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Abstract. The Kernel Support Vector Machine (KSVM) has achieved
promising classification performance. However, since it is based only on
local information (Support Vectors), it is sensitive to directions with
large data spread. On the other hand, Kernel Nonparametric Discrimi-
nant Analysis (KNDA) is an improvement over the more general Kernel
Fisher Discriminant Analysis (KFD), where the normality assumption
from KFD is relaxed. Furthermore, KNDA incorporates the partially
global information in the Kernel space, to detect the dominant nor-
mal directions to the decision surface, which represent the true data
spread. However, KNDA relies on the choice of the κ-nearest neighbors
(κ − NN ’s) on the decision boundary. This paper introduces a novel
Combined KSVM and KNDA (CKSVMNDA) model which controls the
spread of the data, while maximizing a relative margin separating the
data classes. This model is considered as an improvement to KSVM by
incorporating the data spread information represented by the dominant
normal directions to the decision boundary. This can also be viewed as an
extension to the KNDA where the support vectors improve the choice of
κ-nearest neighbors (κ−NN ’s) on the decision boundary by incorporat-
ing local information. Since our model is an extension to both SVM and
NDA, it can deal with heteroscedastic and non-normal data. It also avoids
the small sample size problem. Interestingly, the proposed improvements
only require a rigorous and simple combination of KNDA and KSVM
objective functions, and preserve the computational efficiency of KSVM.
Through the optimization of the CKSVMNDA objective function, sur-
prising performance gains were achieved on real-world problems.
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1 Introduction

Supervised learning is the task of finding a function which relates inputs and
targets. A training set X of input vectors {xi}Ni=1 is given, where xi ∈ Rk(k ≥
1) ∀i = 1, 2, ..., N . The corresponding set T of tags are {ti}Ni=1, where ti ∈
0, 1 ∀i = 1, 2, ..., N . The objective is to learn a model of dependency of the
targets on the inputs. The ultimate goal is to be able to make accurate predic-
tions of t for unseen values of x. Typically, we base our predictions upon some
function y(x) defined over the input/training space X , and learning is the pro-
cess of inferring the parameters of this function. A new representation of data
is necessary to learn non-linear relations with a linear classifier. This is equiva-
lent to applying a fixed non-linear mapping F of the data to a feature space, in
which the linear classifier can be used. Hence, the objective function will be of
the form:

y(x;w) =
N∑
i=1

fx
i wi + w0 = ΦT (xi)w + w0, (1)

where Φ(x) = (fx
1 , f

x
2 , . . . , f

x
N ) : X → F describes a non-linear mapping from

the input space to a feature space for the input variable x. Hence, non-linear
classifiers have two stages: (i) a fixed non-linear mapping transforms the data
into a feature space F and then (ii) a linear classifier is used to classify them
in F . Analysis of functions of the type (1) is facilitated since the adjustable
weight vector w and the offset w0 appear linearly, and the objective is to es-
timate optimum values of the weight coefficients. There are a large number of
functions of type (1). Our concentration here is on some relevant state-of-the-
art kernel-based models, such as, the Kernel Support Vector Machine (KSVM)
and the Nonparametric Discriminant Analysis in kernel space, which we will
call KNDA. KNDA extends the linear NDA based on the same principles that
the Kernel Fisher Discriminant Analysis (KFD) is built upon. The advantage of
KNDA over KFD is the relaxation of normality assumption. KNDA measures the
between-class scatter matrix on a local basis in the neighborhood of the decision
boundary in the higher dimensional feature space. This is based on the observa-
tion that the normal vectors on the decision boundary are the most informative
for discrimination. In case of a two-class classification problem, these normal
vectors are approximated by the κ − NN ’s from the other class for one point.
We can consider KND as a classifier based on the “near-global” characteristics
of data. Although KNDA gets rid of the underlying assumptions of KFD and
results in better classification performance, no additional importance is given
to the boundary samples. In other words, the margin criterion (as calculated in
KSVM) is not considered here. Moreover, it is not always an easy task to find
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a common and appropriate choice of κ−NN ’s on the decision boundary for all
data points to obtain the best linear discrimination.

