
Dependencies between knowledge for the Case Factory
maintenance approach

Pascal Reuss and Klaus-Dieter Althoff
pascal.reuss@dfki.de

klaus-dieter.althoff@dfki.de

Intelligent Information Systems Lab, University of Hildesheim
Competence Center Case Based Reasoning, German Center for Artificial Intelligence,

Kaiserslautern

Abstract. In many knowledge-based systems the used knowledge is distributed
among several knowledge sources. These knowledge sources may have depen-
dencies between each other, which should be considered when maintaining these
sources. An integrated maintenance approach for multiple Case-Based Reasoning
(CBR) systems has to consider dependencies between the individual knowledge
containers within one CBR system and the dependencies between the knowledge
containers of different CBR systems. This paper describes the dependencies be-
tween knowledge containers in CBR systems from the perspective of the Case
Factory approach and how possible maintenance actions could be derived from
these dependencies.

1 Introduction

Today knowledge based systems handling a huge amount of knowledge to provide so-
lutions to given problems. This knowledge is often distributed over several internal or
external knowledge sources. These knowledge sources may be independent from each
other, but they also may have dependencies between each other. In many systems the
knowledge is distributed among sub-domains. For example a travel medicine applica-
tion may have knowledge divided into knowledge about regions, hospitals and medica-
tion. Between the regions and the hospitals existing dependencies, because a hospital
is linked to a specific region. If the spelling of the region is changed or the region is
deleted, the corresponding hospital can not be found any more and there will be incon-
sistent knowledge. In the following we assume that all knowledge sources in a knowl-
edge based system are CBR systems. When maintaining an application with several
different CBR systems as knowledge sources, it is important to consider the depen-
dencies between the knowledge inside these CBR systems. These dependencies could
be between knowledge containers inside a single CBR system and between knowledge
containers of different CBR systems. Current maintenance approaches for CBR sys-
tems focus on one single CBR system or a single knowledge container and considering

Copyright c© 2015 by the papers authors. Copying permitted only for private and academic
purposes. In: R. Bergmann, S. Görg, G. Müller (Eds.): Proceedings of the LWA 2015 Work-
shops: KDML, FGWM, IR, and FGDB. Trier, Germany, 7.-9. October 2015, published at
http://ceur-ws.org

256

only dependencies inside a single CBR system. The extended Case Factory approach
[10] considers the dependencies between knowledge containers. In this paper we de-
scribe the dependencies that could exist between knowledge containers from a Case
Factory perspective and how these dependencies could be processed to derive possible
maintenance actions. In Section 2 we give an overview of related work to this topis,
while Section 3 describes briefly the Case Factory approach and the dependencies be-
tween knowledge containers in more detail. In addition, we describe the modeling of
dependencies with the help of a Maintenance Map and an algorithm to identify and
process dependencies and derive possible maintenance actions. Section 4 gives a short
conclusion and an outlook to future work.

1.1 SEASALT architecture

The SEASALT (Shared Experience using an Agent-based System Architecture Layout)
architecture is a domain-independent architecture for extracting, analyzing, sharing, and
providing experiences [2]. The architecture is based on the Collaborative Multi-Expert-
System approach [1] and combines several software engineering and artificial intelli-
gence technologies to identify relevant information, process the experience and pro-
vide them via an interface. The SEASALT architecture consists of five components: the
knowledge sources, the knowledge formalization, the knowledge provision, the knowl-
edge representation, and the individualized knowledge. The knowledge sources com-
ponent is responsible for extracting knowledge from external knowledge sources like
databases or web pages and especially Web 2.0 platforms. The knowledge formalization
component is responsible for formalizing the extracted knowledge from the Collector
Agents into a modular, structural representation. The knowledge provision component
contains the so called Knowledge Line. The basic idea is a modularization of knowl-
edge analogous to the modularization of software in product lines. The modularization
is done among the individual topics that are represented within the knowledge domain.
The Topic Agents can be any kind of information system or service. If a Topic Agent has
a CBR system as knowledge source, the SEASALT architecture provides a Case Factory
for the individual case maintenance [2]. The knowledge representation component con-
tains the underlying knowledge models of the different agents and knowledge sources.
The synchronization and matching of the individualized knowledge models improves
the knowledge maintenance and the interoperability between the components. The in-
dividualized knowledge component contains the web-based user interfaces to enter a
query and present the solution to the user.

