
Importing the OEIS library into OMDoc

Enxhell Luzhnica, Mihnea Iancu, Michael Kohlhase

Computer Science, Jacobs University, Bremen, Germany
initial.last@jacobs-university.de

Abstract. The On-line Encyclopedia of Integer Sequences (OEIS) is the largest
database of its kind and an important resource for mathematicians. The database
is well-structured and rich in mathematical content but is informal in nature so
knowledge management services are not directly applicable.
In this paper we provide a partial parser for the OEIS that leverages the fact that,
in practice, the syntax used in its formulas is fairly regular. Then, we import the
result into OMDoc to make the OEIS accessible to OMDoc-based knowledge
management applications. We exemplify this with a formula search application
based on the MathWebSearch system.

1 Introduction

Integer sequences are important mathematical objects that appear inmany areas of math-
ematics and science and are studied in their own right. The On-line Encyclopedia of
Integer Sequences (OEIS) [6] is a publicly accessible, searchable database documenting
such sequences and collecting knowledge about them. The effort was started in 1964
by N. J. A. Sloane and led to a book [10] describing 2372 sequences which was later
extended to over 5000 in [11]. The online version [8] started in 1994 and currently con-
tains over 250000 documents from thousands of contributors with 15000 new entries
being added each year [9]. Documents contain varied information about each sequence
such as the beginning of the sequence, its name or description, formulas describing it,
or computer programs in various languages for generating it.

The OEIS library is an important resource for mathematicians. It helps to identify
and reference sequences encountered in their work and there are currently over 4000
books and articles that reference it. Sequences can be looked up using a text-based search
functionality that OEIS provides, most notably by giving the name (e.g. “Fibonacci”)
or starting values (e.g. “1, 2, 3, 5, 8, 13, 21”). However, given that the source documents
describing the sequences are mostly informal text, more semantic methods of knowledge
management and information retrieval are limited.

In this paper we tackle this problem by building a (partial) parser for the source
documents and importing the OEIS library into the OMDoc/MMT format which is de-
signed for better machine support and interoperability. This opens up theOEIS library to

Copyright c© 2015 by the paper’s authors. Copying permitted only for private and academic
purposes. In: R. Bergmann, S. Görg, G. Müller (Eds.): Proceedings of the LWA 2015 Work-
shops: KDML, FGWM, IR, and FGDB. Trier, Germany, 7.-9. October 2015, published at
http://ceur-ws.org

296



OMDoc-based knowledge management applications, which we exemplify by a semantic
search application based on the MathWebSearch [4] system that permits searching for
text and formulas.

This paper is organized as follows: in Section 2 we describe our import of the OEIS
library into OMDoc. In Section 3 we show an initial application of our import by pro-
viding formula search for the OEIS library. Then, in Section 4 we discuss future work
and conclude.

Acknowledgements This work has been supported by the German Research Foundation
(DFG) under grant KO 2428/13-1. The authors gratefully acknowledge the foresight of
the OEIS foundation to license the OEIS content under a Creative Commons license that
allows derivative work like this one and the practical help of Jörg Arndt in obtaining the
OEIS corpus.

2 Translating OEIS to OMDoc

The OEIS database is stored as a collection of text documents (one for each sequence)
written in the internal format of OEIS which defines the document-level structure of the
sources. Therefore, parsing the document structure is straightforward. However, at the
formula level the format is not standardized which makes parsing them non-trivial. Still,
in practice, the syntax used in the formula snippets is somewhat regular and we built a
formula parser that succeeds on most OEIS formulas.

2.1 Preliminaries

OMDoc [7] is a content markup format and data model for mathematical documents. It
models mathematical content using three levels.
Object Level: uses OpenMath and MathML as established standards for the markup

of formulae.
Statement Level: supplies original markup for explicitly representing the various kinds

of mathematical statements including symbol declarations and definitions (which
introduce a new symbol names), assertions (which can represent theorems, lemmas
or corollaries), and examples.