Another category of kernel-based classifiers is the Kernel Support Vector
Machine (KSVM). KSVM is based on the idea of maximizing the margin or
degree of separation in the training data. There are many hyperplanes which
can divide the data between two classes for classification. One reasonable choice
for the optimal hyperplane is the one which represents the largest separation or
margin between the two classes. KSVM tries to find the optimal hyperplane using
support vectors. The support vectors are the training samples that approximate
the optimal separating hyperplane and are the most difficult patterns to classify.
In other words, they are consisted of those data points which are closest to
the optimal hyperplane. As KSVM deals with a subset of data points (support
vectors) which are close to the decision boundary, it can be said that the KSVM
solution is based on the “local” variations of the training data.

It has been shown in the literature that maximummargin based classifiers like
the KSVM typically perform better than discriminant (or average margin) based
methods like the KNDA due to their robustness and local margin consideration.
However, KSVM can perform poorly when the data varies in such a way that
data points exist far from the classification boundary [12]. This can be the case
especially when the data is of high dimension. This is because KSVM does not
take into consideration the “near-global” properties of the class distribution (as
in the case of KNDA). This limitation of KSVM can be avoided by incorporating
variational information from the KNDA which will control the direction of the
separating hyperplane of KSVM. In that way we will have a maximum margin
based classifier which is not sensitive to skewed data distribution like KSVM.

Several methods exist in literature which have addressed these issues inherent
in discriminant based and maximum margin based methods. The ellipsoidal ker-
nel machine was proposed in [11], where a geometric modification is proposed
for data normalization by considering hyperellipsoids instead of hyperspheres
in the classical KSVM method. Similarly, in [5], radius/margin bound has been
used to iteratively optimize the parameters of KSVM efficiently. In [15], a kernel-
based method has been proposed which essentially calculates the KFD scatter
matrices based on the support vectors provided by KSVM. While these methods
were backed by experimental improvements, most of them are a combination of
multiple locally optimal algorithms to separately solve the discriminant based
problem and margin maximization rather than providing one algorithm with one
unique globally optimum solution.

Although the method proposed in [12] is superior to the previously described
methods in the sense that it is based on only one convex optimization prob-
lem, it does so by introducing new constraints to the optimization problem.
New constraints means new Lagrangian variables, which in turns can degrade
the computational time. The Gaussian Margin Machine proposed in [3] tries to
find the least informative distribution that classifies training data correctly by
maintaining a Gaussian distribution of weight vectors. The drawback with this
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method is the expensive objective function involving log determinants in the
optimization problem.

Another approach to improve the classification performance of KSVM is
to include additional training examples. This approach has been used in [1],
where additional unlabeled samples are made available to the system in a semi-
supervised learning system. The approach in [14] introduces a neither class,
where additional samples are drawn from the same distribution for the classes
under consideration. These additional samples are then used for improved margin
consideration. However, we will stick to the simple binary classification model
which does not rely on any additional assumption and, hence, is closer to a
real-life pattern recognition problem in its truest form.

We propose a novel CKSVMNDA model which combines the KNDA and
KSVM methods. In that way, a decision boundary is obtained which reflects
both near-global characteristics (realized by KNDA) of the training data in fea-
ture space and its local properties (realized by the local margin concept of the
KSVM). Being a kernel-based model, CKSVMNDA can deal with nonlinearly
separable data efficiently. Rather than introducing new constraints like [12], our
method modifies the objective function of KSVM by incorporating the scatter
matrices provided by KNDA.

