
Davide Ancona,
Marco Maratea,
Viviana Mascardi (eds.)

Convegno Italiano
di Logica Computazionale

Trentesima Edizione, CILC 2015
Genova, 1–3 Luglio 2015
Atti del Convegno

CILC 2015 Home Page:
http://cilc2015.dibris.unige.it/



c© 2015 for the individual papers by the papers’ authors. Copying permitted
for private and academic purposes. Re-publication of material from this volume
requires permission by the copyright owners.

Indirizzo degli editori

DIBRIS – Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria
dei Sistemi, Università degli Studi di Genova

Davide Ancona, Via Dodecaneso, 35 – 16146 Genova – Italy,
davide.ancona@unige.it

Marco Maratea, Viale Causa, 13 – 16145 Genova – Italy,
marco.maratea@unige.it

Viviana Mascardi, Via Dodecaneso, 35 – 16146 Genova – Italy,
viviana.mascardi@unige.it



Prefazione

In occasione del suo trentennale, il convegno annuale del GULP (Gruppo ricer-
catori e Utenti Logic Programming) è ritornato a Genova nei giorni 1–3 luglio
2015. Il convegno è stato preceduto da una Scuola di Logica Computazionale nei
giorni 29 e 30 giugno e nella mattina del 1 luglio.

Sin dal primo evento della serie, tenutosi proprio a Genova nel 1986, il con-
vegno annuale del GULP ha rappresentato la principale occasione di incontro e
scambio di idee ed esperienze tra utenti, ricercatori e sviluppatori che operano nel
campo della logica computazionale. Nel corso degli anni il convegno ha allargato
i propri orizzonti dal campo specifico della programmazione logica tradizionale
a quelli più generali della programmazione dichiarativa, delle applicazioni in
diversi settori limitrofi, quali l’Intelligenza Artificiale o i Database Deduttivi.
Anche con l’edizione 2015 il GULP ha proseguito questa politica identificando,
con il più generale termine di Logica Computazionale, l’intero variegato mondo
della ricerca, di base e applicata, che direttamente o indirettamente utilizza o
si confronta con le idee e le tecniche proprie della logica come strumento per la
rappresentazione e il calcolo.

La trentesima edizione si è aperta con la presentazione delle tesi di dottorato
vincitrici del Premio GULP 2014, Integration of logic and probability in ter-
minological and inductive reasoning di Elena Bellodi e Software verification and
synthesis using constraints and program transformation di Emanuele De Angelis,
ed è stata arricchita dalla relazione invitata di Georg Gottlob su A Framework
for Data, Knowledge, and Reasoning: Datalog± e dal panel GULP 30 e lode!
che ha visto la partecipazione di molti dei pionieri della Logica Computazionale
italiana tra i quali Giovanni Adorni, Stefania Costantini, Maurizio Martelli, Ugo
Montanari, Eugenio Omodeo, Gianfranco Rossi.

Questo volume contiene i venti contributi originali, dei trenta selezionati
dal Comitato di Programma per essere presentati al convegno. I dieci lavori
presentati al convegno ma non inclusi negli atti sono

– Modeling and verifying relational multiagent systems with data types di Diego
Calvanese, Giorgio Delzanno e Marco Montali,

– Multi-agent-contexts systems for reasoning and acting in heterogeneous en-
vironments di Stefania Costantini,

– Integration of DALI agents and ASP modules: a case-study di Stefania Costan-
tini, Giovanni De Gasperis e Giulio Nazzicone,

– Completing workflow traces using action languages di Chiara Di Francesco-
marino, Chiara Ghidini, Sergio Tessaris e Itzel Vazquez Sandoval,

– Semantics-based generation of verification conditions by program specializa-
tion di Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi e Maurizio
Proietti,



II

– Proving Horn clause specifications of partial correctness of imperative pro-
grams di Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi e Mau-
rizio Proietti,

– Web ontology representation and reasoning via fragments of set theory di
Domenico Cantone, Cristiano Longo, Marianna Nicolosi-Asmundo e Daniele
Francesco Santamaria,

– Towards a rational closure for expressive description logics: the case of SHIQ
di Laura Giordano, Valentina Gliozzi e Nicola Olivetti,

– Why CP portfolio solvers are (under)utilized? Issues and challenges di Roberto
Amadini, Maurizio Gabbrielli e Jacopo Mauro, e

– A contextual framework for reasoning on events di Loris Bozzato, Stefano
Borgo, Alessio Palmero Aprosio, Marco Rospocher e Luciano Serafini.

I contributi degli articoli coprono aree di ricerca estremamente attuali e va-
riegate che vanno dai fondamenti e risultati teorici alle esperienze pratiche, dai
casi di studio alle applicazioni, dagli agenti e sistemi multiagente alle logiche de-
scrittive e ontologie, passando attraverso i linguaggi, i framework e gli strumenti.

Ringraziamo sentitamente tutti coloro che hanno permesso la realizzazione
di questa edizione: i componenti del Comitato di Programma, il Presidente del
GULP Agostino Dovier, il segretario del GULP Marco Gavanelli, i docenti della
scuola di Logica Computazionale (Alessandro Dal Palù, Agostino Dovier, Marco
Gavanelli, Angelo Montanari, Enrico Pontelli, Francesco Ricca, Paolo Torroni),
Georg Gottlob, i panelist, i chair delle sessioni tecniche, il Dipartimento di In-
formatica, Bioingegneria, Robotica e Ingegneria dei Sistemi dell’Università degli
Studi di Genova, gli sponsor, Daniela Briola, Andrea Corradi e Angelo Ferrando
per il loro aiuto nell’organizzazione locale, ma soprattutto i partecipanti alla
scuola e al convegno che con il loro entusiasmo hanno contribuito al successo di
questa trentesima edizione del CILC.

30 Agosto 2015

Davide Ancona
Marco Maratea
Viviana Mascardi



III

Organizzazione scientifica e locale

Davide Ancona, Università degli Studi di Genova
Marco Maratea, Università degli Studi di Genova
Viviana Mascardi, Università degli Studi di Genova

Comitato di programma

Paolo Baldan, Università degli Studi di Padova
Matteo Baldoni, Università degli Studi di Torino
Elena Bellodi, Università degli Studi di Ferrara
Stefano Bistarelli, Università degli Studi di Perugia
Davide Bresolin, Università degli Studi di Bologna
Alberto Casagrande, Università degli Studi di Trieste
Iliano Cervesato, Carnegie Mellon University
Federico Chesani, Università degli Studi di Bologna
Simona Colucci, Politecnico di Bari
Agostino Cortesi, Università Ca’ Foscari di Venezia
Stefania Costantini, Università degli Studi di L’Aquila
Emanuele De Angelis, Università degli Studi di Chieti-Pescara
Wolfgang Faber, University of Huddersfield
Moreno Falaschi, Università degli Studi di Siena
Stefano Ferilli, Università degli Studi di Bari
Fabio Fioravanti, Università degli Studi di Chieti-Pescara
Camillo Fiorentini, Università degli Studi di Milano
Andrea Formisano, Università degli Studi di Perugia
Chiara Ghidini, Fondazione Bruno Kessler
Laura Giordano, Università degli Studi del Piemonte Orientale
Valentina Gliozzi, Università degli Studi di Torino
Evelina Lamma, Università degli Studi di Ferrara
Francesca Alessandra Lisi, Università degli Studi di Bari Aldo Moro
Isabella Mastroeni, Università degli Studi di Verona
Alessandra Mileo, National University of Ireland, Galway
Marco Montali, Free University of Bozen-Bolzano
Alessandro Mosca, Free University of Bozen-Bolzano
Marianna Nicolosi-Asmundo, Università degli Studi di Catania
Nicola Olivetti, Aix-Marseille University
Fabio Patrizi, Università La Sapienza di Roma
Carla Piazza, Università degli Studi di Udine
Enrico Pontelli, New Mexico State University
Maurizio Proietti, IASI-CNR di Roma
Alessandro Provetti, Università degli Studi di Messina
Luca Pulina, Università degli Studi di Sassari
Elisa Quintarelli, Politecnico di Milano



IV

Francesco Ricca, Università della Calabria
Gianfranco Rossi, Università degli Studi di Parma
Luigi Sauro, Università di Napoli Federico II
Umberto Straccia, ISTI-CNR di Pisa
Laura Titolo, University of Malaga

Revisori esterni

Mauro Ferrari
Andrea Pazienza
Iliana Petrova
Gian Luca Pozzato

Organi direttivi del GULP

Presidente
Agostino Dovier

Vicepresidente
Stefania Costantini

Segretario
Marco Gavanelli

Tesoriere
Roberto Fontana

Ex-presidenti
Roberto Barbuti
Giorgio Levi
Maurizio Gabbrielli
Maurizio Martelli
Gianfranco Rossi

Consiglio direttivo
Federico Chesani
Alessandro Dal Palù
Andrea Formisano
Fabio Fioravanti
Francesca Alessandra Lisi
Viviana Mascardi
Marco Montali
Alberto Pettorossi
Enrico Pontelli



V

Gian Luca Pozzato
Fabrizio Riguzzi
Francesca Rossi

Sponsor



Indice dei contenuti

Abstract della relazione invitata

A framework for data, knowledge, and reasoning: Datalog± . . . . . . . . . . . . . 1
Georg Gottlob

Fondamenti e risultati teorici

A Diophantine representation of Wolstenholme’s pseudoprimality . . . . . . . 2
Luca Vallata, Eugenio Omodeo

A natural sequent calculus for Lewis’ logic of counterfactuals . . . . . . . . . . . 13
Nicola Olivetti, Gian Luca Pozzato

Infinite derivations as failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Andrea Corradi, Federico Frassetto

On the first-order rewritability of conjunctive queries over binary
guarded existential rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Cristina Civili, Riccardo Rosati

Esperienze pratiche e casi di studio

Computational thinking for beginners: A successful experience using
Prolog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Silvio Beux, Daniela Briola, Andrea Corradi, Giorgio Delzanno, Angelo
Ferrando, Federico Frassetto, Giovanna Guerrini, Viviana Mascardi,
Marco Oreggia, Francesca Pozzi, Alessandro Solimando, Armando
Tacchella

A case study on graph-based planning for emergency evacuation . . . . . . . . 46
Santa Agreste, Pasquale De Meo, Massimo Marchi, Maria Francesca
Milazzo, Salvatore Nunnari, Alessandro Provetti

How Answer Set Programming can help in digital forensic investigation . . 53
Stefania Costantini, Giovanni De Gasperis, Raffaele Olivieri

Leveraging semantic web technologies for analysis of crime in social science 66
Luca Pulina, Antonietta Mazzette, Laura Pandolfo, Elena Piga, Maria
Laura Ruiu, Camillo Tidore

Agenti e sistemi multiagente

Parametric protocol-driven agents and their integration in JADE . . . . . . . 72
Angelo Ferrando



VII

Leveraging commitments and goals in agent interaction . . . . . . . . . . . . . . . . 85
Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, Roberto
Micalizio

Linguaggi e programmazione

Evaluating compliance: from LTL to abductive logic programming . . . . . . 101
Marco Montali, Federico Chesani, Marco Gavanelli, Evelina Lamma,
Paola Mello

Towards a tableau-based procedure for PLTL based on a
multi-conclusion rule and logical optimizations . . . . . . . . . . . . . . . . . . . . . . . . 117
Mauro Ferrari, Camillo Fiorentini, Guido Fiorino

Logiche descrittive e ontologie

Ontoceramic: an OWL ontology for ceramics classification . . . . . . . . . . . . . . 122
Domenico Cantone, Marianna Nicolosi-Asmundo, Daniele Francesco
Santamaria, Francesca Trapani

Abductive logic programming for Datalog± ontologies . . . . . . . . . . . . . . . . . 128
Marco Gavanelli, Evelina Lamma, Fabrizio Riguzzi, Elena Bellodi,
Riccardo Zese, Giuseppe Cota

Towards fuzzy granulation in OWL ontologies . . . . . . . . . . . . . . . . . . . . . . . . 144
Francesca Alessandra Lisi, Corrado Mencar

Preferential description logics meet sports entertainment: cardinality
restrictions and perfect extensions for a better royal rumble match . . . . . . 159
Gian Luca Pozzato

Applicazioni, framework e strumenti

Games with additional winning strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Vadim Malvone, Aniello Murano, Loredana Sorrentino

An authority degree-based evaluation strategy for abstract
argumentation frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Andrea Pazienza, Floriana Esposito, Stefano Ferilli

Towards visualising security with arguments . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Stefano Bistarelli, Fabio Rossi, Francesco Santini, Carlo Taticchi

SUNNY for algorithm selection: a preliminary study . . . . . . . . . . . . . . . . . . . 202
Roberto Amadini, Fabio Biselli, Maurizio Gabbrielli, Tong Liu, Jacopo
Mauro

Indice degli autori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207



VIII



A framework for data, knowledge, and
reasoning: Datalog±

Georg Gottlob

Department of Computer Science, St John’s College, Oxford, UK
georg.gottlob@cs.ox.ac.uk

Abstract. Datalog± is a family of logic programming languages for data
manipulation, knowledge representation and reasoning. These languages
extend Datalog with features such as existential quantifiers, equalities,
and the falsum in rule heads and negation in rule bodies, and, at the same
time, apply restrictions in order to to achieve decidability and tractabil-
ity. This talk will start with a general overview of the Datalog± family
and its main decidability paradigms and an explanation of how tractable
classes can be achieved. Subsequently, some more specialized issues will
be dealt with such as nonmonotonic negation and disjunction. We will
also report about a special version of Datalog± suitable for ontologi-
cal reasoning, reasoning with reverse-engineered UML class diagrams,
and about the TriQ language that expresses SPARQL with entailment
regimes.

1



A Diophantine representation of Wolstenholme’s
pseudoprimality?

Luca Vallata1 and Eugenio G. Omodeo2

1 Graduated from the University of Trieste,
email: luca.vallata@gmail.com

2 Dipartimento di Matematica e Geoscienze / DMI, Università di Trieste,
Via Valerio 12/1, I-34127 – Trieste, Italy

email: eomodeo@units.it

Abstract. As a by-product of the negative solution of Hilbert’s 10th

problem, various prime-generating polynomials were found. The best
known upper bound for the number of variables in such a polynomial, to
wit 10, was found by Yuri V. Matiyasevich in 1977.
We show that this bound could be lowered to 8 if the converse of Wolsten-
holme’s theorem (1862) holds, as conjectured by James P. Jones. This
potential improvement is achieved through a Diophantine representation
of the set of all integers p > 5 that satisfy the congruence

(
2 p
p

)
≡ 2

mod p3. Our specification, in its turn, relies upon a terse polynomial
representation of exponentiation due to Matiyasevich and Julia Robin-
son (1975), as further manipulated by Maxim Vsemirnov (1997).
We briefly address the issue of also determining a lower bound for the
number of variables in a prime-representing polynomial, and discuss the
autonomous significance of our result about Wostenholme’s pseudopri-
mality, independently of Jones’s conjecture.

Keywords. Diophantine representations, Hilbert’s 10th problem, DPRM
theorem, Wolstenholme’s theorem, Siegel’s theorem on integral points.

Introduction

At the beginning of the 1960’s, one decade after Martin Davis had set forth the
‘daring hypothesis · · · that every semidecidable set is Diophantine’ [Mat93, p.
99], it became clear that finding a proof of that conjecture would have entailed
the possibility to construct a polynomial with integer coefficients whose positive
values, as the variables run through all nonnegative integers, form the set of
prime numbers.3 The existence of such a prime-generating polynomial seemed,
at the time, rather unlikely; in fact, Davis’s conjecture was received with under-
standable skepticism.

? Work partially supported by the project FRA-UniTS (2014) “Learning specifications
and robustness in signal analysis (with a case study related to health care).”

3 Cf. [DMR76, Sec. 1]: “This corollary was deduced by Putnam in 1960 from the then
conjectured Main Theorem and it was considered by some to be an argument against
its plausibility.”

2



With [Mat70], Yuri V. Matiyasevich positively settled Davis’s conjecture and
so provided a negative answer to Hilbert’s 10th problem [Hil00, p. 276]. Soon
afterward, the same scholar obtained two polynomials representing primes and
only primes, one in 24 and one in 21 variables [Mat71]; in [MR75], Matiyasevich
and Julia Robinson brought the number of variables down to 14; then other
researchers succeeded in bringing it further down, to 12 (cf. [JSWW76]). The
record number, 10 as of today, was achieved by Matiyasevich in 1977: in fact,
[Mat81] produces a prime-generating polynomial in 10 variables, of degree 15905
(reducible to 13201 (13983?) or to 11281 [Mat81, p. 44], or even to 10001 [Vse97,
p. 3204]).

Although methods have significantly evolved over time, the rigmarole for
getting prime-representing polynomials usually results from the combination of
ideas already present in [Rob52] (see Fig. 1) with a Diophantine polynomial
specification of exponentiation, such as the masterpiece proposed in [MR75] (see
Fig. 2), which Maxim A. Vsemirnov refined somewhat in [Vse97].

a =

(
r
j

)
↔ a =

⌊
(u+ 1)r

uj

⌋
% u & u = 2r + 1

j! =

⌊
rj(
r
j

)
⌋

for any r > (2 j)j+1

¬∃x , y
(
p = (x+ 2) (y + 2) ∨ p = 0 ∨ p = 1

)

↔ ∃ q , u , v
(
p = q + 2 & p u− (q + 1)! v = 1

)

Fig. 1. Binomial coefficient, factorial, and “p is a prime” are existentially defin-
able by means of exponential Diophantine equations, cf. [Rob52, pp. 446–447].
Throughout, ‘%’ designates the integer remainder operation.

Ameliorations along this pipeline are possible: e.g., Wilson’s theorem enables
one to state that p is a prime number through the formula ∃ q , u

(
p = q +

2 & p u− (q+1)! = 1
)
; and an improved exponential Diophantine representation

of the binomial coefficient can be obtained through the theorem
(
r
j

)
=

⌊
(u+ 1)r

uj

⌋
% u for r > 0 , j > 0 , and u > rj ,

as remarked in [MR75, pp. 544–545]. However, a more decisive enhancement
in the formulation of a prime-generating polynomial would ensue if one could
remove factorial from the pipeline and could avoid exploiting the binomial coef-
ficient in its full strength.

Joseph Wolstenholme proved the congruence
(
2 p−1
p−1

)
≡ 1 mod p3 for all

prime numbers p > 3 in 1862 [Wol62]; and it was conjectured by James P. Jones
(cf. [Rib04, p. 23] and [McI95, p. 381]) that, conversely, every integer p > 3
satisfying the said congruence is prime. If true, this conjecture would ease our

3



Q = � ↔Def Q = h2 for some h ∈ N ,

X | Y ↔Def Y = ±h X for some h ∈ N .

A1 DF I = � , F | H − C , B 6 C E1 (M2 − 1) L2 + 1 = �
A2 D � (A2 − 1) C2 + 1 E2 L2 − 4 (C − L y)2 x y n > 0
A3 E � 2 (i+ 1) C2 D E3 M � 4 n (y + 1) + x+ 2
A4 F � (A2 − 1) E2 + 1 E4 L� n+ 1 + ` (M − 1)
A5 G� (F −A) F +A E5 A�M x
A6 H � B + 2 j C E6 B � n+ 1
A7 I � (G2 − 1)H2 + 1 E7 C � k +B

Fig. 2. Polynomial specification of the triadic relation xn = y. Besides the parameters
x, y, n, this involves four existential variables (also ranging over N): i, j, k, `; a fifth
unknown is implicit in the constraint A1 stating that the product DFI must be a
perfect square with F dividing H −C. The notation ‘V � P ’ defines V to be an alias
for the (integer-valued) polynomial P ; hence all uppercase letters can be eliminated,
e.g. in the order: M,B; A,C,L; H,D; E; F ; G; I. By themselves, A1–A7 form a
polynomial specification of the relation ψA(B) = C defined by the recurrence ψA(0) =
0, ψA(1) = 1, and ψA(h+ 2) = 2AψA(h+ 1)−ψA(h), if one takes A,B,C as parameters
subject to the preconditions A > 1, B > 0, C > 0.

present task, enabling us to express primality without factorial and in terms of
the central binomial coefficient

(
2 p
p

)
.

After recalling, in Sec. 1 the basic definitions and techniques we need, in Sec.
2 we produce a Diophantine polynomial generator in 8 variables for the numbers
meeting the just mentioned ‘Wolstenholme’s pseudoprimality’ criterion. In Sec.
3, we give clues about the proof that the proposed polynomial operates properly.
In the conclusions, we briefly discuss the autonomous significance of our specifi-
cation independently of Jones’s conjecture, and address the issue of determining
a lower bound for the number of variables in a polynomial representation of
primality.

1 Main definitions and presupposed notions

Let us recall here the notion of Diophantine representation of a relationR, which
historically played an essential role in the study of Hilbert’s 10th problem:

Definition 1. A relation R among n natural numbers is said to be Diophan-
tine if one can precisely characterize which are the n-tuples 〈a1, . . . ,an〉 con-
stituting R through a bi-implication of the form

R(a1, . . . , an)↔ ∃x1 · · · ∃xm
(
D(

variables︷ ︸︸ ︷
a1, . . . , an︸ ︷︷ ︸
parameters

, x1, . . . , xm︸ ︷︷ ︸
unknowns

) = 0
)

which musto be true under the replacement a1 7→ a1 , . . . , an 7→ an, where D is
a polynomial with coefficients in Z whose variables are seen as ranging over N.

4



In the common case when n = 1 one calls such an R a Diophantine set, and one
readily gets from the defining D the polynomial (x0+1)

(
1−D2(x0, . . . , xm)

)
−1,

whose non-negative values (under replacement of the variables x0, . . . , xm by
natural numbers x0, . . . ,xm) are precisely the elements of R.

For example, classical results on the so-called Pell equation tell us that the
equation x2 − d (y + 1)2 − 1 = 0 in the parameter d and in the unknowns x, y
makes a Diophantine representation of the set

R = { 0 } ∪ { d ∈ N | d is not a perfect square } ;

therefore the non-negative values of the polynomial

(z + 1)
(

1− (x2 − z (y + 1)2 − 1)2
)
− 1 ,

as x, y, z range over N, will form this R.
The Pell equation of the special form x2 = (a2−1)y2+1 enters extensively in

the ongoing; thus we find it convenient to denote its right-hand side as Pell(a, y).
We adopt Pell(S, T ) as an analogous syntactic abbreviation also in the case when
S and T are Diophantine polynomials, as shown in Fig. 6 (top).

As is well-known (see, e.g., [Dav73]), the solutions to the said equation x2 =
Pell(a, y) when a > 2 form a doubly recurrent infinite sequence

〈1 , 0〉, 〈a , 1〉, 〈2a2 − 1 , 2a〉, 〈4a3 − 3a , 4a2 − 1〉, . . .

of pairs whose first and second components constitute the respective increasing
progressions χa(0), χa(1), χa(2), . . . and ψa(0), ψa(1), . . . shown in Fig. 3 (the
latter was formerly introduced in the caption of Fig. 2). Figures 4, 5 recapitulate
important properties enjoyed by these sequences.

χa(0) = 1 χa(1) = a χa(h+ 2) = 2 a χa(h+ 1)− χa(h)

ψa(0) = 0 ψa(1) = 1 ψa(h+ 2) = 2 a ψa(h+ 1)− ψa(h)

Fig. 3. Recurrent specification of the solutions x = χa(b), y = ψa(b) of Pell’s equation
x2 − (a2 − 1) y2 = 1. (These make sense even for a = 1.)

2 How to represent Wolstenholme’s pseudoprimality via
a Diophantine polynomial

To be better aligned with [Vse97], let us now agree that the variables appearing in
our Diophantine constraints must range over positive (instead of non-negative)
integers. A refined polynomial specification of the components which occupy
odd positions b in the progression ψa(b) = c discussed above is shown in Fig. 6

5



n < an 6 χa(n) 6 χa(n+ 1)

a
<

{
χa(n+ 1) ,

(2 a)n + 1 ;

n 6 ψa(n) <
ψa(n+ 1)

a
< ψa(n+ 1) ;

ψa(n) <

{
1
2
χa(n+ 1) ,

1
2
χa(n) if a > 2 ;

(2 a− 1)n 6 ψa(n+ 1) 6 (2 a)n .

Fig. 4. Noteworthy inequalities holding for the progressions χa, ψa (a > 2).

0. χa(n)− ψa(n) (a− `) ≡ `n mod ( 2 a `− `2 − 1 ) ;

1. ψa(n) ≡ n mod (a− 1) and ψa(n) ≡ n mod 2 ;

2.
p ≡ q mod r implies

{
χp(n) ≡ χq(n) mod r ,
ψp(n) ≡ ψq(n) mod r ;

r | ( p− 1 ) implies ψp(n) ≡ n mod r ;
3. ψa(n) | ψa(n k) ;

4. ψa(n) | ψa(`) iff n | ` ;

5. ψa(m r) ≡ r χr−1
a (m) ψa(m) mod ψ3

a(m) ;

6. ψa(n) | ` if ψ2
a(n) | ψa(`) ;

7. ψ2
a(n) | ψa(n ψa(n)) ;

8. ψa(i) ≡ ψa(j) mod χa(m) implies ( i ≡ j ∨ i ≡ −j ) mod ( 2m ) .

Fig. 5. Noteworthy congruences holding for the progressions χa, ψa. Here it is assumed
that n > 0, k > 0, ` > 0 and that p > 0, q > 0, r > 0, m > 0.

(right) and in Fig. 7 (left); in Fig. 7 (right) we extend it into an alike specifica-
tion, to be discussed next, of Wolstenholme’s pseudoprimality. In addition to the
6 unknowns z, w, s, h, i, j which appear explicitly in this system of Diophantine
constraints, additional unknowns enter into play due to the presence of the con-
structs ‘�’, ‘>’, ‘|’, and of a congruence. Eliminating such abbreviations seems,
at first glance, to call for five extra variables; a single, 7-th unknown suffices,
though, thanks to the following proposition:

Theorem 1 (Relation-combining theorem, [MR75, pp. 525–527]). To
each q in N there corresponds a polynomial Mq with coefficients in Z such that,
for all integers X1, . . . , Xq, J, R, V with J 6= 0, the conditions

X1 = � , . . . , Xq = � , J | R , V > 0

6



Pell(S,T) =Def (S2 − 1) T2 + 1

Pell(A , C) F I = � , F | B + 2 j C − C , B 6 C
D � Pell(A , C)

F � Pell
(
A , 2 (i+ 1) C2 D

)
F � Pell

(
A , 2 i C2 D

)

I � Pell
(
(F −A) F +A , B + 2 j C

)
I � Pell

(
(A+ 1) F −A , B + 2 j C

)

Fig. 6. Polynomial specifications of the relation ψA(B) = C (see Fig. 2). When con-
joined with the constraints in the middle, the two constraints appearing on the left
form an abridged formulation of the specification A1–A7 recalled above from [MR75,
pp. 532–533]: in this case, the unknowns i, j etc. range over N and the parameters
A,B,C are assumed to satisfy A > 1, B > 0, C > 0. Likewise, the two constraints on
the right must be combined with the ones in the middle to get an abridged version of
the specification of [Vse97, pp. 3203–3204]: in this case, variables range over N \ {0}
and the assumed preconditions are A > 1, B > 1, and B ≡ 1 mod 2; a lower overall
degree results from (A+ 1) F −A having superseded (F −A) F +A.

are all met if and only if the equation Mq(X1, . . . , Xq, J, R, V,m) = 0 admits
solutions for some value m in N of the variable m. a

This theorem is exploitable in the case at hand, with q = 2, once the two
divisibility conditions (one of which is hidden inside the congruence 3wC ≡
2(w2−1) mod Q) are combined together by resorting to the double implication

d1 | z1 ∧ d2 | z2 ↔ d1 d2 | z1d2 + z2d1
which holds when d1, d2, z1, z2 are positive integers and d1, d2 are co-prime. All
in all, we will be able to fold our constraints into a single Diophantine polynomial
equation W(k, x1, . . . , x7) = 0 over N whose degree is 5488 (as will be assessed
at the end of Sec. 3) and which admits solutions in the 7 unknowns precisely for
those integer values of k which exceed 4 and which also satisfy Wolstenholme’s
congruence

(
2 k
k

)
≡ 2 mod k3.

In order to get rid of the precondition k > 5 (Fig. 7, right), it suffices to
strenghten the inequality K2− 4 (C −K Y )2 > 0 into (k− 1) (k− 2) (k− 3) (k−
4)
(
K2 − 4 (C −K Y )2

)
> 0 before resorting to Thm. 1. Accordingly, denoting

by W̄(k, x1, . . . , x7) the polynomial equation that results after this preparatory
retouch, our conjectured prime-generating polynomial is:

x0
(
1− (x0 − 2)2 (x0 − 3)2 W̄2(x0, x1, . . . , x7)

)
.