Theory Level: offers original markup that allows for clustering sets of statements into
theories as well as specifying relations between them (inclusions, morphisms).
The Mmt [14] language can be seen as a restricted version of OMDoc but with a

fully specified semantics. Additionally, for Mmt there is an Mmt system [13] which is a
Scala-based [2] open source implementation of the Mmt language. The key features of
the Mmt system for this paper are that it provides an infrastructure for writing importers
from any compatible format into Mmt as well as exporters from Mmt, most notably into
(MathML-enriched) HTML for both local and web-based presentation.

For the sake of simplicity, we often do not differentiate between Mmt and OMDoc
languages in the following and refer to [7] and, respectively, [14] for details on each
language. Throughout this paper we will use OMDoc/MMT to refer to both OMDoc
and Mmt.

297



2.2 The OEIS document format

The internal format [12] is line-based in the sense that each line starts with a marker
that represents the kind of content found in that line. We briefly introduce the relevant
kinds below but refer to [12] for details.

The identification line gives the unique ID of the sequence declared in that document
and the name line gives the name, a brief description or the definition of the sequence.
There are also start values lines which give the beginning of the sequence. Formula lines
give formulas that define or hold for the sequence described in the current document.
The formulas are in plain text ASCII syntax that is similar to LATEX math markup and
can contain text as part of the formula or as comments. There are many other dedicated
line types including those for implementations (in various programming languages),
references, examples, or comments.

Running Example 1 (Fibonacci numbers). The article for Fibonacci numbers [5] was
one of the first entries in the OEIS and is one of the most comprehensive. We will use it
as a running example throughout the paper, although we will heavily trim the document
for simplicity by presenting here only a few sanitized lines. Listing 1 shows the document
with identification, values, name and reference lines, followed by three formula lines and
the author line.

1 %I A000045 M0692 N0256
2 %S A000045 0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987
3 %N A000045 Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F

(0) = 0 and F(1) = 1.
4 %D A000045 V. E. Hoggatt , Jr., Fibonacci and Lucas Numbers.

Houghton , Boston , MA, 1969.
5 %F A000045 F(n) = ((1+ sqrt (5))^n-(1-sqrt (5))^n)/(2^n*sqrt (5))
6 %F A000045 G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (k + x)/(1

+ k*x). - _Paul D. Hanna_ , Oct 26 2013
7 %F A000045 This is a divisibility sequence; that is , if n

divides m, then a(n) divides a(m)
8 %A A000045 _N. J. A. Sloane_ , Apr 30 1991

2.3 Parsing the OEIS Formula Format

We built a partial parser for OEIS formulas by identifying and analyzing well-behaved
formulas to produce a workable grammar. We leverage the fact that, although there is no
standardized format for OEIS formulas, many of them use a sufficiently regular syntax.

OEIS is known for the human-readable mathematical terms, so a variety of syntactic
rules are encountered when forming these mathematical terms. We use the following
classification for notations, inspired by [1] and further motivated by our analysis of the
OEIS formulas:
1. infix operators are used to combine two terms to one complex term, e.g the + sym-

bol in m+n.
2. suffix operators are added after a term to form another term, e.g. the ! symbol in

n!.

298



3. prefix operators (with or without bracketed application) are added in front of a
term to form another term, e.g. sin in sin(x) or sin x, respectively.

4. infix relation symbols are used to construct a formula out of two terms, e.g. the <
symbol in x<2.

5. binding operators that bind a context to a body to construct a term, e.g. the ∀
symbol in ∀x. x^2 > 0

The classification presented above guides our grammar and, in principle, covers vir-
tually all important notations used in OEIS formulas. However, in practice, we encoun-
tered several important challenges which we discuss individually below.

Open Set of Primitives Since the formulas are not standardized, not only is the syntax
flexible, but so is the set of primitive operators that are used. For instance, the formulas
in Listing 1 (on lines 5-6) use square root, power, as well as the sum (Σ) and product (Π)
binders. The challenges arise because of the many different notations used for such prim-
itives. For instance, in line 6 of Listing 1 the range for sum and product is given in two
different ways. Similar problems appear with limits and integrals as well as numerous
atypical infix and suffix operators. In order to parse these correctly, we investigate the
documents and the grammar failures manually and incrementally extend the grammar.

Ambiguity As it is often the case with informal, presentation-oriented formulas, there
can be ambiguity in the parsing process when there exist several reasonable interpre-
tations. Since the OEIS syntax is not fixed, this is quite common, so we do additional
disambiguation during parsing to resolve most of the ambiguities. Here we discuss a few
of the many ambiguities that arise.