The proposed method improves upon our recently proposed models [6, 7] by
preserving the same discriminative way while adding the following significant
advantages:

– Unlike the method in [6], our proposed model is more theoretically founded
and forms a convex optimization problem because the final matrix used to
modify the objective function is positive-definite. As a result, the method
generates one global optimum solution. Because of this global extremum,
existing numerical methods can be used to solve this problem easily and
efficiently.

– The methods in [6, 7] primarily focused on the linear version of SVM while
our model derivation emphasizes on the kernel space. As stated before, the
kernel space has the advantage of being able to learn non-linear relations by
mapping to a higher-dimensional feature space.

We also show that our method is a variation of the KSVM optimization problem,
so that even existing KSVM implementations can be used. The experimental
results on real and artificial datasets show the superiority of our method both
in terms of accuracy.

The rest of the paper is organized as follows: Section 2 provides formulations
of the KSVM and KNDA. Section 3 contains derivation of the novel CKSVM-
NDA model. Section 4 provides a comparative evaluation of the CKSVMNDA
model to the KSVM and KNDA methods. This evaluation is carried out on a
number of benchmark real datasets. Finally, Section 5 provides some conclusions.
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2 KSVM and KNDA

Let X1 = {xi}N1
i=1 and X2 = {xi}N1+N2

i=N1+1 be two different classes constituting an

input space of N = N1 +N2 samples or vectors in RM where, class X1 contains
N1 samples and class X2 contains N2 samples. Let the associated tags with these
vectors be represented by T = {ti}Ni=1, where ti ∈ {0, 1} ∀i = 1, 2, . . . , N . Since
real-life data has inherent non-linearity, KSVM tries to map the data samples to a
higher dimensional feature space F , where linear classification might be achieved.
Let the function Φ map the classes X1 and X2 to two higher dimensional feature
classes F1 = {Φ(xi)}N1

i=1 and F2 = {Φ(xi)}Ni=N1+1, respectively.
However, in case when the dimension of F is very high, it is not possible

to do mapping directly. In such a case, the kernel trick [13] is used. Instead of
explicitly calculating the mapping, a kernel function K is used, which calculates
the dot products of the higher dimensional data samples instead of the samples
themselves. Mathematically it can be written as

K(xi, xj) =< Φ(xi).Φ(xj) >, ∀i, j ∈ {1, 2, . . . , N}.

Our target is to learn the weight vector w which minimizes (or maximizes) some
objective function of the form of Equation (1).

2.1 The Kernel Support Vector Machine

As stated before, KSVM tries to map the samples to a higher dimensional fea-
ture space in the hope that the classification problem will be linear in that
space. In the feature space, KSVM tries to find the optimal decision hyperplane.
The optimal hyperplane is the one with the largest margin, or, in other words,
the plane which has largest minimal distance from any of the samples. Maxi-
mizing the distance of samples to the optimal decision hyperplane is equivalent
to minimizing the norm of w. As a result, this becomes part of the objective
function. However, it might be the case that the problem is non-linear even in
the higher dimensional space. To solve this, the margin constraint is relaxed or
slacked. Also, a penalty factor is introduced in the objective function to control
the amount of slack. This penalty factor is of the form of a loss function, usually
a hinge loss function. Incorporating all these, the KSVM optimization problem
can be written as:

min
w ̸=0,w0

{
1

2
wTw + C

N∑
i=1

max(0, 1− ti(Φ
T (xi)w + w0))

}
,

Here, max(0, 1− ti(Φ
T (xi)w + w0)) is the hinge loss function. For correctly

classified training samples, this function does not incur any loss. For misclassifi-
cation, the loss factor is controlled by C. Note that although KSVM is generally
described as an optimization problem with constraints on the weights, we are
presenting it slightly differently with the hinge-loss function so that it will be
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easier to derive the probabilistic interpretation of our proposed method later.
This representation can easily be converted to the more familiar constrained
optimization problem.