3 Correctness of our representation of Wolstenholme’s
pseudoprimality

The specification of Wolstenholme’s pseudoprimality which we are proposing
stems from ad hoc modifications to [Jon82, Lemma 2.25, pp. 556–557]; hence,
by bringing into our present discourse the main ingredients entering the proof
thereof, we will easily get our main claim, which is:

7



Pell(S,T) =Def (S2 − 1) T2 + 1

Pell(A , C) F I = � ∧ F | B + 2 j C − C
D � Pell(A , C)
I � Pell

(
(A+ 1) F −A , B + 2 j C

)

F � Pell
(
A , 2 i C2 D Q

)

K2 − 4 (C −K Y )2 > 0

Pell(P , K) = �
3wC ≡ 2 (w2 − 1) mod Q

M � k Y

Y � k3 s+ 2

P � 2M2 U

Q� 4A− 5

U � k3 w

K � k + 1 + h (P − 1)

A�M (U + 1)

B � 2 k + 1

B 6 C C � B + z

Domain: N \ {0}
Unknowns: i, j,m

Parameters: A,B,C

Precond.: A > 1 , B > 1 , 2 - B , C > 1

Specifies: ψA(B) = C

Sources: [MR75], [Vse97]

Domain: N \ {0}
Unknowns: z, w, s, h, i, j,m

Parameters: k

Precondition: k > 5

Specifies:

(
2 k
k

)
≡ 2 mod k3

Sources: [Jon82, Lemma 2.25],

L. Vallata’s laurea thesis

Fig. 7. Polynomial specification of Wolstenholme’s pseudoprimality.

Theorem 2. LetW(k, z, w, s, h, i, j,m) = 0 be the Diophantine polynomial equa-
tion resulting from the system in Fig. 7, right, via Thm. 1. Then the integer
values k > 5 for which the congruence

(
2k
k

)
≡ 2 mod k3 holds are precisely the

ones for which the equation W(k, z, w, s, h, i, j,m) = 0—where k has superseded
the variable k—can be solved relative to the unknowns z, w, s, h, i, j,m. a

First, we need an economical—as for the number of variables involved—
representation of the triadic relation ψA(B) = C. We resort to a slight variant
of the one which [Vse97, Lemma 8] proposed for an even number B, because an
odd B better fits our present aims.

8



Lemma 1. Let A,B,C,Q be integers with A > 1, B > 1, C > 1, B odd, and
Q > 0. The relationship ψA(B) = C holds if and only if there exist i, j such that





DFI = � (P1)

F | H − C (P2)

B 6 C (P3)

D � Pell(A , C) (P4)

E � 2 i C2DQ (P5)

F � Pell(A , E) (P6)

G� (A+ 1) F −A (P7)

H � B + 2 j C (P8)

I � Pell(G , H) (P9)

Proof: Minor modifications to the proof of [Vse97, Lemma 8, pp. 3203–3204]
(see also Remark 2 therein) yield the claim of this lemma. In its turn, that proof
mimicked the proof of [MR75, Theorem 4, pp. 532–533]. ut

Second, we need a Diophantine representation of exponentiation:

Lemma 2. The relationship SB = Y holds for integers S,B, Y with S > 0 if
and only if there exist integers A,C such that
1. S < A ,

4. ψA(B) = C ,
2. Y 3 < A ,

5. (S2 − 1) Y C ≡ S (Y 2 − 1) mod (2A S − S2 − 1) .
3. S3B < A ,

Proof: See [Jon79, Lemma 2.8, pp. 213–214], where this result is credited to
Julia Robinson. A key congruence in Jones’s proof just cited is

( `2 − 1 ) `n ψa(n) ≡ ` ( `2n − 1 ) mod ( 2 a `− `2 − 1 ) ,

which follows easily from Fig. 5 (0), in light of the fact that x = χa(n), y = ψa(n)
solves the equation x2 = (a2 − 1) y2 + 1. Making use of the easy implication

a 6 2 a `− `2 − 1 if 0 < ` < a ,

Jones gets another key ingredient for the proof:

If 0 < ` < a, y3 < a, and z3 < a then, taken together, the congruences

( `2 − 1 ) y ψ ≡ ` ( y2 − 1 ) mod (2 a `− `2 − 1),
( `2 − 1 ) z ψ ≡ ` ( z2 − 1 ) mod (2 a `− `2 − 1)

imply that y = z, for any number ψ.

The desired conclusion follows without difficulty. ut
In the light of Lemma 1 and Lemma 2, minimal clues about the proof of

Theorem 2 should suffice to the reader: we will limit ourselves to indicating the
modifications which the statement of the above-cited Lemma 2.25 of [Jon82]
should undergo, so that its proof can then be adapted to our case without any

9



substantial changes. Some variables of the cited lemma must be replaced by
ours according to the rewritings: B′  B, φ  z, W  w, R  k, and N  k
(notice that we are thus enforcing the equality R = N). Moreover, one should:
remove condition (B11) W = bw of the cited lemma; replace its conditions (B9)
U = N2 w and (B10) Y = N2 s by ours, namely U = k3 w and Y = k3 s + 2;
add our condition Q = 4A− 5.

Degree of the polynomial through which we have represented
Wolstenholme’s pseudoprimality

To end, let us calculate the degree of the polynomial W(k, z, w, s, h, i, j,m) dis-
cussed above. To more easily get the degrees of the polynomials involved in
the right-hand specification of Fig. 7, we add a few more abbreviations to it:
H � B+ 2 j C, E � 2 i C2DQ, and G� (A+ 1)F −A; then we get the degree
map:

B/1, U/4, Y/4; C/1, M/5; H/2, A/9, P/14;
D/20, Q/9, K/15; E/32; F/82; G/91; I/186.

To complete the assessment of the degree of W, we need to make the poly-
nomial Mq of Thm. 1 rather explicit: according to [MR75],

Mq(X1 , . . . , Xq , J , R , V , m ) =Def

∏
σ∈{0,1}{1,...,q}

(
J2m+

R2 − J2 ( 2V − 1 )
(
R2 +W q +

∑q
j=1 (−1)σ(j)

√
Xj W

j−1
))

,

where

W � 1 +
∑q
i=1X

2
i .

In the case at hand,

W(k, z, w, s, h, i, j,m) =Def M2(X1 , X2 , J , R , V , m),

where X1 � DFI and X2 � Pell(P , K); hence q = 2 and W � 1 + (DF I)2 +(
(P 2 − 1)K2 + 1

)2
. The polynomial V which we using in a statement V > 0 is

V � K2−4(C−KY )2. The polynomials J,R of which we are stating that J | R,
result from combination of the two conditions F | H −C and 3wC ≡ 2 (w2− 1)
mod Q: hence J � F Q and R � (H − C) Q +

(
2 (w2 − 1) − 3wC

)
F . The

polynomials just introduced have degrees:

W/576, V/38, J/91, R/84

and, consequently, W has the degree

degM2 = 4 deg
(
J2 ( 2V − 1 )W 2

)
= 4 · 1372 = 5488 .

10



Conclusions and future work

After explaining what it means for a relation %(x1, . . . , xn) to be Diophantine in
a set S, Julia Robinson proved in [Rob69] that every recursively enumerable set
is Diophantine in any infinite set of primes. We do not know whether Jones’s
conjectured converse of Wolstenholme’s theorem will be proved, hence we cannot
refer Robinson’s result just recalled to the set W of all integers k > 5 such that(
2 k
k

)
≡ 2 mod k3, and we feel that it would add to the autonomous significance

of our polynomial representation of W if we succeeded in showing that every
recursively enumerable set is Diophantine in W.

Albeit subject to Jones’s conjecture, the result presented in this paper sug-
gests a new estimate for the rank (= least possible number of unknowns in a
Diophantine representation) of the set of primes, shifting it down from 9 to 7.
Although this was to be expected (cf. [Mat93, p. 56]), we could not find this
result published anywhere.

We would also like to determine a non-trivial lower bound for the rank of
primality. Pietro Corvaja gave us clues that the lower bound 2 can be obtained
through direct application of Siegel’s theorem on integral points (see [Sie29]4).

It is a bit deceiving that we could not benefit from the celebrated [AKS04]
for the aims of this paper; an explanation might be that the complexity of prime-
number recognition has to do with bounds that one can place on the sizes of
the unknowns in a Diophantine representation of primality rather than on the
number of those unknowns.

Acknowledgements

As hinted at above, we had pleasant and profitable exchanges of ideas with prof.
Pietro Corvaja (University of Udine).

References

N.B. Yuri V. Matiyasevich’s name was transliterated variously in his publica-
tions in English; in this bibliography, the authors have preferred conformity
with the spellings found in the originals to uniformity of writing.

AKS04. Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in P. Annals
of Mathematics, 160(2):781–793, June 2004.

CZ02. Pietro Corvaja and Umberto Zannier. A subspace theorem approach to
integral points on curves. C. R. Acad. Sci. Paris, Ser. I, 334(4):267–271,
2002.

Dav58. Martin Davis. Computability and Unsolvability. McGraw-Hill, New York,
1958. Reprinted with an additional appendix, Dover 1983.

Dav73. Martin Davis. Hilbert’s tenth problem is unsolvable. The American Math-
ematical Monthly, 80(3):233–269, 1973. Reprinted with corrections in the
Dover edition of Computability and Unsolvability [Dav58].

4 A proof of Siegel’s theorem along new lines can be found in [CZ02].

11



DMR76. Martin Davis, Yuri Matijasevič, and Julia Robinson. Hilbert’s tenth prob-
lem. Diophantine equations: positive aspects of a negative solution. In
Mathematical Developments Arising From Hilbert Problems, volume 28 of
Proceedings of Symposia in Pure Mathematics, pages 323–378, Providence,
RI, 1976. American Mathematical Society. Reprinted in [Rob96].

Hil00. David Hilbert. Mathematische Probleme. Vortrag, gehalten auf dem in-
ternationalen Mathematiker-Kongreß zu Paris 1900. Nachrichten von der
Königliche Gesellschaft der Wissenschaften zu Göttingen, pages 253–297,
1900.

Jon79. James P. Jones. Diophantine representation of Mersenne and Fermat
primes. Acta Arithmetica, XXXV(3):209–221, 1979.

Jon82. James P. Jones. Universal Diophantine equation. The Journal of Symbolic
Logic, 47(3):549–571, 1982.

JSWW76. James P. Jones, Daihachiro Sato, Hideo Wada, and Douglas Wiens. Dio-
phantine representation of the set of prime numbers. American Mathemat-
ical Monthly, 83(6):449–464, 1976.

Mat70. Ju. V. Matijasevič. Diofantovost’ perechislimykh mnozhestv. Doklady
Akademii Nauk SSSR, 191(2):279–282, 1970. (Russian). (Translated as Ju.
V. Matijasevič. Enumerable sets are Diophantine. Soviet Mathematics. Dok-
lady, 11(2):354-358, 1970.).

Mat71. Ju. V. Matijasevič. Diophantine representation of the set of prime numbers.
Soviet Mathematics. Doklady, 12(1):249–254, 1971.

Mat81. Yu. V. Matijasevič. Primes are nonnegative values of a polynomial in 10
variables. Journal of Soviet Mathematics, 15(1):33–44, 1981.

Mat93. Yuri Vladimirovich Matiyasevich. Hilbert’s tenth problem. The MIT Press,
Cambridge (MA) and London, 1993.

McI95. Richard J. McIntosh. On the converse of Wolstenholme’s theorem. Acta
Arithmetica, LXXI(4):381–389, 1995.

MR75. Yuri Matijasevič and Julia Robinson. Reduction of an arbitrary diophantine
equation to one in 13 unknowns. Acta Arithmetica, XXVII:521–553, 1975.

Rib04. Paulo Ribenboim. The little book of bigger primes. Springer, 2nd edition,
2004.

Rob52. Julia Robinson. Existential definability in arithmetic. Transactions of the
American Mathematical Society, 72(3):437–449, 1952.

Rob69. Julia Robinson. Unsolvable Diophantine problems. Proc. Amer. Math. Soc.,
22(2):534–538, 1969.

Rob96. Julia Robinson. The collected works of Julia Robinson. Number 6 in Col-
lected Works. American Mathematical Society, Providence, RI, 1996. ISBN
0-8218-0575-4. With an introduction by Constance Reid. Edited and with
a foreword by Solomon Feferman. xliv+338 pp.

Sie29. Karl Ludwig Siegel. Über einige Anwendungen diophantischer Approxima-
tionen. Abhandlungen der Preussischer Akademie der Wissenschaften, 1.
1929. An English translation by Clemens Fuchs is available in [Zan14].

Vse97. Maxim Aleksandrovich Vsemirnov. Infinite sets of primes, admitting Dio-
phantine representations in eight variables. Journal of Mathematical Sci-
ences, 87(1):3200–3208, 1997.

Wol62. Joseph Wolstenholme. On certain properties of prime numbers. The Quar-
terly Journal of Pure and Applied Mathematics, 5:35–39, 1862.

Zan14. Umberto Zannier, editor. On some applications of Diophantine approxima-
tions. Edizioni della Normale. Scuola Normale Superiore, 2014.

12



A natural sequent calculus for Lewis’ logic of
counterfactuals

Nicola Olivetti1 and Gian Luca Pozzato2

1 Dip. Informatica - Universitá di Torino - Italy
gianluca.pozzato@unito.it

2 Aix Marseille Univ. - CNRS, ENSAM, Univ. de Toulon - LSIS UMR 7296, Marseille - France
nicola.olivetti@univ-amu.fr

Abstract. The logic V is the basic logic of counterfactuals in the family of
Lewis’ systems. It is characterized by the whole class of so-called sphere models.
We propose a new sequent calculus for this logic. Our calculus takes as primitive
Lewis’ connective of comparative plausibility �: a formula A � B intuitively
means that A is at least as plausible as B, so that a conditional A ⇒ B can be
defined as A is impossible or A ∧ ¬B is less plausible than A. As a difference
with previous attempts, our calculus is standard in the sense that each connective
is handled by a finite number of rules with a fixed and finite number of premises.
Moreover our calculus is “internal”, in the sense that each sequent can be directly
translated into a formula of the language. The peculiarity of our calculus is that
sequents contain a special kind of structures, called blocks, which encode a finite
combination of �. We show that the calculus is terminating, whence it provides
a decision procedure for the logic V.

1 Introduction

In the recent history of conditional logics the work by Lewis [16] has a prominent
place (among others [5, 18, 13, 11]). He proposed a formalization of conditional log-
ics in order to represent a kind of hypothetical reasoning (if A were the case then B),
that cannot be captured by classical logic with material implication. More precisely, the
original motivation by Lewis was to formalize counterfactual sentences, i.e. condition-
als of the form “if A were the case then B would be the case”, where A is false. But
independently from counterfactual reasoning, conditional logics have found then an in-
terest also in several fields of artificial intelligence and knowledge representation. Just
to mention a few: they have been used to reason about prototypical properties [8] and
to model belief change [11, 9]. Moreover, conditional logics can provide an axiomatic
foundation of nonmonotonic reasoning [4, 12], here a conditional A⇒ B is read as “in
normal circumstances if A then B”. Finally, a kind of (multi)-conditional logics [2, 3]
have been used to formalize epistemic change in a multi-agent setting and in epistemic
“games”, each conditional operator expresses the “conditional beliefs” of an agent.

In this paper we concentrate on the logic V of counterfactual reasoning studied by
Lewis. This logic is characterized by possible world models structured by a system of
spheres. Intuitively, each world is equipped with a set of nested sets of worlds: inner sets
represent “most plausible worlds” from the point of view of the given world and worlds

13



belonging only to outer sets represent less plausible worlds. In other words, each sphere
represent a degree of plausibility. The (rough) intuition involving the truth condition of
a counterfactualA⇒ B at a world x is thatB is true at the most plausible worlds where
A is true, whenever there are worlds satisfying A. But Lewis is reluctant to assume that
most plausible worldsA exist (whenever there areA-worlds), for philosophical reasons.
He calls this assumption the Limit Assumption and he formulates his semantics in more
general terms which do need this assumption (see below). The sphere semantics is the
strongest semantics for conditional logics, in the sense that it characterizes only a subset
of relatively strong systems; there are weaker (and more abstract) semantics such as the
selection function semantics which characterize a wider range of systems [18].

From the point of view of proof-theory and automated deduction, conditional logics
do not have a state of the art comparable with, say, the one of modal logics, where
there are well-established alternative calculi, whose proof-theoretical and computa-
tional properties are well-understood. This is partially due to the mentioned lack of
a unifying semantics. Similarly to modal logics and other extensions/alternative to clas-
sical logics two types of calculi have been studied: external calculi which make use of
labels and relations on them to import the semantics into the syntax, and internal cal-
culi which stay within the language, so that a “configuration” (sequent, tableaux node...)
can be directly interpreted as a formula of the language. Limiting our account to Lewis’
counterfactual logics, some external calculi have been proposed in [10] which presents
modular labeled calculi for preferential logic PCL and its extensions, this family in-
cludes all counterfactual logics by Lewis. Internal calculi have been proposed by Gent
[7] and by de Swart [6] for Lewis’ logic VC and neighbours. These calculi manipulate
sets of formulas and provide a decision procedure, although they comprise an infinite set
of rules and rules with a variable number of premises. Finally in [15] the authors pro-
vide internal calculi for Lewis’ conditional logic V and some extensions. Their calculi
are formulated for a language comprising the comparative plausibility connective, the
strong and the weak conditional operator. Both conditional operators can be defined in
terms of the comparative similarity connective. These calculi are actually an extension
of Gent’s and de Swart’s ones and they comprise an infinite set of rules with a variable
number of premises. We mention also a seminal work by Lamarre [13] who proposed a
tableaux calculus for Lewis’ logic, but it is actually a model building procedure rather
than a calculus made of deductive rules.

In this paper we tackle the problem of providing a standard proof-theory for Lewis’
logic V in the form of internal calculi. By “standard” we mean that we aim to obtain
analytic sequent calculi where each connective is handled by a finite number of rules
with a fixed and finite number of premises. As a preliminary result, we propose a new
internal calculus for Lewis’ logic V. This is the most general logic of Lewis’ family and
it is complete with respect the whole class of sphere models (moreover, its unnested
fragment essentially coincide with KLM rational logic R [14]). Our calculus takes as
primitive Lewis’ comparative plausibility connective �: a formula A � B means, intu-
itively, that A is at least as plausible as B, so that a conditional A⇒ B can be defined
as A is impossible or A ∧ ¬B is less plausible than A3. As a difference with previous

3 This definition avoids the Limit Assumption, in the sense that it works also for models where
at least a sphere containing A worlds does not necessarily exist.

14



attempts, our calculus comprises structured sequents containing blocks, where a block
is a new syntactic structure encoding a finite combination of �. In other words, we
introduce a new modal operator (but still definable in the logic) which encodes finite
combinations of �. This is the main ingredient to obtain a standard and internal cal-
culus for V. We show that the calculus is terminating whence it provides a decision
procedure. In further research we shall study its complexity and we shall study how to
extend it to stronger logics of Lewis’ family.

2 Lewis’ logic V

We consider a propositional language L generated from a set of propositional variables
Varprop and boolean connectives plus two special connectives � (comparative plau-
sibility) and ⇒ (conditional). A formula A � B is read as “A is at least as plausible
as B”. The semantics is defined in terms of sphere models, we take the definition by
Lewis without the limit assumption.

Definition 1. A modelM has the form 〈W, $, [ ]〉, where W is a non-empty set whose
elements are called worlds, [ ] : Varprop −→ Pow(W ) is the propositional evaluation,
and $ : W −→ Pow(Pow(W )). We write $x for the value of the function $ for x ∈
W , and we denote the elements of $x by α, β.... Models have the following property:
∀α, β ∈ $x α ⊆ β ∨ β ⊆ α.

The truth definition is the usual one for boolean cases, for the additional connectives
we have: (i) x ∈ [A � B] iff ∀α ∈ $x if α ∩ [B] 6= ∅ then α ∩ [A] 6= ∅ (ii)
x ∈ [A⇒ B] iff either ∀α ∈ $x α ∩ [A] = ∅ or there is α ∈ $x, such that α ∩ [A] 6= ∅
and α ∩ [A ∧ ¬B] = ∅.
The semantic notions, satisfiability and validity are defined as usual.

For the ease of reading we introduce the following conventions and abbreviations:
we write x |= A, where the model is understood instead of x ∈ [A]. Moreover given
α ∈ $x, we use the following notations:

α |=∀ A if α ⊆ [A], i.e. ∀y ∈ α it holds y |= A
α |=∃ A if α ∩ [A] 6= ∅, i.e. ∃y ∈ α such that y |= A

Observe that with this notation, the truths conditions for � and⇒ become:

– x |= A � B iff ∀α ∈ $x either α |=∀ ¬B or α |=∃ A
– x |= A⇒ B iff either ∀α ∈ $x α |=∀ ¬A or there is β ∈ $x such that β |=∃ A and
β |=∀ A→ B.

It can be observed that the two connectives� and⇒ are interdefinable, in particular:

A⇒ B ≡ (⊥ � A) ∨ ¬(A ∧ ¬B � A)

Also the � connective can be defined in terms of the conditional⇒ as follows:

A � B ≡ (A ∨B)⇒ ⊥∨ ¬((A ∨B)⇒ ¬A)

The logic V can be axiomatized taking as primitive the connective� and the axioms
are the following [16]:

15



– classical axioms and rules
– if B → (A1 ∨ . . . ∨An) then (A1 � B) ∨ . . . ∨ (An � B)
– (A � B) ∨ (B � A)
– (A � B) ∧ (B � C)→ (A � C)
– A⇒ B ≡ (⊥ � A) ∨ ¬(A ∧ ¬B � A)

3 An internal sequent calculus for V

In this section we present IV, a structured calculus for Lewis’ conditional logic V
introduced in the previous section. In addition to ordinary formulas, sequents contains
also blocks of the form:

[A1, . . . , Am / B1, . . . , Bn]

where each Ai, Bj are formulas. The interpretation is the following:

x |= [A1, . . . , Am / B1, . . . , Bn]

if and only if, ∀α ∈ $x:

– either α |=∀ ¬Bj for some j, or
– α |=∃ Ai for some i.

A sequent Γ is a multiset G1, . . . Gk, where each Gi is either a formula or a block. A
sequent Γ = G1, . . . Gk, is valid if for every modelM = 〈W, $, [ ]〉, for every world
x ∈ W , it holds that x |= G1 ∨ . . . ∨ Gk. The calculus IV comprises the following
axiom and rules:

– Standard Axioms: (i) Γ,> (ii) Γ,¬⊥ (iii) Γ, P,¬P
– Standard external rules of sequent calculi for boolean connectives
– (�+)

Γ, [A / B]
(� +)

Γ,A � B
– (�−)

Γ,¬(A � B), [B,Σ / Π] Γ,¬(A � B), [Σ / Π,A]
(�−)

Γ,¬(A � B), [Σ / Π]

– (⇒+)
Γ, [⊥ / A],¬(A ∧ ¬B � A)

(⇒+)
Γ,A⇒ B

– (⇒−)
Γ,¬(⊥ � A) Γ, [A ∧ ¬B / A]

(⇒−)
Γ,¬(A⇒ B)

– (Communication)

Γ, [Σ1 / Π1, Π2], [Σ1, Σ2 / Π2] Γ, [Σ2 / Π1, Π2], [Σ1, Σ2 / Π1]
(Com)

Γ, [Σ1 / Π1], [Σ2 / Π2]

16



– (Jump)
¬Bi, Σ

(Jump)
Γ, [Σ / B1, . . . , Bn]

Some remark on the rules: the rule (�+) just introduces the block structure, showing
that / is a generalization of �; (�−) prescribes case analysis and contribute to expand
the blocks; the rules (⇒+) and (⇒−) just apply the definition of ⇒ in terms of �.
The (Com) rule is directly motivated by the nesting of spheres, which means a linear
order on sphere inclusion; this rule is very similar to the homonymous one used in
hypersequent calculi for handling truth in linearly ordered structures [1, 17].

As usual, given a formula G ∈ L, in order to check whether G is valid we look for
a derivation of G in the calculus IV. Given a sequent Γ , we say that Γ is derivable in
IV if it admits a derivation. A derivation of Γ is a tree where: the root is Γ ; a leaf is an
instance of standard axioms; a non-leaf node is (an instance of) the conclusion of a rule
having (an instance of) the premises of the rule as parents.

Here below we show a derivation of (A � B) ∨ (B � A):
¬A,A

(Jump)
[A / B,A], [A,B / A]

¬B,B
(Jump)

[B / B,A], [A,B / B]
(Com)

[A / B], [B / A]
(�+)

[A / B], B � A
(�+)

A � B,B � A
(∨+)

(A � B) ∨ (B � A)

It can be shown that the calculus IV is sound, complete and terminating if rules are
applied without redundancy4:

Theorem 1. Given a sequent Γ , Γ is derivable if and only if it is valid. Given a sequent
Γ , any non-redundant derivation-tree of Γ is finite.

4 Conclusions

In this paper we begin a proof-theoretical investigation of Lewis’ logics of counterfactu-
als characterized by the sphere-model semantics. We have presented a simple, analytic
calculus IV for logic V, the most general logic characterized by the sphere-model se-
mantics. The calculus is standard, that is to say it contains a finite a number of rules
with a fixed number of premisses and internal in the sense that each sequent denotes a
formula of V. The novel ingredient of IV is that sequents are structured objects con-
taining blocks, where a block is a structure or a sort of n-ary modality encoding a finite
combination of formulas with the connective �. The calculus IV ensures termination,
and therefore it provides a decision procedure for V.

4 Detailed proofs are confined in the accompanying report [19].

17



In future research, we aim at extending our approach to all the other conditional
logics of the Lewis’ family, in particular we aim at focusing on the logics VT, VW
and VC. Moreover, we shall study the complexity of the calculus IV with the hope of
obtaining optimal calculi.

References

1. A. Avron. The method of hypersequents in the proof theory of propositional non-classical
logics. In Wilfrid Hodges, Martin Hyland, Charles Steinhorn, and John Truss, editors, Logic:
from foundations to applications., pages 1–32. Oxford University Press, New York, 1996.

2. Alexandru Baltag and Sonja Smets. The logic of conditional doxastic actions. Texts in Logic
and Games, Special Issue on New Perspectives on Games and Interaction, 4:9–31, 2008.

3. Oliver Board. Dynamic interactive epistemology. Games and Economic Behavior, 49(1):49–
80, 2004.

4. C. Boutilier. Conditional logics of normality: a modal approach. Artificial Intelligence,
68(1):87–154, 1994.

5. B. F. Chellas. Basic conditional logics. Journal of Philosophical Logic, 4:133–153, 1975.
6. H. C. M. de Swart. A gentzen- or beth-type system, a practical decision procedure and a

constructive completeness proof for the counterfactual logics vc and vcs. Journal of Symbolic
Logic, 48(1):1–20, 1983.

7. I. P. Gent. A sequent or tableaux-style system for lewis’s counterfactual logic vc. Notre
Dame Journal of Formal Logic, 33(3):369–382, 1992.

8. M. L. Ginsberg. Counterfactuals. Artificial Intelligence, 30(1):35–79, 1986.
9. Laura Giordano, Valentina Gliozzi, and Nicola Olivetti. Weak AGM postulates and strong

ramsey test: A logical formalization. Artificial Intelligence, 168(1-2):1–37, 2005.
10. Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and Camilla Schwind. Tableau calculus

for preference-based conditional logics: Pcl and its extensions. ACM Trans. Comput. Logic,
10(3), 2009.

11. G. Grahne. Updates and counterfactuals. Journal of Logic and Computation, 8(1):87–117,
1998.

12. S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning, preferential models and
cumulative logics. Artificial Intelligence, 44(1-2):167–207, 1990.

13. P. Lamarre. Etude des raisonnements non-monotones: Apports des logiques des condition-
nels et des logiques modales. PhD thesis, Université Paul Sabatier, Toulouse, 1992.

14. D. Lehmann and M. Magidor. What does a conditional knowledge base entail? Artificial
Intelligence, 55(1):1–60, 1992.

15. Bjoern Lellmann and Dirk Pattinson. Sequent Systems for Lewis’ Conditional Logics. In
Jérôme Mengin Luis Fariñas del Cerro, Andreas Herzig, editor, Logics in Artificial Intelli-
gence - 13th European Conference, JELIA 2012, volume 7519 of Lecture Notes in Artificial
Intelligence (LNAI), page to appear, Toulouse, France, Sptember 2012. Springer-Verlag.

16. D. Lewis. Counterfactuals. Basil Blackwell Ltd, 1973.
17. George Metcalfe, Nicola Olivetti, and Dov Gabbay. Proof Theory for Fuzzy Logics. Springer,

2010.
18. D. Nute. Topics in conditional logic. Reidel, Dordrecht, 1980.
19. N. Olivetti and G. L. Pozzato. A sequent calculus for Lewis logic V: preliminary results.

