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Abstract. Typical image classification pipeline for shallow architecture can be
summarized by the following three main steps: i) a projection in high dimen-
sional space of local features, ii) sparse constraints for the encoding scheme and
iii) a pooling operation to obtain a global representation invariant to common
transformation. Sparse Coding (SC) framework is one particular example of this
general approach. The main problem raised by it is the local feature encoding
which is done independently, loosing correlation of the input space. In this work
we propose to simultaneously encode sparse codes to tackle this problem with
Joint Sparse Coding (JSC) inspired by Graph regularized Sparse Coding (GSC).
We experiment SC, GSC and JSC on UIUCsports and scenes15 database. We
will show that results obtained, for UIUCsports, with SC (87.27± 1.33), JSC
(84.17±1.57) and the State-of-the-Art (88.47±2.32 [23]) are tackled by a sim-
ple fusion (95.37± 1.29). Several assumptions will be advanced to explain this
phenomenon which can’t be generalized.

Keywords: Scenes categorization, Sparse Coding, Graph regularized Sparse Cod-
ing, Dictionary Learning, Scale Invariant Feature Transform, Spatial Pyramid
Matching, Joint Sparse Coding.

1 Introduction

In the field of computer vision and signal processing, significant progress has been made
since the 2000s with more general methods such as Bag of Words (BoW) [19]. We have
at our disposal a significant number of databases as, for example, UIUCsportss [11],
scenes from 15 databases [8], where the goal is to label images into a finite number of
classes. The first way could be to evaluate the metric distance between two images. Un-
fortunately, due to the high dimensionality of this input space, most of these distances
are concentrated into a sub-manifold whatever the image class, making the discrimi-
nation by direct distances not robust. To overcome this problem, a solution has to be
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designed to find a general application Ψ j(.;µ j) with parameter µ j which characterizes
the class C j satisfying:{

dist(Ψ j(I1;µ j),Ψ j(I2;µ j))→ 0 if I1 ∈ C j and I2 ∈ C j

dist(Ψ j(I1;µ j),Ψ j(I2;µ j))→ ∞ if I1 ∈ C j and I2 /∈ C j,
(1)

where I1 and I2 are two images. The choice of Ψ j represents a trade-off between its
representation capacity versus the µ j optimization difficulty. In general, in order to es-
timate/optimize µ j, we have to start from a local representation (patches) x ∈ Rd to
obtain the global representation Ψ j(.;µ j). From Ψ j associated to BoW, Sparse Coding
(SC) [21], up to ConvNet [3, 9] follow the three main procedures: i) high dimension
local feature projection, ii) sparsity constraints into the representation model and iii)
non-linearity operation and pooling to obtain a global invariant representation.

In this article, we will focus on a new formulation of encoding method, which corre-
sponds more specifically to procedure ii), inspired by SC and more generally by Graph
regularized Sparse Coding (GSC) [25]. This new formulation allows to encode simul-
taneously testing patches as with the GSC model which has good properties. Although
we will only work on a single layer, we will show that a simple fusion will allow to
improve considerably the classification accuracy and that our results will be close to
CNN (convolutional neural nets) [6, 18] initialized on Image Net as shown in [3]. This
article is divided into five parts. The first part focuses on SC models and its derivatives
(GSC especially). The second part presents our modeling Joint Sparse Coding (JSC).
The third part presents Graph regularized Sparse Coding (GSC) dictionary inspired by
[13]. A fourth part presents results we obtained on UIUCsports and scenes15 databases
and in the last part, we conclude on our contribution.

2 Related Works

In this part, we will focus on the encoding step using linear coding to reconstruct
inputs. An approximation of any patches x ∈ Rd can be given by xi = Dαi, where
D, [d1, . . . ,dK ]∈Rd×K is a given/trained dictionary where ∀k= 1, . . . ,K, ‖dT

k dk‖2
2 = 1

and d j
k ≥ 0. A patch is a vector extracted from an image. A dictionary is a matrix of

“words” allowing the patch reconstruction. In many encoding methods, three common
steps can be found: i) a projection into a higher dimension space with (K >> d) ii)
sparse constraints and iii) a non-linear operation procedure. If α∗i is obtained with Or-
dinary Least Square (OLS), the solution is full dense (all elements are non zero). One
way to get around this problem is the use of the `1-norm constraint which corresponds
to Lasso problem [21] or Basis Pursuit [4]:

