On the Challenges of Real World Data in Predictive
Maintenance Scenarios: A Railway Application

Sebastian Kauschke!, Frederik Janssen? and Immanuel Schweizer®

! kauschke @ke.tu-darmstadt.de
2 janssen @ke.tu-darmstadt.de
Knowledge Engineering Group & Telecooperation Group
Technische Universitdt Darmstadt, Germany
3 schweizer@cs.tu-darmstadt.de
Telecooperation Group
Technische Universitdt Darmstadt, Germany

Abstract. Predictive maintenance is a challenging task, which aims at forecast-
ing failure of a machine or one of its components. It allows companies to utilize
just-in-time maintenance procedures instead of corrective or fixed-schedule ones.
In order to achieve this goal, a complex and potentially error-prone process has
to be completed successfully.

Based on a real-world failure prediction example originated in the railway do-
main, we discuss a summary of the required processing steps in order to create a
sound prediction process.

Starting with the initial data acquisition and data fusion of three heterogeneous
sources, the train diagnostic data, the workshop records and the failure report
data, we identify and elaborate on the difficulties of finding a valid ground truth
for the prediction of a compressor failure, caused by the integration of manually
entered and potentially erroneous data.

In further steps we point out the challenges of processing event-based diagnostic
data to create useful features in order to train a classifier for the prediction task.
Finally, we give an outlook on the tasks we yet have to accomplish and summarize
the work we have done.

1 Introduction

Predictive maintenance (PM) scenarios usually evolve around big machinery. This is
mainly caused by those machines being both expensive and important for production
processes of the company they are used in. A successful predictive maintenance process
for a machine can help at preventing this, aid in planning for resources and material,
and reduce maintenance cost and production downtime. In order to benefit from PM, a
constant monitoring and recording of the machine status data is required.

Copyright © 2015 by the papers authors. Copying permitted only for private and academic
purposes. In: R. Bergmann, S. Gorg, G. Miiller (Eds.): Proceedings of the LWA 2015 Work-
shops: KDML, FGWM, IR, and FGDB. Trier, Germany, 7.-9. October 2015, published at
http://ceur-ws.org

121

Usually, historical data is used to train a model of either the standard behaviour of
the machine, or - if enough example cases have been recorded - a model of the deviant
behaviour right before the failure. These models are then used on live data to determine
whether the machine is operating within standard parameters, or - in the second case -
if the operating characteristics are similar to the failure scenario. If the model is trained
correctly, it will give an alarm in due time. An overview of various PM methods is given
in [4].

In our example case, the machines are cargo trains. These trains are pulling up to
3000 tons of cargo, so a lot of parts are prone to deterioration effects. In this paper we
will present a workflow which will help us discover the necessary information needed
to use a classifier to predict a specific failure case, the main air compressor failure. It is
relevant for pressured air that is used in many pneumatic applications in a train, e.g. for
braking or opening/closing doors and occurred quite often in the two year period of the
historical data we received. This allows us to have a fair amount of example instances
to train the classifier upon.

This paper is organized as follows. Section 2 will give an introduction to the prob-
lems and challenges. In Sect. 3 we will introduce the data sources in detail, followed
by the challenge of finding a suitable ground truth therein (Sect. 4). From there on we
will elaborate on how to extract meaningful features (Sect. 5) and propose a labelling
process (Sect. 6) until we conclude our findings in Sect. 7 and give an outlook on further
work.

2 Problem Definition and Challenges

We want to predict the failure of the main air compressor in a complex system contain-
ing many components. Therefore we will build a predictive model using a supervised
learning approach on historical data, and apply it to new(er) data.

We were supplied by DB Schenker Rail AG* with data from three distinct datasets,
from which we are going to extract the exact points in time when the failures have
happened: (i) the diagnostic data recorded on the trains, (ii) the maintenance activity
data gathered in the workshops and (iii) the failure report data with information from the
hotline regarding the time and cause of the failure. Furthermore, we will create features
that are descriptive and discriminative for the compressor failure, label the instances
and train a classifier that will give a warning before the actual failure happens. We will
have to face the following challenges:

1. Deal with large amount of diagnostic data that has unusual properties, i.e., inhomo-
geneous data distribution®.

2. Extract a valid ground truth from three given datasets to find out exactly when the
compressor failures happened by searching for indications for that type of failure
and recognizing unnecessary workshop layovers (i.e. through premature indication
of failure by the diagnostic system).