Technical Report –, Dipartimento di Informatica, Università degli Studi di Torino, Italy, July
2015.

18



Infinite Derivations as Failures

Andrea Corradi and Federico Frassetto

DIBRIS, Università di Genova, Italy
name.surname@dibris.unige.it

Abstract. When operating on cyclic data, programmers have to take
care in assuring that their programs will terminate; in our opinion, this
is a task for the interpreter. We present a Prolog meta-interpreter that
checks for the presence of cyclic computations at runtime and returns a
failure if this is the case, thus allowing inductive predicates to properly
deal with cyclic terms.

Keywords: Logic Programming, Non-Termination, Inductive Semantics

1 Introduction

Sometimes, non-termination is the desired behavior of a program; most of the
time, it is not. Nevertheless, in a programming language in which all programs
terminate, there are always-terminating programs that cannot be written in
it [11]. Non-termination is a necessary evil, a powerful feature that we need, but
we do not actually want most of the time.

No work has been done to apply inductive semantics to the complete Herbrand
model of Coinductive Logic Programming [8]. With the usual operational seman-
tics, structural-recursive inductive predicates diverge when operating on infinite
terms. Since infinite derivations do not belong to the inductive semantics [3],
we propose a new operational semantics where infinite regular derivations of
inductive predicate fail. While this implies a performance overhead, sometimes it
is what a programmer would have done by hand, but faster and less error-prone.

In section 2, we illustrate briefly the notions of (co-)inductive model and give
the declarative and operational semantics of co-logic programming. In section 3,
we present our contribution, both as operational semantics and as Prolog code,
and show some examples of use. In section 4, we compare our meta-interpreter
with a standard Prolog interpreter. In section 5, we compare our work with the
state of the art, draw conclusions and state possible future work.

2 About Inductive and Coinductive Semantics

Let the Herbrand universe H be a set of terms. We denote a clause as A ←
B1, . . . , Bn where A ∈ H and ∀ i ∈ {1 . . . n} . Bi ∈ H. A logic program P is a
couple (F,C), where F is a set of predicate symbols and C is a set of clauses.
The Herbrand base of P , written HP , is the set of all the ground terms of the

19



form p(t), where p ∈ F and t is a tuple of terms. An interpretation of P is an
element of P(HP ), where P denotes the power-set constructor. A logic program
P induces a one-step-inference function IP .

IP : P(HP )→ P(HP )

S 7→ {A ∈ HP | (A← B1, . . . , Bn) ∈ P ∧ ∀i ∈ {1 . . . n} . Bi ∈ S}

A model of a logic program P is a fix-point of IP , that is, an interpretation S
such that IP (S) = S.

Consider the logic program {p(1, 2)← true}∪{p(X,X)← p(X,X) | X ∈ H}:
written below in Prolog syntax.

p(1,2).
p(X,X) :- p(X,X).

both {p(1, 2)} and {p(1, 2)} ∪ {p(X,X) ∈ HP | X ∈ HP} are models. Due to
the Knaster–Tarski theorem [10], any logic program has a smallest model, called
inductive, and a biggest one, called coinductive.

The usual Logic Programming (LP) semantics is inductive, therefore HP

contains only atoms inferred by finite derivations [3]; using the coinductive in-
terpretation, we obtain the complete Herbrand base that contains also atoms
inferred by infinite derivations. Simon et al. [7,8] have extended LP to co-Logic
Programming (co-LP), which allows the programmer to choose between inductive
and coinductive semantics for each predicate. The Prolog interpreters SWI-Prolog
and YAP support co-LP.

We show the co-LP operational semantics as given by Ancona and Dovier1 [2].
An hypothetical goal G is a couple 〈E ut L〉, where E is a set of equations and L is
a list of pairs (A,S), where A is an atom and S is a set of atoms that represents
the ancestors of A in the call stack. Given a program P and two hypothetical
goals G = 〈E ut (p(s1, . . . , sn), S1), (A2, S2), . . . , (Au, Su)〉 and G′, we define the
rewriting rule G c̀o G

′ by cases as follows:
1. if p is a coinductive predicate and there is an atom p(t1, . . . , tn) in S1

such that E′ = E ∪ {s1 = t1, . . . , sn = tn} is solvable, then G′ = 〈E′ ut
(A2, S2), . . . , (Au, Su)〉;

2. if there is a clause p(t1, . . . , tn)← B1, . . . , Bm that is a renaming of a clause
in P with fresh variables and E′ = E ∪ {s1 = t1, . . . , sn = tn} is solvable,
then G′ = 〈E′ ut (B1, S

′), . . . , (Bm, S
′), (A2, S2), . . . , (Au, Su)〉 where S′ =

S1 ∪ {p(s1, . . . , sn)}.

3 Finite failure

Let us consider the problem of checking whether an element appears in a list.

member(E,[E|_]).
member(E,[_|L]) :- member(E,L).

1 The original semantics allows expanding any subgoal. For simplicity, our semantics
always expands the first.

20



This naïve Prolog definition does not terminate if the second parameter is a
cyclic list not containing E. This is not the desired behavior: we would like member
to either succeed or fail in a finite amount of time. Simply applying coinduction
to member leads to an erroneous semantics: for example, L=[1|L], member(2,L)
succeeds even if L does not contain 2, because the second call unifies with the
first.

The definition to let it work on infinite lists leads to a more convoluted
predicate member2 that relies on the extra-logical cut operator !.

member2(E,L) :- member2 ([],E,L).
member2(H,E,L) :- member(L,H), !, fail.
member2(_,E,[E|_]).
member2(H,E,L) :- L=[_|T], member2 ([L|H],E,T).

The predicate we are trying to define is inherently inductive [7]. Our aim is
to allow inductive predicates to work correctly on the complete Herbrand base.
Since infinite derivations are not computable, the resolution procedure fails when
it finds one.

3.1 Operational semantics

We give the operational semantics where the inductive predicates fail when the
derivation diverges. We define the rewriting rule co in a similar way to rule c̀o
in section 2, except for the second point:
2. if p is not inductive or if there is not an atom p(t1, . . . , tn) in S1 such that
E′ = E ∪ {s1 = t1, . . . , sn = tn} is solvable, use the second point of the
definition of c̀o.
In the second point if the p is coinductive we can behaves as c̀o; if p is

inductive we can proceed with the resolution only if it is not already in the call
stack, co behaves as c̀o. If it is in the call stack than atom could not be resolved
and the resolution will fails.

3.2 Meta-interpreter

The implementation of a meta-interpreter follows the implementation of [1,7,8]
but it returns a failure when it finds a cycle during the resolution inductive
predicate. It is sound and complete with respect to co.
cosld(G) :- solve([],G).
solve(H,(G1,G2)) :- !, solve(H,G1), solve(H,G2).
solve(_,A) :- built_in(A), !, A.
solve(H,A) :- member(A,H), !, coinductive(A).
solve(H,A) :- clause(A,As), solve ([A|H],As).
coinductive (1).

The first argument of solve is the list of already processed atoms, used to avoid
infinite computation; the second is the goal to resolve. The predicate solve has
four clauses:

21



1. resolution distributes on conjunction as usual, with the same H in both calls,
because it depends only on the ancestors;

2. resolution for built_in predicates is the default one;
3. if the atom A is in the hypotheses, the resolution succeeds if A is coinductive

and fails otherwise;
4. if none of the above applies, the resolution proceeds normally.

Here we can avoid keeping the coinductive hypotheses for every atom in the
goals, because we exploit the Prolog call stack to have the same result.

To mark a predicate p as coinductive, the source file must contain the
fact coinductive(p(_,. . .,_)).. The declaration coinductive(1) assures that the
coinductive predicate is defined even if there are no coinductive predicates.

This meta-interpreter keeps track of every non-built_in atom. We can im-
prove efficiency by requiring to explicitly mark the inductive predicates and using
the standard resolution procedure for the unmarked ones.

3.3 More Examples

Infinite trees. Let us represent a tree as t(E,Ts), where E is the element of the
node and Ts is a finite list of sub-trees.

The predicate member_tree(E,T) searches a tree T for a node with element E.

member_tree(E,t(E, _)).
member_tree(E,t(_,Ts)) :- member(T,Ts), member_tree(E,T).

When using a standard interpreter, similarly to member and infinite lists, the
predicate member_tree is not guaranteed to terminate with an infinite tree; for
example, T1=t(1,[T1,T2]), T2=t(2,[T2,T3]), T3=t(3,[T3]), member_tree(3,T1)
loops forever. Using our meta-interpreter, the goal succeeds correctly: during the
resolution of the first recursive call member_tree(3,T), the call stack contains the
atom member_tree(3,T1); T unifies with T1, so the goal fails; then, backtracking
takes place, T unifies with T2 and the resolution continues in similar way until
reaching member_tree(3,T3).

Graphs. Finding a path between two nodes is a common operation on graphs.
We encode the previous tree as a graph represented by an adjacency list, obtaining
[1-[1,2],2-[2,3],3-[1,3]].

The predicate path(N1,N2,G,P) searches for a path P from the node N1 to the
node N2 in the graph G.

path(N1,N1,G,[N1]) :- neighbors(N1 ,G,_).
path(N1,N2,G,[N1|P]) :- neighbors(N1 ,G,Ns), member(N3 ,Ns),

path(N3,N2,G,P).
neighbors(N, [N-Ns|_], Ns).
neighbors(N1, [N2-_|G], Ns) :- N1 \= N2, neighbors(N1 , G, Ns).

22



4 Comparison with ISO Prolog

Our meta-interpreter and a standard Prolog interpreter are not complete with
respect to the inductive interpretation and not comparable to each other. Let us
look at the following predicate.
p(3).
p(A) :- p(B).

In the inductive interpretation of the predicate p, p(x) holds for any x. This is
the behavior of the standard interpreter; but, in our meta-interpreter, p(x) fails
for any x 6= 3, because A and B always unify.

Consider the predicate member, but with the order of the clauses reversed.
member(E,[_|L]) :- member(L).
member(E,[E|_]).

In this case, the query L=[1|L], member(1,L) should succeed, because (1, L) is in
the inductive interpretation. The query succeeds with our meta-interpreter, but
does not terminate with a standard Prolog interpreter.

5 Conclusion

In this work we show an operational semantics that allow inductive predicates
to behave correctly on the complete Herbrand base; moreover we show how it
is possible with a simple meta-interpreter to have inductive predicates that fail
when they have a infinite, but rational, proof.

A meta-interpreter by Ancona [1] executes a user-specified predicate when
it finds a cycle: it can simulate ours by executing fail. Moura obtained similar
results [5]. This system is more expressive, but the relation with the standard
Prolog semantics is not clear.

Tabling [6,9,4] uses a table to store the sub-goals encountered during the
evaluation and their answers. When it finds the same sub-goal again, it uses
the information from the table; this allows to increase performance and ensure
termination. In tabling, when a goal is found in the table but its answer is not
yet available, instead of failing as we do, it suspends the current evaluation and
try another clause. When the resolution of this second clause finish providing an
answer it resume the first one and continue its evaluations using the the answer.
We do not have such behavior, and in this respect, our semantics is similar to
the classical Prolog one.

As future work, we plan to prove soundness with respect to the inductive
semantics and to investigate whether completeness is attainable. Unification is
not ideal for checking whether the resolution procedure is in a loop, because it
succeeds too often. We are looking for a relation that better suits our needs.

References

1. Ancona, D.: Regular corecursion in Prolog. Computer Languages, Systems and
Structures 39(4), 142–162 (Dec 2013)

23



2. Ancona, D., Dovier, A.: A theoretical perspective of coinductive logic programming.
Tech. rep., University of Genova and University of Udine (2015)

3. Leroy, X., Grall, H.: Coinductive big-step operational semantics. Information and
Computation 207(2), 284–304 (Feb 2009)

4. Mantadelis, T., Rocha, R., Moura, P.: Tabling, rational terms, and coinduction
finally together! Theory and Practice of Logic Programming 14(Special Issue 4-5),
429–443 (Jul 2014)

5. Moura, P.: A portable and efficient implementation of coinductive logic program-
ming. In: Sagonas, K. (ed.) Pratical Aspects of Declarative Languages. Lecture
Notes in Computer Science, vol. 7752, pp. 77–92. Springer (Jan 2013)

6. Rocha, R., Silva, F., Santos Costa, V.: On applying or-parallelism and tabling to
logic programs. Theory and Practice of Logic Programming 5(1-2), 161–205 (Mar
2005)

7. Simon, L., Mallya, A., Bansal, A., Gupta, G.: Co-logic programming: Extending
logic programming with coinduction. Lecture Notes in Computer Science, vol. 4596,
pp. 472–483. Springer (2007)

8. Simon, L.E.: Extending logic programming with coinduction. Ph.D. thesis, Univer-
sity of Texas at Dallas (Aug 2006)

9. Swift, T., Warren, D.S.: XSB: Extending Prolog with tabled logic programming.
Theory and Practice of Logic Programming 12(Special Issue 1-2), 157–187 (Jan
2012)

10. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Jour-
nal of Mathematics 5(2), 285–309 (1955)

11. Turner, D.A.: Total functional programming. Journal of Universal Computer Sci-
ence 10(7), 751–768 (Jul 2004)

24



On the first-order rewritability of conjunctive queries
over binary guarded existential rules

(extended abstract)

Cristina Civili, Riccardo Rosati

Dipartimento di Ingegneria informatica, automatica e gestionale
Sapienza Università di Roma

Abstract. We study conjunctive query answering and first-order rewritability of
conjunctive queries for binary guarded existential rules. In particular, we prove
that the problem of establishing whether a given set of binary guarded existen-
tial rules is such that all conjunctive queries admit a first-order rewriting is de-
cidable, and present a technique for solving this problem. These results have a
important practical impact, since they make it possible to identify those sets of
binary guarded existential rules for which it is possible to answer every conjunc-
tive query through query rewriting and standard evaluation of a first-order query
(actually, a union of conjunctive queries) over a relational database system.

1 Introduction

Ontology-based query answering [1, 13, 6], now a consolidated topic in knowledge rep-
resentation and database theory, studies the problem of answering expressive queries
posed to a knowledge base that represents information both at the intensional and at
the extensional level. The knowledge base is interpreted under the open-world assump-
tion, which constitutes the main difference between this form of query answering and
the standard query answering over relational databases. Description Logics or, more re-
cently, existential rules are mostly used as the formalism to express knowledge bases,
and conjunctive queries (CQs) are the query language usually considered in this set-
ting. In this paper we focus on the framework existential rules, a.k.a. Datalog+/-, which
extends Datalog with existential variables in the head of rules [6, 2].

Query rewriting is a well-known approach to ontology-based query answering (see,
e.g., [8, 15, 11, 12]). In this approach, the knowledge base is divided into an intensional
component, called the ontology (which in this paper is a set of existential rules), and
an extensional component, which is usually a relational database instance. A query
(CQ) posed to the knowledge base is first rewritten into a new query using the ontol-
ogy only; the reformulated query constitutes a so-called perfect rewriting of the initial
query, in the sense that its evaluation over the database produces exactly the certain an-
swers to the query, i.e., the answers that hold in all the models of the knowledge base.
This modularized strategy has several benefits, especially when the ontology O and the
given query q enjoy the property called first-order rewritability (or FO-rewritability):
this property holds if and only if there exists a FO-rewriting of q for O, i.e., a first-
order query that constitutes a perfect rewriting of the given query q with respect to the

25



ontology O. FO-rewritability has an important practial implication, since it allows for
solving the ontology-based query answering problem through standard evaluation of an
SQL query over a relational database [8].

Most of the existing research related to FO-rewritability has tried to identify ontol-
ogy languages that enjoy such a property: i.e., languages such that the FO-rewritability
holds for every ontology O in this language and for every CQ q [8, 1, 7, 2, 9, 10]. For
non-FO-rewritable ontology languages, the work has mostly focused on the identifica-
tion of the FO-rewritability property for single pairs constituted by an ontology O and
a query q. In particular, [3] has studied this problem whenO is expressed in a fragment
of existential rules and when q is a conjunctive query; while [5] have considered the
case whenO is expressed in Horn Description Logics and q is a query retrieving all the
instances of a predicate.

In this paper we study a problem that is in the middle between the FO-rewritability
of an ontology language and the FO-rewritability of a a specific query for a specific set
of existential rules. We are interested in the problem of deciding whether a given set of
existential rulesR is such that all CQs over such an ontology admit a FO-rewriting for
R. In particular, we consider the class of binary and guarded existential rules (denoted
by BGERs) and prove that such a task is decidable. To this aim, we prove the following
crucial property: if a set of existential rules R is such that all atomic queries (that is,
the conjunctive queries composed of a single atom) admit a FO-rewriting for R, then
all conjunctive queries admit a FO-rewriting for R. So, to decide the FO-rewritability
of all CQs for a set BGERs, it suffices to decide the FO-rewritability of atomic queries
for such a set of existential rules.

We then use the results of [3], which shows that deciding the FO-rewritability of
an atomic query for a set of BGERs is decidable: since the number of relevant atomic
queries for a finite set of existential rules is finite, this result immediately implies the
decidability of the problem of deciding CQ-FO-rewritability of a set of BGERs. This
result has an important practical impact, since it proves the possibility of identifying
those sets of BGERs for which it is always possible to answer a conjunctive query
through query rewriting and standard evaluation of a first-order query (actually, a union
of conjunctive queries) over a relational database system.

2 Deciding CQ-FO-rewritability of BGERs

An existential rule ρ over a signature Σ is a first-order logic expression of the form
∀x̄∀ȳ Φ(x̄, ȳ)→ ∃z̄ α(x̄, z̄) where α(x̄, z̄) is an atom, called the head of ρ (head(ρ)),
Φ(x̄, ȳ) is a conjunction of atoms, called the body of ρ (body(ρ)), and x̄, ȳ, z̄ are se-
quence of variables. An atom is an expression of the form R(t1, . . . , tn) where R is a
predicate (or relation name) inΣ and t1, . . . , tn are called terms. We refer to the number
of terms in R as the arity of R. We only consider variables as terms.

We will use a simplified notation for existential rules in which we omit the universal
quantifiers of the body and we replace the conjunction symbol with a comma (e.g.
ρ : P (x, y), S(y, z)→ ∃w T (x,w)).

A binary existential rule is an existential rule where all the atoms have at most an
arity of 2. A guarded existential rule is an existential rule such that there exists an atom

26



in its body that contains all the universally quantified variables of the rule; such an atom
is called a guard. In this work we focus on binary guarded existential rules (BGER), i.e.,
sets of existential rules that are both binary and guarded.

Notice that the TGD mentioned above is binary, but not a guarded, while the TGD
ρ : P (x, y), S(y, x)→ ∃w T (x,w)) is both binary and guarded.

A database over a signatureΣ is a set of ground atoms. Given a signatureΣ, a set of
existential rulesR overΣ, and a databaseD overΣ, a model for 〈R, D〉 is a first-order
interpretation that satisfies all formulas inR∪D.

Concerning queries, we consider conjunctive queries (CQs) over a signatureΣ, that
are represented through expressions of the form q(x̄) ← ∃ȳΦ(x̄, ȳ), where x̄ are the
distinguished variables of the query, ȳ are the existentially quantified variables of the
query, and Φ(x̄, ȳ) is a conjunction of atoms of the form R(t1, . . . , tn), where R ∈ Σ
and t1, . . . , tn are variables in x̄ or ȳ. A boolean conjunctive query (BCQ) is a CQ with
no distinguished variables. We also consider atomic queries, i.e., CQs of the above form
where Φ(x̄, ȳ) is constituted of a single atom.

The certain answers to q over 〈R, D〉 (notation cert(q, 〈R, D〉) are all the tuples ā
of constants such that I |= q(ā) for every interpretation I of 〈R, D〉, where q(ā) is the
BCQ obtained by replacing x̄ with ā in q. If q is a BCQ, the certain answer to q over
〈R, D〉 is true if I |= q for every interpretation I of 〈R, D〉 (notation 〈R, D〉 |= q),
and false otherwise (notation 〈R, D〉 6|= q). Then, let q be a CQ, and let q′ be a first-
order query, we say that q′ is a perfect rewriting of q w.r.t. a set of existential rules R
if, for each database D, cert(q, 〈R, D〉) = cert(q′, 〈∅, D〉). Moreover, we say that q is
first-order rewritable (or FO-rewritable) for R if there exists a FO query q′, such that
q′ is a perfect rewriting of q w.r.t.R.

Definition 1. LetR be a set of BGERs. We say thatR is CQ-FO-rewritable if every CQ
overR is FO-rewritable forR. Moreover, we say thatR is atom-FO-rewritable if every
atomic query overR is FO-rewritable forR.

We now present the main result of this paper.

Theorem 1. Let R be a set of BGERs. If R is atom-FO-rewritable then R is CQ-FO-
rewritable.

To prove the theorem, we make use of a conjunctive query rewriting technique for
BGERs. Specifically, we make use of the general technique presented in [12] for rewrit-
ing conjunctive queries over existential rules, which can also be applied to BGERs.
Such a technique generates a perfect rewriting in the form of a union of CQs, in partic-
ular a set of non-redundant CQs (i.e., no CQ is contained into another CQ): such a set
may be finite (which implies that q is FO-rewritable for R) or infinite. We classify the
rewriting steps of this technique (that perform a form of resolution between a CQ and
an inclusion axiom of the set of existential rules) into two categories: those that involve
only “descendants” of a single atom of the initial query, and call such resolution steps
single-ancestor rewriting steps, and those that involve descendants of at least two atoms
of the initial query, and call such resolution steps multiple-ancestor rewriting steps.

We are then able to prove the following lemma, which states that, if all atomic
queries are FO-rewritable for a set of existential rulesR, then the application of single-

27



ancestor rewriting steps only cannot lead to generating an unbounded number of rewrit-
ings of a CQ.

Lemma 1. Let R be a set of BGERs such that R is atom-FO-rewritable and let q
be a conjunctive query. If the rewriting of query q for R only applies single-ancestor
rewriting steps, then it generates a finite set of CQs.

The above lemma allows us to prove Theorem 1. Indeed, from such a lemma, it
follows that, under the hypothesis that R is atom-FO-rewritable, if a CQ is not FO-
rewritable for R, then it must be possible to perform an infinite sequence of rewrit-
ing steps containing infinite multiple-ancestor rewriting steps (and generating non-
redundant CQs). However, we show that, due to the restricted form of BGERs, this is
impossible: roughly, the reason is that every multiple-ancestor step either eliminates a
variable occurring in the initial query or generates an isolated subquery (i.e., a subquery
not connected by existential variables to the rest of the query).

Example 1. LetR be the following set of BGERs:

P (x, y), R(y, x)→ ∃z S(y, z)
R(y, x)→ P (x, y)

S(x, y), S(y, x)→ ∃z R(x, z)

R is atom-FO-rewritable, since it can be verified that all the atomic queries over the
signature ofR are FO-rewritable. Thus, by Theorem 1,R is also CQ-FO-rewritable.

As an example, we provide a perfect rewriting of the query q()← S(x, y):

q()← S(x, y)
q()← P (x, z0), R(z0, x)

q()← R(z0, x)
q()← S(z0, z1), S(z1, z0)

In [3], it has been proved that the FO-rewritability of an answer-guarded conjunctive
query over a set of BGERs is decidable. In particular, the following property directly
follows from Theorem 11 in [3]:

Proposition 1. For every set R of BGERs, and for every atomic conjunctive query q,
one can effectively find a GN-Datalog program that computes the certain answers to q.

GN-Datalog programs are a subclass of Datalog programs that enjoys the following
property:

Proposition 2 ([4], Corollary 8.9). For GN-Datalog programs, boundedness over fi-
nite instances is decidable and coincides with boundedness over unrestricted instances.

From the above propositions, and from Theorem 1, it is possible to derive the fol-
lowing technique for deciding the FO-rewritability of a set of BGERs R over a finite
signature Σ:

1. compute the set Q of all possible atomic queries over Σ;
2. for each atomic query q ∈ Q, find the GN-Datalog program P that computes the

certain answers to q overR and add it to PR;

28



3. if there exists an unbounded program P ∈ PR, then return false, otherwise return
true.

Based on the above technique, we are able to show the following property.

Theorem 2. Let R be a set of BGERs. Establishing the CQ-FO-rewritability of R is
decidable.

3 Conclusions

The work that is the closest to the present one is [14], which shows a property analogous
to Theorem 1 for the description logic ELI, which corresponds to a subclass of binary
guarded existential rules.

We are currently working at extending the results presented in this paper to more
expressive existential rules. Also, we would like to study the possibility of optimizing
the technique for deciding the FO-rewritability of atomic queries for the case of BGERs.

Acknowledgments. This research has been partially supported by the EU under FP7
project Optique (grant n. FP7-318338).

References

1. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite family and
relations. J. of Artificial Intelligence Research, 36:1–69, 2009.

2. J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat. On rules with existential variables:
Walking the decidability line. Artificial Intelligence, 175(9–10):1620–1654, 2011.

3. V. Bárány, M. Benedikt, and B. ten Cate. Rewriting guarded negation queries. In Mathemat-
ical Foundations of Computer Science 2013 - 38th International Symposium, MFCS 2013,
pages 98–110, 2013.

4. V. Bárány, B. ten Cate, and M. Otto. Queries with guarded negation. Proc. of the 38th Int.
Conf. on Very Large Data Bases (VLDB 2012), 5(11):1328–1339, July 2012.

5. M. Bienvenu, C. Lutz, and F. Wolter. First-order rewritability of atomic queries in horn
description logics. In Proc. of the 23st Int. Joint Conf. on Artificial Intelligence (IJCAI 2013),
pages 754–760. AAAI Press, 2013.

6. A. Calı̀, G. Gottlob, and T. Lukasiewicz. A general datalog-based framework for tractable
query answering over ontologies. Semantic Web J., 14:57–83, 2012.

7. A. Calı̀, G. Gottlob, and A. Pieris. Towards more expressive ontology languages: The query
answering problem. Artificial Intelligence, 193:87–128, 2012.

8. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning, 39(3):385–429, 2007.

9. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data complexity of
query answering in description logics. Artificial Intelligence, 195:335–360, 2013.

10. C. Civili and R. Rosati. A broad class of first-order rewritable tuple-generating dependencies.
In Proc. of the 2nd Datalog 2.0 Workshop, 2012.

11. G. Gottlob, G. Orsi, and A. Pieris. Ontological queries: Rewriting and optimization. In Proc.
of the 27th IEEE Int. Conf. on Data Engineering (ICDE 2011), pages 2–13, 2011.

29



12. M. König, M. Leclere, M.-L. Mugnier, and M. Thomazo. Sound, complete and minimal
ucq-rewriting for existential rules. Semantic Web J., 2013.

13. R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev. The combined ap-
proach to query answering in DL-Lite. In Proc. of the 12th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR 2010), pages 247–257, 2010.

14. C. Lutz and F. Wolter. Non-uniform data complexity of query answering in description
logics. In Proc. of the 24th Int. Workshop on Description Logic (DL 2011), 2011.

15. H. Pérez-Urbina, B. Motik, and I. Horrocks. Tractable query answering and rewriting under
description logic constraints. J. Applied Logic, 8(2):186–209, 2010.

30



Computational Thinking for Beginners:
A Successful Experience using Prolog

Silvio Beux, Daniela Briola, Andrea Corradi, Giorgio Delzanno, Angelo
Ferrando, Federico Frassetto, Giovanna Guerrini, Viviana Mascardi, Marco
Oreggia, Francesca Pozzi?, Alessandro Solimando, and Armando Tacchella

DIBRIS, University of Genoa, Italy – CNR, Italy

Abstract. We discuss a logic-based methodology that we adopted to
teach basic concepts of programming to high school students with a
scientific profile and very basic knowledge of computer science. For our
experiments we combined lectures on inductive reasoning with Prolog,
practice on natural language processing and ontologies, and evaluations
based on questionnaires before and after the workshop.

1 Introduction

The idea that thinking might be understood as a form of computation, as recently
suggested by one of the main experts in knowledge representation and reasoning
in artificial intelligence [11], is extremely fascinating. In his book, H. Levesque
shows how to support students to make the connection between thinking and
computing by learning to write computer programs in Prolog for a variety of
tasks that require thought, including understanding natural language.

Taking inspiration from recent experiments during a workshop for high school
students organized by the “Guidance, Promotion and Tutoring Committee” of
the Computer Science Degrees at the University of Genova1, we present a pro-
posal for a condensed course for uninitiated aimed at introducing basic and ad-
vanced programming concepts using declarative languages like Prolog, following
Levesque’s “thinking as computation” metaphor. Our work is inspired to semi-
nal proposals by Kowalski [7,8,9] and to more recent works such as the “Prolog
programming: a do-it-yourself course for beginners” by Kristina Striegnitz2.