LSC(αi|xi;D) = min
αi∈RK

1
2
‖xi−Dαi‖2

2 +λ‖αi‖1, (2)

with λ the regularization parameter associated to the SC formulation. This parameter
controls the sparsity level as is shown in [15]. Thus, the more λ is large, the more α∗i
(solution of eq.2) will be sparse.
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Usually in SC framework, if we take two neighbor patches xi and x j (with a strong
correlation between them), their respective sparse codes, αi and α j, can lose this strong
correlation, especially indexes of non-zero inputs can completely mismatch. It means
they are involving different atoms for their patches’ reconstructions. An atom is an ele-
ment of the vector patch. There exist some SC variations which have been introduced to
tackle this behaviour. Principles of this improvement can be divided into two categories:
one plays on adding of proximity constraint into the loss directly while the second adds
some extra terms into the regularization term. To illustrate the first category, we can
cite two approaches: Local Constrained linear Coding (LCC) [24] and the Local Sparse
Coding (LSC) [20]. In the second category, we can mention GSC [25].

We will define the set of pre-computed sparse codes of Xtrain , {xtrain
1 , . . . ,xtrain

Ntrain}
by Atrain , {αtrain

1 , . . . , αtrain
Ntrain} where Ntrain designates the number of local features

sampled from the training set. Indeed, this adds a spatial constraint in the regularization
term. Its equation is:

LGSC(αi|xi,Atrain;D,λ,β) = min
αi∈RK

‖xi−Dαi‖2
2 +λ‖αi‖1 +βLiiα

T
i αi +2βα

T
i hi, (3)

where hi =
Ntrain

∑
j 6=i

Li jα
train
j , L =

{
Li j
}

i, j=1,...,Ntrain is a Laplacian matrix and β a regu-

larization parameter. The matrix L is defined by L = S−W, where W is a weight

matrix with and Wi, j = exp{− ‖xi−xtrain
j ‖22

σ2 } if xtrain
j ∈ V (xi) (where V (xi) is the set of

neighborhood of xi excluding xi itself), Wi, j = 0 else. The matrix S is diagonal and

Si,i =
Ntrain

∑
j=1

Wi, j. We propose to improve SC by simultaneously encoding all the test local

patches (for example associated with a test image). This new modeling will be inspired
from the GSC.

3 Joint Sparse Coding - JSC

JSC principle is to jointly encode all local features Xtest = {xtest
1 , . . . ,xtest

Ntest} simultane-
ously to overcome the decorrelation problem. We also enforce αk

i ≥ 0 in the previous
optimization problem. This additional constraint improves pooling performances, thus
avoiding to pool simultaneously on positive and negative sparse code values and de-
creasing as a consequence the final size vector by a factor by two. The equation of our
modeling is very similar to GSC:

LJSC(αi|xi,Atest ;D,λ) = min
αi∈RK

‖xi−Dαi‖2
2+λ‖αi‖1+βLiiα

T
i αi+2βα

T
i hi, s.t. α

k
i ≥ 0,

(4)

where hi =
Ntest

∑
j 6=i

Li jα
test
j , L =

{
Li j
}

i, j=1,...,Ntest is a Laplacian matrix, β a regularization

parameter. Here, L = S−W, where Wi, j = exp{− ‖xi−xtest
j ‖

2
2

σ2 } if xtest
j ∈ V (xi), Wi, j = 0

else and Si,i =
Ntest

∑
j=1

Wi, j. Here, Atest , {αtest
1 , . . . ,αtest

Ntest} are computed and stacked ini-

tially. In practice Ntest << Ntrain, so we need to store only a sparse K×Ntest matrix.
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Our Laplacian matrix (Ntest ×Ntest ) is very sparse. If we don’t need to compute the
full matrix, one way is to only calculate the non-zero elements ((v+ 1)×Ntest ) with
the previous formulation. Each column of this ((v+ 1)×Ntest) matrix is denoted by
Li. To realize this, we use a fast NN-search technical (FLANN) [14] which speeds up
the computation considerably. Thus, the solution of eq.4 is given by a modified Fea-
ture Sign Search (FSS) algorithm [10] by adding a) a positivity constraint on sparse
codes and b) integrating the two right terms (in β) of eq.4 in the gradient formula-
tion used during the FSS algorithm. JSC is given by the algorithm 1. To illustrate the