Since the weight vector w resides in the feature space, it cannot be calculated
directly. Instead, the Lagrangian dual problem is solved [10]. The optimal weight
vector for this problem is a linear combination of the data points and is of the
form w∗ =

∑N
i=1 tiα

∗
iΦ(xi), where {αi}Ni=1 are the Lagrangian variables. The

decision function for any test sample x is obtained by:

g(x) =
N∑
i=1

tiα
∗
iK(x, xi) + w∗

0 , (2)

where w∗
0 is computed using the primal-dual relationship, and where only sam-

ples with non-zero Lagrange multipliers αi contribute to the solution. The cor-
responding data samples are called Support Vectors (SVs). These points are the
crucial samples for classification. Therefore, KSVM considers only those data
points which are close to the decision hyperplane and are critical to find the
decision boundary. In other words, KSVM only considers the local variations in
data samples. The overall distributions of the training samples are not taken
into consideration. Incorporating some kind of global distribution (e.g. results
from classifiers like KNDA) can provide better classification.

2.2 The Kernel Nonparametric Discriminant Analysis

The NDA can be extended to the feature space F . We call this the Kernel
Nonparametric Discriminant Analysis (KNDA). Instead of calculating the simple
mean vectors, the nearest neighbor mean vectors are calculated to formulate the
between-class scatter matrix of the NDA. In our feature space, this vector can
be defined as:

Mκ
m(Φ(xi)) =

1

κ

κ∑
j=1

Φ(x)NN (j), (3)

where, Φ(xi)NN (j) defines the jth nearest neighbor from data point xi of class
m. κ is the free parameter which defines how many neighbors to consider. This
parameter needs to be optimized for each dataset. Now, let us define two matrices
L1(Φ(xi)) and L2(Φ(xi)). We will use the kernel trick to formulate these matrices.
In that case, the matrices are calculated on a component by component basis,
where, a component of L1(Φ(xi)) is defined as:

(L1(Φ(xi)))j = K(xj , xi)− (Mκ
2 (Φ(xi)))j ,

∀i ∈ {1, 2, . . . , N1}, ∀j ∈ {1, 2, . . . , N}, (4)

and a component of L2(Φ(xi)) is defined as

(L2(Φ(xi)))j = K(xj , xi)− (Mκ
1 (Φ(xi)))j ,

∀i ∈ {N1 + 1, N1 + 2, . . . , N1 +N2}, ∀j ∈ {1, 2, . . . , N}. (5)
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With these formulations, the between-class scatter matrix in the feature space
can be defined as:

∇ =
1

(N1 +N2)

N1∑
i=1

ΨiL1(Φ(xi))L1(Φ(xi))
T

+
1

(N1 +N2)

N1+N2∑
i=N1+1

ΨiL2(Φ(xi))L2(Φ(xi))
T . (6)

Here, Ψi are the weighting functions to nullify the effects of samples that are far
from the boundary. It is defined as follows [4]:

Ψi =
min{d(Φ(xi), Φ(xNNκ

1i))
γ , d(Φ(xi), Φ(xNNκ

2i))
γ}

d(Φ(xi), Φ(xNNκ
1i))

γ + d(Φ(xi), Φ(xNNκ
2i))

γ
, (7)

where γ is a control parameter which can range from zero to infinity, and
d(Φ(xi), Φ(xNNκ

ji)) is the Euclidean distance from xi to its κ−NN ’s from class
Xj in the kernel space. γ controls how rapidly the value of weighting function
falls to zero as we move away from the classification boundary.

The motivation behind KNDA is the observation that essentially the near-
est neighbors represent the classification structure in the best way. For small
values of κ, the matrices in Equation (4) and (5) represent the direction of the
gradients of the respective class density functions in the feature space. If the
weighting functions are not used, samples with large gradients that are far from
the boundary may pollute the necessary information. Hence, these gradients with
combination of the weighting functions form the between-class scatter matrix ∇,
which preserves the classification structure.