2 Related work

The DILLEBIS methodology from Markus Nick [8] focuses on identifying necessary
maintenance actions using user feedback. He considers dependencies between knowl-
edge sources only implicitly. A dependency can be assumed, if a user advises to change
more than one knowledge source in his feedback. A knowledge engineer has to con-
firm a dependency manually. In our approach we define the dependencies explicitly and

257

process them automatically to give the knowledge engineer a list of possible mainte-
nance actions. The SIAM methodology from Thomas Roth-Berghofer [11] focuses on
maintenance for CBR systems and extends the CBR cycle with to additional steps for
evaluation and maintenance of a single CBR system. Dependencies are considered only
implicit in this methodology, too. The evaluation of the knowledge containers can show
dependencies, if more than one knowledge container requires maintenance in a spe-
cific situation. But the confirmation of dependencies had to be done manually before
a maintenance action can be performed. There are many maintenance approaches for
CBR systems like [5], [6],[12], and [13] that presents strategies to maintain the case
base or the similarity measures. But all of these approaches are only considering one
knowledge container or a single CBR system, while we will consider dependencies
between all knowledge containers of a single CBR system and dependencies between
knowledge containers of different CBR systems. Leake and his co-authors worked with
different multiple knowledge sources for CBR systems and the combination of main-
tenance actions to preserve the competency and efficiency of a CBR system [7]. Their
approach is focused on a single CBR system, but the idea is also applicable for multiple
CBR systems and may be combined with our approach.

3 Dependencies between knowledge containers in CBR systems

In a multi-agent system like docQuery, the knowledge is distributed over several knowl-
edge sources. Each knowledge source is a software agent with an underlying CBR sys-
tem, representing the knowledge of a sub-domain of the travel medicine domain. For
example one CBR system contains knowledge about regions, anothr CBR system con-
tains knowledge about medication. In the docQuery system exist seven different CBR
systems for knowledge about regions, hospitals, medication, infectious diseases, chron-
icle diseases, activities and conditions (climate, security, etc) [9]. Between these CBR
systems dependencies can be found, either because two CBR systems share the same
vocabulary or cases are linked to each other. For example, the CBR systems for regions
and infectious diseases have partially the same vocabulary and there are links between
case from the region case base and the infectious disease case base. These dependen-
cies have to be considered, when thinking about maintaining these CBR systems. The
extended Case Factory approach [10] for maintaining CBR systems is able to consider
these dependencies. A Case Factory is part of the knowledge provision component of the
SEASALT architecture and is responsible for maintaining a single CBR system. Several
software agents are monitoring the knowledge containers and propose possible mainte-
nance actions, if defined conditions are met. Based on monitoring results and defined
dependencies additional possible maintenance actions may be derived. A Case Factory
can process the dependencies inside a single CBR system. Following our approach,
each of the seven CBR systems has its own Case Factory to monitor and maintain the
knowledge. To process dependencies between CBR systems, a so-called Case Factory
Organization (CFO) is used. This high-level layer manages all Case Factories, the de-
pendencies between knowledge containers of different CBR systems, and coordinates
the maintenance process. There can be more than one CFO to manage the maintenance
on different levels. A CFO can be used to split a system with multiple CBR system

258

into several organizational units. For example in the docQuery application it would be
possible to have 4 CFOs. One CFO contains the region and hospital CBR systems, the
second CFO the infectious diseases, chronicle diseases and medication CBR systems
and the third CF contains the activities and conditions CBR systems. Each of this CFOs
manage the dependencies between the corresponding CBR systems. The fourth CFO
manages the dependencies between CBR system of different CFOs and can also be
used to manage the overall maintenance process to identify maintenance actions that
have to be processed in combination with other maintenance actions to address prob-
lems as stated in [7]. In the following section, the dependencies between knowledge
containers from our Case Factory perspective are described in more detail.