Algorithm 1 Joint Sparse Coding
Inputs: D, λ, β, Xtest , σ and v
for i = 1 : Ntest do

[Vi, disti] = v-nn search of xtest
i into Xtest

Vi are indexes of xi neighbors in Xtest

Compute Li from disti and σ

end for
Atest = lasso(Xtest ;D,λ)
for i = 1 : Ntest do

αi = JSC(xtest
i ,Atest ,D,Li,Vi,λ,β)

end for
Output: Atest

correlation problem, viewed with SC, we compare the normalized correlation computed
between two inputs vectors with the normalized correlation computed with their respec-
tive output vectors. In this example, 300 different pairs, extracted from UIUCsports lo-
cal features, are chosen to realize this. The normalized correlation formulation between
x and y is given by ρ(x,y) = xT y

‖x‖2‖y‖2 ∈ [0,1]. We also introduce the scalar value

∇ρ
2
= 2

300×299

300
∑

i=1

j<i
∑
j=1

[ρ(xi,x j)−ρ(αi,α j)]
2 which measures the average quadratic dif-

ference between normalized correlation of the input space and the output space. The
lower ∇ρ

2
is the better. Table 1 summarizes our results including the sparsity percent-

age. The last line presents ρ(αi,α j) correlation associated to output space, for a strong
correlation ρ(xi,x j) = 90% in input space. We note that the correlation gain is accom-

Method SC (0.2) GSC (0.4,0.2) JSC (0.4,0.2) GSC (0.2,0.2) JSC (0.2,0.2)

Level Sparsity 5.82% 9.36% 15.05% 17.66% 22.75%

∇ρ
2

126.75 116.59 81.83 108.77 73.35
ρ = 90% 31% 75% 63% 79% 70%

Table 1. ∇ρ
2

and correlation ρ = 90%, as an example of strong correlation, for SC, GSC and
JSC for two couples (λ,β), on testing patches. The lower ∇ρ

2
is obtained for JSC (0.2,0.2)and

the best result for correlation parameter ρ is for GSC (0.2,0.2), however, the low sparsity level is
obtained for SC.
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panied by a sparsity level drop. Thus, λ is increasing sparsity while β is working in the
opposite direction.

4 Dictionary Learning

The analytical solution to update a dictionary D ,[d1, . . . ,dK ] off-line exists and it is
formulated as D = (XAT )(AAT )−1, where A , {αi}, i = 1, . . . ,N and A ∈ RK×N . The
problems comes from the computation of (AAT )−1. It is a matrix of size (K×K) and
the computational complexity of this matrix inversion is in O(K3). Moreover, we have
to store the matrix A in central memory. Thus, we want efficient methods (in term of
complexity and memory occupation) to train such dictionaries under basis constraints.
One would minimize the regularized empirical risk Rn:

RN(A,D),
1
N

N

∑
i=1

l(xi; f (αi,D))+Γ(A), (5)

where f (αi,D) = Dαi, l(.) is typically a quadratic loss function and Γ(.) represents the
regularization term (for example SC and GSC regularization terms). Eq. 5 would be
optimized iteratively by a (stochastic) gradient descent. Unfortunately, the problem is
not jointly convex but only conditionally convex. Alternatively, we can minimize:

RN(A|D̂),
1
N

N

∑
i=1

1
2
‖xi− D̂αi‖2

2 +Γ(αi), s.t. α
k
i ≥ 1 (6)

and

RN(D|Â),
1
N

N

∑
i=1

1
2
‖xi−Dα̂i‖2

2 s.t.‖dT
k dk‖2

2 = 1 and d j
k ≥ 0. (7)

In order to obtain a suboptimal solution of eq. 5., eq. 6 can be solved efficiently in
parallel via SC/GSC procedures while eq. 7 can be solved by a constrained linear system
[13].