The multiplication sign is usually implicit so, instead of a*(x+y), we encounter a(x
+y)which could represent either a function application or a multiplication depending on
whether a is a function or an individual (constant or variable). There is no general way
to solve this, so we rely on several heuristics. First, we check if the symbol in question
is used somewhere else in the same formula with an unambiguous meaning. Specifi-
cally, we default to function application unless the same symbol is used as an individual
somewhere else in the formula. This already disambiguates most such cases in OEIS but
we use several additional heuristics. For instance, having name(arg) will result in mark-
ing name as function since it is unlikely to be a multiplication between two individuals.
Similarly, having name(arg1,...,argn) results in marking name as a function.

The natural way of using the power operator also leads to ambiguities. For example,
T^2(y) is used for (T (y))2, however T^y(x^2+2) is ambiguous. We solve this using
similar heuristics as for the implicit multiplication.

For unbracketed function application as in sin x, we rely on the heuristic that this
form of function application is used only in well known functions. Therefore, we code
these notations for well known functions in the grammar itself. This form of function
application can also mean multiplication, for instance Pi x. One can already see that
parsing and disambiguating the mathematical expressions in this context has a lot of
aspects. Additional cases of ambiguities are handled in similar ways and we omit the
details for brevity.

299



Delineating formulas OEIS formula lines freely mix text and formulas so it is required
to correctly distinguish between text and formula parts within the lines in order to accu-
rately parse each line. For instance, line 6 in Listing 1 starts with the text G.f.: (meaning
“Generating function:”) and continues with the formula. The line then has the author and
date, separated from the formula by a dash (-) which could also be interpreted as a minus
and, therefore, a continuation of the formula. In the extraction of the formulas we use
the help of a dictionary. The text in the OEIS documents has words that are not found
in the dictionaries since it contains many technical terms so we first run a pre-parsing
procedure which enriches the dictionary. The final grammar tries to parse words until it
fails and then tries to parse formulas; this process repeats.

2.4 Importing into OMDoc/MMT

For each OEIS document we create a corresponding OMDoc/MMT document that con-
tains a single theory. Then, OEIS lines roughly correspond to OMDoc/MMT declara-
tions inside that theory.We use theOEIS sequence ID as the name of theOMDoc theory.
Then, the identification line produces an OMDoc symbol declaration representing the
sequence (as a function from integers to values). The start values and example lines are
both represented as OMDoc/MMT examples. Specifically, the starting values are con-
sidered as examples of sequence elements. Formula lines are represented as OMDoc
assertions (about the sequence symbol). Finally, name, reference and author lines are
represented as metadata using the Dublin Core standard.

Running Example 2 (Fibonacci Numbers).The correspondingOMDoc/MMT document
for the Fibonacci numbers article from Example 1 is shown in Listing 2. We omit most
formulas and some XML boilerplate for conciseness and simplicity.

1 <omdoc xmlns:dc="http :// purl.org/dc/elements /1.1/" >
2 <theory id=" A000045">
3 <metadata >
4 <dc:creator >N. J. A. Sloane </dc:creator >
5 <dc:title >Fibonacci numbers </dc:title >
6 </metadata >
7 <symbol name="seq"/>
8 <assertion >

9 <!-- OpenMath for ∀n.seq(n) = (1+
√
5)n−(1−

√
5)n

2n
√
5

-->
10 <OMBIND >
11 <OMS cd="arith" name=" forall"/>
12 <OMBVAR > <OMV name="n"/> </OMBVAR >
13 <OMA >
14 <OMS cd="arith" name="equal"/>
15 <OMA ><OMS name="seq"/><OMV name="n"></OMA >

16
...

17 </OMA >
18 </OMBIND >
19 </assertion >

20
...

300



21 </theory >
22 </omdoc >

2.5 Implementation and Evaluation

The importer is implemented in Scala as an extension for the Mmt system and consists
of about 2000 lines of code. It is available at https://svn.kwarc.info/repos/MMT/
src/mmt-oeis/. The implementation is mostly straightforward, other than the formula
parser which we discuss separately below.