Although Prolog as a programming language for novices has been heavily
criticized in the past because of the misconceptions it may generate [13], many
resources for teaching Prolog to beginners can be found on the web. Among
them, we can mention implementations like Visual Prolog for Tyros3, Strawberry

? Dr. Francesca Pozzi is affiliated with CNR; all the other authors are affiliated with
DIBRIS.

1 http://informatica.dibris.unige.it/.
2 http://cs.union.edu/~striegnk/courses/esslli04prolog/.
3 http://www.visual-prolog.com/download/73/books/tyros/tyros73.pdf.

31



Prolog4, Pretty Prolog5, the book Learn Prolog Now! [3], also available online6,
as well as many tutorials. This abundance of teaching material witnesses that
the Prolog community is extremely lively, and convinced us that it was worth
teaching Prolog to students with no programming skills. This decision was also
motivated by previous attempts with Scratch and its spin-offs Byob and SNAP!7,
that – albeit suitable for allowing beginners to write an almost complex program
in a few hours – were perceived as not enough professional.

The course requires about 12 hours and it is thought as a crash course for
high school students with different profiles. Its template can be instantiated in
many different ways, provided that no previous programming skills are assumed.
Our experience with the course was carried out during a workshop involving 39
high school students over three days. The course has a leitmotif — which, in our
case, was ontology-driven sentiment analysis — and it is organized in modules
as follows.

– Module 1: a preliminary lecture on a general topic in computer science and
artificial intelligence that will provide the main running example for the class
and laboratory sessions (1 hour).

– Module 2: an introduction to basic concepts of natural language, logic,
knowledge representation and programming with the pure fragment of Prolog
(2 hours) followed by an introduction to inductive definitions and basic data
structures such as lists (2 hours).

– Module 3: an introduction to existing tools supporting exercises related to
the main application discussed in the first module (1-2 hour).

– Module 4: a practical session with Prolog aimed at developing an applica-
tion related to the main topic of the course (5-6 hours).

In addition to a description of the teaching activities above, in this paper we
address also the problem of evaluating the results of the workshop. In particular,
we try to assess whether questionnaires compiled at the beginning and at the
end of the workshop can help us in evaluating the impact of the event on the
students.

2 Introduction to the Course Leitmotif

The first module of the course introduces the course leitmotif, i.e., ontology-
driven sentiment analysis.

Sentiment analysis, also known as opinion mining, is a linguistic analysis
technique where a body of text is examined to characterize the tonality of the
document8. It was first introduced by Pang, Lee and Vaithyanathan in 2002

4 http://www.dobrev.com/.
5 https://code.google.com/p/prettyprolog/.
6 http://learnprolognow.org/lpnpage.php?pageid=top.
7 https://snap.berkeley.edu/.
8 Definition from The Financial Times Lexicon, http://lexicon.ft.com/Term?term=
sentiment-analysis.

32



[17]; a survey by two of these three authors dating back to 2008 [14] defines
opinion mining and sentiment analysis as areas dealing with the computational
treatment of opinion, sentiment, and subjectivity in text. Given the growth of
user-generated contents, sentiment analysis is useful in social media monitoring
to automatically characterize the overall feeling or mood of groups of people, e.g.,
how consumers feel with respect to a specific brand or company. To make an
example, Thomson Reuters uses sentiment analysis in a number of its different
products to provide traders with information about how companies are faring in
news articles.

In the context of computer science, an ontology is a specification of a con-
ceptualization. That is, an ontology is a description (like a formal specification
of a program) of the concepts and relationships that can exist for an agent or
a community of agents [5]. One of the first papers describing the idea of using
an ontology to drive the classification of texts by providing lexical variations
and synonyms of terms that could be met in the documents was [15]. The do-
main of interest was that of online product reviews. Among other examples of
ontology-driven sentiment analysis we may mention [4,1,6,10].

Our initial lecture was entitled “Ontologies and text classification: two rel-
evant elements to program thinking machines”. It first introduced the notion
of ontologies and their application, then mentioned the semantic web [2], and
finally introduced the general problem of classifying texts and its application to
sentiment analysis. As the lecture was only 1 hour long, the topics were just
touched upon. A more technical presentation of the steps to be faced in order
to detect the polarity of a textual document was given as part of the practical
session with Prolog discussed in Section 5.

3 Introduction to Inductive Reasoning with Prolog

The goal of the second module of the course is to introduce the main concepts of
the computational paradigm underlying Prolog. To simplify the task, it is conve-
nient to consider the pure fragment of Prolog without use of complex predicates
tied to the evaluation strategies of the interpreter, e.g., “cut”. The lectures are
divided in four parts, discussed in detail in the rest of the Section.

The first part introduces the key ingredients of the Prolog language, i.e., the
distinction between a program, a query, and the interpreter. The program is
viewed here as the representation of some knowledge, and thus we only consid-
ered Datalog-like programs containing predicates and constants. Free variables
were introduced together with queries. We started with simple examples of as-
sertions in natural language like: Mia is a person, Jody is a person, Yolanda is
a person, Jody plays guitar. The above mentioned assertions were represented
then via the facts:

person(mia). person(jody). person(yolanda). plays(jody,guitar).

The example was mainly used to (i) explain the difference between a predicate
and a constant, and (ii) show how unary predicates can be used to describe con-
cepts, constants to describe instances, and binary predicates to describe relations

33



between instances of concepts. Before introducing variables and clauses, we gave
an intuition on how the Prolog environment works by using simple queries like
?- person(mia). We showed examples of successful queries, failures and errors
to emphasize the differences between them. Noticeably, students could immedi-
ately see the parallel between the Prolog framework and classical examples of
human-computer interaction thanks to the yes/no dialog of the interpreter. We
explained here that the intelligence of the machine is programmed by writing an
appropriate knowledge base, i.e., the programmer’s task is to give intelligence to
the machine.

In the second part we introduced increasingly complex queries to pave the
way towards clauses and inductive definitions. We started from simple queries
such as ?- person(X). showing also how to get multiple answers using the ‘;’
command. We then moved to other examples based on binary predicates such
as ?- plays(jody,X), ?- plays(X,Y). These examples were used to describe
the interplay between constants and variables, and to introduce (informally)
the notion of matching and unification. The next important concept to intro-
duce was that of conjunctive queries. For this purpose, we used examples such as
?- person(jody) , plays(jody,guitar), ?- person(X) , plays(X,guitar).
We explained the logical interpretation of comma as conjunction, and interpreted
the shared variable X as a communication channel between two subqueries: the
first one instantiates it, the second one validates the instantiation. We intro-
duced then the notion of clause as a way to define implicit knowledge, i.e., to
derive new facts without need of enumerating all of them. The first examples
were used to illustrate the syntax of a clause:

happy(jim).

hasMp3(jim).

listens2Music(jim) :- happy(jim), hasMp3(jim).

We explained the semantics using the following assertions: Jim is happy. Jim has
an MP3 player. If Jim is happy and has got an MP3 player, he listens to music.
The use of ground rules, which allows only one specific inference, is quickly
abandoned by introducing free variables to show how to infer several new facts
with a single clause:

guitarist(X) :- plays(X,guitar).

The third part was dedicated to inductive definitions. We started from in-
ductive definitions not involving data structures. The classical example was the
program defining the transitive closure of a given relation. We used here the
relation son defined as follows.

son(giovanni,gabriele). son(gabriele,marco). son(marco,margherita).

We first juxtaposed the ancestor relation over the different definitions of the
son relation. We then showed how to combine the son and ancestor relations in
order to deduce all other cases. In the explanation we avoided inductive defi-
nitions on ancestor predicates only. The following pictures give a diagrammatic

34



presentation of the inductive definition (introduced step by step in the lecture).
We started from the redefining the facts of the son relation by using ancestor.

The ancestor relation was introduced step by step using the transitive closure:

Finally we completed the diagram of the new relation as follows:

The use of inductive steps defined by combining son and ancestor (instead of
applying the transitive closure on ancestor only) worked well and did not cause
ambiguity in the explanations. In this way, we immediately focused the attention
on the standard way to avoid non terminating recursive definitions in Prolog.
The intuition behind the base step of the inductive definition was first expressed
using assertions in natural language like: For every X,Y, if X is a son of Y, then
Y is an ancestor of X. The assertion was then formalized as the Prolog clause

ancestor(Y,X) :- son(X,Y).

Again we stressed the fact that clauses with free variables can be used to define
new facts on top of existing ones without need of enumerating all of them,
i.e., clauses define implicit knowledge. Similarly, the inductive step was first
expressed using assertions in natural language like: For every X,Y, if X is a son
of Y and Z is an ancestor of Y, then Z is an ancestor of X. The assertion was
then formalized via the Prolog clause

ancestor(Z,X) :- son(X,Y) , ancestor(Z,Y).

We concluded the example by showing the possible result of a query.
The fourth and last part of the lectures was dedicated to simple data struc-

tures like lists. We first introduced the syntax and the intuition behind the data

35



structures. To explain how to manipulate lists in Prolog, we started by defining
a predicate to check if a list contains names of persons only. To explain how
the definition works, we consider a procedural interpretation of a recursive def-
inition (consume elements until the list becomes empty). We used the parallel
with the transitive closure example to split the definition in base and inductive
steps, respectively. However we listed the inductive step before the base step to
emphasize the idea that to process a list we first have to consume their elements,
and then define what happens when the list becomes empty. We then moved to
more complicated examples like member. To define the member predicate we first
used the assertion in natural language for the base step: The name X is in the
list head. If the name X is in the list L, then X occurs in the list extended with
Y different from X. We presented then the clauses:

member(X,[X|L]).

member(X,[Y|L]):-X=/=Y,member(X,L).

We used a similar approach to introduce other operations like notin (X is not in
a list L), add (add X to a list), and add* (add X if it is not already in L). We also
introduced examples of nested lists. Finally, we used (nested) lists to represent
and manipulate syntax trees of simple natural language sentences. Specifically,
we considered the syntax tree of a text formed by a list of sentences. A sentence
was represented as a list of words as specified by the grammar of the considered
language, e.g., noun-verb-object We then defined examples of tokens like

noun(mia). noun (jody). verb(plays). object(guitar). object(drums).

The assertion if S is a noun, V is a verb, O is an object, then S V O is a sentence
was modeled via the clause

sentence([S,V,O]):-noun(S),verb(V),object(O).

This allowed us to give an inductive definition of a text as follows.

text([]).

text([F|T]) :- sentence(F) , text(T).

Finally, we put all together and showed examples of derivations of queries like
?- text ([ [mia,plays,drums], [jody,plays,guitar] ]). Again, we used
the metaphor of traversal with consumption element-by-element to manipulate
nested lists as in the case of simple lists.

4 Practical Session with an Ontology Editor

The third module is meant to introduce the tools useful for the specific course
domain — in our case, ontology-driven sentiment analysis. Depending on the
domain and related tools, this module may require different amount of time.
In our instantiation of the course, we opted for a domain that allowed us to
introduce intuitive and user-friendly tools, that high-school students could use

36



with as little training as possible. In particular, the tool session was organized
as a practical laboratory session aimed at introducing the Protégé Ontology
Editor. The main reasons for our choice is that the course teachers already had
a background on this tool, and that the university students helping during the
session had seen Protégé during the “Intelligent Systems and Machine Learning”
Master’s course. A second reason is that the Web Protégé version9 can be used
online without requiring any installation.

Because of hard time constraints we could not make an introductory lecture
on Protégé, so the students just learned by doing during the practical sessions.
Some students observed that it would have been useful to introduce the tool
beforehand, so we plan to find at least half an hour for explaining the tool and
the proposed exercises in the next course editions. The exercises we proposed
are based on the Newspaper Example available from the Protégé Frames User’s
Guide10. The Newspaper ontology associated with that guide was made available
to the students in their temporary home for easier use.

Exercise 1. The first exercise aimed at making the students acquainted with
Protégé by exploring the already made newspaper ontology. The text was the
following:

1. Open the Protégé ontology editor and select the Newspaper ontology. The
ontology domain is that of managing the costs and organization of a news-
paper. The ontology can answer the following questions:

– Who is responsible for each section of the newspaper?

– What is the content of each article in a section, and who is its author?

– Who does each author report to?

– What is the layout and cost of each section?

2. Explore the ontology and experiment with addition and removal of new
classes, instances, properties.

Exercise 2. The second exercise was related to the course leitmotiv and asked
to design and implement a simple ontology for the opinion mining in the hotel
reviews domain, using names in English. The students could save their ontology
and were informed that they could have used it in the next module. Students
were suggested to identify the positive terms that they could expect in a pos-
itive review (for example charming, excellent, polite, clean, .... ), the negative
ones (dirty, bad, unsafe, ...) and the neutral ones. Then they were suggested
to organize them in an ontology having three main branches, one for positive,
one for negative and one for neutral words in this domain. To take inspiration
for the words, we suggested to read some real reviews available for example on
TripAdvisor.

9 http://webprotege.stanford.edu.
10 http://protegewiki.stanford.edu/wiki/PrF_UG.

37



Exercise 3. In case some students still had time, we proposed to create and run
some queries on the newspaper ontology used in the first exercise, such as

– Find the journal that contains the article “Destination Mars” and save the
query;

– Find the journals that either contain the article “Destination Mars” or have
less than 100 pages and save the query.

5 Practical Session with Prolog

The last module of the course integrates all the competencies gained in the
previous modules and proposes exercises with increasing complexity, aimed at
developing a simple but working application for ontology-driven sentiment anal-
ysis. It uses pieces of Prolog code developed by the teachers, offering predicates
that make use of external libraries.

A short lecture introduces the goal of the pratical Prolog session by means
of an example. Given an ontology like the one depicted in Figure 1 and a review
like

This hotel is beautiful! It is in a great location, easy to walk anywhere
around the city. Very nice, comfortable room with lovely views. Staff
can speak English. Fantastic breakfast with many different types of foods
available. I would stay here again in a heartbeat.

we asked the students how could we manage to obtain a classification like

6,[review] 6,[positive,review] 1,[nice]

1,[lovely] 1,[great] 1,[comfortable]

1,[beautiful] 1,[available]

Fig. 1. A basic ontology for sentiment analysis in the hotel review domain (only the
negative branch is shown for space constraints).

38



During this short lecture we emphasized that, in order to reach our goal, we
had to fix the language of both the text and the ontology (we agreed on English)
and we needed

– a tokenizer for transforming a text into the list of its elements (words, punc-
tuation), in order to operate on lists and not directly on text;

– a list of English stopwords to be filtered out before processing the text, as
they do not contribute to the text’s semantics;

– a stemmer for removing most common morphological and inflectional endings
from English words in order to normalize the terms in both the ontology and
the text, to make their matching possible;

– a tool for reading an OWL ontology from file and transforming it into some
format easy to manipulate.

Exercises 1, 2. The first practical exercise did not depend on the domain. In
particular, it was taken from the SWISH web site http://swish.swi-prolog.

org/example/movies.pl and it is based on querying and extending a movie
database. The second exercise asked the students to implement the predicate for
removing a ground item from a ground list.

Exercise 3. The third exercise, whilst still being a classical one for Prolog be-
ginners, started to move towards the actual problem to be solved. We asked to
implement a subtractList predicate for subtracting a list from another one, but
we contextualized the problem supposing to have a list of words that represents
all the words that are found in a review, and a list of stopwords and punctuation
elements. The goal is to remove the stopwords from the list of words retrieved
from a text.

We made available to the students the following material:

– The file stopwords.txt containing 430 English stopwords and punctuation
marks.

– The emotions.owl ontology sketched in Figure 1. Since the students had
already completed the laboratory with Protégé, we told them that they could
use their own ontology instead of the provided one.

– A textclassifier.pl Prolog piece of code offering all the solutions to the
exercises, but implemented as predicates with different names. We asked the
students to refrain from reading this file thoroughly — as they would have
found the solved exercises —, but just to consult it to find implementation
of auxiliary predicates. The text classifier used the following SWI Prolog
libraries:
• The RDF database (library(semweb/rdf db))11 for reading an ontol-

ogy and transforming it into a set of Prolog facts.
• The Porter Stem (library(porter stem))12 implementing the Porter

stemmer [16].

11 http://www.swi-prolog.org/pldoc/man?section=semweb-rdf-db.
12 http://www.swi-prolog.org/pldoc/man?section=porter-stem.

39



– A set of reviews of hotels in Genova, downloaded from the Booking.com
site13.

We provided the following suggestions to verify that the code was correct:

1. Consult the textclassifier.pl file which contains the Prolog code to im-
plement a basic ontology-driven text classifier. The code offers many useful
predicates to make your work easier.

2. Use the predicate fromTextToList(FileName, List) that takes as its first
argument the name of a file and unifies the second argument with the list of
the words found in the file: this predicate will allow you to read the contents
of a file, be it a review or the stopwords.txt file, and turn it into a list that
Prolog can manage.

3. After having called the predicate you implemented for subtracting a list from
another one, use the predicate printList(List) to print the result.

We also provided an example of goals to call and the expected output:

?- [textclassifier].

?- fromTextToList(’./review5.txt’, Review5List),

fromTextToList(’./stopwords.txt’, StopWordsList),

subtractList(ListReview5, StopWordsList, Review5WithoutSWList),

printList(Review5WithoutSWList).

extremely comfortable welcoming excellent service conveniently situated

railway station main sights palazzo reale best breakfast buffet

experienced week visit italy adjacent restaurant tralalero good

The file review5.txt contained

Extremely comfortable, welcoming, with excellent service and conveniently
situated for the railway station and most of the main sights, such as
Palazzo Reale. By far the best breakfast buffet I experienced during a
two-week visit to Italy! Its adjacent restaurant, Tralalero, is also very
good.

Exercise 4. The fourth exercise asked to implement the listStem(LWords,

LStem) predicate for obtaining the list of word stems, from the list of original
words. The students could use the auxiliary predicate extendedPorterStem(X,

Y) offered by textclassifier.pl to obtain the stemmed word of X and unify
it with Y.

Exercise 5. With the fifth exercise, we started to practice with an ad-hoc Prolog
representation of ontologies. textclassifier.pl implements a loadOntology

predicate which, given the OWL ontology file name, asserts information on the
ontology classes and subclass relationships. The asserted fact also provides in-
formation on the concept name and its stem. For example, by calling
loadOntology(’./emotions.owl’), the following facts are asserted into the
Prolog Knowledge Base:

13 http://www.booking.com/reviews/it/hotel/bristol-palace.en-gb.html.

40



class(http://www.owl-ontologies.com/o.owl#amazing,[amazing],[amaz])

class(http://www.owl-ontologies.com/o.owl#available,[available],[avail])

class(http://www.owl-ontologies.com/o.owl#bad,[bad],[bad])

class(http://www.owl-ontologies.com/o.owl#beautiful,[beautiful],[beauti])

class(http://www.owl-ontologies.com/o.owl#best,[best],[best])

class(http://www.owl-ontologies.com/o.owl#charming,[charming],[charm])

class(http://www.owl-ontologies.com/o.owl#positive_review,

[positive,review], [posit,review])

........

subClass(http://www.owl-ontologies.com/o.owl#amazing,

http://www.owl-ontologies.com/o.owl#positive_review)

subClass(http://www.owl-ontologies.com/o.owl#available,

http://www.owl-ontologies.com/o.owl#positive_review)

subClass(http://www.owl-ontologies.com/o.owl#bad,

http://www.owl-ontologies.com/o.owl#negative_review)

subClass(http://www.owl-ontologies.com/o.owl#beautiful,

http://www.owl-ontologies.com/o.owl#positive_review)

The exercise asked the students to load emotions.owl and query the knowledge
base in order to answer the following question:

1. Which are the words and stems associated with the ontology class
http://www.owl-ontologies.com/o.owl#amazing?

2. Which ontology concept has the word list [tasty] associated with?

3. Which ontology concept has the stem list [unavail] associated with?

4. Which ontology concept has the stem list that contains posit?

5. Which is the direct superclass of the class whose word list is [lovely]?

6. Which are all the superclasses of the class whose stem list is [excel]?

We also asked the students to make experiments with the ontology they
implemented in the Tools Session.

Exercise 6. The last exercise was the most challenging one, as it asked to put
all the bricks implemented so far together, in order to implement an ontology-
driven text classifier. We gave very limited written hints and we proposed a few
variants of the text classification program for listing not only the words occurring
in both the text and the ontology (after being stemmed), but also in counting
their occurrences: if “beautiful” occurs twice, it should be counted twice and
contribute to a more positive evaluation. Another variation we proposed was to
use the subClassOf semantic relations present in the ontology to classify the text
not only based on the words that coincide with classes in the ontology, but also
with their superclasses.

Exercise 7. Since one implementation of the text classifier was available, we
concluded this Prolog practical session by asking the students that could not
complete Exercise 6, to experiment with our own implementation in order to see
a program at work.

41



Discussion. Although we did not carefully trace the results achieved by the stu-
dents during their practical experience, we can say that about 10-12 students
out of 39 were able to complete the 6th exercise. This result was extremely sur-
prising for all the instructors. In fact, having taught Prolog for many years to
students with a solid background on imperative and object-oriented program-
ming, we were aware of the difficulties that students meet when moving from
the logic programming theory to the practice and we did not expect that some
students could face and complete Exercise 6.

Without claiming to make a scientifically founded assertion, our feeling was
that the lack of skills in imperative programming of the high school students,
made them open to “think directly in Prolog”, without trying to design im-
perative algorithms and then fit them into logical rules. We plan to take more
precise statistics on the completion of the practical exercises in the next edi-
tions of the workshop, and maybe propose this course also to students with a
computer science background, in order to confirm these feelings.

6 Evaluation

Our evaluation is targeted to understand — in a quantitative way — whether
the students were able to improve their computational thinking capabilities after
the workshop.

To this purpose, data were collected the first and the last day of the workshop
via a questionnaire, with some overlap w.r.t. the general one. The aim was to
collect information about the profile of the students and to check their ability to
solve easy logic problems. The questionnaire was proposed before and after the
experience in order to test whether the experience increased student’s knowledge
of the subjects.

A First part (profile part) of the specific questionnaire asked students to
provide information about their gender, grade, their favorite subject at school
(Humanities, Science, Technical subject, Language or Arts), their daily use of
computers (from 1 = less than half an hour, to 4 = more than 2 hours), their per-
ceived level of academic achievement (from 1 = excellent to 4 = barely passing),
whether they were planning to enroll in a course at the University (yes, maybe,
no) and whether they were planning to enroll in a program in Computer Science
(yes, maybe, no). In the Second part (questions part) students were asked to
answer questions based on logic skills; for this part no specific knowledge is pro-
vided or expected. They were recommended to answer only the questions they
were able to solve, without trying to answer randomly. Accordingly, the score
for every answer was: +1 if right, 0 for blank, and -0.5 if wrong. With this choice
of weights, since every question has three alternatives and only one is correct,
choosing randomly between the answers yields an expected score of

1

3
· 1− 1

3
· 0.5− 1

3
· 0.5 = 0

We first tested whether the experience increased student’s knowledge of the
subjects. The statistical test is performed by using a paired t-test to check the

42



difference in the results of the Second part before (Time 1) and after (Time
2) the experience. Our results indicate that at Time 2 students are slightly
more likely to correctly solve questions, but not sufficiently to have a statistical
significance; this emerges even by splitting the population on a subject-base
or on a perceived level-base. As a possible explanation, we could consider the
relatively small amount of questions provided in the questionnaire, and also to
the very condensed format of the training.

C.S.program Post Cert. Post Uncert.

Pre Cert. 23 1
Pre Uncert. 7 4

Fig. 2. Interest of enrollment at the Computer Science program: the rows and the
columns depict respectively the occurrence or the answers during the test before and
after the experience.

Since the experience had the main goal of adequately introducing a Com-
puter Science curriculum, it was also interesting to test whether the experience
modified students’ intentions to enroll either in the University or in the Com-
puter Science program. The difference between certainty and uncertainty in the
intention was tested at Time 1 and Time 2 by performing an exact McNemar
test [12]. Regarding the interest to enroll at the University, there was no sig-
nificant result: only 2 students passed from uncertainty to certainty (p = 0.47).
The same statistical test was performed on the interest to enroll at the Com-
puter Science program and the result showed that a small proportion of students
switched from uncertainty to certainty in their intention to enroll (see Fig. 2)
with a p− value of 0.07. Even if this result is higher than our statistical signifi-
cance threshold (0.05), the fact that the p-value is close to it suggests that the
experience might have helped them make up their mind. Despite the limitations
of this study (i.e., relatively low sample size, small number of questions, lack
of observations by external observers) we can conjecture that with an improved
and enlarged set of questions, significant results can be achieved to better guide
teachers in their choice of course contents.

7 Conclusions

In this paper we have discussed a format for a tutorial about the basic concepts
underlying the computational thinking paradigm using a declarative language
like Prolog. The tutorial is centered around a specific application domain. In this
paper we discussed the domain of Natural Language Processing, Semantic Web
and Ontologies, three hot topics in Computer Science and Artificial Intelligence
with several important real-life applications. The domain was adopted as main
example in a workshop for high school students taught at the University of
Genoa.

43



The tutorial is based on a crash-course that introduces the application do-
main, followed by lectures on declarative programming, on the use of tools, and
practical sessions to learn the basics of programming, and a final project in
which the students apply their new programming skills to a concrete problem.
Declarative languages are used here to introduce complex concepts like recursive
and inductive definitions with the help of natural language assertions. Ontologies
and natural language processing are particularly useful to give an application-
oriented flavor to the workshop.

References

1. Matteo Baldoni, Cristina Baroglio, Viviana Patti, and Paolo Rena. From tags to
emotions: Ontology-driven sentiment analysis in the social semantic web. Intelli-
genza Artificiale, 6(1):41–54, 2012.

2. Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific
American, pages 29–37, May 2001.

3. Patrick Blackburn, Johan Bos, and Kristina Striegnitz. Learn Prolog Now!, vol-
ume 7 of Texts in Computing. College Publications, 2006.

4. Marcirio Chaves and Cássia Trojahn. Towards a multilingual ontology for ontology-
driven content mining in social web sites. In Proc. of ISWC 2010, Volume I, 2010.

5. Thomas R. Gruber. A translation approach to portable ontology specifications.
Knowl. Acquis., 5(2):199–220, June 1993.

6. Efstratios Kontopoulos, Christos Berberidis, Theologos Dergiades, and Nick Bassil-
iades. Ontology-based sentiment analysis of twitter posts. Expert Syst. Appl.,
40(10):4065–4074, 2013.

7. Robert A. Kowalski. Logic as a computer language for children. In ECAI, pages
2–10, 1982.

8. Robert A. Kowalski. Logic as a computer language for children. In New Horizons in
Educational Computing, (ed. M. Yazdani), Ellis Horwood Ltd., Chichester, pages
121–144, 1984.

9. Robert A. Kowalski. A proposal for an undergraduate degree in the uses of logic. In
Artificial Intelligence in Higher Education, CEPES-UNESCO International Sym-
posium, Prague, CSFR, October 23-25, 1989, Proceedings, pages 94–97, 1989.

10. Maurizio Leotta, Silvio Beux, Viviana Mascardi, and Daniela Briola. My MOoD, a
multimedia and multilingual ontology driven MAS: Design and first experiments in
the sentiment analysis domain. In Cristina Bosco, Erik Cambria, Rossana Dami-
ano, Viviana Patti, and Paolo Rosso, editors, Proceedings of the 2nd Workshop on
Emotion and Sentiment in Social and Expressive Media (ESSEM) 2015, a satellite
workshop of AAMAS 2015, 2015.

11. Hector J. Levesque. Thinking as Computation. The MIT Press, 2012.
12. Quinn McNemar. Note on the sampling error of the difference between correlated

proportions or percentages. Psychometrika, 12(2):153–157, June 1947.
13. Patrick Mendelsohn, T.R.G. Green, and Paul Brna. Programming languages in

education: The search for an easy start. In J.-M. Hoc, T. R. G. Green, R. Samurçay,
and D. J. Gilmore, editors, Psychology of Programming, pages 175–200. London,
Academic Press, 1990.

14. Bo Pang and Lillian Lee. Opinion mining and sentiment analysis. Found. Trends
Inf. Retr., 2(1-2):1–135, January 2008.

44



15. Jantima Polpinij and Aditya K. Ghose. An ontology-based sentiment classifica-
tion methodology for online consumer reviews. In Proc. of IEEE/WIC/ACM WI-
IAT’08, pages 518–524, 2008.

16. Martin F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.
17. Peter D. Turney. Thumbs up or thumbs down? Semantic orientation applied to

unsupervised classification of reviews. In Proc. of ACL 2002, pages 417–424, 2002.