* www.rail.dbschenker.de

5 Most often failures cases of machines are extremely rare. However, extracting instances that
describe the regular operation of the machine comes more or less for free, in predictive main-
tenance, we have to deal with a very skewed distribution of the classes.

122

3. Recognize errors, incompleteness and imprecision in the data and derive methods
to deal with them.

4. Create meaningful features that emphasize the underlying effects that indicate an
upcoming failure.

5. Set up a labelling process for time-series data that enables classifiers to anticipate
impending failures early enough to allow for corrective reactions.

6. Define an evaluation procedure that maximises the outcome with respect to given
criteria in order to achieve optimal prediction.

3 Data

In this section, we will give a short introduction to the three information sources that
were available, and make assumptions about the quality and the completeness of the
data. In comparison to our effort in 2014 ([1]), we were supplied with more data (span
of two years) from different databases, which enables us to gather more precise in-
formation and tackle a variety of new issues. With this information we will then filter
the occurrences of the compressor failure scenario and determine the exact date of the
failures (Sect. 4).

3.1 Diagnostics Data

The diagnostics data is recorded directly on the train in the form of a logfile. It shows
all events that happened on the train, from the manual triggering of a switch by the train
driver to warning and error messages issued by the trains many systems.

We have access to data from a complete model range of train’s, the class BRI85.
This class was built in the 1990s, so it has internal processing and logging installed, but
the storage capacity is rather limited. Back then, predictive maintenance was not an-
ticipated, and therefore the logging processes were not engineered for this application.
This becomes abundantly clear, when we consider the steps necessary to retrieve the
logfiles from the train. It has to be done manually by a mechanic, each time the train is
in the workshop for scheduled or irregular maintenance tasks.

In the two years we are using as historic data, around 21 Million data instances have
been recorded in a fleet of 400 trains.

Diagnostic Codes and System Variables. As already mentioned, the diagnostic data is
in the form of a logfile. It consists of separate messages, each having a code to identify
its type. When we refer to a diagnostic code, we usually mean a message with this
specific code. In total there are 6909 diagnostic codes that can occur.

To each diagnostic code, a set of system variables is attached. Those are encoded
as Strings. Since the whole system is event based, the variables are not monitored pe-
riodically, but only recorded when a diagnostic message occurs. Which variables are
encoded is depending on the diagnostic message that was recorded. This implies that
some variables will be recorded rarely and sometimes not for hours or days. Overall,
there are 2291 system variables available: simple booleans, numeric values like temper-
ature or pressure and system states of certain components.

123

The event-based nature makes handling values as a time series difficult, for some
sort of binning has to be done in order to achieve regularly spaced entities. In our case, a
bin size of one day was used. Especially when relying on attributes that involve temper-
ature or pressure measurements it is impossible to create a complete and fine-grained
time-series of their values, because they appear too sparsely.

There is one speciality about these diagnostic messages: They have two timestamps,
one for when the code occurred first (coming), and one for when it went away (going).
This is designed for status reporting messages that last a certain time. Most codes only
occur once, so they do not have a timespan, others can last up to days. For example
there is code 8703 (Battery Voltage On) which is always recorded when the train has
been switched on, and lasts until the train is switched off again.

Because of the two entries coming and going, there are usually two measurements
of a variable for each diagnostic code entry. To handle these variables correctly, we
separate them from the diagnostic messages and use both values as a separate measure-
ment.

3.2 Failure Report Data

The Failure Report Data contains information when a failure has been reported by a
train driver. In the driving cabin there is the Multi-Function-Display (MFD), which
shows warnings or error messages. When a critical problem occurs, the information in
conjunction with a problem description is shown to the driver. If he is unable to solve
the issue, he will call a hotline. The hotline operator will try to help find an immediate
solution. In the case of an unsolvable or safety-critical problem, the hotline operator
will schedule a maintenance slot for the train and organise the towing if necessary.

The information recorded here is the date of the hotline call, the stated reason of the
caller, and the information if the issue had an impact on the overall train schedule, i.e.
the train was delayed more than ten minutes.

The start and end date of the train being in the workshop for repairs will be added to
this database afterwards (manually). In general, the textual description given by the train
driver and hotline operator are free text inputs and not consistent. The easiest possible
way of finding out instances of a failure type is to search these text descriptions for
certain keywords. In our case, 159 compressor failures on 95 trains were recorded.

Since this data is added manually and the dates are filled in afterwards, there is no
guarantee that it is correct in any way.