There are 257654 documents inOEIS totaling over 280MBof data. TheOMDoc/MMT
import expands it to around 9GB, partly due to the verbosity of XML and partly due to
producing the semantic representation of formulas. The total running time is around
1h40m using an Intel Core i5, 16GB of RAM and a SATA hard drive.

Formula parsing The formula parser is implemented using the Packrat Parser [3] for
which Scala provides a standard implementation. Packrat parsers allow us to write left
recursive grammars while guaranteeing a linear time worst case which is important for
scaling to the OEIS.

There are 223866 formula lines in OEIS and the formula parser succeeds on 201384
(or 90%) of them. Out of that, 196515 (or 97.6%) contain mathematical expressions.
Based on a manual inspection of selected formulas we determined that most parser fails
occur because of logical connectives since those are not yet supported. Other failures
include wrong formula delineation because of unusual mix of formulas and text.

The statistics above refer just to the successful parses, but we cannot automatically
evaluate if the result returned by the parser is actually the expected one. For this, we
did a manual evaluation of the parsing result for 40 randomly selected OEIS documents
and evaluated 85% of succesfully parsed formulas as semantically correct. The main
contributor of incorrect formula parses was badly delineated formulas, which causes
text to be wrongly parsed as part of a formula.

3 Application: Search

MathWebSearch (MWS)[4] is an open-source, open-format, content-oriented search
engine for mathematical expressions. We refer to [4] for details.

To realize the search instance in MWS we need to provide two things:
1. A harvest of MathML-enriched HTML files that the search system can resolve

queries against. The content-MathML from the files will be used to resolve the
formula part of the query while the rest of the HTML will be used for the text part.
The harvest additionally requires a configuration file that defines the location in
the HTML files of MWS-relevant metadata such as the title, author or URL of the
original article. This, together with the HTML itself is used when presenting the
query results.

2. A formula converter that converts a text-based formula format into MathML. This
will be used so that we can input formulas for searching in a text format (in our case
OEIS-inspired ASCII math syntax) rather than writing MathML directly.

301

https://svn.kwarc.info/repos/MMT/src/mmt-oeis/
https://svn.kwarc.info/repos/MMT/src/mmt-oeis/


Fig. 1: Text and Formula Search for OEIS

To produce the harvest of the OEIS library for MWS we export the HTML from
the content imported into Mmt. We reuse the Mmt presentation framework and only
enhance it withOEIS-specific technicalities such as sequence name orOEIS link. For the
formula converter we use the same parser used for OEIS formulas and described above,
except extended with one grammar rule for MWS query variables. We then forward the
resulting formula in Mmt to produce the presentation (MathML) and return it to the
MWS frontend. The web-server infrastructure, needed to communicate with MWS, is
provided by Mmt and we just extend it. Figure 1 shows (a part of) the current interface
answering a query about Fibonacci numbers. The search system is available at http:
//ash.eecs.jacobs-university.de:9999/.

4 Conclusion and Future Work

We presented a partial parser for the On-line Encyclopedia of Integer Sequences that
covers the majority of formulas and an import of the parsed OEIS into OMDoc. We
exemplified the added value by providing a formula-search service for the OEIS based
on the MathWebSearch system. Our importer does not currently handle all line types
inOEIS, most notably the program code lines.We also only analyze formulas that appear
inside formula lines, but in OEIS they may appear elsewhere (for instance instead of the
sequence name or inside comment lines). In the future, we plan to extend the structure
parser to cover these cases as well as improve the formula parser to handle some of the
failures discussed in Section 2. Moreover, since we have the defining formulas in their
content representations for a significant number of sequences, we plan to analyze them
to try and find additional relations between sequences as well as generate new ones.

302

http://ash.eecs.jacobs-university.de:9999/
http://ash.eecs.jacobs-university.de:9999/


References

[1] Marcos Cramer, Peter Koepke, and Bernhard Schröder. “Parsing and Disam-
biguation of SymbolicMathematics in theNaproche System”. In: Intelligent Com-
puter Mathematics - 18th Symposium, Calculemus 2011, and 10th International
Conference, MKM 2011, Bertinoro, Italy, July 18-23, 2011. Proceedings. Ed.
by James H. Davenport et al. Vol. 6824. Lecture Notes in Computer Science.
Springer, 2011, pp. 180–195. doi: 10.1007/978-3-642-22673-1_13. url:
http://dx.doi.org/10.1007/978-3-642-22673-1_13.