The KNDA does not make any modifications to the within-class scatter ma-
trix. As a result, the formula for within-class scatter matrix ∆ is similar to the
KFD, and can be written as follows:

∆ = K1(I − 1N1)K
T
1 +K2(I − 1N2)K

T
2 , (8)

where K1 is a N × N1 Kernel matrix for the class X1 and K2 is a N × N2

Kernel matrix for the class X2. I is the identity matrix and 1N1 and 1N2 are the
matrices with all entries 1

N1
and 1

N2
, respectively. With these definitions of ∇

and ∆, the KNDA method proceeds by computing the eigenvectors and eigen-
values of ∆−1∇. Since the higher dimensional feature space F is of dimension
N , the matrix ∆ is needed to be regularized before calculating the inverse. This
is achieved by adding a small multiple β of the identity matrix I. Hence, the
eigenvectors and eigenvalues of (∆+βI)−1∇ are computed, and the eigenvector
corresponding to the largest eigenvalue forms the optimal decision hyperplane.
We can exploit the fact that the matrix ∇ is only of rank one (i.e., αT∇α =

1
(N1+N2)

∑N1

i=1 Ψi

(
αTL1(Φ(xi))L1(Φ(xi))

T
)
+ 1

(N1+N2)

∑N1+N2

i=N1+1 Ψi

(
αTL2(Φ(xi))

L2(Φ(xi))
T
)
). Thus, we can fix αT∇α to any non-zero value, for example 1 and

minimize αT∆α. This amounts to the following quadratic optimization problem:
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min
α̸=0,α0

αT∆α, (9)

s.t. αT∇α = 1. (10)

3 The CKSVMNDA Model

In this section, we present our proposed model CKSVMNDA which combines the
data spread information represented by the normal vectors to the decision surface
for the KNDA (partially global information), and the support vectors for the
KSVM (local information). Thus, the CKSVMNDA overcomes the drawbacks
of KSVM by controlling the spread of the data, which is represented by the
KNDA dominant normal directions to the decision boundary, while maximizing
a relative margin separating the data classes. Moreover, the choice of KNDA κ-
nearest neighbors (κ−NN ’s) on the decision boundary is improved by the KSVM
support vectors. Therefore, the CKSVMNDA objective function is a simple and
rigorous summation of the KSVM and KNDA objective functions:

min
α̸=0,α0

{
1

2
αT

[
2λ

(
∆+ β∇

)
+ I

]
α− λβ (11)

+C
N∑
i=1

max(0, 1− ti(Φ
T (xi)α+ α0))

}
. (12)

In theory, CKSVMNDA should outperform both KSVM and KNDA if the control
parameter λ can be optimally chosen. In practice, the values of λ and β will be
tuned via the cross validation technique, where data is divided into a number
of subsets. Then, one subset is used for testing while the others are used for
training. All the subsets are used for testing in turns and the average is taken
into consideration to reduce variability. This whole process is repeated with
different values of λ and β. The latter are assigned the values with the best
performance.

3.1 Solving the Optimization Problem

Since our optimization problem is similar to the KSVM optimization problem,
we can solve it in a similar way, i.e., by using Lagrange multipliers. However,
obtaining the CKSVMNDA solution this way requires an entirely new implemen-
tation to test this method. The following lemma gives us an easier alternative
to implement this method:

Lemma 1. The CKSVMNDA method formulation is equivalent to:

min
ŵ ̸=0,w0

{
1

2
ŵT ŵ + C

N∑
i=1

max(0, 1− ti(Φ̂
T (xi)ŵ + w0))

}
, (13)
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where

ŵ = Θ1/2w, (14)

Φ̂(xi) = Θ−1/2Φ(xi) ∀i = 1, . . . , N (15)

and

Θ = η∆(∇+ βI)−1∆+ I. (16)

Proof. Substituting Equations (14-16) into equation (13) we get the original
CKSVMNDA problem (Equation (11)).