3.3 Workshop Data

Compared to the Failure Report Data, the Workshop data is gathered in a much more
controlled environment. Every maintenance activity is recorded here, from the replace-
ment of consumables up to the more complex repair activities. Each entry has a date
stamp as well as an exact id to each activity predefined in a database. All activities are
divided into systems, as well as tagged with a price. The information, if a certain action
was “corrective” or a ”scheduled replacement” is also available.

The correct tracking of the maintenance records is necessary for invoices, so it is
plausible to assume that these are handled more carefully than the failure report data.

124

They are manually entered into the system and it can not be guaranteed that they resem-
ble the exact activities that have been applied to the train.

3.4 Quality issues

All of the three datasets have an issue in common: they may not be complete (missing
entries, descriptions or dates) or are filled with false values (wrong dates, typos that
make it hard to find a keyword). Whether this is caused by human error, negligence or
processes that do not cover enough details is not important. In any case, these problems
need to be dealt with in a way that renders each dataset as useful as possible.

4 Finding the ground truth

Our primary goal is to reconstruct the ground truth, in order to be able to create good
labels for a classification process. In the special case at hand, this means finding out
when a failure has happened exactly. In this section, we will show how much infor-
mation is contained in each of the datasets described in Sect. 3 w.r.t. the ground truth,
and combine them in such a way that the optimal result based on our current state of
knowledge is received:

— the time of failure given as an approximation of the day,
— information on when the train was in the workshop afterwards, and
— alist of layovers that were unnecessary.

4.1 Pure Diagnostic Data

When we look at the information we can retrieve from the pure diagnostic data, it seems
reasonable to think that we can extract the point in time when the train driver received
the precise error message that led him to report the failure.

In reality, however, the messages displayed on the MFD can not be retrieved from
the diagnostic data. They are generated from it with a certain internal programming
logic. Unfortunately, as it remains unknown how this is done, the combinations of codes
needed to display a certain message also is not accessible. Given the original documen-
tation, we would be able to identify the causes, which could help find the exact reasons
the train driver called the hotline, and also evaluate which of those messages occur
before real failures and which before unnecessary layovers (see Sec. 4.4).

When we take all diagnostic messages that explicitly state a malfunction of the main
compressor into account, a result as depicted in Fig. 1 can be achieved, each square
indicating one failure day. Hence, for the train in our example a total of six failure
indications are present.

Because the underlying reasons that caused this messages are unclear, we proceeded
by taking further knowledge into account and refine these findings in subsequent steps.

125

— o o o o m —

Failure
—

0 \ | \ \ \ \ |
0 100 200 300 400 500 600 700

Day (of 2 year period)

Fig. 1. Discovered failures for one exemplary train using only diagnostics data

T T T T
1+ o * x o ok [] —

Failure

0 | | | | | | |
0 100 200 300 400 500 600 700
Day (of 2 year period)

Fig. 2. Discovered failures using workshop data (red) compared to Fig. 1 (blue)

4.2 Workshop data

Using the workshop data, we can determine the point in time when a certain part has
been replaced, and if the replacement was corrective or scheduled (mandatory). This
greatly improved the identification of the true failures. Still, depending on how main-
tenance is handled, it only gives us a rough estimate of the point in time the failure
actually took place. Note that maintenance procedures are not always carried out di-
rectly. Some types of failures require the train to be sent to a certain workshop, as not
all workshops are equipped to handle every repair procedure. This may cause some days
or even weeks in delay before the train finally is repaired. Therefore, the workshop date
is not precise enough for a valid labelling.

A comparison of the extracted failure points can be seen in Fig. 2 depicted as red
stars, showing a certain overlap with the findings from Fig. 1, but also completely un-
related entries. On average, red stars are 24 days away from blue boxes. If we only take
pairs that are less than 21 days apart into account, the average distance is 6.5 days. But
those are only 6 out of 10 instances, which leaves room for improvement and conse-
quently leads us to the next step.

4.3 Failure Report Data

Utilizing failure report data, we are able to increase our understanding of when the ac-
tual breakdown has happened. The date of the reporting is noted here, and with high
confidence it also states the correct day. We encountered some irregularities, for exam-
ple the reporting date being behind the date the train was then brought into the work-
shop. We can still use this information to narrow down the exact day of the failure, but
can not narrow it down to anything more fine grained than a day, because the precision
of the timestamp that is recorded in the reporting system is not high enough. Therefore,
we decided to take one day as the smallest unit a prediction can be done for. Since
we expect to predict failures weeks in advance, this is not crucial. However, when fail-
ures have to be predicted that are appearing within minutes, the proposed method is not
suitable any more.