[2] École polytechnique fédérale de Lausanne. The Scala Programming Language.
url: http://www.scala-lang.org (visited on 10/22/2009).

[3] Bryan Ford. “Packrat Parsing:: Simple, Powerful, Lazy, Linear Time, Functional
Pearl”. In: Proceedings of the Seventh ACM SIGPLAN International Conference
on Functional Programming. ICFP ’02. Pittsburgh, PA,USA:ACM, 2002, pp. 36–
47. doi: 10.1145/581478.581483. url: http://doi.acm.org/10.1145/
581478.581483.

[4] Radu Hambasan, Michael Kohlhase, and Corneliu Prodescu. “MathWebSearch
at NTCIR-11”. In: NTCIR 11 Conference. Ed. by Noriko Kando and Hideo Joho
andKazuaki Kishida. Tokyo, Japan: NII, Tokyo, 2014, pp. 114–119. url: http:
//research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/
NTCIR/Math-2/05-NTCIR11-MATH-HambasanR.pdf.

[5] The OEIS Foundation Inc. Fibonacci Numbers, The On-Line Encyclopedia of
Integer Sequences. http://oeis.org/A000045. 2015.

[6] TheOEIS Foundation Inc. TheOn-Line Encyclopedia of Integer Sequences. http:
//oeis.org/. 2015.

[7] Michael Kohlhase. OMDoc – An open markup format for mathematical docu-
ments [Version 1.2]. LNAI 4180. Springer Verlag, Aug. 2006. url: http://
omdoc.org/pubs/omdoc1.2.pdf.

[8] N. J. A. Sloane. An On-Line Version of the Encyclopedia of Integer Sequences.
http://www3.combinatorics.org/Volume_1/PDF/v1i1f1.pdf. 1994.

[9] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. http : / /
neilsloane.com/doc/eger.pdf. 2012.

[10] N.J. A. Sloane. A Handbook of Integer Sequences. Academic Press, 1973.
[11] N.J. A. Sloane and Simon Plouffe. The Encyclopedia of Integer Sequences. Aca-

demic Press, 1995.
[12] OEIS Help. http://oeis.org/eishelp1.html.
[13] Florian Rabe. “The MMT API: A Generic MKM System”. In: Intelligent Com-

puter Mathematics. Conferences on Intelligent Computer Mathematics. (Bath,
UK, July 8–12, 2013). Ed. by Jacques Carette et al. Lecture Notes in Computer
Science 7961. Springer, 2013, pp. 339–343. doi: 10.1007/978-3-642-39320-
4.

[14] Florian Rabe and Michael Kohlhase. “A Scalable Module System”. In: Informa-
tion&Computation 0.230 (2013), pp. 1–54. url: http://kwarc.info/frabe/
Research/mmt.pdf.

303

http://dx.doi.org/10.1007/978-3-642-22673-1_13
http://dx.doi.org/10.1007/978-3-642-22673-1_13
http://www.scala-lang.org
http://dx.doi.org/10.1145/581478.581483
http://doi.acm.org/10.1145/581478.581483
http://doi.acm.org/10.1145/581478.581483
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/Math-2/05-NTCIR11-MATH-HambasanR.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/Math-2/05-NTCIR11-MATH-HambasanR.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/Math-2/05-NTCIR11-MATH-HambasanR.pdf
http://oeis.org/A000045
http://oeis.org/
http://oeis.org/
http://omdoc.org/pubs/omdoc1.2.pdf
http://omdoc.org/pubs/omdoc1.2.pdf
http://www3.combinatorics.org/Volume_1/PDF/v1i1f1.pdf
http://neilsloane.com/doc/eger.pdf
http://neilsloane.com/doc/eger.pdf
http://oeis.org/eishelp1.html
http://dx.doi.org/10.1007/978-3-642-39320-4
http://dx.doi.org/10.1007/978-3-642-39320-4
http://kwarc.info/frabe/Research/mmt.pdf
http://kwarc.info/frabe/Research/mmt.pdf