This lemma gives us a significant advantage from the implementation viewpoint.
This essentially means that we can use the existing SVM implementations [8]
provided we can calculate the terms Θ1/2 and Θ−1/2. The algorithm used to
solve the optimization problem in this implementation is based on the interior-
reflective Newton method described in [2].

4 Experimental Results

In this section we evaluate the proposed CKSVMNDA method against three
other contemporary classifiers, namely, the KSVM, KNDA and the Kernel Fisher
Discriminant (KFD). To strengthen the significance of our method, we provide
results for both real-world datasets and a face recognition application.

For kernelization of the data, we use the Gaussian RBF Kernel K(xi, xj) =

e−∥xi−xj∥2/σ. This kernel is proven to be robust and flexible. Here, σ represents
the positive “width” parameter. For KNDA and KFD, after finding the optimal
eigenvector, Bayes classifier was used for conducting the final classification.

The involved parameters were optimized using exhaustive search to try all
possible combinations. Although the parameter optimization is a lengthy process,
this needs to be done only once for a new dataset, and, hence, does not contribute
to the actual classification performance. If the optimization needs to be faster,
efficient methods like coordinate descent technique can be used at the cost of a
small degradation in accuracy values.

The number of parameters to tune for the CKSVMNDA method is 4, while it
is 2 for KSVM and KNDA. It might seem that an accurate fit of the parameter
values is necessary for CKSVMNDA to perform well, specially if we have a small
training dataset. But as we will see from the results, CKSVMNDA performs
better compared to other methods by tuning over a limited range of parameter
values we have used (e.g. we use a set of only 20 κ values and 20 η values for
parameter tuning to obtain the results of Table 1). Since this is a combination of
KSVM and KNDA, the parameters compensate each other, and the fit doesn’t
necessarily have to be perfect. Also, for small training set, we tackle the prob-
lem of poor performance due to inaccuracies in matrix inversion by adding a
regularization term before inverting.
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4.1 Experiments on Real and Artificial Datasets

We have applied the classification algorithms on 11 real-world and artificial
datasets.The datasets are obtained from the Benchmark Repository used in [9].
Namely, the datasets are: Flare-Sonar, Breast-Cancer, German, Heart, Banana,
Diabetes, Ringnorm, Thyroid, Twonorm, Waveform and Splice. These datasets
are obtained from the UCI, DELVE and STATLOG repositories. Some of these
datasets are originally multi-class. In such cases, some of the classes were (ran-
domly) merged to convert it into a two-class classification problem. 100 partitions
are then generated for each dataset, where about 60% data is used for training
and the rest for testing [9]. For our experimental results, we randomly picked 5
out of these 100 partitions (5 partitions each for training and 5 each for test-
ing). Additionally, we repeated this random picking process 5 times to achieve
the average result. This randomness was introduced to ensure that no method
has a coincidental advantage over the others. For parameter tuning, 5-fold cross
validation on the training dataset was performed for each model (i.e. 4 out of
the 5 picked training partitions were used for training and the remaining one for
validation at each stage of cross validation).

4.2 Interpretation of the Results

Accuracy

Table 1 contains the average accuracy values and the standard deviations
obtained over all the runs. We see that the CKSVMNDA method outperforms
the KSVM, KNDA and the KFD in almost all cases. Since the CKSVMNDA
combines the global and near-global variations provided by the KSVM and the
KNDA, respectively, it can classify the relatively difficult test samples. Also,
being a variation of the KSVM and KNDA, this method is free from any un-
derlying distribution assumption, and, hence, can provide better results. Con-
cerning the parameters λ and β, in order to reduce the time of optimization,
we had to restrict ourselves to only a few values. Still, as we can see, these
limited values are good enough for almost all the datasets. This establishes the
fact that our method can be used in practical applications. To measure the sta-
tistical significance of the results, we paired up the CKSVMNDA method with
the other methods and performed paired t-tests on the accuracy values. The
paired t-test determines whether or not two paired sets of measured values are
significantly different. The last row of Table 1 provides the confidence intervals
(in %) obtained from the performed t-tests. This confidence interval quantifies
the probability of the paired distributions being the same. The higher the con-
fidence interval, the lower is the probability that the underlying distributions
are statistically indifferent. As we can see, all the confidence intervals are almost
100%, which proves that the CKSVMNDA method indeed provides statistically
significant accuracy improvements.

