loss) was used: HL = fp+fn

Q∗N , where N is
the number of test samples.
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4.4 Results

Datasets with one class taxonomy: Yeast and Reuters 5k First we com-
pared our approach to LRwAR,LCS, and LCA on the datasets used in other
studies. In Table 1 the results for Yeast and Reuters 5k are depicted.

On the Yeast data, IRAR, LCS, and LRwAR OF could improve the results
of BR and ML-kNN classifiers in terms of mF1, IF1, and LF1. The improvement
achieved by IRAR was the highest. H-loss for this dataset could not be increased
by any of the compared methods. Among them LRwAR was the worst because
its results were even worse as those of the baseline classifiers in terms of all
performance measures. In contrast to the other methods, IRAR was also better
than LCA for BR and comparable to it for ML-kNN. This shows that a powerful
thresholding strategy can outperform many improvement methods based on label
constraints. IRAR was the only improvement methods that could increase the
CC results. This was the highest LF1 value by far on this dataset.

This is consistent with the important fact that IRAR could increase the LF1
value significantly more than the other methods in almost all configurations. The
only exception was for Reuters 5k and BR where it improved second best. This
can be explained by the better improvement of the classification performance
on small classes. Indeeed, as Figure 1a shows, the number of true positives on
small and middle-size classes obtained by IRAR was higher than that of LCA
(Figure 1b). This difference is even more pronounced if we compare F-1 values
for each class obtained by all improvement methods and presented in Figure 2a.
One can see, for example, that IRAR achieves a significant improvement in F-1
for the last class where the other methods show no improvement at all or that
it has much more improvement on the classes 5-10.

Analyzing the curves of mF1 and LF1 in dependence on the threshold t one
can see a trade-off between them (Figure 2b). IRAR is able to achieve both high
LF1 and mF1 values near their crossing point.

On the Reuters 5k dataset, IRAR had again the highest improvement against
the baseline classifier as compared to the other improvement methods in terms of
all performance measures, except for h-loss. The largest performance difference
was again in LF1. IRAR performance was comparable to that of LCA. LCS and
LRwAR achieved a very small improvement against the baseline classifier and
were worse than LCA in terms of all performance measures, except for h-loss.
Here we can see that CC had was the second best classifier, but no improvement
could beat LCA method. Again, the exception remains IRAR with LF1, having
a 18% value increase over the baseline performance and 3% over LCA.

CC did not outperform BR in the experiments, although CC does consider
the connections between the labels in a certain way. A solution would be to
use Ensembles of CC (ECC) [12], since the order of the labels can be taken into
account. However for ECC, the issue of larger label sets will be even much severe,
since the label order must be permutated when creating a new CC to exhaust
all alternatives at best.
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IRAR

Number of True Positives per Class

(a) Yeast, IRAR, number of true positives

Number of True Positives per Class

(b) Yeast, LCA, number of true positives

Fig. 1. Distributions of true positives on Yeast data.

Improvement of LF1 Yeast

(a) Yeast, improvement of LF1 per class for
LCS, LRwAR, and IRAR

LF1 and mF1 vs threshold

(b) Yeast, LF1 and mF1 calculated using the
respective threshold on the rankings

Fig. 2. Improvement comparison on Yeast data.
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Table 1. LCS, LRwAR, and IRAR applied to Yeast and Reuters 5k, OF=Only Filling,
t = threshold, bold values mark the best values per dataset and column.

BR ML-kNN CC
Metrics h-loss mF1 IF1 LF1 h-loss mF1 IF1 LF1 h-loss mF1 IF1 LF1

Yeast

LCA 0.2121 0.6498 0.6362 0.4088 0.2066 0.6583 0.6467 0.4042 0.2148 0.6455 0.6326 0.4053

t=0.45 t=0.5 t=0.45

baseline 0.2043 0.6477 0.6288 0.3915 0.1990 0.6221 0.5978 0.3496 0.2097 0.6370 0.6184 0.3854
LCS Cnf=0.6 0.2071 0.6516 0.6326 0.3983 0.1996 0.6263 0.6016 0.3596 0.2141 0.6313 0.6144 0.3540

LRwAR Cnf=0.6 0.2071 0.6328 0.6160 0.3479 0.2047 0.6034 0.5838 0.2982 0.2121 0.6223 0.6057 0.3401
LRwAR OF Cnf=0.6 0.2047 0.6480 0.6293 0.3935 0.1990 0.6221 0.5978 0.3496 0.2105 0.6367 0.6183 0.3857

IRAR 0.2269 0.6544 0.6400 0.4453 0.2169 0.6560 0.6446 0.4101 0.3553 0.6031 0.5992 0.4760

Reuters 5k

LCA 0.0131 0.7893 0.7955 0.4177 0.0164 0.7361 0.7446 0.4306 0.0148 0.7608 0.7716 0.3910

t=0.3

baseline 0.0122 0.7849 0.7817 0.3690 0.0164 0.7339 0.7376 0.4303 0.0133 0.7567 0.7492 0.3302
LCS n=6,Cnf=0.8 0.0122 0.7856 0.7823 0.3696 0.0165 0.7335 0.7377 0.4311 0.0140 0.7382 0.7305 0.3246
LCS n=6, Cnf=.85 0.0122 0.7856 0.7823 0.3696 0.0165 0.7335 0.7377 0.4311 0.0140 0.7383 0.7307 0.3249
LRwAR Cnf=0.8 0.0138 0.7465 0.7442 0.3576 0.0177 0.7002 0.7015 0.4191 0.0148 0.7170 0.7119 0.3194
LRwAR Cnf=0.85 0.0130 0.7667 0.7633 0.3614 0.0169 0.7189 0.7204 0.4231 0.0140 0.7377 0.7302 0.3231