5 Experiments

5.1 Metrics

In this section we present some results obtained with SC and GSC dictionaries when
we use SC and JSC for the encoding part. We fix the dictionary size to K = 1024
and a positivity constraint on dictionary columns and sparse codes are applied. The
regularization parameters are λ = 0.2 for SC, (λ = 0.4 ; β = 0.2) and (λ = 0.2 ; β = 0.2)
for GSC and JSC for encoding part. Only the GSC (λ = 0.2, β = 0.2) dictionary will be
used. We measure a classification rate given by a 1-vs-all approach thanks to a linear
Support Vector Machine (SVM). Its regularization parameter is fixed to C = 0.07. This
classification is made by an Average Overall Accuracy (AOA):

AOA =
1
M

N

∑
m=1

{
1
N

N

∑
i=1

δ(ŷi,m− yi,m)

}
, (8)
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where N represents the number of available data, δ the loss function chosen (mean
square error), M, the number of cross validation and ŷi,m and yi,m, the true and predicted
label. We realize our experiments on UIUCsportss database [11] and scenes15 database
[8]. UIUCsportss database contains 1579 images from 8 different classes. The number
of images in each class varies from 137 to 250. We randomly select 70 images from each
class for training and 60 for testing. scenes15 database contains 4485 images belonging
to 15 different categories and the number of images per class varies between 200 to
400. 100 images are selected for training part and the others for testing part. In our

Fig. 1. UIUCsports dataset (left) - scenes15 (right)

experiments, M = 10, NUIUCsports = 60× 8 = 480 and Nscenes15 = 4485− 15× 100 =
2985. We extract densely SIFT patches (24×24) [12] with a grey level and on one scale.
The grid size is 80× 80 for UIUCsportss database and 30× 30 for scenes15 database.
We apply a Spatial Pyramid Matching (SPM) [8] which is defined on L levels. For
UIUCsportss, L = 2, thus pooling is performed on the entire image ((1×1) - first layer)
and the second layer on (2× 2) grid with stride of 25%. For scenes15, L = 3, thus we
use (1×1), (2×2) and (4×4) sub-regions for SPM. We apply µ-pooling (µ = 2.5) for
the pooling step 1.

5.2 Results on UIUCsports

Table 2 summarizes obtained results. We observe different behaviours. If we focus on
encoding part variations (horizontal reading), we see that for all dictionaries choices,
SC encoding is the best. Any gain is viewed for the others and a similar behavior is ob-
tained if we read the table vertically. To go further more, in order to evaluate if SC and
JSC models are complementary, we measure the accuracy of the arithmetic and geo-
metric means of their estimates (AOA arithmetic and AOA geometric). AOA arithmetic
is defined as the sum of probabilities of two selected models and AOA geometric as the

1 As remind, µ-pooling is written as f (v;w,µ) = ∑
c
m=1 wmvµ

m = wT vµ s.t.‖w‖2
2 = 1 and µ 6= 0,

where vµ =
{

α
µ
m
}
,m = 1, . . . ,c and wm encodes the contribution of the m-image location for

specific visual words [7]
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XXXXXXXEncoding
Dictionary SC (0.2) GSC

(0.4,0.2)
JSC (0.4,0.2) GSC

(0.2,0.2)
JSC (0.2,0.2)

SC (0.2) 87.27±1.33 80.75±1.69 83.6±1.66 80±2.01 84.17±1.57
GSC (0.2,0.2) 84.81±1.87 80.71±2.05 81.6±1.77 80.92±2.15 84.17±1.02

Table 2. Evolution of the Average Overall Accuracy for UIUCsports database. The best result is
obtained with the couple SC dictionary and SC encoding

square root of the product of two selected models. Tables 3 and 4, associated to figures 2
and 3 respectively (only the arithmetic fusion is showed here, because geometric fusion
is lower than the first), summarize results obtained with initial models and their associ-
ated fusion. Table 3 corresponds to a horizontal reading (encoding fusion) and table 4 to
a vertical reading (dictionary fusion) for UIUCsports. We notice an important relative

PPPPPPPPDictionary

Encoding
fusion SC + GSC

(0.4,0.2)
SC + JSC
(0.4,0.2)

SC + GSC
(0.2,0.2)

SC + JSC
(0.2,0.2)