3.1 Intra- and inter-system dependencies

A dependency exists between different knowledge containers. We define a dependency
d as

d = (kcsysS , kcsysT , t)

where kc ∈ {voc, sim, cb, ada}
and sysS, sysT ∈ {1 . . . n}

and t ∈ {u, b}

A dependency can be described as a triple of two knowledge containers (kc) and
the direction (t) of the dependency. The knowledge containers are the vocabulary (voc),
the similarity measures (sim), the case base (cb), and the adaptation knowledge (ada).
We assume there are 1 to n CBR systems. The indexes sysS and sysT identify the CBR
systems a knowledge container belongs to, where sysS is the source of a dependency
and sysT the target. The last element of the triple determines the direction of a depen-
dency, either uni-directional (u) or bi-directional (b). A uni-directional dependency is
only processed from the source knowledge container to the target knowledge container,
while for a bi-directional dependency both directions have to be considered when de-
riving possible maintenance actions. From our Case Factory perspective two different
categories of dependencies, intra-system and inter-system dependencies. Intra-system
dependencies exist between different knowledge containers of the same CBR system,
while inter-system dependencies exist between knowledge containers of different CBR
systems. Distinguishing between intra- and inter-system dependencies is important for
processing the dependencies. An intra-system dependencies can be processed by the
corresponding Case Factory itself. If no dependencies points to another CBR system,
there is no need to propagate the dependencie to the CFO.

An intra-sytem dependency is defined as follows:

dintra = (kcsysS , kcsysT , t)

where kc ∈ {voc, sim, cb, ada} and kcsysS 6= kcsysT

and sysS, sysT ∈ {1 . . . n} and sysS = sysT

and t ∈ {u, b}

259

while an inter-system dependency is defined as follows:

dinter = (kcsysS , kcsysT , t)

where kc ∈ {voc, sim, cb, ada}
and sysS, sysT ∈ {1 . . . n} and sysS 6= sysT

and t ∈ {u, b}

There are three intra-system dependencies that could be called trivial dependencies.
These trivial dependencies exist between the vocabulary and the other three knowl-
edge containers and are uni-directional. The trivial dependencies are uni-directional,
because the vocabulary sets the surrounding conditions of the other knowledge contain-
ers: changing the name of an attribute or its value range or creating a new concept for a
taxonomy has to be done in the vocabulary and has then an effect on the other knowl-
edge containers. Therefore the dependencies is only pointing from the vocabulary to
the other knowledge containers and not backwards, too. These dependencies describe
the fact that a change in the vocabulary has a direct impact on the other knowledge
containers in the same CBR system. These trivial dependencies are defined per default
for every CBR system and are defined as follows:

dtriv = (vocsysS , simsysT , u) where sysS, sysT ∈ {1 . . . n} and sysS = sysT

dtriv = (vocsysS , cbsysT , u) where sysS, sysT ∈ {1 . . . n} and sysS = sysT

dtriv = (vocsysS , adasysT , u) where sysS, sysT ∈ {1 . . . n} and sysS = sysT

3.2 Dependency modeling in a Maintenance Map

The dependencies between knowledge containers have to be defined by a knowledge
engineer. The construct to store the modeled dependencies is a so-called Maintenance
Map. The Maintenance Map is based on the Knowledge Map from Davenport and
Prusak [4] and was adapted to multi-agent systems by Bach et al. [3]. A Maintenance
Map can be represented as a bi-directional graph. The vertices represent knowledge
sources, for example a CBR system, and the edges the dependencies between these
knowledge sources. There are also loop edges from a vertex to itself to represent the
trivial dependencies and it is possible to have multiple edges between two vertices to
represent dependencies between multiple knowledge containers of CBR systems. In ad-
dition, the edges could be weighted to describe the importance of a dependency. The
following figure 1 shows the Maintenance Map for the docquery application as a graph.
There are dependencies between the vocabularies and the case bases for each CBR
system and the number on the edges represent the importance of the dependencies.