126

T T T T T
o Ck (ex3 O * o o —

Failure
—
T

\ \
500 510 520 530 540 550 560 570 580 590 600

Day (of 2 year period)

Fig. 3. Discovered failures using failure report data (black) compared to Figs. 1 (blue) and 2 (red)

Failure
—

0 | | | | | | |
0 100 200 300 400 500 600 700
Day (of 2 year period)

Fig. 4. Discovered failures (green) and unnecessary layovers (orange)

In Fig. 3 we now look at a smaller part of the timeline from day 500 to 620 (for
better visibility). It is obvious that the failure report dates (black circles) are related to
the workshop dates (red star), but not always to the diagnostic data (blue squares).

Therefore, we can conclude that only the combination of a failure report and a fol-
lowing repair is truly indicative of a failure. The diagnostic messages seem to indicate
failures, but, surprisingly, after most of them the train is not affected negatively. Com-
paring the failure report dates with the repair dates an average distance of 1.6 days is
yielded when events that are more than 21 days apart are discarded.

4.4 Unnecessary workshop layover

Unnecessary workshop layovers mostly happen because of the train drivers concern
with safety, or them being overly cautious. As we were told by domain experts, the
programming logic that drives the MFD’s error and warning display is usually very
sensitive, therefore generating a certain amount of false positives.

This may cause the train driver to trigger unnecessary maintenance actions. In the
workshop the mechanics will then check the system, conclude that there is no failure
and cancel the scheduled replacement. With the workshop data and the failure report
data combined, we are able to differentiate the necessary from the unnecessary activities
and exclude them from the pool of failures. This emphasizes the strong need for com-
bining the different data sources by using expert knolwedge, as only then high-quality
datasets can finally be built. In Fig. 4 the detected unnecessary layovers in comparison
to the correct repairs are shown.

4.5 Missed and double repairs

Related to the unnecessary workshop activities are the missed repairs. Sometimes the
train might arrive in the workshop with a given failure to check, and the repair crew may
not be able to reproduce the symptoms, hence declaring this an unnecessary activity. A
few days later the train might get submitted for the same reason again, and often only
then the crew will actually repair or replace the component.

127

This effect has two implications, the first being that the time between those two lay-
overs should not be used to train the model, because it may contain data where it is not
certain if the failure is near or not. Second, it is also not clear whether the replacement
that was made in the second attempt was actually well reasoned, or the maintenance
crew decided to simply replace the part in order to eliminate the interference from hap-
pening again. These events are not documented as such, and we can only avoid negative
influence on the training by removing the instances from the training set completely.

In the case of double repairs, we treat layovers caused by the same reasons that
appear in a less than two weeks time as a single one, therefore assuming that the reasons
to bring the train in were correct in the first place. Unfortunately, we can not prove if
this assumption is always correct, but a discussion with the domain experts assured us
that it is usually the case. With this 14 day range, the total number of compressor failure
cases is reduced from 159 to 135.

S Extracting meaningful features

In this section, we will describe the techniques we used to extract features from the
given datasets. A thorough review of how to create features from various types of data
can be found in [2]. We will give a short overview of the different types of attributes we
extract and describe which features we create from them. As we have to do aggregation
because of event based data, we chose the smallest possible bucket size of one day.
As mentioned before (cf. Sect. 4.3), technical limitations apply. Furthermore, a failure
should be predicted weeks in advance, and it is very likely that signs of deterioration
are developed over a longer time, so one day seems to be appropriate.

5.1 Diagnostic messages and Status variables

As mentioned in Sect. 3.1, a diagnostic message has a pair of timestamps and values,
one for coming and one for going, possibly spanning a certain duration. We use the
values from one diagnostic code occurrence as source for multiple features. The infor-
mation of a trains’ runtime during one day is used to scale the attributes.

A status variable may have a certain amount of states, each defined by a number.
For each of the states a feature is generated. The states behave like the diagnostic codes,
the machine is in a certain state for a certain time span, therefore the features for both
types are equal:

1. Total duration of code/status: All durations summed up for the whole day
2. Frequency: How often one diagnostic code/status occurs during one day
3. Average duration: Total duration divided by the frequency

These attributes cover the primary properties of the appearance of diagnostic codes and
states. Other statistical values might be useful, e.g., variance of the average duration. It
is planned to conduct further experiments including other statistics in the future, how-
ever, we are confident that these three statistics have the highest impact on the quality
of the features.