SC AOA arithmetic 94.31±1.28 94.77±1.31 94.23±1.3 94.94±1.05
AOA geometric 93.33±1.23 93.94±1.19 93.37±1.22 94.19±1.2

GSC
(0.2,0.2)

AOA arithmetic 84.42±1.5 85.08±1.67 84.37±1.51 85.12±1.62
AOA geometric 84.48±1.52 84.9±1.62 84.5±1.65 84.98±1.61

Table 3. Evolution of the arithmetic and geometric Accuracy for UIUCsportss database (encoding
fusion). The best result is obtained with the couple SC dictionary associated with SC and JSC
(0.2,0.2) encodings. An illustration is given in figure 2.
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GSC (0.4,0.2)
JSC (0.4,0.2)
GSC (0.2,0.2)
JSC (0.2,0.2)
SC + GSC (0.4,0.2)
SC + JSC (0.4,0.2)
SC + GSC (0.2,0.2)
SC + JSC (0.2,0.2)

Fig. 2. Benefits and deficits obtained with GSC, JSC and arithmetic fusions encodings compared
to SC encoding for the three different dictionaries for UIUCsports database.

gain (until +8 points) with SC dictionary. This is less significant with GSC (0.2,0.2)
dictionary where few relative gains are observed. For dictionary fusion, strong relative
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PPPPPPPP
Dictionary
fusion

Encoding
SC GSC (0.4,0.2) JSC (0.4,0.2) GSC (0.2,0.2) JSC (0.2,0.2)

SC+GSC(0.2,0.2)

AOA
arithmetic

95.37±1.29 92.56±1.11 83.33±1.36 92.46±1.15 84.25±1.22

AOA
Geometric

94.62±1.15 92.31±1.42 83.89±1.29 91.21±1.58 84.31±1.57

Table 4. Evolution of the arithmetic and geometric Accuracy for UIUCsportss database (dic-
tionary fusion). The best result is obtained with the couple SC and GSC (0.2,0.2) dictionaries
associated with SC encoding.An illustration is given in figure 3
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Fig. 3. Beneficits and deficits obtained with GSC and arithmetic fusions dictionaries compared to
SC dictionary with five different encoding method choices for UIUCsports database.

gains are viewed for SC and the two GSC encoding models. There is no gain for the
two JSC encoding models. The best result is for SC dictionary and encoding with SC
and GSC (0.2,0.2) dictionary with SC encoding.

5.3 Results on scenes15

The table 5 summarizes our results: No gain is observed for this dataset. The best re-

XXXXXXXEncoding
Dictionary SC (0.2) GSC

(0.4,0.2)
JSC (0.4,0.2) GSC

(0.2,0.2)
JSC (0.2,0.2)

SC (0.2) 84.69±0.6 80.31±0.6 80.82±0.63 80.59±0.64 81.47±0.47
GSC (0.2,0.2) 83.35±0.59 78.79±0.66 78.4±0.79 79.06±0.62 80.81±0.66

Table 5. Evolution of the Average Overall Accuracy for scenes15 database. The best result is
obtained with the couple SC dictionary and SC encoding

sults are for SC dictionary and encoding. Fusion results which follow, are summarized
in tables 6 and 7 which present fusion results obtained. Figures 4 and 5 illustrate the
previous tables respectively. We notice that the behaviour is inverted for the two fu-
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PPPPPPPPDictionary

Encoding
fusion SC + GSC

(0.4,0.2)
SC + JSC
(0.4,0.2)

SC + GSC
(0.2,0.2)

SC + JSC
(0.2,0.2)

SC AOA arithmetic 82.97±0.69 83.46±0.51 83.09±0.62 83.60±0.43
AOA geometric 83.04±0.69 83.48±0.46 83.59±0.59 83.67±0.42

GSC
(0.2,0.2)

AOA arithmetic 82.66±0.66 82.33±0.76 82.67±0.52 82.79±0.73
AOA geometric 82.62±0.71 82.44±0.74 82.85±0.62 82.84±0.72

Table 6. Evolution of the arithmetic and geometric Accuracy for scenes15 database (encoding
fusion). No results improve tha of SC. An illustration is given in figure 4.
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SC + JSC (0.4,0.2)

SC + GSC (0.2,0.2)

SC + JSC (0.2,0.2)

Fig. 4. Benefits and deficits obtained with GSC, JSC and arithmetic fusions encodings compared
to SC encoding for the three different dictionaries for scenes15 database.