45



A case study on graph-based planning for
emergency evacuation

Santa Agreste1, Pasquale De Meo2, Massimo Marchi3, Maria Francesca
Milazzo4, Salvatore Nunnari, Alessandro Provetti1

1 DMI, University of Messina, Italy
2 DICAM, University of Messina, Italy

3 Network services, University of Milan, Italy
4 DIECII, University of Messina, Italy

Abstract. We present a pilot study on the implementation of a soft-
ware, based on declarative knowledge representation and logic-based au-
tomated planning, which assists the management of severe Chemical haz-
ard events, e.g. fire or emissions that may require the evacuation of the
area surrounding the affected Chemical plant. We model the geogra-
phy, the road network and the population of the chemical plant and the
surroundings by weighted, labeled graphs, which are updated as the haz-
ardous situation develops. Intervening factors, e.g. the spread of toxic in
the air, are represented in the graph in terms of their effects. Risk for
the resident population and possible evacuation plans are evaluated and
re-evaluated as the accident develops. Also evacuation plans are contin-
gent and as conditions change may be re-evaluated from scratch; more-
over, they may involve complex coordinated actions among the rescue
units. Both the evaluation of the emergency scenario and the evacua-
tion planning phases have been prototyped by means of an Answer Set
Programming planner.

Keywords: Automated Planning, Applied Computational Logic, Chem-
ical Plants Safety

1 Introduction

We present a pilot study on the implementation of the central component of a
safety tool for risk evaluation and evacuation planning to be deployed in response
to fire or emissions due to accidents at a large Chemical plant5.

We have created an abstract model of the geography of the chemical plant
and of its surroundings by a weighted, labeled graphs, which is updated as the
hazardous situation unfolds. Evacuation from the surroundings of the plant is
evaluated and planned wrt. to the graph representation. Intervening factors, e.g.
the spread of toxic in the air, are represented in the graph in terms of their effects.
Evacuation plans are contingent and as conditions change may be re-evaluated

5 Due to legal reasons, at this stage we must omit the name of the plant and of the
residential area for which the tool has been developed.

46



from scratch. Both the computation of the likely effects and the planning phase
have been prototyped by an Answer Set Programming planner.

Answer Set Programming (ASP) [5] [9] (also called Stable Logic Program-
ming (SLP) [10]), is a relatively recent but well-established style of logic pro-
gramming: each solution to a problem is represented by an answer set (also called
stable model), and not by answer substitutions produced in response to a query.
A rich literature exists on applications of ASP in many areas, including problem
solving, configuration, information integration, security analysis, agent systems,
semantic web, and planning (see, among many, [2, 1, 6, 13, 4] and the references
therein).

ASP is the language by which we represent all types of knowledge required
to address this scenario: declarative knowledge about the surroundings, proce-
dural knowledge about actions (escape actions, take cover actions and so on),
contingencies, and planning as a domain-independent strategy to solve a motion
problem. In this sense, our approach is in the same vein as the pioneer work
of Zepeda and Sol [14] on evacuation as an instance of logic-based automated
planning; the first complete (and delivered) instance of this approach in their
Plan Popocatpetl project. We believe that our solution represents a marked im-
provement and generalization of their approach for the following main reason: we
have adopted an intermediate formal representations with labeled graph for the
representation of the scenario and the a priori evaluation of risk, for the declar-
ative specification of the planning and observing part. These two intermediate
representations make the modularization of the underlying ASP code possible
and manageable thus enabling the higher degree of adaptivity that is required
by the problem.

2 Evacuation plans

The drafting of evacuation plans in emergency requires finding a sequence of ac-
tions that lead from an initial state, representing a risk scenario, to a goal objec-
tive, representing a situation where the entire population is rescued (or generally
safe). Unlike the planning scenarios that are traditionally considered in the Ar-
tificial Intelligence literature, evacuation plans specify administrative/security
policies which can be hard to formulate6—even informally and often hard to
execute even in small scenarios, i.e., those where the number of subjects, the
spacial dimension and the time-scale are reduced.

Another important difference is the value to give to the ’do nothing’ action.
While in AI planning the so-called nop action is there mostly for padding fixed-
length plans, in our applicative scenario they have a precise meaning which must
be re-evaluated constantly: in case of chemical hazard, staying inside the building
and limiting air circulation could be safest option available. Therefore we can
say that automated planning with AI techniques, which is the subject of this

6 See the norms regulating Save & rescue in Italy from http://www.

protezionecivile.gov.it/

47



paper, is only one dimension of the inherent complexity of emergency evacuation
management.

The other key element to the formalization of evacuation plans is the repre-
sentation of the area, with a dynamic description of elements such as i) source
and type of hazard ii) risk diffusion maps, which are specific to the type of risk,
i.e., iii) number and localization of the population that needs to be evacuated
iv) transport means and their level of mobilization v) Accident & Emergency (A
& E) services with trained personnel and specialized equipment. For know risks,
normally associated to Chemical/energy plants, the complexity of the task is
essentially decreased by the availability of pre-compiled maps, which can specify
the following two types.

First, during the emergency the danger areas extend (or contract) following
the evolution of the accident, moreover such expansion/contraction is not easily
characterized by simple circumferences around the site of the accident (consider,
e.g., liquid chemicals in rivers, or fire under constant-direction winds). Normally,
risk diffusion maps create a three-level partition of the areas in i) impact, i.e.,
areas close to the epicenter of the disaster, with high likelihood of lethality, ii)
damage, normally external to the former, where lack of protection would cause
irreversible damage to those who are contaminated, especially children and old
people, and iii) attention, where damage is possible but not irreversible, in any
case requiring medical treatment and possibly causing unrest in the population.

Second, so-called safe areas and their features. These areas are further de-
tailed in i) waiting areas, ii) concentration areas for the rescuers and iii) recovery
areas, which are safe places where the refugees will end up as a result of the evac-
uation.

3 Representation of the geography and of the escape
scenarios

Two key aspects of the knowledge representation needed for this planning in-
stance are the representation of the geography, namely roads and rivers, and of
the level of risk assigned to areas by the domain experts. These information are
synthesized by the risk graph, which is reported in Figure 1 for the first instance
of problem we considered.

For comparison, we report in Figure 1 one of the annotated maps, in the
standard format for Geographical Information Systems (GIS) that have been
used to compile the graph in Figure 1. The twenty-one relevant area (called
waypoints) identified by the domain experts (in this case, Fire patrol senior
officers) are connected by 36 relevant routes.

As it can be noticed in Figure 1, domain experts have assigned each waypoints
to one of 5 levels of risk for the population, according to the following standard
risk scale.

– RiskLevel = 1: recovery area, destination for evacuation plans;
– RiskLevel = 2: low-risk area, close to recovery areas and far from the risk

areas;

48



Fig. 1. The graph representing the geography and the risk levels of designed areas

wp01,4

wp02,4

wp03,4

wp04,4

wp05,4

wp06,4

wp07,4

wp08,3

wp09,3

wp10,3

wp11,3

wp12,3

wp13,3

wp14,3

wp15,2

wp16,2

wp17,2

wp18,2

wp19,1

wp20,3

wp21,2

(17,8)

(12,12)

(16,16)

(7,7)

(21,10)

(3,6)

(8,16)

(24,24)

(5,10)

(5,10)

(11,22)

(15,30)

(6,12)

(8,8)

(7,14)

(20,40)

(6,3)

(14,7)

(13,13)

(9,9)

(6,6)

(3,3)

(8,8)

(9,9)

(7,3)

(22,22)

(14,14)

(3,3)

(8,8)

(7,7)

(14,14)

(19,19)

(10,5)

(4,4)

(16,8)

(16,16)

– RiskLevel = 3: average-risk area, far from recovery areas but sufficiently
close to the risk areas;

– RiskLevel = 4: high-risk area, close to high-risk areas, thus very far from
recovery areas;

– RiskLevel = 5: high-risk area, the starting point for evacuation plans.

3.1 Description in ASP

This subsection describes the ASP predicate definitions that have been devel-
oped to capture the specific aspects of the evacuation planner. The following
description does not cover the general part of the evacuation planner, which has
been adopted as is from the ASP translation of the action description languages
L′ and L∞ developed in [3] and extensively described thereof. The only changes
were made to embed the general rules into an answer-set program ready for
interpretation by the ASP solver DLV [8, 7]; the syntax of the ASP program is
thus specific to that accepted by the DLV grounder.

It should be added that some simplifying assumptions have been embodied
directly in the ASP representation of the planning instance. These assumptions

49



Fig. 2. Annotated GIS information on the area subject to evacuation planning

are taken from the pre-compiled evacuation plan now in use, e.g., that for all
evacuation actions there are some vehicles, typically buses, available to transport
people to recovery areas. Another simplification is in the consideration of groups
of evacuees, as opposed to single individuals. The structure of the graph in Figure
1 is embedded into the ASP program by means of the waypoint relation:

waypoint(Name,RiskLevel). (1)

where variables Name and RiskLevel indicate the vertex of the graph and its as-
signed risk level. Communication routes, i.e., the edges of the graph are described
by facts of this type:

route(Place1, P lace2, Length, Criticality). (2)

where variables Place1 and Place2 indicate the two areas that are connected,
Length captures geographical distance and Criticality is a parameter representing
the danger assigned to the usage of the given connection. Another important
information is the representation of the evacuee groups:

group(Name). (3)

where Name is assigned to thus-formed groups. The cardinality is not specified
but as noted above we assume than one vehicle can evacuate a group. The last
type of extensional predicate is for representing the position of the groups on
the map, by this type of facts:

50



holds(position(Group, P lace), 0). (4)

Notice how relation position(Group, P lace) is reified into a fluent; variables
Group and Place have their obvious meaning, whereas time-stamp 0 relates
these facts to the initial state of the planning activity. Of course, we can have
more than one group sitting on the same waiting area, as well as empty waiting
areas. Finally, to describe actions where a certain areas become unreachable,
i.e., a communication route has become nonviable (e.g., busy or disrupted or
dangerous), we use these types of fact:

waypoint blocked(WP1).

route blocked(WP1,WP2).
(5)

The predicate described above are to be added to the domain description
and changed often, to adapt to the changing scenario, especially the (possible)
disruption of roads, to be acquired, in the full version of this planner, from
real-time GIS information.

4 Results and open issues

One of the most important problems to be solved in case of disasters is the
draw and quick deployment of evacuation plans for the population. We describe
a methodology based on knowledge representation and reasoning to formulate
Evacuation Plans, using the intermediate graph representation and the DLV
inferential engine.

Our evacuation planner considers the present situation, the type of danger,
weather conditions, traffic or other modification of the zone to be evacuated,
and formulates alternative evacuation plans to be face-validated on a case-by-
case basis.

Studying the real case of the External Emergency Plan for a Refinery, we
have implemented a planner able to generate appropriate evacuation plans, on
the basis also of incomplete information derived from a possible Geographic
Information System, supplying a representation of the scenario on the ground.

The results against a benchmark of 5 realistic emergency scenarios are en-
couraging: computation times remain within few minutes and the generated
solutions were rated “excellent” by domain experts. From the point of view of
computational logic, these results are entirely satisfactory, and, in our opinion,
should become even more significant and widely applicable by the introduction
of two further formal devices. The first device is the formal apparatus of ASP
programs with weak constraints developed by Leone et al. and implemented in
DLV. Even though there have been successful applications in literature, e.g. [12],
at the moment, our tests indicate that weak constraints are too heavy compu-
tationally to be deployed in our platform, so we have decided to leave them out
of the current implementation.

51



The second improvement would be a full model of context to be applied to
data, i.e., to redesign the data as to capture their contextual aspects, and have
the devices, e.g., local-cell emergency broadcasting, to selectively handle them,
along the lines of the methodology defined Rauseo et al. [11].

References

1. Anger, C., Schaub, T., Truszczyński, M.: ASPARAGUS – the Dagstuhl Initiative.
ALP Newsletter 17(3) (2004), see http://asparagus.cs.uni-potsdam.de

2. Baral, C.: Knowledge representation, reasoning and declarative problem solving.
Cambridge University Press (2003)

3. Baral, C., Gelfond, M., Provetti, A.: Representing actions: Laws, observations and
hypotheses. Journal of Logic Programming 31(1-3), 201–243 (1997), http://dx.
doi.org/10.1016/S0743-1066(96)00141-0

4. Gelfond, M.: Answer sets. In: Handbook of Knowledge Representation, chapter 7.
Elsevier (2007)

5. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP. pp. 1070–1080 (1988)

6. Leone, N.: Logic programming and nonmonotonic reasoning: From theory to sys-
tems and applications. In: Baral, C., Brewka, G., Schlipf, J.S. (eds.) Logic Pro-
gramming and Nonmonotonic Reasoning, 9th International Conference, LPNMR
2007. p. 1 (2007)

7. Leone, N., Faber, W.: The dlv project: A tour from theory and research to appli-
cations and market. In: de la Banda, M.G., Pontelli, E. (eds.) ICLP. Lecture Notes
in Computer Science, vol. 5366, pp. 53–68. Springer (2008)

8. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The dlv system for knowledge representation and reasoning. ACM Trans. Comput.
Logic 7(3), 499–562 (Jul 2006), http://doi.acm.org/10.1145/1149114.1149117

9. Lifschitz, V.: Answer set planning. In: Schreye, D.D. (ed.) Logic Programming:
The 1999 International Conference, Las Cruces, New Mexico, USA, November 29
- December 4, 1999. pp. 23–37. MIT Press (1999)

10. Marek, V.W., Truszczyński, M.: Stable logic programming - an alternative logic
programming paradigm, pp. 375–398. Springer (1999)

11. Rauseo, A., Martinenghi, D., Tanca, L.: Context through answer set programming.
In: Fletcher, G.H.L., Staworko, S. (eds.) Proceedings of the 4th International Work-
shop on Logic in Databases, Uppsala, Sweden, (EDBT/ICDT ’10 joint conference),
March 25, 2011, Proceedings. p. 58. ACM (2011), http://doi.acm.org/10.1145/
1966357.1966369

12. Rauseo, A., Martinenghi, D., Tanca, L.: Contextual data tailoring using ASP. In:
Schewe, K., Thalheim, B. (eds.) Semantics in Data and Knowledge Bases, 5th In-
ternational Workshop, SDKB 2011, Zürich, Switzerland, July 3, 2011, Revised Se-
lected Papers. Lecture Notes in Computer Science, vol. 7693, pp. 99–117. Springer
(2011), http://dx.doi.org/10.1007/978-3-642-36008-4_5

13. Truszczyński, M.: Logic programming for knowledge representation. In: Dahl, V.,
Niemelä, I. (eds.) Logic Programming, 23rd International Conference, ICLP 2007.
pp. 76–88 (2007)

14. Zepeda, C., Sol, D.: Evacuation planning using answer set programming: An initial
approach. Engineering Letters 15(2), 240–249 (2007)

52



How Answer Set Programming Can Help In Digital
Forensic Investigation

Stefania Costantini1 stefania.costantini@univaq.it,
Giovanni De Gasperis1 giovanni.degasperis@univaq.it, and

Raffaele Olivieri1,2 raffaele.olivieri@gmail.com

1 Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica,
Universitá degli Studi dell’Aquila,
Via Vetoio 1, 67100 L’Aquila, Italy

2 Raggruppamento Carabinieri Investigazioni Scientifiche (Ra.C.I.S.),
(The Italian Department of Scientific Investigations of Carabinieri),

viale di Tor di Quinto 119, 00191 Rome, Italy.

Abstract. The results of the evidence analysis phase in Digital Forensics (DF)
provide objective data which however require further elaboration by the inves-
tigators, that have to contextualize analysis results within an investigative envi-
ronment so as to provide possible hypotheses that can be proposed as proofs in
court, to be evaluated by lawyers and judges. Aim of our research has been that
of exploring the applicability of Answer Set Programming (ASP) to the autom-
atization of evidence analysis. This offers many advantages, among which that
of making different possible investigative hypotheses explicit, while otherwise
different human experts often devise and select different solutions in an implicit
way. Moreover, ASP provides a potential for verifiability which is crucial in such
an application field. Very complex investigations for which human experts can
hardly find solutions turn out in fact to be reducible to optimization problems in
classes P or NP or not far beyond, that can be thus expressed in ASP. As a proof
of concept, in this paper we present the formulation of some real investigative
cases via simple ASP programs, and discuss how this leads to the formulation of
concrete investigative hypotheses.

1 Introduzione

Digital Forensics (DF) is a branch of criminalistics which deals with the identifica-
tion, acquisition, preservation, analysis and presentation of the information content of
computer systems, or in general of digital devices [1, 2]. The aim is to identify digital
sources of proofs, and to organize such proofs in order to make them robust in view
of their discussion in court, either in civil or penal trials. Digital forensics is concerned
with the analysis of potential elements of proof after a crime has been committed (“post-
mortem”). Clearly, the development of digital forensics is highly related to the devel-
opment of Information and communication technologies in the last decades, and to the
widespread diffusion of electronic devices and infrastructures. It involves various disci-
plines such as computer science, electronic engineering, various branches of law, inves-
tigation techniques and criminological sciences. Rough evidence must be however used

53



to elicit hypotheses concerning events, actions and facts (or sequences of them) with
the goal to present them in court. Evidence analysis involves examining fragmented in-
complete knowledge, and defining complex scenarios by aggregation, likely involving
time, uncertainty, causality, and alternative possibilities. No single methodology exists
today for digital evidence analysis. The scientific investigation experts usually work by
means of their experience and intuition (expertise).

In fact, evidence acquisition is supported by a number of hardware and software
tools, both closed and open source. These tools are continuously evolving to follow the
evolution of the involved technologies and devices. Instead, evidence analysis, is much
less supported. In evidence analysis, the technicians and experts perform the follow-
ing tasks. (i) collect, categorize and revise the evidence items retrieved from electronic
devices. (ii) examine them so as to hypothesize the possible existence of a crime and
potential crime perpetrators. (iii) elicit from the evidence possible proofs that support
the hypotheses. (iv) organize and present the proofs in a form which is acceptable by
the involved parties, namely lawyers and judges, which may include to exhibit explicit
supporting arguments. Figure 13 shows some real sequences of the technical activities
involved. Few software tools exist that only cover some partial aspects, and all of them

Fig. 1. Example of sequences of technical activities

are “black box” tools, i.e., they provide results without motivation or explanation, and
without any possibility of verification. Thus, such results can hardly be presented as
reliable proofs to the involved parties. Moreover, the absence of decision support sys-

3 Image by courtesy from SANS web site url https://blogs.sans.org

54



tems leads to undesirable uncertainty about the outcome of evidence analysis. Often,
different technicians analyzing the same case reach different conclusions, and this may
determine different judge’s decisions in court.

Formal and verifiable artificial intelligence and automated reasoning methods and
techniques for evidence analysis would be very useful for the elicitation of sources of
proof. Several aspects should to be taken into account such as timing of events and ac-
tions, possible (causal) correlations, context in which suspicious actions occurred, skills
of the involved suspects, validity of alibis, etc. Moreover, given available evidence, dif-
ferent possible underlying scenarios may exist, that should be identified, examined and
evaluated. All the above should be performed via “white box” techniques, meaning
that such techniques should be verifiable with respect to the results they provide, how
such results are generated, and how the results can be explained. The new wished-for
software tools should be reliable and provide a high level of assurance, in the sense of
confidence in the system’s correct behavior. computational logic is a suitable candidate
to definition and implementation of such tools, and non-monotonic reasoning is clearly
extensively required.

The long-term objective of this research is to provide law enforcement, investiga-
tors, intelligence agencies, criminologists, public prosecutors, lawyers and judges with
decision-support-systems that can effectively aid them in their activities. The adoption
of such systems can contribute to making how to proceed clearer and faster, and also
under some respects more reliable. In fact, the choice of computational logic as a basis
guarantees transparency and verifiability of tools and results. The aim of the present
paper is to provide a proof-of-concept of the applicability of computational logic and
non-monotonic reasoning to such tasks. In order to convince the several parties in-
volved, whatever limited their computer science expertise might be, we have considered
a series of fragments of cases and have transposed them into simple self-explanatory
answer set programs which provide results which are easy to understand. However, we
have considered fragments of real cases which are presently being investigated by the
Italian Department of Scientific Investigations of Carabinieri 4.

We have adopted Answer Set Programming (ASP, cf., among others, [3–9]) because
ASP programs are declarative and readable and because, as shown in the following sec-
tions, as a matter of fact several analysis problems can be nicely reduced to optimization
problems for which ASP is particularly well-suited. In fact, the above picture shows
how the analysis phase consists in an ordered sequence of detailed technical activity,
performed on the seized memories (or on their forensic copy) following hard rules and
formal procedures, through tools and/or forensic equipment, to research specific ele-
ments, perform the verification of a state or condition, etc. The outcome of the analysis
is a detailed and well-motivated technical report. However these reports , although pro-
viding a comprehensive response in technical terms, may be insufficient or even not
directly usable from the investigation point of view. Further elaboration is in general
needed in order to contextualize technical data in the investigation context. Due to the
experience in DF gained by one of the authors of this paper as a member officer of a DF
laboratory of an italian police force, with national jurisdiction, it has been possible to
identify and experimentally treat (fragments of) complex investigations by reduction to

4 the Police branch of the Italian Army http://www.carabinieri.it

55



answer set programming. This paper presents the results of these experiments. Results
are indeed very promising, as the reduction of investigation cases to answer set pro-
gramming has allowed the experts to identify new investigative hypotheses, that have
been practically exploited.

The paper is organized as follows: in Section 2 we provide a short introduction to
ASP; in Sections 3- 5 we present three simple though representative examples; finally,
in Section 6 we conclude.

2 Answer Set Programming (ASP) in a Nutshell

“Answer Set Programming” (ASP) is a well-established logic programming paradigm
adopting logic programs with default negation under the answer set semantics, which
[3, 4] is a view of logic programs as sets of inference rules (more precisely, default
inference rules). In fact, one can see an answer set program as a set of constraints on
the solution of a problem, where each answer set represents a solution compatible with
the constraints expressed by the program. The reader may refer to [3–9], among others,
for a presentation of ASP as a tool for declarative problem-solving.

Syntactically, a program Π is a collection of rules of the form:

H ← L1, . . . , Lm, not Lm+1, . . . ,not Lm+n

where H is an atom, m ≥ 0 and n ≥ 0, and each Li is an atom. Symbol← is usually
indicated with :- in practical systems. An atom Li and its negative counterpart not Li

are called literals. The left-hand side and the right-hand side of the rule are called head
and body, respectively. A rule with empty body is called a fact. A rule with empty
head is a constraint, where a constraint of the form ← L1, ..., Ln. states that literals
L1, . . . , Ln cannot be simultaneously true in any answer set.

A program may have several answer sets, each of which represent a solution to given
problem which is consistent w.r.t. the problem description and constraints. If a program
has no answer set, this means that no such solution can be found and the program is
said to be inconsistent (as opposed to consistent).

In practical terms a problem encoding, in the form of ASP program, is processed
by an ASP solver which computes the answer set(s) of the program, from which the
solutions can be easily extracted (by abstracting away from irrelevant details). Several
well-developed answer set solvers [10] that compute the answer sets of a given program
can be freely downloaded by potential users. All solvers provide a number of additional
features useful for practical programming, that we will introduce only whenever needed.
Solvers are periodically checked and compared over well-established benchmarks, and
over challenging sample applications proposed at the yearly ASP competition (cf. [11]
for a recent report).

The expressive power of ASP, as well as, its computational complexity have been
deeply investigated [12]. Precisely, in the propositional case the problem of deciding
whether a given program admits answer sets is NP-complete, and so is the problem
of deciding whether there is an answer set containing a specific atom (while deciding
whether a specific atom is in all the answer sets is Co-NP-complete). ASP is clearly
able to express NP-complete problems.

56



3 Case 1: Data Recovery and File Sharing Hypotheses

3.1 The Investigative Case

The judicial authority requested the digital forensics laboratory to analyze the contents
of an hard disk, in order to check for the presence of illegal contents files. If so, they
requested to check for potential activities of sharing on Internet of illegal materials. The
hard disk under analysis was physically damaged (as often done by criminals if they
suspect capture). Therefore, after a head replacement, the evidence acquistion phase
recovered a large amount of files (of various types: images, videos, documents, etc.),
however without their original name. This because the damage present on the disk plates
disallowed the recovery the information of the MFT5. For this reason, an arbitrary name
has been assigned to all the files recovered. Information about the original name of files
and their original location in the file system is thus missing.

3.2 Elements

By analyzing the recovered files, technicians detected the occurrence of:

– files with illegal contents;
– various “INDX files”, corresponding in the NTFS file system to directory files,

which contains the follow METADATA:
• filename;
• physical and logical size of the file;
• created, accessed, modified and changed timestamps;

– index related to the eMule (which is a widely-used file-exchange application), in-
cluding a file containing sharing statistics, whose original name is “known.met”.

Starting from the elements described above, we have been able to reply to the ju-
dicial authority’s question with: a reasonably reliable hypothesis of association of the
recovered file to the respective original name; a reasonable certainty that illegal files
were actually exchanged on the Internet. This has been obtained by modeling the given
problem by means of a very simple well-known ASP example, reported below.

3.3 The Marriage Problem

The Marriage Problem (or SMP - Stable Marriage Problem) is a well-known NP-hard
optimization problem which finds a stable matching between two sets of elements S1

and S2 (say men and women) given a set of preferences for each element. A matching
is a mapping from the elements of one set to the elements of the other set which thus
creates a set of couples (A,B) where A ∈ S1 and B ∈ S2. A matching is stable
whenever it is not the case that some element Â of the first matched set prefers some
given element B̂ of the second matched set over the element to which Â is already
matched, and the same holds for B̂.

5 Master File Table: structured block table containing the attributes of all files in the volume of
an NTFS file system.

57



3.4 Reduction

The given problem is in fact reducible to SMP as follows. In the real case, the lists have
been created as follow:

– men list: defined as the list of names extracted from directory files “INDX files”;
– women: defined as the list of recovered files with have been provisionally assigned

arbitrary names.

The preferences list (or relation order) between the men and women lists is derived
from the comparison of the properties of the individual recovered files (file type, size,
etc.) with those identified in file ‘INDX files”.

3.5 Answer Set Programming Solution

Once compiled the lists men, women and preferences, you can search for answer sets
by means of the following ASP program (in the syntax of the smodels solver). Facts in
the program correspond to a real (though very small) example.

preference(f001, flower_jpg).
preference(f001, woman_jpg).
preference(f002, flower_jpg).
preference(f002, child_jpg).
preference(f003, child_jpg).
preference(f003, woman_jpg).

bigamy(X,Y) :- preference(X,Y), preference(X,Y1), couple(X,Y), couple(X,Y1), Y!=Y1.
bigamy(X,Y) :- preference(X,Y), preference(X1,Y), couple(X1,Y), X!=X1.
couple(X,Y) :- preference(X,Y), not bigamy(X,Y).

#hide.
#show couple(X,Y).

3.6 Results
The results obtained with the smodels solver on the real example are the follow:

smodels version 2.26.
Answer: 1
Stable Model: couple(f002,child_jpg) couple(f001,woman_jpg) couple(f001,flower_jpg)
Answer: 2
Stable Model: couple(f003,child_jpg) couple(f001,woman_jpg) couple(f001,flower_jpg)
Answer: 3
Stable Model: couple(f003,child_jpg) couple(f002,flower_jpg) couple(f001,woman_jpg)
Answer: 4
Stable Model: couple(f002,child_jpg) couple(f002,flower_jpg) couple(f001,woman_jpg)
Answer: 5
Stable Model: couple(f003,woman_jpg) couple(f002,child_jpg) couple(f002,flower_jpg)
Answer: 6
Stable Model: couple(f003,woman_jpg) couple(f002,child_jpg) couple(f001,flower_jpg)
Answer: 7
Stable Model: couple(f003,woman_jpg) couple(f003,child_jpg) couple(f001,flower_jpg)
Answer: 8
Stable Model: couple(f003,woman_jpg) couple(f003,child_jpg) couple(f002,flower_jpg)

From the answer sets, it is possible (as the reader can see) to formulate hypothe-
ses about the original names of the recovered files. Furthermore, by comparing the file

58



names indexed in the file Known.met6, it has been possible to make reasonable assump-
tions about the effective sharing of files with illegal content.

4 Case 2: Path Verification

4.1 The Investigative Case

After a heinous crime, an allegedly suspect has been arrested. The police sequestered
all his mobile devices (smartphone, route navigator, tablet, etc...). The judicial authority
requested the DF laboratory to analyze the digital contents of the mobile devices in
order to determine their position with respect to the crime site during an interval of
time which includes the estimated time when the crime was perpetrated.

4.2 Elements

From the analysis of the mobile devices, a set of geographical GPS coordinates have
been extracted, some of them related to the the time interval under investigation. There
are however some gaps, one of them certainly due to a proven switch off of few minutes
around the crime time. To start with, a list called GPS-LIST is generated, collecting all
the positions extracted from the various devices, grouped and ordered by time unit of
interest (seconds, multiple of seconds, minutes, etc..). The objective is that of establish-
ing whether the known GPS coordinates are compatible with some path which locates
the given mobile devices at the crime site during the given time interval. If no such
path exists, then the suspect must be discharged. If some compatible path is found, then
the investigation about the potential perpetrator can proceed. The objective has been
reached via reduction to the following simple game.