Inside the Maintenance Map, the dependencies are modeled in RDF language to
simplify the interchange of the Maintenance Map between MAS with multiple CBR
systems. In the following we will describe an example based on the docQuery multi-
agent system to show the modeling of dependencies:

260

Fig. 1. Maintenance Map for the docquery application as graph

Listing 1.1. Exerpt from a Maintenance Map of the docQuery application

<r d f : D e s c r i p t i o n r d f : a b o u t =” ’ dependency1 ”’>
<dep : kc so u rce>v o c a b u l a r y </ dep : kc sou rc e>
<dep : k c t a r g e t >v o c a b u l a r y </ dep : k c t a r g e t >
<dep : c b r s o u r c e>DQ region </ dep : c b r s o u r c e>
<dep : c b r t a r g e t >DQ ho sp i t a l </ dep : c b r t a r g e t >
<dep : type>b i d i r e c t i o n a l </ dep : type>
<dep : weight >1</dep : weight>

</ r d f : D e s c r i p t i o n >

For every dependency the required attributes are modeled in RDF language. The
knowledge containers are set with the attributes kcsource and kctarget, while the CBR
systems are set with cbrsource and cbrtarget. The attribute type determines whether a
dependency is uni-diretional or bi-directional and the weight attribute defines the im-
portance. In this example, the first dependency is an inter-system dependency between
the CBR system for region information and the CBR system for hospital information.
We have a dependency between the vocabularies of both CBR systems, because several
attributes of the different case structures use the same vocabulary. The attribute values
for the name of the region in the region CBR system and the region part of the hospitals
address are the same. A change of a region’s name in the first CBR system has to lead
to a change of the same region’s name in the hospital CBR system. This way inconsis-
tencies in the knowledge should be avoided. The second dependency is an intra-system
and trivial dependency. It exists between the vocabulary and the case base of the region
CBR system. Changing the vocabulary may lead to a change of attribute values in one
or more cases. This dependency is uni-directional, because an attribute value in a case
can only be set after it is defined in the vocabulary. In addition, the Maintenance Map
could contain information about preferred maintenance actions for knowledge contain-
ers based on the dependencies and required combinations of maintenance actions to
preserve the problem solving competence. Information about evaluation strategies for
the CBR systems and knowledge containers can be stored, too.

261

3.3 Deriving maintenance actions from dependencies

After defining dependencies for multiple CBR systems in a multi-agent system, these
dependencies are used to derive possible maintenance actions to keep the knowledge in
all CBR systems consistent. Each Case Factory derives possible maintenance actions
for the assigned CBR system based on intra-system dependencies and the Case Factory
Organization derives possible maintenance actions based on inter-system dependencies.
In the following we present an algorithm on an abstract level to derive possible main-
tenance actions based on given dependencies. A maintenance action for this algorithm
is defined as a change on a knowledge container changeKC. changeKC(d.kcsysS) is a
function that changes the knowledge container given as a parameter.

Listing 1.2. Algorithm to derive maintenance actions
Input:
D S e t o f g i v e n d e p e n d e n c i e s (i n t r a− or i n t e r s y s t e m)
M S e t o f i n i t i a l m a i n t e n a n c e a c t i o n s
Output:
Mp S e t o f p r o p o s e d m a i n t e n a n c e a c t i o n s

Mp = M
w h i l e (M n o t empty)

f o r (m i n M) {
f o r (d i n D) {

i f (d.kcsysS == m.kcsysS
OR (d.kcsysT == m.kcsysS AND d . t == b)) {

i f (!Mp . c o n t a i n s (changeKC (d.kcsysT)) {
Mp . add (changeKC (d.kcsysT))

M. add (changeKC (d.kcsysT))

}
}
M. remove (m)