PPPPPPPP
Dictionary
fusion

Encoding
SC GSC (0.4,0.2) JSC (0.4,0.2) GSC (0.2,0.2) JSC (0.2,0.2)

SC + GSC (0.2,0.2)

AOA
arithmetic

84.66±0.64 79.76±0.62 81.4±0.71 80.41±0.67 82.35±0.75

AOA
Geometric

84.62±0.71 79.76±0.63 81.38±0.69 80.47±0.57 82.2±0.77

Table 7. Evolution of the arithmetic and geometric Accuracy for scenes15 database (dictionary
fusion). The best result is obtained with the couple SC and GSC (0.2,0.2) dictionaries associated
with SC encoding.An illustration is given in figure 5

sion cases. However, the deficits decrease with fusion and more specifically for GSC
(0.2,0.2) dictionary. For the dictionaries fusion, it is between the two models that we
obtain the most significant gain. The best result is for the couple (SC + GSC) dictionary
associated with SC encoding.

5.4 Weighted fusion

To go further more, we plot the accuracy for a weighted arithmetic fusion. In a first time,
the weights are the same for each classes and curves of figure 6 illustrate the weighted
arithmetic fusion (AOAarith =SC +(1− µ)AOAGSC). We notice for UIUCsports, when
we use adapted coefficients with fusion, no improvement is observed and the accuracy
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Fig. 5. Beneficits and deficits obtained with GSC and arithmetic fusions dictionaries compared to
SC dictionary with five different encoding method choices for scenes15 database.
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Fig. 6. Evolution of the accuracy with different coefficient. The first point corresponds to the
chosen model for fusion and the last point is the SC model. Notice the best result for UIUCsports
is obtained with a coefficient of 0.5, and for scenes15, it is 0.8 for SC and 0.2 for GSC (0.2,0.2)
dictionary associated with SC. For these two examples, the fusion is between SC (dictionary and
encoding) and GSC (0.2,0.2) dictionary with SC encoding.

decreases considerably for other couples. For scenes15, a very small improvement is
seen but it does not allow us to conclude to the real benefit of the method. Another
alternative would be to calculate others means as harmonic or energy means for exam-
ples. Also, the considerable gain obtained with UIUCsports database can be explained
by putting forward two assumptions: the heterogeneity between images of training and
testing sets and the correlation conservation between the input and output space. The
study conducted so far shows that the second assumption is the one that goes in the right
direction.

6 Conclusion

Although the results obtained with GSC and JSC alone are not living up to our expecta-
tions, we highlight the relevance of our proposal, thanks to the fusion procedure which
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Initial accuracy Blinded fusion Weighted fusion State-of-the-Art

UIUCsports 87.27%±1.33 95.37%±1.29 95.37%±1.29 88.47±2.32 [23]
scenes15 84.69%±0.6 84.66%±0.64 84.88%±0.55 81.04%±0.5 [8]

Table 8. Summarize of fusion results - details in Tables 2, 3, 4, 5, 6, 7.

greatly improves the State-of-the-Art for UIUCsports (88.47±2.32) of [23] (our mod-
eling: 95.37± 1.29). A complete study must be realized with different couples (λ,β)
for dictionary and encoding parts to find the right setting for UIUCsports and scenes15
databases. Also, the nature of the images is to be considerate and a study of the hetero-
geneity level of images could be achieved [22] through the Shannon entropy measure.
However, we think that our modeling can be improved by three ways. The first will be
to get even better stabilized JSC results by adding an outer loop in the JSC algorithm.
After multiple stages, we can expect some improvements. The second is a direct exten-
sion of the JSC by integrating some Laplacian regularization computed from a training
set of local features. Here, sparse codes will be reconstructed by simultaneously mini-
mize the deviation from both this training set and the image local features. The fusion
could be improved by weighted average fusion using statistic from code image. Finally,
it had been shown that adding some orthogonal constraints during the dictionary learn-
ing process can improves results [5, 17]. Here, too, a full study should be conducted
with the two methods of sparse codes encoding.
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