4.3 Hidato Puzzle (Hidoku)

Hidato is a logical puzzle (also known as “Hidoku”) invented by the Israeli mathemati-
cian Dr. Gyora Benedek. The aim of Hidato is to fill a matrix of numbers, partially
filled a priori, using consecutive numbers connected over a horizontal, vertical or diag-
onal ideal line. Below we show, as a simple example, a 6x6 initial matrix.

18 0 0 0 26 0
19 0 0 27 0 0
0 14 0 0 23 31
1 0 0 8 33 0
0 0 5 0 0 0
0 0 10 0 36 35

6 As mentioned, known.met is a file of the widely-used eMule file-exchange application that
stores the statistics of all files that the software shared, all files present in the download list and
downloaded in the past.

59



4.4 Reduction

It has been possible to perform the reduction of the given investigation problem to the
“Hidato Puzzle” problem, by creating a matrix representing the geographical area of
interest, where each element of the matrix represents a physical zone crossable in a unit
of time. The physical size of the individual cell of the matrix (grid) on the map will
be proportionate to the time unit that will be considered, both the hypothetical transfer
speed. The matrix has been populated with the elements of the previously-created LIST-
GPS, i.e., with known positions of the suspect.

Considering the above matrix, assume that the crime has been committed at loca-
tion 34, at a time included in the interval with lower bound corresponding to when the
suspect was at location 1 and upper bound corresponding to when the suspect was at
location 36. All devices have been provably switched off between locations 5 and 10.

4.5 Answer Set Programming Solution
Once built the matrix, we can determine whether a suspect route exists by finding the
answer sets of the following ASP program [13] (here we have used the clingo solver).
Notice that the omitted cells are assumed to have value 0.
#const n = 6.
matrix(1, 1, 18). matrix(1, 5, 26). matrix(2, 1, 19). matrix(2, 4, 27).
matrix(3, 2, 14). matrix(3, 5, 23). matrix(3, 6, 31). matrix(4, 1, 1).
matrix(4, 4, 8). matrix(4, 5, 33). matrix(5, 3, 5). matrix(6, 3, 10).
matrix(6, 5, 36). matrix(6, 6, 35).

size(1..n).
values(1..n*n).
values2(1..n*n-1).
diffs(-1;0;1).

1 { x(Row, Col, Value) : values(Value) } 1 :- size(Row), size(Col).
1 { x(Row, Col, Value) : size(Row) : size(Col) } 1 :- values(Value).
x(Row, Col, Value) :- matrix(Row, Col, Value).

valid(Row, Col, Row2, Col2) :- diffs(A), diffs(B), Row2 = Row+A, Col2 = Col+B,
Row2 >= 1, Col2 >= 1, Row2 <= size, Col2 <= size,
size(Row), size(Col).

:- x(Row, Col, Value+1), x(Row2, Col2, Value),
not valid(Row, Col, Row2, Col2), values2(Value).

#hide.
#show x(Row, Col, Value).

4.6 Results
The results obtained via the clingo solver are the following:
Answer: 1
x(1,1,18) x(1,5,26) x(2,1,19) x(2,4,27) x(3,2,14) x(3,5,23) x(3,6,31) x(4,1,1)
x(4,4,8) x(4,5,33) x(5,3,5) x(6,3,10) x(6,5,36) x(6,6,35) x(5,1,2) x(6,1,3)
x(6,2,4) x(6,4,6) x(5,5,7) x(5,4,9) x(5,2,11) x(4,2,12) x(3,1,13) x(4,3,15)
x(3,3,16) x(2,3,21) x(3,4,22) x(2,6,24) x(1,6,25) x(1,3,28) x(1,4,29) x(2,5,30)
x(4,6,32) x(5,6,34) x(1,2,20) x(2,2,17)

Answer: 2
x(1,1,18) x(1,5,26) x(2,1,19) x(2,4,27) x(3,2,14) x(3,5,23) x(3,6,31) x(4,1,1)
x(4,4,8) x(4,5,33) x(5,3,5) x(6,3,10) x(6,5,36) x(6,6,35) x(5,1,2) x(6,1,3)
x(6,2,4) x(6,4,6) x(5,5,7) x(5,4,9) x(5,2,11) x(4,3,12) x(3,3,13) x(4,2,15)
x(3,1,16) x(2,3,21) x(3,4,22) x(2,6,24) x(1,6,25) x(1,3,28) x(1,4,29) x(2,5,30)
x(4,6,32) x(5,6,34) x(1,2,20) x(2,2,17)

60



These results are particularly interesting for the investigation, as they both corre-
spond to paths which are compatible with the hypothesis of the suspect committing the
crime.

18 20 28 29 26 25
19 17 21 27 30 24
13 14 16 22 23 31
1 12 15 8 33 32
2 11 5 9 7 34
3 4 10 6 36 35

18 20 28 29 26 25
19 17 21 27 30 24
16 14 13 22 23 31
1 15 12 8 33 32
2 11 5 9 7 34
3 4 10 6 36 35

It should be noted that a variant of the Hidato algorithm exists, that considers maps
whose structure is more complex than a rectangular matrix.

5 Case 3: Alibi Verification

5.1 The Investigative Case

During an investigation concerning a bloody murder, it is necessary check the alibi
provided by a suspect. In the questioning, the suspect has been rather vague about the
timing of his movements. However, he declared what follows.

– to have left home (place X) at a certain time;
– to have reached the office at place Y where he worked on the computer for a certain

time;
– to have subsequently reached place Z where, soon after opening the entrance door,

he discovered the body and raised the alarm.

In order to verify the suspect’s alibi, the judicial authority requested the DF labora-
tory to analyze:

– the contents of the smartphone owned by the suspect;
– the computer confiscated in place Y, where the suspect says to have worked;
– a video-surveillance equipment installed at a post office situated near place Z, as its

video-camera surveys the street that provides access to Z.

5.2 Elements

The coroner’s analysis on the body has established the temporal interval including the
time of death. From the forensic analysis of the smarphone it has been possible to
compile a list of GPS positions related to a time interval including the time of death,
denoted by GPS-LIST. The analysis of the computer allowed the experts to extract the
list of accesses on the day of the crime, denoted by LOGON-LIST. The analysis of the
video-surveillance equipment allowed the experts to isolate some sequences, denoted
by VIDEO-LIST, that show a male subject whose somatic features are compatible with
the suspect. All the above lists have been ordered according to the temporal sequence
of their elements. The investigation case at hand can be modeled as a planning prob-
lem where time is a fundamental element in order to establish whether a sequence of

61



actions exist that may allow to reach a certain objective within a certain time. Several
approaches to causal and temporal reasoning in ASP exist, that could be usefully ex-
ploited for this kind of problem7. Here, for lack of space and for the sake of simplicity
we model the problem by means of the very famous “Monkey & Banana” problem,
which is the archetype of such kind of problems in artificial intelligence.

5.3 Monkey & Banana

The specification of “Monkey & Banana” is the following: A monkey is in a room.
Suspended from the ceiling is a banana, beyond the monkey’s reach. In the room there
is also a chair (in some versions there is a stick, that we do not consider). The ceiling
is just the right height so that a monkey standing on a chair could knock the banana
down (in the more general version by using the stick, in our version just by hand). The
monkey knows how to move around, carry other things around, reach for the banana.
What is the best sequence of actions for the monkey? The initial conditions are that: the
chair is not just below the bananas, rather it is in a different location in the room; the
monkey is in a different location with respect to the chair and the bananas.

5.4 Reduction

The reduction of the case at hand to the ‘Monkey & Banana” problem is the following.
Notice the reduction of the “idle” state of the monkey to unknown actions that the
suspect may have performed at that time.

Monkey → Suspect
Banana → Body
Eats Banana → Raise Alarm
Initial Position Monkey→ X
Initial Position Chair → Y
Below Banana → Z
Walks → Walks
Move Chair → Motion to Z
Ascend → Open the Door
Idle → Unknown Action

Problem’s constraint are that, at any time, the monkey:

– may perform only one action at each time instant among walk, move chair, stand
on chair, or stay idle;

– if the monkey stands on the chair, it cannot walk, and it cannot climb further;
– if the chair is not moved then it stays where it is, and vice versa if it is moved it

changes its position;
– the monkey is somewhere in the room, where it remains unless it walks, which

implies changing position;

7 For lack of space we cannot provide the pertinent bibliography: please refer to [14] and to the
references therein.

62



– the monkey may climb or move the chair only if it is in the chair’s location;
– the monkey can reach the banana only if it has climbed the chair, and the chair is

under the banana.

5.5 Answer Set Programming Solution

The following ASP program, obtained by modifying a version that can be found at
http://www.dbai.tuwien.ac.at/proj/dlv/tutorial/, is formulated for the DLV solver, and
provides in the answer sets the timed sequences of actions (if any exists) by which the
monkey can reach and eat the banana.

walk(Time) v move_chair(Time) v ascend(Time) v idle(Time) v eats_banana(Time) :-
#int(Time).

monkey_motion(T) :- walk(T).
monkey_motion(T) :- move_chair(T).

stands_on_chair(T2) :- ascend(T), T2 = T + 1.
:- stands_on_chair(T), ascend(T).
:- stands_on_chair(T), monkey_motion(T).
stands_on_chair(T2) :- stands_on_chair(T), T2 = T + 1.

chair_at_place(X, T2) :-
chair_at_place(X, T1), T2 = T1 + 1,not move_chair(T1).

chair_at_place(Pos, T2) :-
move_chair(T1),T2 = T1 + 1,monkey_at_place(Pos, T2).

:- move_chair(T1),chair_at_place(Pos,T2),chair_at_place(Pos1,T1),T2 = T1+1, Pos=Pos1.

monkey_at_place(monkey_starting_point, T) v
monkey_at_place(chair_starting_point, T) v
monkey_at_place(below_banana, T) :- #int(T).

:- monkey_at_place(chair_starting_point, 0).
:- monkey_at_place(below_banana, 0).
:- not monkey_at_place(monkey_starting_point, 0).

:- monkey_at_place(Pos1, T2),
monkey_at_place(Pos2, T1), T2 = T1 + 1,
Pos1 != Pos2, not monkey_motion(T1).

:- monkey_at_place(Pos, T2), monkey_at_place(Pos, T1),
T2 = T1 + 1, monkey_motion(T1).

:- ascend(T),monkey_at_place(Pos1, T),
chair_at_place(Pos2, T),Pos1 != Pos2.

:- move_chair(T),monkey_at_place(Pos1, T),
chair_at_place(Pos2, T),Pos1 != Pos2.

monkey_at_place(monkey_starting_point, 0) :- true.
chair_at_place(chair_starting_point, 0) :- true.

reach_banana(T) :- can_reach_banana(T).
can_reach_banana(T) :- stands_on_chair(T),

chair_at_place(below_banana, T).
:-eats_banana(T), not can_reach_banana(T).
:- eats_banana(T1),eats_banana(T2), T1!=T2.
happy :- eats_banana(T).
:- not happy.

step(N, walk, Destination) :- walk(N),
monkey_at_place(Destination, N2),N2 = N + 1.

step(N, move_chair, Destination) :-
move_chair(N),monkey_at_place(Destination, N2),
N2 = N + 1.

step(N, ascend, " ") :- ascend(N).
step(N, idle, " ") :- idle(N).
step(N, eats_banana, " ") :- eats_banana(N).

63



5.6 Results

The proposed reduction in the first place allows investigators to verify the alibi provided
by the suspect. In fact, the possible timed lists of actions performed by the suspect are
determined as answer sets of the above program. Such lists are constructed so as to
be compatible with the detected GPS positions of the suspect, the detected computer
activity and the actions that the suspect has declared to have performed. By running
the solver on the real case with a maximum number of steps N = 3, corresponding to
the case where the suspect is provably at the office at time 0, we get exactly the action
sequences needed to reach the goal.

{step(0,walk,chair_starting_point), step(1,move_chair,below_banana),
step(2,ascend," "), step(3,eats_banana," ")}

Therefore, if the suspect raised the alarm at time 3 he actually had no time for commit-
ting the crime and therefore he should presumably be discharged.

In case instead the alibi is not fully verified, then further investigation is needed.
By increasing the time, for example to N = 5, we in fact get many sets of possible
alternative actions, where idle is an unknown action for which it might interesting to
investigate further so as to prove or reject the investigation thesis.

{step(0,idle," "),step(1,walk,chair_starting_point),
step(2,move_chair,below_banana), step(3,ascend," "),
step(4,idle," "),step(5,eats_banana," ")}

{step(0,walk,below_banana), step(1,walk,chair_starting_point),
step(2,move_chair,below_banana), step(3,ascend," ")
step(4,idle," "), step(5,eats_banana," ") }

Among the answer sets there are many which suggest suspicious behavior. The first
one above outlines a scenario where the initial suspect’s actions are unknown. Then he
moves to the crime site where however he has the time and opportunity to commit the
crime at step 4. Even worse is the second answer set, where the suspect moves to the
crime site, than moves back to the office, moves a second time to the crime site where
again he has the time and opportunity to commit the crime at step 4. As the suspect’s
presence at the crime site is confirmed by the video-surveillance equipment records, this
behavior is suggestive of, e.g., going to meet the victim and having a discussion, going
back to the office (maybe to get a weapon) and then actually committing the crime.

6 Conclusions

In this paper we have demonstrated the applicability of non-monotonic reasoning tech-
niques to evidence analysis in digital forensics by mapping some fragments of real cases
to existing simple answer set programs. The application of artificial intelligence and in
particular of non-monotonic reasoning techniques to evidence analysis is a novelty: in
fact, even very influential publications in digital forensics such as [1, 2] are basically a
guide for human experts about how to better understand and exploit digital data. There-
fore the present work, though preliminary, opens significant new perspectives. Future

64



developments include building a toolkit exploiting not only ASP but also other non-
monotonic-reasoning techniques such as abduction, temporal reasoning, causal reason-
ing and others, as elements of decision-support-systems that can effectively aid inves-
tigation activities and support of the production of evidence to be examined in trial.
The multidisciplinary future challenge is that of making such tools formally accepted
in court proceedings: this involves in general terms complex societal and psychological
issues. From the technical point of view, for making such tools acceptable and perceived
as reliable, it is crucial to develop verification, certification, assurance and explanation
techniques.

References

1. Casey, E.: Handbook of Digital Forensics and Investigation. Elsevier (2009)
2. Casey, E.: Digital Evidence and Computer Crime: Forensic Science, Computers, and the

Internet. books.google.com (2011)
3. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In Kowalski,

R., Bowen, K., eds.: Proc. of the 5th Intl. Conf. and Symposium on Logic Programming,
MIT Press (1988) 1070–1080

4. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9 (1991) 365–385

5. Baral, C.: Knowledge representation, reasoning and declarative problem solving. Cambridge
University Press (2003)

6. Leone, N.: Logic programming and nonmonotonic reasoning: From theory to systems and
applications. In: Logic Programming and Nonmonotonic Reasoning, 9th Intl. Conference,
LPNMR 2007. (2007)

7. Truszczyński, M.: Logic programming for knowledge representation. In Dahl, V., Niemelä,
I., eds.: Logic Programming, 23rd Intl. Conference, ICLP 2007. (2007) 76–88

8. Dovier, A., Formisano, A., Pontelli, E.: An empirical study of constraint logic programming
and answer set programming solutions of combinatorial problems. Journal of Experimental
and Theoretical Artificial Intelligence 21(2) (2009) 79–121

9. Dovier, A., Formisano, A.: Programmazione Dichiarativa in Prolog, CLP, ASP, e CCP.
(2008) Available (in Italian) at https://users.dimi.uniud.it/~agostino.
dovier/DID/corsi.html.

10. Web references of ASP solvers: Clasp: potassco.sourceforge.net; Cmod-
els: www.cs.utexas.edu/users/tag/cmodels; DLV: www.dbai.tuwien.
ac.at/proj/dlv; Smodels: www.tcs.hut.fi/Software/smodels.

11. Calimeri, F., Ianni, G., Krennwallner, T., Ricca, F.: The answer set programming competi-
tion. AI Magazine 33(4) (2012) 114–118

12. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic
programming. ACM Computing Surveys 33(3) (2001) 374–425

13. Kjellerstrand, H. Available at http://www.hakank.org/answer_set_
programming (2015)

14. Cabalar, P.: Causal logic programming. In: Correct Reasoning - Essays on Logic-Based
AI in Honour of Vladimir Lifschitz. Volume 7265 of Lecture Notes in Computer Science.,
Springer (2012) 102–116

65



Leveraging Semantic Web Technologies for
Analysis of Crime in Social Science

Luca Pulina1, Antonietta Mazzette1, Laura Pandolfo2, Elena Piga1,
Maria Laura Ruiu1, and Camillo Tidore1

1 POLCOMING, Università di Sassari, Viale Mancini n. 5 – 07100 Sassari – Italy
{lpulina,mazzette,mlruiu,tidore}@uniss.it

2 DIBRIS, Università di Genova, Via Opera Pia, 13 – 16145 Genova – Italy
laura.pandolfo@edu.unige.it

Abstract. In this paper we present the conceptual level of an ontology-
based application aimed to support social scientists in their sociological
analysis related on crime. Starting from several concrete issues posed by
the research team of the Social Observatory on Crime of the University
of Sassari, our goal is to build a Semantic Web based tool to collect,
organize, and analyze data on crime, as well as for the exploitation of
research results by institutions and civil society.

1 Introduction

Generally speaking, crime analysis is the activity aimed at finding trends in
crimes in order to devise both policies and solutions to crime-related issues. From
a sociological point of view, the analysis of crime is addressed to understand how
criminal phenomena might influence social assets in the context of urban and
rural areas. Moreover, it aims to identify prevention measures and their potential
effects on social configurations. In order to do that, data analysis plays a role
of paramount importance. Nowadays, information on urban crime is profitably
used by a growing number of local governments to identify major risks and make
decisions about the safety of their community.

Computer-assisted qualitative data analysis software (CAQDAS) were suc-
cessfully adopted by the sociological research community in order to both or-
ganize and analyze such kind of data – see, e.g., [1]. A number of benefits of
CAQDAS have been recognized by sociological literature. On the other hand,
several issues are still open in relation to theoretical, methodological issues –
see, e.g., [2] – and practical aspects, such as heterogeneity of data sources, data
integration, and the exploitation of implicit knowledge related to the collected
data. It is well-established that the usage of Semantic Web (SW) technologies
can provide a valuable support in order to overcome the practical limits listed
above. Moreover, the usage of such technologies in crime and public safety fields
is not new – see, e.g., [3].

In this paper we present the conceptual level of an ontology-based applica-
tion aimed at supporting social scientists in their sociological analysis related to

66



crime. It represents the first step towards the development of a tool aimed at
organize and manage both quantitative and qualitative data related to this ap-
plication domain. In particular, the need of such a tool has emerged from several
concrete issues posed by the research team of the Social Observatory on Crime
(OSC)3 of the University of Sassari. On the one hand, the creation of a SW-based
crime information platform might allow stakeholders – institutions and civil so-
ciety – to easily access to data on crime, for instance by mapping crimes and
crime-related issues, and identifying where and how they are occurring, where
they are concentrated and why. On the other hand, it can facilitate researchers’
work in organizing and managing data collected from different sources, such as
statistical data and qualitative information from newspapers.

The remainder of the paper is organized as follows. In Section 2 we describe
the OSC, while in Section 3 we report the whole process of design and imple-
mentation of the presented ontology. We conclude the paper in Section 4 with
some final remarks and discussing future works.

2 The Social Observatory on Crime

The OSC originated in 2012 thanks to an interdisciplinary team (in particular
social scientists such as sociologists, psychologists, economists, jurists) which in-
volves researchers from the University of Sassari. It originated from the Urban
Study Center (CSU)4, that focuses on urban and territory evolution and trans-
formations; coordinates empirical study and promotes the culture of legality
by involving students in actively doing research. The CSU contributes to pro-
moting the adoption of governance approaches by involving private and public
bodies as both producers and beneficiaries of research outcomes. It also aims to
disseminate activities’ results through seminars, conferences, educative courses
and scientific publications. Since 2004, the CSU has started to focus on crime
and insecurity in order to observe their impacts on the Sardinian social context
and territory. The analysis and monitoring activities are based on data collected
from documents provided by justice officers, newspapers and national statistical
reports (e.g., reports of the Italian National Institute of Statistics, ISTAT).

The OSC was built aimed at promoting and generating governance ap-
proaches by trying to involve different kinds of stakeholder, such as private
and public bodies. In fact, the inclusion of these actors was supposed to be
relevant both to collect basic information and data, and to define concerted
strategies for reducing criminal behaviors and attitudes. For a long time, both
literature and policies have focused on situational crime prevention strategies by
creating “defensible spaces”, and less focused on the contrast of the motivations
that encourage deviance. During the last twenty years governance approaches
to crime have been promoted, through collaboration among a multiplicity of
actors (also “external” to the control/protection functions). Following this ap-
proach, the CSU concentrated its efforts on identifying processes for increasing

3 Osservatorio Sociale sulla Criminalità, http://polcoming.uniss.it/node/1133
4 Centro Studi Urbani, http://www.centrostudiurbani.it

67



degree of key-stakeholders’ participation and networking rather than defining
specific “interventions” and “architectonic fences”. Recently [4], OSC identified
social indicators in order to create an “Informative System for data collection
and analysis”. This tool was thought to support policy planning and decision-
making oriented at fighting and reducing criminal and illegal activities.

The main goal of OSC is to develop an exhaustive database which includes
quantitative data (primary and secondary data from different sources, e.g., IS-
TAT and regional prosecutors) and qualitative information obtained, e.g., by
analyzing local newspapers (in particular La Nuova Sardegna5 and L’Unione
Sarda6). The newspaper consultation has allowed the collection a number of de-
tailed information (e.g., description of places where murders happened, descrip-
tion of authors way of life and their past experiences, connections with other
types of crime, etc.) that otherwise would have been difficult to gain and record.
However, the consultation refers to those relevant crimes which get newspapers
attention such as murders, robberies, attacks, threats, and cannabis cultivation.

A further objective of OSC is to analyze connections between widespread in-
security and crime. In fact, individual and collective behaviors, decision-making
and economic activities are often strongly related to the types and the intensity
of these connections. Moreover, criminal phenomena should be analyzed in re-
lation to the process of modernization (and its consequences) that has involved
the targeted territories by shaping social configuration of urban and rural areas.

3 The OCRA Ontology

ocra aims at being the conceptual layer of a Semantic Web based tool focused
on the improvement of the processes related to the collection, organization, man-
agement, and analysis of data on criminal phenomena in Sardinia by OSC. In
the following, we describe design and implementation of ocra (Ontology for
CRime Analysis). We can summarize as follows the main steps of this process:

1. Definition of the domain.
2. Identification of the key concepts of the domain to be described.
3. Identification of the proper language and Tbox implementation.
4. Ontology population, i.e., filling the Abox with known facts.

Firstly, we reviewed the semi-structured dataset collected by OSC during a 11
years-long research on criminality in Sardinia. Data on criminal phenomena were
collected through specific forms to be filled with information obtained, e.g., by
local newspapers such as La Nuova Sardegna and L’Unione Sarda. The criminal
phenomena recorded are murder, attacks, robbery and cultivation of cannabis.
Data collection forms were mainly composed of the following information:

– Data concerning the newspaper, e.g., name of the newspaper, date, and title
of the related article.

5 http://lanuovasardegna.it
6 http://unionesarda.it

68



Fig. 1. Raw classification of the criminal phenomena.

– Data concerning the crime, e.g., type, place, date, and motive.

– Data concerning the authors of the crime and victims, e.g., name, job, age,
and records of criminal offenses.

Regarding the second point, we analyzed collected data in order to high-
light common terminology, redundancies, and relationships between different
elements, as suggested by the domain experts of the OSC. The results of this
process enabled us to compute a taxonomy – depicted in Figure 1 – related to
different crimes.

Considering the third point, we proceeded with the choice of the modeling
language analyzing the different alternatives offered by OWL 2. To retain most
of the practical advantages of OWL 2, but to improve on its applicability, in [5]
has been introduced OWL 2 profiles, i.e., a sub-language of OWL 2 featuring
limitations on the available language constructs and their usage.

Considering the available profiles, we excluded OWL 2 EL because it does not
support inverse object properties, while we discarded both OWL 2 QL and OWL
2 RL because they do not support, e.g., existential quantification to individuals.
Thus, ocra has been developed in OWL 2 DL, and its Tbox is composed of
81 classes, 36 object properties, and 53 data properties. In the following, we
describe main classes of the ocra ontology7:

ArticoloGiornale (NewspaperArticle) represents the class containing the news-
papers information about the specific crime. Every instance of this class has
data properties such as Titolo (Title) and DataArticolo (ArticleDate).

Luogo (Place) includes the place where the crime has occurred. Individuals of
Luogo are also the places in which the victims and offenders were born or
live.

7 The full documentation is available at http://visionlab.uniss.it/OCRA.

69



Fig. 2. Class Omicidio and related classes in the ocra ontology.

Movente (Motive) aims to model the motive of the crime. It has different sub-
classes, each of which is a specific motive, such as economical, political,
revenge, etc.

PersonaFisica (Person) models people related to a specific crime. It has two
sub-classes, namely Vittima (Victim) and Autore (Offender). Every individ-
ual belonging to those classes has data properties such as Età (Age), Sesso
(Gender), StatoCivile (MaritalStatus), Precedenti (RecordsOfCriminalOf-
fenses).

Reato (Crime) is one of the central classes of ocra. It has two sub-classes re-
lated to the main types of offenses taken into account: crimes involving peo-
ple or things and crimes related to drug – see below. Reato has different data
properties such as DataReato(CrimeDate), NumeroVittime(NumberOfVictims),
NumeroAutori (NumberOfOffenders).

ReatoAPersoneECose (CrimeToPersonsAndThings) In this class are included
individuals related to crimes that caused material damage or injure peo-
ple. ReatoAPersoneECose has two sub-classes: Omicidio(Murder), which
includes crimes with homicide, and NonOmicidio(NotMurder). The latter
covers a large series of crimes which have not led to murder. NonOmicidio
has three sub-classes, each one modeling different category offenses, namely
Attentato(Threat), Minaccia(Attack), Rapina(Robbery).

ReatoCollegatoAllaDroga (CrimeRelatedToDrug) is the other principal sub-
class of Reato and is related to all the drug offences. In particular, we mod-
eled the following two sub-classes of drug offences: Coltivazione(Plantation)
and Detenzione(Possession). Some of the most relevant data properties of
ReatoCollegatoAllaDroga are connected to the type and the number of
drugs confiscated by the authorities, such as Semi (Seeds) and Piante(Plants).

Strumenti (Weapons) represents the class containing the instruments used by
an offender to commit the crime. It has various sub-classes, such as ArmiDa-
Fuoco (FireArms), Esplosivi (Explosives) and Veicoli (Vehicles).

Concerning object properties, we briefly describe the ones related to Omi-

cidio, because they enable domain experts to involve in their analysis important

70



data regarding places in which the crime has occurred, offenders, and victims.
Noticeable object properties are:

– commessoDa(CommittedBy): connects Omicidio to Autore.
– haCoinvolto(hasInvolvedIn): relationship between Omicidio and Vittima.
– avvenutoA(takesPlaceIn): allows the identification of murder’s place (Luogo).
– commessoCon (hasWeapon): relationship with the murder weapon.
– haMovente (hasMotive): it connects the offense with the motive (Movente).

In Figure 2 we show a graphical example of these relationships.
Finally, the ocra Abox has been populated using data provided by the OSC.

Actually, the Abox contains more than 15000 individuals, with their related
properties, while the whole ontology is composed of about 365000 triples.

4 Conclusions

In this paper we described design and development of the ocra ontology, the
conceptual level of the ontology-based application aimed to support people of
OSC in their sociological analysis related to crime.

Currently, we are developing a data integration layer in order to exploit in-
formation coming from relevant external sources, e.g., open data provided by
ISTAT and DBpedia. We are also designing a Graphical User Interface to sup-
port the ontology population stage, in order to make this process of knowledge
acquisition more interactive and dynamic. More, concerning the ontology popu-
lation, we are studying automated solutions for data collection and insertion.

Finally, we are planning to perform more detailed experimental analysis on
the ocra ontologies. Some preliminary experiments have shown us that ocra
could be a challenging benchmark for OWL 2 DL reasoners.

Acknowledgments The authors wish to thank the anonymous reviewers for their
valuable suggestions, which were helpful in improving the final version of the
paper.