LRwAR OF Cnf=0.8 0.0122 0.7851 0.7819 0.3690 0.0164 0.7340 0.7378 0.4303 0.0132 0.7584 0.7508 0.3313
LRwAR OF Cnf=0.85 0.0122 0.7849 0.7817 0.3690 0.0164 0.7339 0.7376 0.4303 0.0132 0.7584 0.7508 0.3313

IRAR 0.0125 0.7900 0.7895 0.3958 0.0187 0.7174 0.7347 0.4433 0.0164 0.7452 0.7490 0.4001

Dataset with two class ontologies: Reuters 10k Table 2 depicts the re-
sults of classification improvement for the Reuters 10k dataset, first classified
separately in “Topics” and “Industries” and then with improved “Industries”
predictions, by using cross-ontological ARs. In general, the classification per-
formance for “Topics” was higher than for “Industries” classes. The results of
the improvement methods LCS and IRAR for this class ontology were better
than those of the baseline classifier, except that h-loss of IRAR was lower. At
the same time, LRwAR showed negative improvement and LRwAR OF only
improvement at the fourth place after the decimal point. In contrast, IRAR was
able to achieve the overall best LF1. Its results were also somewhat similar to the
results of LCA. It is interesting to note that LCS outperformed LCA in terms of
mF1 and IRAR in terms of LF1. So, we can conclude that LCS is more effective
for classes with large support and IRAR for those with small support. This will
be due to the use of confidence to extract the rules.

The results for Reuters 10k “Industries” are similar to those obtained for
“Topics”. Here LRwAR had even more negative improvement in terms of all
performance measures and LRwAR OF showed again only marginal improve-
ment. LCS was equal or better than the baseline and achieved again the highest
mF1 value. This time both LCA and IRAR were worse than the baseline in
terms of h-loss and mF1, but improved IF1 and LF1. However IRAR was better
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than LCA in three out of four performance measures and had again the best
LF1.

Using cross-ontology ARs for the improvement of “Industries” predictions
revealed an interesting fact: the results of LCS and both LRwAR variants wors-
ened in comparison with those shown in the previous experiment while IRAR
could improve its h-loss and mF1 values. Here, LCS uses the thresholds of differ-
ent classifiers trained with different labelsets that may obstruct its performance.
Also the low occurrence of labels in the labelsets may lead to poor results of the
Confidence-based methods.

Table 2. LCS, LRwAR, and IRAR applied to Reuters BR’s predictions for “Topics”
and “Industries” 10k, OF=Only Filling, t = threshold, bold values mark the best values
per dataset and column.

Metrics h-loss mF1 IF1 LF1 h-loss mF1 IF1 LF1

Reuters 10k “Topics” t=0.45 Reuters 10k “Industries” t=0.3

LCA 0.0123 0.8257 0.8335 0.4237 0.0070 0.6462 0.6466 0.2884

baseline 0.0116 0.8258 0.8282 0.3938 0.0061 0.6589 0.6060 0.2772
LCS k=5,n=6,Cnf=0.7 0.0116 0.8264 0.8287 0.3942 0.0061 0.6605 0.6077 0.2778
LCS k=5,n=6,Cnf=0.85 0.0116 0.8264 0.8287 0.3942 0.0061 0.6603 0.6076 0.2776

LRwAR Cnf=0.7 0.0134 0.7912 0.7890 0.3819 0.0071 0.5491 0.4649 0.2672
LRwAR Cnf=0.85 0.0122 0.8143 0.8145 0.3871 0.0067 0.5936 0.5138 0.2698

LRwAR OF Cnf=0.7 0.0116 0.8259 0.8284 0.3940 0.0061 0.6592 0.6068 0.2773
LRwAR OF Cnf=0.85 0.0116 0.8260 0.8285 0.3940 0.0061 0.6592 0.6067 0.2773

IRAR 0.0132 0.8187 0.8312 0.4298 0.0067 0.6539 0.6120 0.2918

Reuters 10k “Topics”→“Industries”, t=0.3
LCS Cnf=0.7, 0.0061 0.6589 0.6060 0.2772

LCS k=5,n=6,Cnf=0.85, 0.0061 0.6589 0.6060 0.2772
LRwAR Cnf=0.7 0.0087 0.3482 0.2880 0.2293

LRwAR OF Cnf=0.7 0.0061 0.6585 0.6056 0.2771
IRAR 0.0062 0.6590 0.6092 0.2825

5 Conclusion

In this paper we proposed a novel method of classification improvement in multi-
label classification IRAR. It uses cross-ontology association rules and focuses on
the improvement of predictions for small classes. Additionally, we compared it
with state-of-the-art methods developed to correct predicted rankings by using
constraints on labels in a post-processing step. One of the methods, LRwAR,
showed negative improvement in most of the experiments and its variation only
marginal improvement. LCS scored better in terms of improvement, but a bet-
ter thresholding strategy such as LCA often achieved even more improvement.
IRAR could outperform LCA in three out of four performance measures on the
Yeast and Reuters 10k datasets. More importantly, it boosted the LF1 value
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significantly and showed the best LF1 result in three of five experiments. This
means that IRAR is well suited for improving performance on small classes. This
method is also able to achieve the trade-off between LF1 and mF1, i.e. it was able
to achieve a high LF1 at a relatively low number of false positives. This points to
the fact that the method can be used effectively with datasets exhibiting highly
skewed label distributions as, for example, in the case of class ontologies.
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