128

T T T T T T T T T T T T T T T T T T 1
1 000000000 - Warning=false
® Warning=true

0 -| |® Quarantine
[

| | | | | | | | | | | | | | | .
12345678 91011121314151617181920 Failure day

Value

Labelling for each I; ,, per Day

Fig. 5. The label (warning = true|false) assigned to instances before and after the failure

5.2 Numeric values

Numeric values occur in a wide range of applications, for example the measurement of
temperature values. For these variables we use standard statistical measurements:

1. Average: Arithmetic mean of all recorded values in one day
2. Maximum: Maximum recorded value in one day

3. Minimum: Minimum recorded value in one day

4. Variance: Variance of all recorded values in one day

These attributes cover important properties of numerical values, more complex ones
may be evaluated in later experiments.

5.3 Time normalization

Since a train does not have the same runtime each day, we scale the time-based values
that are absolute (duration, occurrences) to the total uptime per day, in order to increase
comparability between days. As a result we achieve frequency (occurrences per hour)
as well as average duration per hour.

6 Labelling

In this section we will describe the labelling process with emphasis on the preprocessing
steps. We will describe why large amounts of the data were not used for training and
evaluation because of inconsistencies and information gaps.

6.1 Aggregation

As proposed in related literature (e.g. [2, 5, 6]), we will use a sliding window approach
to label the instances. The goal of this is to calculate not only a certain feature-vector
A, for a given day ¢, but instead calculate the trend leading towards this point in time.
For this, we use linear regression with the window size v for each day ¢ such as to
create a vector Iy, = linreg(A;—_y, ..., At—1, A¢), in order to represent the behaviour
of the system in the last v days. The gradient of the linear regression is then used as the
attribute. Each of those vectors represents one instance, as can be seen in Fig. 5. The
labels are then assigned as follows:

Step 1: Label all instances as warning = false

129

Step 2: For each failure on train B and on day S, label the instances Bg_,,...Bg as
warning = true

The value w represents the “warning epoch”. The optimal value of w will be deter-
mined experimentally, and depends on the specific type of failure. The optimal value
for v will also be determined experimentally.

6.2 Quarantine area

Because of the nature of the sliding window, we need to assure that - right after a part
has been repaired - we will not immediately create instances with warning = false.
For example, given a window size of v = 8 and a failure/repair on day F: if we create
I(F42),3 the window will date back to 6 days before the failure and incorporate the
measurements from those days. The calculated features would be influenced by the
behaviour before the maintenance. Therefore we introduce the quarantine interval, also
of length v. All instances in this interval may be affected by the failure and have to
be treated accordingly, in our case removed. The quarantine interval prevents instances
that are influenced by the effects of the failure, but labelled as warning = false (see
Fig. 5).

6.3 Unnecessary layover area

In Sect. 4.4 we elaborated on how we detect unnecessary layovers. Apparently these
result from values in the diagnostics system which caused it to issue a warning on the
MFD. Thus, some sort of non-standard behaviour has been detected. Compared to our
ground truth we can state that - although abnormal - the records do not correlate with
the failure we are trying to detect. We do not want these to affect the training of the
classifiers, so we create a buffer area around those dates. The buffer area affects all
instances from /;_,...J;,. The instances inside this area will not be used for training.

6.4 Removal of instances

As stated before, the diagnostic data we built the instances upon is not recorded con-
tinuously, but on an event-triggered basis. For example, data is not recorded when the
train is switched off. To address this issue, the concept of validity was introduced. If
no data was recorded on a given day, this day is regarded as invalid. The same applies,
when no mileage was recorded on a day. It can happen that a train is switched on and
records data, even when it does not actually drive. Most often this happens in situations
where the train is moved to another rail, hence, we consider a mileage of less than 10
km per day as invalid, since driving less than 10 km definitely is no cargo delivery.

The last attribute that has an influence on the validity is the information, if a train
was in the workshop at a given day. In workshop layovers, usually problem detection
gear is attached and some diagnostic programs are executed, causing the train to emit
more diagnostic messages than usual. In order to keep this artificially created informa-
tion from influencing the process, workshop days are also handled as invalid.