References

1. Mangabeira, W.C.: Caqdas and its diffusion across four countries: National speci-
ficities and common themes. Current Sociology 44(3) (1996) 191–205

2. John, W.S., Johnson, P.: The pros and cons of data analysis software for qualitative
research. Journal of Nursing Scholarship 32(4) (2000) 393–397

3. Asaro, C., Biasiotti, M.A., Guidotti, P., Papini, M., Sagri, M.T., Tiscornia, D.:
A domain ontology: Italian crime ontology. In: Proceedings of the ICAIL 2003
Workshop on Legal Ontologies & Web based legal information management. (2003)

4. Mazzette, A., ed.: La criminalità in Sardegna, Quarto rapporto di ricerca. EDES,
Sassari (2014)

5. Motik, B., Patel-Schneider, P., Parsia, B., Bock, C., Fokoue, A., Haase, P., Hoekstra,
R., Horrocks, I., Ruttenberg, A., Sattler, U., et al.: OWL 2 Web Ontology Language:
Structural Specification and Functional-Style Syntax. W3C Recommendation 27
(2009)

71



Parametric Protocol-Driven Agents
and their Integration in JADE?

Angelo Ferrando

DIBRIS, Genoa University, Italy
s3479302@studenti.unige.it

Abstract. In this paper we introduce “Template Global Types” which
extend Constrained Global Types to support a more generic and modular
approach to define protocols, meant as patterns of events of a given type.
Protocols can be used both for monitoring the behavior of distributed
computational entities and for driving it. In this paper we show the po-
tential of Template Global Types in the domain of protocol-driven intel-
ligent software agents. The interpreter for “executing” Template Global
Types has a very natural implementation in Prolog which can easily im-
plement the transition rules for moving from one state to another one,
given that an event has been perceived (in case of monitoring) or gener-
ated for execution (in case of protocol-driven behavior). This interpreter
has been integrated into the Jason logic-based agent framework with
limited effort, thanks to the native support that Jason offers to Prolog.
In order to demonstrate the flexibility and portability of our approach,
which goes beyond the boundaries of logic-based frameworks, in this pa-
per we discuss the integration of the protocol-driven interpreter into the
JADE agent framework, entirely implemented in Java.

1 Introduction

Nowadays, having guarantees on the correct behavior of developed systems is
gaining more and more importance. Especially in the case of distributed systems,
increasing their robustness is a mandatory target. To achieve this goal, we can
use two different techniques:

– Testing, which reduces the percentage of bugs in software by trying out the
largest number of features offered by the system in order to find errors or
inconsistencies.

– Verification, which allows the developers to perform an exhaustive search in
order to check if all chosen properties are maintained, such as the absence
of deadlock within a concurrent system.

Checking correctness is not an easy problem, especially when considering
distributed systems.

? The paper contains original material. The author is a student of the Computer
Science Master’s Degree at Genova University.

72



A typical example of complex, heterogeneous, open and dynamic distributed
system is the multi-agent system (MAS), where each component is autonomous
and communication is vital.

In order to verify the correct behavior of the agents we can monitor them
with the help of a monitor agent, as the one by Briola et al. [6]. An evolution
of that approach is described by Ancona et al. [11] in which, instead of having
one monitor agent that controls the behavior of the system by checking that
everything is running correctly, the behavior of each individual agent is driven
by the protocol. Since the agent’s behavior is driven by a protocol, it is correct
without needing to be controlled, or better, the agent in a certain way becomes
controller of itself, being able to do only what the protocol allows it to do.

Protocols can be defined using many different formalisms. In the previous
work carried out at the University of Genova, an original formalism named
“Global Types” was proposed along with its successive extensions including
“Constrained Global Types” [1, 2].

Protocols expressed as Constrained Global Types include both Prolog equa-
tions and transition rules moving from one allowed protocol state to another
one, given a perceived (or a generated, in case of protocol-driven agents) event
fully implemented in Prolog. For this reason, the first attempt to implement an
interpreter for protocol-driven agents was with Jason1, because it is able to run
Prolog code directly within the agent [11].

This paper advances a previous work [11] in the following issues:

– first extends Constrained Global Types with a mechanism for making them
more modular and flexible (“Template Global Types”);

– second implements agents driven by protocols expressed using Template
Global Types in Jason;

– third implements agents driven by protocols expressed using Template Global
Types in a framework not based on Prolog. The choice fell on JADE2, a Java
platform for the creation of multi-agent systems widely used in industrial ap-
plications (see Figure 1).

The integration of an interpreter for Template Global Types protocol-driven
allows us to demonstrate two important points:

– the choice of the framework for the implementation of the MASs is not a con-
straint. For instance, agents can follow the BDI (Beliefs, Desires, Intentions
[23]) approach, as happens in Jason, or not, as happens in JADE;

– the only requirement is the ability to implement an interface between a
Prolog engine supporting cyclic terms and the underlying MAS framework.

1 http://jason.sourceforge.net/
2 http://jade.tilab.com/

73



Fig. 1. Our framework for protocol-driven JADE agents.

2 Background

In [11] we used Constrained Global Types without variables (that is instead
typical of Attribute Global Type [18]). In order to better understand the content
of this paper, we briefly sketch their syntax and semantics.

Omitting the operators that are not used in our examples, a constrained
global type may look like the following:

– EvType:PrSpec (sequence), where EvType is an event type and PrSpec is
a constrained global type. From a semantic point of view, EvType:PrSpec
represents the set of all event traces whose first event Ev matches the event
type EvType (Ev ∈ EvType), and the remaining part is a trace in the set
represented by PrSpec.

– PrSpec1 | PrSpec2 (fork), where both PrSpec1 and PrSpec2 are constrained
global types, representing the set obtained by shuffling the traces in PrSpec1
with the traces in PrSpec2.

With these two operators we can already write complex protocols, as we will
see afterwards with some examples.

Another important aspect that we want to introduce, and that was widely
discussed in [11], is the switch interaction. Such an event can take place when our
events include communicative ones. During an interaction protocol execution, an
agent can ask to another to change its protocol; this can happen only in specific
circumstances and is an important feature in order to support runtime protocol
switch.

74



3 Template Global Types

To be able to write more complex protocols, we extended the previous work [11]
introducing Template Global Types. The main difference of Template Global
Types w.r.t. Constrained Global Types is the presence of parameters inside the
protocol definition.

Template Global Types are a sort of “meta-formalism” in the sense they
cannot be directly used as they are. Indeed, they are templates which must be
applied to some arguments in order to obtain plain Constrained Global Types.
Parameters are present only in the Template Global Type definition: when Tem-
plate Global Types are actually used either for runtime verification or for pro-
tocol driven behavior generation, all terms must be ground, i.e. variables must
have already been instantiated.

In order to better explain this new formalism, we introduce some examples.
Here is how we would have represented a client-server protocol with Con-

strained Global Types3.

SERVER =

(receive request(client1),0):(serve request(client1),0):SERVER.

An example of correct trace would be

receive request(client1): serve request(client1):

receive request(client1):...

where ... indicates that the trace is infinite: Constrained Global Types use
coinduction to easily represent endless sequences.

The SERVER protocol is a client-server protocol made up by a loop in which the
server receives a serve request from the client1 replying with a receive request.

Global types can be easily expressed as a set of Prolog equations like the one
defining SERVER.

If we would like to change the client we should modify the protocol. This is
not very convenient because our protocols support switch interactions and we
could take advantage of this feature in order to change, for instance, the clients
that communicate with the server.

Using instead Template Global Types we can avoid this problem, defining
the protocol as follows:

3 The reader should ignore the 0 placed as second argument in the event type def-
inition: the number is required to synchronize sequences present in different fork
branches; in the examples in this paper no synchronization is necessary and the
argument is fixed to 0.

75



SERVER =

(receive request(var(1)),0):(serve request(var(1)),0):SERVER.

In this way we have written a generic protocol where we can change the
involved agents simply changing the domain of parameter var(1).

The domain of var(1) is set during the application stage. In fact, a Template
Global Type must be “applied” in order to turn into a “normal” Constrained
Global Type, which can be used as described in our previous work. In particu-
lar, after the application stage, the obtained Constrained Global Type can be
projected. The projection of a Constrained Global Type is still a Constrained
Global Type, where events not involving the agents in the given set are removed.

When we say “project on a set of agents”, we mean that, being the protocol
a static and global representation of our system, there are some parts of it that
are interesting for some agents but not for others. In general, an agent is not
present in all the protocol points and it is for this reason that, before allowing
an agent A to “execute” a protocol, we project it onto A, in order to remove all
events which do not involve A from the protocol instance that A will need to
execute.

Let us consider a more complex example:

SERVER1 =

(receive request(client1),0):(serve request(client1),0):SERVER1,

SERVER2 =

(receive request(client2),0):(serve request(client2),0):SERVER2,

SERVER3 =

(receive request(client3),0):(serve request(client3),0):SERVER3,

SERVER = SERVER1|(SERVER2|SERVER3).

In this example, we have three protocol branches, each of which is similar
to the simple protocol described before, combined using a “fork” operator. The
first branch involves client1, the second client2, the third client3. As we
can see we have to write the same piece of code many times and above all it is
impossible to change agents at runtime, for example during a protocol switch.

Instead, using Template Global Type we may write:

SERVERT =

(receive request(var(1)),0):(serve request(var(1)),0):SERVERT,

SERVER = finite composition(fork, SERVERT, [var(1)]).

The construct finite composition is used to compose many times a Con-
strained Global Type with a chosen operator, in this case the fork operator. If
we iterate the var(1) parameter on the set containing {client1, client2, client3}
we get the same results as before, without var(1). The great advantage of this
approach, is that the set over which var(1) ranges can be decided at runtime,

76



hence allowing the agents to implement a (limited) form of dynamic protocol
generation.

In order to better explain the application and projecting phases, we can see
(with a short piece of pseudocode) some sample calls:

SERVERT =

(receive_request(var(1)) ,0):
(serve_request(var(1)) ,0):
SERVERT ,

SERVER = finite_composition(fork , SERVERT , [var(1)]) ,
apply(SERVER ,

[t(var(1), [client1 , client2 , client3 ])],

INSTANTIATEDSERVER),

project(INSTANTIATEDSERVER , [agent1], PROJECTEDSERVER ).

The apply predicate instantiates the SERVER protocol returning its instantia-
tion in INSTANTIATEDSERVER variable. Afterwards, the obtained “normal” Con-
strained Global Type without parameters can be projected; in our example, the
projection is on an agent called agent1.

After the application and projection phases we obtain a “customized” pro-
tocol driven agent. This agent will have to only choose what to do during its
execution on the basis of what is expected by the protocol; the respect of the
global protocol is guaranteed because each agent directly derives from it via pro-
jection, and each agent is guided by the same interpreter, that interrogates the
Prolog library which implements both the protocol definition and the “apply”,
“project”, and all the other predicates which are necessary in order to know
what is expected from protocol and what is not.

The original contribution described in this paper lies in the design
of Template Global Types and in the implementation of the apply
predicate. The other predicates were already implemented. Also, we
integrated the Template Global Types mechanism into both Jason
and JADE.

4 Integration inside Jason

Before trying the integration in JADE, we considered a more linear and modular
implementation in Jason.

Jason is an interpreter for an extended version of AgentSpeak, where each
agent implements the BDI approach; it is a useful framework in order to quickly
create MASs architectures using a Prolog-like language.

In case of Jason, the implementation was almost straightforward because it
directly supports Prolog code. Hence, it was not necessary to add an interface
between Jason and the Prolog engine, since the Prolog library defining apply,
project, and all the other predicates necessary for implementing a protocol-
driven behavior, could be used by Jason almost “as it is” (with definitely minor
syntactic changes).

77



The integration of our approach into JADE was instead more challenging.
We had many different design choices, but in the end we had to opt for the
architecture in which most of the work is done in Prolog, and JADE is almost
passive. The reason for this choice, better explained later, is that JADE cannot
directly manipulate the representation of cyclic protocols, because of limitations
of the Java-Prolog interface, hence we had to relegate all the operations on the
protocols into the Prolog code, only task of calling Prolog predicates, without
taking any decision.

5 Integration inside JADE

JADE is a Java framework where each agent must extend a common Java class
(Agent class). We created a class called AgentProtocolDriven that extends it.
Each new agent must extend the latter and override some methods:

– setup, method dedicated to initialize the Prolog engine with all predicates
necessary to the agent;

– react, method dedicated to the agent reaction after a message reception that
is expected by the protocol;

– unexpected, method dedicated to the agent reaction after a message recep-
tion that is unexpected by protocol;

– select messages, method used by the agent in order to select which message
to send between those expected by the protocol.

Each agent’s setup method must recall the inherited method of its parent
(AgentProtocolDriven class) in which the main behavior implementing the in-
terpreter’s body is created and added. This is a Cyclic Behavior which is ex-
ecuted any time the agent is selected by the JADE schedule. It is like a loop,
and in each round the agent can check if can do something coherently with the
protocol.

The parent’s setup method does not only create a behavior but it cares
about instantiation and projection of the protocol by calling the Prolog predi-
cate: instantiate template and project.

Below we show the Prolog code corresponding to this predicate. It can be
easily seen that the code can be broken down into three basic components (as
already seen in Figure 1):

– Protocol representation
– Protocol instantiation
– Protocol projection

/* Predicate that manage the instantiation

of a Template Global Type */

instantiate_template_and_project

(Name, ActualParameters , MyName , ProjectedAgents) :-

78



/* Get the Template Global Type from the library ,

this protocol can have parameter variables */

trace_expr_template(Name, GlobalType),

/* Preprocessing phase where all the syntactic sugar

and parameter variables are removed */

apply(GlobalType , ActualParameters , InstantiatedTemplate),

/* Project protocol on this agent */

project(MyName , InstantiatedTemplate ,

ProjectedAgents , ProjectedGlobalType),

/* Update current state of protocol */

clean_and_record(MyName ,

current_state(ProjectedGlobalType )).

The above code is invoked in Java as follows.

// Instantiate and project the protocol

new Query(

"instantiate_template_and_project(" +

protocolName + "," +

protocolParameters + "," +

getLocalName () + "," +

"[" + getLocalName () + "])"

). hasSolution ();

After this sequence of instructions, inside the Prolog engine the projected
protocol of our agent is correctly instantiated and the interpreter can follow it.

To know the actions allowed by the protocol at a given time (namely, which
messages the agent can send, which one it is allowed to receive), the agent queries
the Prolog library where all the important pieces of information, like the current
state of protocol, are maintained; to do this, in JADE, we have to use a Java
library called JPL, that makes communication between a Java program and the
SWI Prolog engine possible. So, the JADE agents interpreter can, step by step,
ask to Prolog what the agent can or cannot do.

To receiving or sending a message is explicitly set a priori with other param-
eters, all by reading a configuration file.

5.1 Message reception

When a message is received by an agent, it is put in a queue. When a message is
selected from the queue, in order to check if it is expected by the protocol in the
current state we have created a predicate in Prolog that returns a list containing
all messages that agent can receive.

/* Messages that agent can receive according to

current state of the protocol */

inMsgs(MyName , ListToReceive) :-

/* Current state of the agent protocol */

recorded(MyName , current_state(LastState), _),

/* Find all possible next state

79



where agent is the receiver */

f inda l l (
msg(SenderV , MyName , PerformativeV , ContentV , NewStateV),

next(

0, LastState ,

msg(SenderV , MyName , PerformativeV , ContentV), NewStateV ,

0, MyName),

ListToReceive ).

/* If Msg is allow in this state of protocol

move to new state and save it */

move_to_next(MyName , Msg) :-

/* Current state of the agent protocol */

recorded(MyName , current_state(LastState), Ref),

/* Try to do a step ,

if it is valid in the current state */

next(0, LastState , Msg , NewState , 0, MyName),

erase(Ref),

/* Update current state of protocol */

recorda(MyName , current_state(NewState )).

The JADE agent should only callmove to next and execute the reactmethod
if move to next does not fail, and the unexpected method otherwise.

5.2 Messages sending

When an agent wants to send a message it must check which messages are allowed
by the protocol in the current state. In order to do this, the Jade agent can call
the outMsgs Prolog predicate that returns all messages that it can send in the
current state of protocol.

/* Messages that agent can send according to

current state of the protocol */

outMsgs(MyName , ListToSend) :-

/* Current state of the agent protocol */

recorded(MyName , current_state(LastState), _),

/* Find all possible next state

where agent is the sender */

f inda l l (
msg(MyName , ReceiverV , PerformativeV , ContentV),

next(

0, LastState ,

msg(MyName , ReceiverV , PerformativeV , ContentV), _,

0, MyName),

ListToSend ).

The Jade agent should only select one message from the list of messages
returned by the predicate using the select messages method.

80



5.3 Problems encountered only with JADE

The interpreter implementation in JADE was more complicated than in Jason,
indeed we found many more different problems.

The main problems can be summarized in two specific cases:

– the JPL library does not support cyclic terms;
– SWI Prolog assert predicate does not allow a cyclic term as argument.

It is easy to note that the second problem result from a lack of SWI Prolog
in the management of cyclic terms.

In order to solve the first problem, we had to create “super predicates”, which
are simply collections of predicates, to ensure that all intermediate executions
are made within Prolog and no cyclic term is returned to JADE.

The second problem was solved instead using another predicate inside SWI
Prolog; indeed, the record predicate supports cyclic terms and has a behavior
similar to the assert predicate.

6 Related Work

A large part of the state of the art analysis presented in this section was published
in [11].

Our work falls in the research area on self-adaptive systems which spun off
from the wider area of distributed systems, be them based on web services,
software agents, robots, or on other autonomous entities that need to react to
unforeseen changes during their execution. Many surveys have been conducted
to identify the main features of self-adaptive MASs [12, 15, 22, 25, 26] and inter-
esting and original solutions have been proposed by the research community.

Proposals for standardizing the concepts involved in the self-adaptation pro-
cess include a meta-model to describe intelligent adaptive systems in open en-
vironments [16] and a taxonomy of adaptive agent-based collaboration patterns
[7], for their analysis and exploitation in the area of autonomic service ensem-
bles. An analysis of linguistic approaches for self-adaptive software is presented
in [24].

The approaches closer to ours focus on formalizing protocols that the agents
may use during their life, including specific protocols to deal with unforeseen
events: in these approaches agents are usually free to choose, from a bunch of
usable protocols, which one they prefer, maintaining in this way the freedom
to autonomously self adapt to the new situation but ensuring at the same time
that a feasible interaction pattern is followed. Our work can be included in this
research field, where we can speak of “protocol enforcement” or “protocol-driven
agents”.

As far as self-adaptiveness of protocol-driven agents is concerned, the main
sources of inspiration were [8, 9, 20, 21]. In [8] the authors propose a dynamic self-
monitoring and self-regulating approach based on norms to express properties

81



which allow agents to control their own behavior. In [20] and [21] agents operat-
ing in open and heterogeneous MASs dynamically select protocols, represented
in FIPA AUML, in order to carry collaborative tasks out. Since the selection
is performed locally to the agent, some errors may occur in the process. The
proposed mechanism provides the means for detecting and overcoming them.

Comparison. To the best of our knowledge, there are no approaches similar to
ours presented in the MAS literature.

In Fornara at al [13, 14, 19] the authors discuss their approach based on Nor-
mative MAS. An artificial institution catches the institutional events and verifies
them with respect to a normative specification. As a result, protocol specifica-
tions are a special case with respect to a normative specification. So, even if the
approach is different the aim is similar, i.e. to deal with open multiagent systems
and monitor their correctness w.r.t. a specification.

Normative system approaches offer other advantages for multi agent systems
because agents may integrate their practical reasoning with reasoning about the
normative specification, although, also our protocol-driven agents could reason
about trace expressions which are a First Class Entities.

Other closely related proposals are those by Criado et al. [10] and Bal-
doni et al. [4, 3, 17, 5]; in these papers, the authors suggest a way to implement
a monitoring mechanism by exploiting the A&A metamodel and by reifying
commitment-based protocols into artifacts. The proposal is implemented both
on top of Cartago and Jade and on top of Jason/JaCaMo. However, our work
is different from theirs, because – at least from the Runtime Verification appli-
cation – our approach is less invasive, in fact, it works with each possible MASs
architecture and not with only customized implementations.

If we consider our previous work, before upgrading with Template Global
Types, one reason why our approach was different from others, was that the
projection function took protocol specifications and returned protocol specifica-
tions expressed in the same language. Usually, projection functions return either
agent stubs/code (common in the MAS community) or protocol specifications
in a language suitable for expressing the agent local viewpoint, different from
the language for expressing the global one (common in the session types com-
munity). Having a unique formalism for protocol specification both at the global
and at the local level is a simpler and more uniform approach.

In this paper we have shown the benefits of using parameters inside proto-
col specifications; in this way we have made protocols much more generic and
flexible, also moving a step towards dynamic protocol generation.

7 Conclusions

In this paper we have presented our proposal to make the management of pro-
tocols more flexible and to move a step forward their dynamic generation. Two
working prototypes exist, demonstrating the feasibility of our approach. While

82



integrating our parametric protocol-driven agents into Jason was easy because
of its native support to Prolog, integrating them into JADE was not. However,
that attempt – which, although not trivial, was successful – makes us confident
in the possibility to integrate our approach into almost any agent framework,
given that an interface between the framework language and Prolog is provided.

References

1. D. Ancona, M. Barbieri, and V. Mascardi. Constrained global types for dynamic
checking of protocol conformance in multi-agent systems. In S. Y. Shin and J. C.
Maldonado, editors, Proceedings of the 28th Annual ACM Symposium on Applied
Computing, SAC ’13, Coimbra, Portugal, March 18-22, 2013, pages 1377–1379.
ACM, 2013.

2. D. Ancona, S. Drossopoulou, and V. Mascardi. Automatic generation of self-
monitoring MASs from multiparty global session types in Jason. In M. Baldoni,
L. A. Dennis, V. Mascardi, and W. Vasconcelos, editors, Declarative Agent Lan-
guages and Technologies X - 10th International Workshop, DALT 2012, Valencia,
Spain, June 4, 2012, Revised Selected Papers, volume 7784 of Lecture Notes in
Computer Science, pages 76–95. Springer, 2012.

3. M. Baldoni, C. Baroglio, and F. Capuzzimati. A commitment-based infrastruc-
ture for programming socio-technical systems. ACM Trans. Internet Technol.,
14(4):23:1–23:23, Dec. 2014.

4. M. Baldoni, C. Baroglio, and F. Capuzzimati. Typing multi-agent systems via
commitments. In F. Dalpiaz, J. Dix, and M. van Riemsdijk, editors, Engineering
Multi-Agent Systems, volume 8758 of Lecture Notes in Computer Science, pages
388–405. Springer International Publishing, 2014.

5. M. Baldoni, C. Baroglio, F. Capuzzimati, and R. Micalizio. Programming with
commitments and goals in JaCaMo+. In Proceedings of the 2015 International
Conference on Autonomous Agents and Multiagent Systems, AAMAS ’15, pages
1705–1706, Richland, SC, 2015. International Foundation for Autonomous Agents
and Multiagent Systems.

6. D. Briola, V. Mascardi, and D. Ancona. Distributed runtime verification of JADE
and Jason multiagent systems with prolog. In L. Giordano, V. Gliozzi, and G. L.
Pozzato, editors, Proceedings of the 29th Italian Conference on Computational
Logic, Torino, Italy, June 16-18, 2014., volume 1195 of CEUR Workshop Pro-
ceedings, pages 319–323. CEUR-WS.org, 2014.

7. G. Cabri, M. Puviani, and F. Zambonelli. Towards a taxonomy of adaptive agent-
based collaboration patterns for autonomic service ensembles. In Collaboration
Technologies and Systems (CTS), 2011 International Conference on, pages 508–
515, 2011.

8. C. Chopinaud, A. El Fallah-Seghrouchni, and P. Taillibert. Automatic gen-
eration of self-controlled autonomous agents. In Intelligent Agent Technology,
IEEE/WIC/ACM International Conference on, pages 755–758, 2005.

9. M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Self-adaptive monitors for
multiparty sessions. In 22nd Euromicro International Conference on Parallel, Dis-
tributed, and Network-Based Processing, PDP 2014, pages 688–696. IEEE, 2014.

10. N. Criado, E. Argente, P. Noriega, and V. J. Botti. Reasoning about constitutive
norms in BDI agents. Logic Journal of the IGPL, 22(1):66–93, 2014.

12

83



11. A. F. Davide Ancona, Daniela Briola and V. Mascardi. Global protocols as first
class entities for self-adaptive agents. AAMAS2015, 2015.

12. G. Di Marzo Serugendo, M.-P. Gleizes, and A. Karageorgos. Self-organization in
multi-agent systems. Knowl. Eng. Rev., 20(2):165–189, 2005.

13. N. Fornara, F. Vigan, and M. Colombetti. Agent communication and artificial
institutions. Autonomous Agents and Multi-Agent Systems, 14(2):121–142, 2007.

14. N. Fornara, F. Vigan, M. Verdicchio, and M. Colombetti. Artificial institutions: a
model of institutional reality for open multiagent systems. Artificial Intelligence
and Law, 16(1):89–105, 2008.

15. M.-P. Gleizes. Self-adaptive complex systems. In M. Cossentino, M. Kaisers,
K. Tuyls, and G. Weiss, editors, Multi-Agent Systems, volume 7541 of Lecture
Notes in Computer Science, pages 114–128. Springer Berlin Heidelberg, 2012.

16. T. Juan and L. Sterling. The ROADMAP meta-model for intelligent adaptive
multi-agent systems in open environments. In P. Giorgini, J. Müller, and J. Odell,
editors, Agent-Oriented Software Engineering IV, volume 2935 of Lecture Notes in
Computer Science, pages 53–68. Springer Berlin Heidelberg, 2004.

17. C. B. M. Baldoni and F. Capuzzimati. Reasoning about social relationships with
Jason. Autonomous Agents and Multi-Agent Systems, 2014.

18. V. Mascardi and D. Ancona. Attribute global types for dynamic checking of proto-
cols in logic-based multiagent systems. TPLP, 13(4-5-Online-Supplement), 2013.

19. D. Okouya, N. Fornara, and M. Colombetti. An infrastructure for the design
and development of open interaction systems. In M. Cossentino, A. El Fal-
lah Seghrouchni, and M. Winikoff, editors, Engineering Multi-Agent Systems, vol-
ume 8245 of Lecture Notes in Computer Science, pages 215–234. Springer Berlin
Heidelberg, 2013.

20. J. G. Quenum, S. Aknine, O. Shehory, and S. Honiden. Dynamic protocol selection
in open and heterogeneous systems. In Proceedings of the 2006 IEEE/WIC/ACM
International Conference on Intelligent Agent Technology, Hong Kong, China, 18-
22 December 2006, pages 333–341, 2006.

21. J. G. Quenum, F. Ishikawa, and S. Honiden. Protocol selection alongside service
selection and composition. In 2007 IEEE International Conference on Web Services
(ICWS 2007), July 9-13, 2007, Salt Lake City, Utah, USA, pages 719–726, 2007.

22. R. de Lemos, H. Giese, H. A. Müller, et al. Software engineering for self-adaptive
systems: A second research roadmap. In Software Engineering for Self-Adaptive
Systems II, pages 1–32, 2013.

23. A. S. Rao and M. P. Georgeff. BDI agents: From theory to practice. In V. R.
Lesser and L. Gasser, editors, Proceedings of the First International Conference
on Multiagent Systems, June 12-14, 1995, San Francisco, California, USA, pages
312–319. The MIT Press, 1995.

24. G. Salvaneschi, C. Ghezzi, and M. Pradella. An analysis of language-level support
for self-adaptive software. ACM Trans. Auton. Adapt. Syst., 8(2):7:1–7:29, 2013.

25. D. Weyns and M. Georgeff. Self-adaptation using multiagent systems. Software,
IEEE, 27(1):86–91, 2010.

26. F. Zambonelli, N. Bicocchi, G. Cabri, L. Leonardi, and M. Puviani. On self-
adaptation, self-expression, and self-awareness in autonomic service component
ensembles. In Self-Adaptive and Self-Organizing Systems Workshops (SASOW),
2011 Fifth IEEE Conference on, pages 108–113, 2011.

84



Leveraging Commitments and Goals in Agent
Interaction

Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, Roberto Micalizio

Università degli Studi di Torino — Dipartimento di Informatica
c.so Svizzera 185, I-10149 Torino (Italy)
{firstname.lastname}@unito.it

Abstract. Modeling and regulating interactions among agents is a crit-
ical step in the development of Multiagent Systems (MASs). Some re-
cent works assume a normative view, and suggest to model interaction
protocols in terms of obligations. In this paper we propose to model in-
teraction protocols in terms of goals and commitments, and show how
such a formalization promotes a deliberative process inside the agents.
In particular, we take a software engineering perspective, and balance
the use of commitments against obligations inside interaction protocols.
The proposal is implemented via JaCaMo+, an extension to JaCaMo,
in which Jason agents can interact while preserving their deliberative
capabilities by exploiting commitment-based protocols, reified by special
CArtAgO artifacts. The paper shows how practical rules relating goals
and commitments can be almost directly encoded as Jason plans to be
used as building blocks in agent programming.