}
}

r e t u r n Mp

The algorithm requires a set of defined dependencies D and a set of initial mainte-
nance actions M as input. If M is empty, the algorithm terminates, because no starting
point for the algorithm would be given. The output of the algorithm is a set of possible
maintenance actions that could be proposed to the knowledge engineer. At first, the ini-
tial set of maintenance actions will be added to Mp, because these maintenance actions
should be proposed, too. The condition for the while loop is that no new maintenance
actions could be derived, so no more dependencies have to be considered. The inner
loops process all defined dependencies and the initial and derived maintenance actions.
If a new maintenance action is derived, it is added to M and Mp. A new maintenance
action added to M leads to another cycle of the inner loop to determine if further depen-
dencies fire for the new maintenance action. And the new maintenance actions is added
to Mp to be proposed to the knowledge engineer. Two conditions are responsible for
deriving new maintenance actions: If the source knowledge container of a maintenance
action is the same as the source knowledge container of a dependency OR if the depen-
dency is bi-directional and the source knowledge container of the maintenance action is
the same as the target knowledge container of the dependency. If one condition is met,
a new maintenance action is derived and added to the sets. A maintenance action can
only be in a set once. After processing all dependencies for a maintenance action, this
maintenance action is removed from M. This is necessary to have an empty list after
processing all maintenance actions and dependencies.

262

4 Summary and Outlook

In this paper we describe the dependencies between knowledge containers of CBR sys-
tems from a Case Factory perspective to use them to derive possible maintenance ac-
tions. We describe the categories and elements of a dependency and show how defined
dependencies could be modeled with the help of a Maintenance Map. In addition, we
present an algorithm to use these dependencies to derive possible maintenance actions.
The next steps in our work are to define and model all dependencies in our docQuery
multi-agent sytem and detail, implement and test the algorithm to derive maintenance
actions. Therefore, the possible maintenance actions and their combinations have to be
defined. Based on the result of our evaluation, we will revise our algorithm and depen-
dency modeling.

References

1. Althoff, K.D.: Collaborative multi-expert-systems. In: Proceedings of the 16th UK Workshop
on Case-Based Reasoning (UKCBR-2012), located at SGAI International Conference on
Artificial Intelligence, December 13, Cambride, United Kingdom. pp. 1–1 (2012)

2. Bach, K.: Knowledge Acquisition for Case-Based Reasoning Systems. Ph.D. thesis, Univer-
sity of Hildesheim (2013), dr. Hut Verlag Mnchen

3. Bach, K., Reichle, M., Reichle-Schmehl, A., Althoff, K.D.: Implementing a coordination
agent for modularised case bases. In: Proceedings of the 13th UK Workschop on Case-Based
Reasoning. pp. 1–12 (2008)

4. Davenport, T.H., Prusak, L.: Working Knowledge: How Organizations Manage What they
Know. Havard Business School Press (2000)

5. Ferrario, M.A., Smyth, B.: Distributing case-based maintenance: The collaborative mainte-
nance approach. Computational Intelligence 17(2), 315–330 (2001)

6. Iglezakis, I., Roth-Berghofer, T.: A survey regarding the central role of the case base for
maintenance in case-based reasoning. In: ECAI Workshop Notes. pp. 22–28 (2000)

7. Leake, D., Kinley, A., Wilson, D.: Learning to integrate multiple knowledge sources for
case-based reasoning. In: Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence. pp. 246–251. Morgan Kaufmann (1997)

8. Nick, M.: Experience Maintenance Loop through Closed-Loop Feedback. Ph.D. thesis, TU
Kaiserslautern (2005)

9. Reuss, P.: Concept and implementation of a Knowledge Line - retrieval strategies for modu-
larized, homogeneous topic agents within a multi-agent-system (in German). Master’s thesis,
University of Hildesheim (2012)

10. Reuss, P., Althoff, K.D., Henkel, W., Pfeiffer, M.: Case-based agents within the omaha
project. In: Case-based Agents. ICCBR Workshop on Case-based Agents (ICCBR-CBR-14)
(2014)

11. Roth-Berghofer, T.: Knowledge maintenance of case-based reasoning systems. The SIAM
methodology. Akademische Verlagsgesellschaft Aka GmbH (2003)

12. Smyth, B., Keane, M.: Remembering to forget: A competence-preserving case deletion pol-
icy for case-based reasoning systems. In: Proceedings of the 13th International Joint Confer-
ence on Artificial Intelligence. pp. 377–382 (1995)

13. Stahl, A.: Learning feature weights from case order feedback. In: Case-Based Reasoning
Research and Development: Proceedings of the Fourth International Conference on Case-
Based Reasoning (2001)

263