130

| - I .
= ! correct
© O error | | | | | |
N = | T TN
2 0 invalid ~ | ~
| | | | | |
T T T T T T T
e e | L] |
2 0 quarantine | | |
L ‘ 1 1 1 1 1 1
3 o [L1]1] il
2 0 ‘ unnecessary layover buffer }
| | | |
- [T T T T T T]
R il
& 0 4 remaining instances
| | | | |
0 100 200 300 400 500 600 700
Day (of 2 year period)
Fig. 6. Stepwise removal of invalid and unreliable values
E 1 [‘ | ‘ | | ‘ 11
= | —— warning label | F ' F ' F F
3 0 warning labe ‘ ‘ ‘ ‘ ‘
- [I I 1 1 1 1 [
& 0 _‘ remaining instances }
| | | | |
0 100 200 300 400 500 600 700

Day (of 2 year period)

Fig. 7. Remaining instances compared to positive labels

In Fig. 6 the sequence of removal steps is displayed. In the first part of the figure,
the ground-truth (GT) resulting from the process of Sect. 4 is shown. During a period
of 2 years, we calculate the conditions for an instance for each day. In steps 1-3 those
criteria are displayed, the status being true (1) when the condition applies.

The first step of the removal process eliminates all the invalid instances (St.1). In
the second step, we remove all instances that appear in the quarantine period defined in
Sect. 6.2. Finally, we remove data in the unnecessary layover buffer area from Sect. 6.3
in step 3. This is done in order to eliminate all negative training influences those in-
stances might have.

At the end of this process we are left with a significantly smaller number of in-
stances, as can be seen in the Result column of Fig. 6. In comparison to the actual
labels we assign to those instances, we can see in Fig. 7 that a significant number of
the “warning=true” instances was removed during the process. The quality of those
remaining instances with respect to our labelling is highly increased when employing
these steps, since potentially problematic, useless or erroneous instances are completely
removed.

131

7 Conclusion

We have presented a preliminary process for converting a predictive maintenance sce-
nario into a classification problem.

We dealt with domain-specific data, special characteristics of that data and pre-
sented preliminary solutions for the resulting challenges. We showed the necessity of
incorporating domain expert knowledge in the process that proved to be successful for
labelling the instances correctly. Several of the clean-up steps would not be possible
without knowing the specific properties of the domain at hand.

Unfortunately, preliminary results in terms of classification accuracy were yet not
promising. However, we are confident that with a further refinement of the presented
procedures we will achieve better results soon. We will continue our work in the future
with the following steps:

1. Discussion of validation methods and the implications they have (cf. [7])

2. Usage of sophisticated feature selection methods in order to improve classifier per-

formance

Evaluation of classifier performance and parameter optimization

Solving the problem of of skewed class distribution

5. Evaluation of different approaches for converting predictive maintenance scenarios
into classification problems (cf., e.g., [3])

W

References

1. Sebastian Kauschke, Immanuel Schweizer, Frederik Janssen, and Michael Fiebrig. Learning
to predict component failures in trains. In Proceedings of the LWA 2014 Workshops: KDML,
IR and FGWM, 2014.

2. Silvain Létourneau, Chunsheng Yang, Chris Drummond, Elizabeth Scarlett, Julio Valdes, and
Marvin Zaluski. A domain independent data mining methodology for prognostics. In Essen-
tial technologies for successful prognostics : proceedings of the 59th Meeting of the Society
for Machinery Failure Prevention Technology, 2005.

3. David Martinez-Rego, Oscar Fontenla-Romero, and Amparo Alonso-Betanzos. Power wind
mill fault detection via one-class ny-svm vibration signal analysis. In Proceedings of Interna-
tional Joint Conference on Neural Networks, San Jose, California, USA, July 31 - August 5,
2011.

4. Ying Peng, Ming Dong, and Minglian Zuo. Current status of machine prognostics in
condition-based maintenance: a review. The International Journal of Advanced Manufac-
turing Technology, 50(1-4):297-313, 2010.

5. Ruben Sipos, Dmitriy Fradkin, Fabian Moerchen, and Zhuang Wang. Log-based predictive
maintenance. In KDD ’14 Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining.

6. Marvin Zaluski, Silvain Létourneau, Jeff Bird, and Chunsheng Yang. Developing data mining-
based prognostic models for cf-18 aircraft. In Journal of Engineering for Gas Turbines and
Power, volume 133, 2011.

7. Indre Zliobaite, Albert Bifet, Jesse Read, Bernhard Pfahringer, and Geoff Holmes. Evaluation
methods and decision theory for classification of streaming data with temporal dependence.
Machine Learning, 98(3):455-482, 2015.

132