If we compare the results between the KNDA and KFD, we see that in some
cases, the KFD provides better classification results than the KNDA. This is
due to the fact that the optimal nearest neighbor parameter for the KNDA (the
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κ−NN ’s) is not always easy to find. But since our method combines the KNDA
with KSVM, the optimality of this parameter is not as crucial as it is in the
KNDA.
Computational Complexity Analysis

The computational complexity of the KSVM scales with O(N2) for one it-
eration. The KNDA and KFD scale with a computational complexity of O(N3)
(dominated by the inversion of the within-class scatter matrix). Each of the
KNDA and KFD methods requires only one run as there is no iterative process
involved.

In the CKSVMNDA, the complexity for the inversion of Θ scales withO(N3).
However, this inversion process can be considered to be part of pre-processing,
as it is needed to be done only once before start of the training. Therefore,
the computational complexity of our proposed CKSVMNDA can be considered
similar to that of the KSVM, i.e., O(N2) per iteration. This can also be seen
from the obtained results (second last row of Table 1), where we see that the
average computational time of our method is on par with that of KSVM.

Dataset CKSVMNDA KSVM KND KFD

Flare-Sonar 67.7 (0.47) 66.9 (0.41) 67.1 (0.65) 66 (0.40)

Breast-Cancer 78.9 (1.96) 77.4 (2.1) 79.3 (2.00) 77 (2.37)

German 78.1 (0.40) 77 (0.38) 76.3 (0.68) 75.7 (0.51)

Heart 86.5 (2.21) 85.4 (2.3) 81.7 (1.58) 82.9 (2.13)

Banana 89.8 (0.25) 89.6 (0.29) 89.6 (0.22) 89.5 (0.20)

Diabetes 78.6 (0.50) 77.7 (0.69) 75.7 (0.90) 77.3 (1.03)

Ringnorm 98.5 (0.04) 98.4 (0.04) 98.3 (0.03) 97.4 (0.07)

Thyroid 97.3 (0.6) 96.5 (1.02) 97.1 (0.64) 96.8 (0.49)

Twonorm 97.7 (0.04) 97.6 (0.05) 96.5 (0.32) 96.9 (0.08)

Waveform 90.7 (0.15) 90.5 (0.15) 89.3 (0.19) 90 (0.12)

Splice 88.9 (0.41) 88.7 (0.38) 88.5 (0.41) 88.4 (0.36)

Avg. time 4.04 4.05 2.95 2.92

Confidence - 99.8 97.6 99.9

Table 1. Average percentage classification accuracy and standard deviation ( in paren-
theses) of each method for the 11 data sets (best method in bold, second best empha-
sized). The last two rows contain the average cpu time for each method (in seconds)
and the t-test confidence interval, respectively.

5 Conclusion

In this paper, we have proposed a novel classification method named CKSVM-
NDA. The CKSVMNDA method incorporates the global variational information
from the KSVM and the near-global information from the KNDA. Being a com-
bination of these two methods, CKSVMNDA is a robust classifier, free from any
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underlying assumption regarding class distribution. Our method is also capable
of tackling the small sample size problem. Being a convex optimization problem,
our method provides a global optimum solution and can be solved efficiently
by using numerical methods. Besides, we have shown that our method can be
reduced to the classical KSVM model so that existing KSVM implementations
can be used. The experimental results on some contemporary datasets verifies
the superiority of our method, where we compare CKSVMNDA with the KSVM,
KND and KFD. In future, we plan to build a multi-class classifier based on the
principles of the CKSVMNDA method.
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