Keywords: Social Computing, Agent Programming, Commitments and Goals,
Agents & Artifacts, JaCaMo

1 Introduction

Many researchers claim that an effective way to approach the design and devel-
opment of a MAS consists in conceiving it as a structure composed of four main
entities: Agents, Environment, Interactions, and Organization [32,18,19]. Such a
separation of concerns enjoys many advantages from a software engineering point
of view, since it enables a modular development of code that eases code reuse and
maintainability. Currently, there are many frameworks that support designers
and programmers in realizing one of these components (e.g., [8,10,25,11,29]). To
the best of our knowledge, JaCaMo [9] is the the most complete among the well-
established proposals, providing a thorough integration of the three components
agents, environments, and organizations into a single programming framework.
Another work along this direction is [7], which posits that agents and environ-
ments should be linked and interconnected through standard interfaces to fully
leverage each of them.

A recent extension to JaCaMo [32] further enriches the framework by intro-
ducing an interaction component. The interaction component allows regulating

85



both agent interactions and the interactions between agents and environment.
More precisely, an interaction component encodes –in an automaton-like shape–
a protocol, in which states represent protocol steps, and transitions between
states are associated with (undirected) obligations that can assume three forms:
actions performed by the agents in the environment, messages that an agent
sends to another agent, and events that an agent can perceive (i.e., events emit-
ted from objects in the environment). Such protocols provide a guideline of how
a given organizational goal should be achieved.

Interaction components, as defined in [32], however, present also some draw-
backs. Works such as [15] show the importance, for the agents to be autonomous,
to reason about the social consequences of their actions by exploiting constitutive
norms that link the agents’ actions to their respective social meanings. However,
an interaction component operates as a coordinator that, by relying on obliga-
tions, issues commands about what an agent has to do, and when. This impedes
agents from reasoning on the normative effects of their actions. On the one hand,
the obligations are not constitutive norms while, on the other hand, the social
meaning of such commands is not known to the agents but only implicitly en-
coded within the protocol. Agents lose part of their deliberative power since,
once they join an interaction component, they have no other choice but decid-
ing whether satisfying or not those obligations they are in charge of, while the
rationale behind these obligations remains hidden to them. Consequently, this
approach does not suit those situations where interaction is not subject to an
organizational guideline, such as in the case when interaction is among agents
and each agent decides what is best for itself [31], or when guidelines amount
to declarative, underspecified constraints that still leave agents the freedom to
take strategic decisions on their behavior.

Although we substantially agree with [32] about the importance of explicitly
capturing the agents’ interactions with appropriate abstractions, we also note
that organization-driven guidelines, presented in that work, are but a kind of
interaction; we thus propose a complementary approach which better supports
the deliberative capabilities of the agents. Indeed, when organizational goals are
not associated with corresponding guidelines, agent deliberation is crucial for the
achievement of goals. An agent, in fact, has to act not only upon its own goals,
but also upon what interactions could be necessary for achieving these goals. In
other terms, an agent has to discover how to obtain a goal by interacting with
others, i.e. to establish when to create an engagement, and which (sub)goals
should be achieved first in order to fulfill its engagements. It is important to
underline that when agents can fully exploit their deliberative capabilities, they
can take advantage of opportunities (flexibility), and can find alternative ways
to get their goals despite unexpected situations that may arise (robustness).

We claim that whenever guidelines are missing, the interactions among the
agents should be supported by the very fundamental notions of goal and engage-
ment. For this reason, we propose in this paper to complement the interaction
protocol in [32], and more in general organizational and normative approaches
[17,20,23,16], with an interaction artifact that can be used by the agents as a

86



common ground. Our interaction artifacts encode the notion of engagement as
social commitment [26]. The choice of commitments stems by the fact that, dif-
ferently from obligations, commitments are taken by an agent as a result of an
internal deliberative process. They can be directly manipulated by the agents,
and they have proved to be very effective in modeling (directed) social rela-
tionships. In addition, a recent work by Telang et al. [28] shows how goals and
commitments are strongly interrelated. Commitments are therefore evidence of
the capacity of an agent to take responsibilities autonomously. Citing Singh [27],
an agent would become a debtor of a commitment based on the agent’s own com-
munications: either by directly saying something or having another agent com-
municate something in conjunction with a prior communication of the debtor.
That is, there is a causal path from the establishment of a commitment to prior
communications by the debtor of that commitment. By contrast, obligations can
result from a deliberative process which is outside the agent; this is the case of
the interaction component in [32]. This is the reason why we believe that the in-
troduction of a deliberative process on constitutive rules that rely on obligations
would not really support the agents’ autonomy.

Practically, the proposal relies on the JaCaMo platform [9], and hence we
dubbed it JaCaMo+: Jason agents engage commitment-based interactions which
are reified as CArtAgO artifacts. CArtAgO is a framework based on the A&A
meta-model [30,24] which extends the agent programming paradigm with the
first-class entity of artifact: a resource that an agent can use, and that models
working environments. It provides a way to define and organize workspaces,
that are logical groups of artifacts, that can be joined by agents at runtime. The
environment is itself programmable and encapsulates services and functionalities,
making it active. JaCaMo+ artifacts represent the interaction social state and
provide the roles agents enact. The use of artifacts enables the implementation
of monitoring functionalities for verifying that the on-going interactions respect
the commitments and for detecting violations and violators.

The paper extends and details the approach introduced in [3], and is or-
ganized as follows. Section 2 introduces some basic notions about goals and
commitments. Section 3 discusses the extensions to JaCaMo that have been in-
troduced in JaCaMo+; Section 4 shows, by exemplifying the FIPA Contract
Net Protocol, how agents can be programmed by means of patterns encoding
the interplay between goals and commitments.

2 Basic Notions

A social commitment models the directed relation between two agents: a debtor
and a creditor, that are both aware of the existence of such a relation and of its
current state: A commitment C(x, y, s, u) captures that agent x (debtor) com-
mits to agent y (creditor) to bring about the consequent condition u when the
antecedent condition s holds. Antecedent and consequent conditions are con-
junctions or disjunctions of events and commitments. Unlike obligations, com-
mitments are manipulated by agents through the standard operations create,

87



cancel, release, discharge, assign, delegate [26]. A commitment is autonomously
taken by a debtor towards a creditor on its own initiative, instead of dropping
from an organization, like obligations. This preserves the autonomy of the agents
and is fundamental to harmonize deliberation with goal achievement. The agent
does not just react to some obligations, but it rather includes a deliberative
capacity by which it creates engagements towards other agents while it is try-
ing to achieve its goals (or to the aim of achieving its goals). Since debtors are
expected to satisfy their engagements, commitments satisfy the requirement in
[14] of having a normative value, providing social expectations on the agents’
behaviors, as well as obligations. Commitments also satisfy the requirement in
[17] that when parties are autonomous, social relationships cannot but concern
the observable behavior of the agents themselves.

Commitment-based protocols assume that a (notional) social state is avail-
able and inspectable by all the involved agents. The social state traces which
commitments currently exist between any two agents, and the states of these
commitments according to the commitments lifecycle. By relying on the social
state, an agent can deliberate to create further commitments, or to bring about
a condition involved in some existing commitment. Most importantly, commit-
ments can be used by agents in their practical reasoning together with beliefs,
intentions, and goals. In particular, Telang et al. [28] point out that goals and
commitments are one another complementary: A commitment specifies how an
agent relates to another one, and hence describes what an agent is willing to
bring about for another agent. On the other hand, a goal denotes an agent’s
proattitude towards some condition; that is, a state of the world that the agent
should achieve. An agent can create a commitment towards another agent to
achieve one of its goals; but at the same time, an agent determines the goals to
be pursued relying on the commitments it has towards others: A commitment is
satisfied when the related goal is achieved. Note that, similarly to commitments,
goals have their own lifecycle that evolves according to the actions performed
by the agents (leading to the achievement or unfulfillment of goals), but also to
the decisions of the agents to purse, suspend, or drop the goals themselves.

In [28], a goal G is formalized as G(x, p, r, q, s, f), where x is the agent
pursuing G, p is a precondition that must be satisfied before G can become
Active, r is an invariant condition that is true when G becomes Active and
holds until the achievement of G, q is a post-condition (effect) that becomes
true when G is successfully achieved, and finally, s and f are the success and
failure conditions, respectively. In the following sections we will show how such a
formalization can be mapped into Jason plans, and how it turns out to be useful
for the agent programming purpose.

3 JaCaMo+

JaCaMo [9] is a platform integrating Jason (as an agent programming language),
CArtAgO (as a realization of the A&A meta-model [30]), and Moise (as a sup-
port to the realization of organizations). In this section we shortly describe how

88



JaCaMo+ is obtained by extending the CArtAgO and Jason components of the
standard JaCaMo.

3.1 Extending CArtAgO

Exploiting [1], JaCaMo+ enriches CArtAgO’s artifacts with an explicit repre-
sentation of commitments and of commitment-based protocols. The resulting
class of artifacts reifies the execution of commitment-based protocols, including
the social state of the interaction, and enables Jason agents both to be notified
about the social events and to perform practical reasoning also about the other
agents. This is possible thanks to the social expectations raised by commitments.
Since an artifact is a programmable, active entity, it can act as a monitor of the
in progress interaction. The artifact can therefore detect violations that it can
ascribe to the violator without the need of agent introspection.

Specifically, a JaCaMo+ artifact encodes a commitment protocol, that is
structured into a set of roles. By enacting a role, an agent gains the rights to
perform social actions, whose execution has public social consequences, expressed
in terms of commitments. If an agent tries to perform an action which is not
associated with the role it is enacting, the artifact raises an exception that is
notified to the violator. On the other hand, when an agent performs a protocol
action that pertains to its role, the social state is updated accordingly by adding
new commitments, or by modifying the state of existing commitments.

In CArtAgO, the Java annotation1 @OPERATION marks a public oper-
ation that agents can invoke on the artifact. In JaCaMo+, a method tagged
with @OPERATION corresponds to a protocol action. We also add the anno-
tation @ROLE to specify which roles are enabled to use that particular action.
Another extension is an explicit representation of the social state, which is main-
tained within the artifact. By focusing on an artifact, an agent registers to be
notified of events that are generated inside the artifact. Note that all events
that amount to the execution of protocol actions/messages are recorded as facts
in the social state. This is done for the sake of a greater degree of decoupling
between actions/events/messages and their effects [5,6]. In particular, when the
social state is updated, the JaCaMo+ artifact provides such information to the
focusing JaCaMo+ agents by exploiting proper observable properties. Agents are,
thus, constantly aligned with the social state.

3.2 Extending Jason

Jason [10] implements in Java, and extends, the agent programming language
AgentSpeak(L). Jason agents have a BDI architecture. Each has a belief base,
and a plan library. It is possible to specify achievement (operator ‘!’) and test
(operator ‘?’) goals. Each plan has a triggering event (causing its activation),

1 Annotations, a form of metadata, provide data about a program that is not
part of the program itself. See https://docs.oracle.com/javase/tutorial/java/

annotations/

89



which can be either the addition or the deletion of some belief or goal. The syntax
is inherently declarative. In JaCaMo, the beliefs of Jason agents can also change
due to operations performed by other agents on the CArtAgO environment,
whose consequences are automatically propagated. We extend the Jason com-
ponent of JaCaMo by allowing the specification of plans whose triggering events
involve commitments. JaCaMo+ represents a commitment as a term cc(debtor,
creditor, antecedent, consequent, status) where debtor and creditor identify
the involved agents (or agent roles), while antecedent and consequent are the
commitment conditions. Status is the commitment state (the set being defined
in the commitments life cycle [21]). Commitments operations (e.g. create, see
Section 2) are realized as internal operations of the new class of artifacts we
added to CArtAgO. Thus, commitment operations cannot be invoked directly
by the agents, but the protocol actions will use them as primitives to modify the
social state.

A Jason plan is specified as:

triggering event : 〈context〉 ← 〈body〉

where the triggering event denotes the events the plan handles, the context spec-
ifies the circumstances when the plan could be used, the body is the course of
action that should be taken. In a Jason plan specification, commitments can be
used wherever beliefs can be used. Otherwise than beliefs, their assertion/dele-
tion can only occur through the artifact, in consequence to a social state change.
The following template shows a Jason plan triggered by the addition of a com-
mitment in the social state:

+cc(debtor, creditor, antecedent, consequent, status) : 〈context〉 ← 〈body〉.

More precisely, the plan is triggered when a commitment, that unifies with the
one in the plan head, appears in the social state. The syntax is the standard for
Jason plans. Debtor and creditor are to be substituted by the proper roles. The
plan may be devised so as to change the commitment status (e.g. the debtor will
try to satisfy the comment), or it may be devised so as to allow the agent to react
to the commitment presence (e.g., collecting information). Similar schemas can
be used for commitment deletion and for the addition/deletion of social facts.
Further, commitments can also be used in contexts and in plans as test goals
(?cc(. . . )), or achievement goals (!cc(. . . )). Addition or deletion of such goals
can, as well, be managed by plans; for example:

+!cc(debtor, creditor, antecedent, consequent, status) : 〈context〉 ← 〈body〉.

The plan is triggered when the agent creates an achievement goal concerning a
commitment. Consequently, the agent will act upon the artifact so as to create
the desired social relationship. After the execution of the plan, the commitment
cc(debtor, creditor, antecedent, consequent, status) will hold in the social state,
and will be projected onto the belief bases of all agents focusing on the artifact.

90



4 Programming in JaCaMo+

In this section we show how Jason agents can be easily programmed by consid-
ering a commitment-based protocol as a guideline for the programmer: We first
present a programming approach which exploits the practical rules by Telang
et al. [28], and then we exemplify the approach implementing the initiator and
participant agents of the well-known Contract-Net Protocol (CNP).

4.1 Practical Rules as Programming Code-Blocks

For both goals and commitments, [28] defines lifecycles, and operations through
which the state of a goal, or a commitment, evolves over time. The relationship
between goals and commitments is formalized in terms of practical rules, which
capture patterns of pragmatic reasoning. They include: (1) rules from goals to
commitments to capture how commitments evolve when the state of some goals
change; and (2) rules from commitments to goals to capture how a goal evolves
when the corresponding commitment changes in the social state. These rules
can be easily encoded in JaCaMo+, and used by a programmer as templates for
implementing Jason agents. In the following we discuss four examples of rules
that will be used in the CNP scenario.

Goal rules. This JaCaMo+ template tackles the case when a goal G =
G(x, p, r, q, s, f) appears in the knowledge base of agent x; namely, x wants to
achieve the success condition s, and hence an appropriate plan is triggered:

1 +!G : p
2 <−?r
3 〈body〉 /* plan ach i ev ing cond i t i on s*/
4 ?q .

Differently from [28], in JaCaMo+ we explicitly mention a plan of actions (the
body) to achieve the success condition s. When x can satisfy G autonomously
(no interaction is needed), conditions s and q coincide. Instead, when x cannot
satisfy G (or it is not convenient for x to achieve G autonomously), the body will
involve an interaction with another agent and, as we will see, conditions q and
s will differ. Note that, in JaCaMo+ we can also specify a plan to be triggered
when the failure condition is reached:

1 −!G : f
2 <−
3 〈body〉 . /* plan handl ing f a i l u r e cond i t i on f */

The following three templates reflect namesake rules in [28].
Entice. Agent x can achieve G with the help of agent y: x creates an offer

to agent y such that, if y brings about s (success condition of G), then x will
engage into achieving a condition u of interest for y. Such an offer is naturally
modeled as the commitment C(x, y, s, u). The JaCaMo+ template is:

1 +!G : p
2 <−?r
3 s o c i a l a c t i o n ;
4 ?cc(x, y, s, u, CONDITIONAL) .

91



The body of the rule consists of a social action; namely, a protocol action offered
by the artifact x is focused on, and whose meaning is the creation of a commit-
ment C = cc(x, y, s, u, CONDITIONAL). This commitment will push agent y
to bring about the success condition s associated with G, thus this is a special
case of goal activation. Note that the post condition of this rule corresponds to
a test on the existence of the commitment C; agent x can verify, by inspecting
the social state, that the commitment really exists.

Deliver. If commitment C(x, y, s, u) becomes detached, then debtor x acti-
vates a goal G1 = G(x, p, r, q, u, f) to bring about the consequent. In JaCaMo+:

1 +cc(x, y, s, u,DETACHED) : context
2 <− !G1 ;
3 ?cc(x, y, s, u, SATISFIED) .

It is worth noting the test goal at the end of the rule: It allows x to verify that
after the achievement of G1, its corresponding commitment is now satisfied.

Detach. When a conditional commitment C1(y, x, s′, t), appears in the social
state, the creditor x activates a goal G2 = G(x, p′, r′, q′, s′, f ′) to bring about
the commitment antecedent. The JaCaMo+ template is:

1 +cc(y, x, s′, t, CONDITIONAL) : context
2 <− !G2 ;

3 ?cc(y, x, s′, t, DETACHED) .

Note that, as in the previous case, agent x can verify that, after the satisfaction
of goal G2, the corresponding commitment is now detached.

4.2 JaCaMo+ Contract Net Protocol

As in [32], we assume that agents are assigned with institutional goals, defined in
the Moise layer, to be achieved via the well-known Contract Net Protocol (CNP)
protocol. We show how CNP can be implemented in JaCaMo+ by exploiting the
templates introduced above. CNP (see Table 1) involves two roles: initiator (i)
and participant (p). An agent playing the initiator role calls for proposals from
agents playing the participant role. A participant makes a proposal if interested.
Proposals can be accepted or rejected by initiator. Accept, done, and failure do
not amount to commitment operations, but impact on the progression of com-
mitment states, e.g., accept causes the satisfaction of the commitment created
by cfp. Listing 1.1 reports an excerpt of the JaCaMo+ CNP protocol artifact

Table 1. CNP: actions and their social meaning.

initiator (i): participant (p):

cfp: create(C(i, p, propose, accept ∨ reject)) propose: create(C(p, i, accept, done ∨ failure))
reject: release(C(p, i, accept, done ∨ failure)) refuse: release(C(i, p, propose, accept ∨ reject))

accept: “commitment progression” done: “commitment progression”
failure: “commitment progression”

implementation.

92



1 @OPERATION
2 @ROLE(name=" initiator " )
3 public void c fp ( St r ing task ) {
4 RoleId i n i t i a t o r =
5 getRoleIdByPlayerName ( getOpUserName ( ) ) ;
6 this . def ineObsProperty ( " task " , task ,
7 i n i t i a t o r . getCanonicalName ( ) ) ;
8 RoleId dest = new RoleId ( " participant " ) ;
9 createAllCommitments (new Commitment( i n i t i a t o r ,

10 dest , " propose " , " accept OR reject " ) ) ;
11 a s s e r tFac t (new Fact ( " cfp " , i n i t i a t o r , task ) ) ;
12 }
13 @OPERATION
14 @ROLE(name=" participant " )
15 public void propose ( St r ing prop , int cost , S t r ing i n i t ) {
16 Proposal p = new Proposal ( prop , co s t ) ;
17 // . . .
18 def ineObsProperty ( " proposal " ,
19 p . getProposalContent ( ) , p . getCost ( ) ,
20 p a r t i c i p a n t . getCanonicalName ( ) ) ;
21 createCommitment (new Commitment( pa r t i c i pant ,
22 i n i t i a t o r , " accept " , " done OR failure " ) ) ;
23 a s s e r tFac t (new Fact ( " propose " , pa r t i c i pant , prop ) ) ;
24 ac tua lProposa l s++;
25 i f ( ac tua lProposa l s == numberMaxProposals ) {
26 // . . .
27 createCommitment (new Commitment( i n i t i a t o r ,
28 groupPart ic ipant , " true " , " accept OR reject " ) ) ;
29 }

Listing 1.1. The CNP artifact in JaCaMo+.

cfp (line 3) is a protocol action, realized as a CArtAgO operation (CArtAgO
Java annotation @OPERATION, line 1). It can be executed only by an initiator
(JaCaMo+ Java annotation @ROLE(name=“initiator”), line 2). It publishes the
task for the interaction session as an observable property of the artifact (line 6).
All agents focusing on the artifact will have this information added to their
belief bases. The social effect of cfp is the creation (line 9) of as many com-
mitments as participants to the interaction, and of a social fact (line 11), that
tracks the call made by the initiator. These effects will be broadcast to all fo-
cusing agents. Accept pertains to the initiator. It asserts a social fact, accept,
which causes the satisfaction of one of the commitments created at line 9 to-
wards a specific participant. Propose counts the received proposals and, when
their number is sufficient, signals this fact to the initiator by the creation of a
commitment (line 21) towards the group of participants. Below, the JaCaMo+
initiator program:

1 /* I n i t i a l goa l s */
2 ! startCNP .
3 /* Plans */
4 +!startCNP : true
5 <− makeArt i fact ( " cnp " , " cnp . Cnp " , [ ] ,C) ;
6 f o cus (C) ;
7 enact ( " initiator " ) .
8 +enacted ( Id , " initiator " , Ro le Id )
9 <− +enactment id ( Role Id ) ;

10 ! so lveTask ( " task - one " ) .
11 +! solveTask ( Task ) /*ENTICE*/
12 : enactment id ( My Role Id )
13 <− +task ( Task ) ;
14 c fp ( Task ) ;
15 ? cc ( My Role Id , Part Role Id , " propose " ,

93



16 "( accept or reject )" , " CONDITIONAL " ) .
17 +cc ( My Role Id , " participant " , " true " , /*DELIVER*/
18 "( accept OR reject )" , " DETACHED " )
19 : enactment id ( My Role Id )
20 <−!acceptORreject ;
21 ? cc ( My Role Id , , " true " ,
22 "( accept OR reject )" , " SATISFIED " ) .
23 +! acceptORreject
24 : not eva luated
25 <− +evaluated ;
26 . f inda l l ( proposa l ( Content , Cost , Id ) ,
27 proposa l ( Content , Cost , Id ) , Proposa l s ) ;
28 . count ( proposa l ( Content , Cost , Id ) ,
29 ProposalsNumb ) ;
30 . min ( Proposals ,
31 proposa l ( Proposal , Cost , Winner Role Id ) ) ;
32 +winner ( Winner Role Id ) ;
33 accept ( Winner Role Id ) ;
34 ? cc ( My Role Id , Winner Role Id ,
35 " true " , "( accept OR reject )" , " DETACHED " ) .
36 %. . . a c t i on ’ r e j e c t ’ f o r a l l other proposa l s . . .
37 +done ( P a r t i c i p a n t r o l e i d , Result )
38 : winner ( P a r t i c i p a n t r o l e i d ) ;
39 <− . print ( " Task resolved : " , Result ) .
40 +f a i l u r e ( P a r t i c i p a n t r o l e i d )
41 : winner ( P a r t i c i p a n t r o l e i d ) ;
42 <− . print ( " Task failed by " , P a r t i c i p a n t r o l e i d ) .

Listing 1.2. The initiator agent code in JaCaMo+.

The first ten lines are about the setting up of the environment. In this im-
plementation, the initiator agent first creates the Cnp artifact (line 5), and then
enact the initiator role (line 7). In general, however, the artifact could already
be available, and an agent could just focus on it, and enact the initiator role.
Note that the artifact notifies the agent the success of the enactment by as-
serting an enacted belief in the social state; note also that the agent receives a
unique identifier, Role Id, that will be used within the social state throughout
the subsequent interactions (i.e., commitments will mention such an identifier).

After these preliminary steps, the initiator tries to reach the goal of having
task-one performed: solveTask(”task-one”)2. This situation maps with the EN-
TICE rule from [28]; we, thus, follow the JaCaMo+ template associated with
such a rule: see lines 11 - 16. The initiator, driven by its goal, performs the social
action cfp, and thereby creates a commitment towards any participant that is
focusing (or will focus) on that specific artifact. The execution of such action
(which is performed by the initiator by its own initiative) modifies the social
state; consequently, this modification is notified to the other focussing agents
who will be in condition of taking this new social relationship into account in
their own deliberative activity. The test goal concluding the rule allows the ini-
tiator to verify that at least one commitment has actually been created; namely,
the entice has changed the social state.

Since the initiator has created a commitment, it must be ready to bring about
the consequent of such a commitment whenever the antecedent will become true.
The initiator must therefore contain a DELIVER-template plan; see lines 17-22

2 To improve the readability of the code, we have simplified the notation in the Jason
program by abstracting goals with simple labels.

94



in which the initiator, activated by the detachment of the commitment previously
created with the cfp social action, starts a plan that will satisfy the commitment
itself. The plan, acceptORreject (lines 23-33), first selects the best proposal, and
then performs a social action accept towards the winner agent, and a social
action reject towards any other participant that has not been selected.

The two last plans, done (line 37) and failure (line 40), are used by the initiator
to monitor the actual completion of the task with either success or failure.

Let us now consider the participant side.

1 /* I n i t i a l goa l s */
2 ! p a r t i c i p a t e .
3 /* Plans */
4 +! p a r t i c i p a t e : true
5 <− focusWhenAvailable ( " cnp " ) ;
6 enact ( " participant " ) .
7 +enacted ( Id , " participant " , My Role Id )
8 <− +enactment id ( My Role Id ) .
9 +cc ( I n i t i a t o r R o l e I d , My Role Id , /*DETACH*/

10 " propose " , "( accept OR reject )" , " CONDITIONAL " )
11 : enactment id ( My Role Id )
12 & task ( Task , I n i t i a t o r R o l e I d )
13 <− ! s e tup proposa l ( Task , I n i t i a t o r R o l e I d ) ;
14 ? cc ( I n i t i a t o r R o l e I d , My Role Id ,
15 " true " , "( accept OR reject )" , " DETACHED " ) .
16 +! se tup proposa l ( Task , I n i t i a t o r R o l e I d )
17 : enactment id ( My Role Id )
18 <− ! p r epa r e proposa l ( Task , Prop , Cost ) ;
19 propose ( Prop , Cost , I n i t i a t o r R o l e I d ) ;
20 +my proposal ( Prop , Cost , I n i t i a t o r R o l e I d ) ;
21 ? cc ( My Role Id , I n i t i a t o r R o l e I d , " accept " ,
22 "( done OR failure )" , " CONDITIONAL " ) .
23 +cc ( My Role Id , I n i t i a t o r R o l e I d , /*DELIVER*/
24 " true " , "( done OR failure )" , " DETACHED " )
25 : enactment id ( My Role Id ) &
26 accept ( My Role Id )
27 <− ? my proposal ( Prop , Cost , I n i t i a t o r R o l e I d ) ;
28 ! doneORfai lure ( Prop , Cost , I n i t i a t o r R o l e I d ) .
29 ? cc ( My Role Id , I n i t i a t o r R o l e I d ,
30 " true " , "( done OR failure )" , " SATISFIED " ) .
31 +! doneORfai lure ( Prop , Cost , I n i t i a t o r R o l e I d )
32 <− ! compute resu l t ( Prop , Cost , Result ) ;
33 i f ( Result == " fail " ){
34 f a i l u r e ( I n i t i a t o r R o l e I d ) ;
35 }
36 e l s e {
37 done ( Result , I n i t i a t o r R o l e I d ) ;
38 } .
39 +! compute resu l t ( Prop , Cost , Result )
40 <− 〈plan computing the r e s u l t 〉 .

Listing 1.3. The participant agent code in JaCaMo+.

A participant waits for calls for proposal by means of the CArtAgO basic
operation focusWhenAvailable (line 5). A participant, thus, must be able to re-
act whenever a new commitment of the form cc(initiator, participant, propose,
accept ∨ reject) pops up in the social state. This behavior corresponds to the
DETACH template, that is encoded in the JaCaMo+ plan in lines 9-15. In
particular, the participant triggers a plan, setup proposal that will satisfy the an-
tecedent of the commitment. Such a plan, in fact, will include the social action
propose (line 19). Note that the effect of action propose is twofold: (1) it as-
serts a fact ”propose” in the social state, and hence satisfies the antecedent of

95



the triggering commitment; and (2) it also creates a new commitment from the
participant to the initiator (see the protocol definition in Table 1), of the form
cc(p, i, accept, done ∨ failure). This second commitment states that the partici-
pant is committed to carry out the task in case the initiator accepts its proposal.
Thus, since the participant creates a commitment, it must also be ready to bring
about the consequent of that commitment when the antecedent holds, and hence
also the participant has a DELIVER-template plan in its program: see lines 23-
30. In the specific case, the participant will activate a plan, doneORfailure, whose
body will include the computation of a solution for the task at hand, and also the
social actions done or failure depending on the, respectively, positive or negative
result of the computation.

4.3 Final Remarks

One of the strongest points of JaCaMo+ is the decoupling between the design
of the agents and the design of the interaction – that builds on the decoupling
between computation and coordination done by coordination models like tuple
spaces. Agent behavior is built upon agent goals and on its engagements with
other agents, which are both the result of its deliberative process. For instance,
in CNP the initiator becomes active when the commitments that involve it as a
debtor, and which bind it to accept or reject the proposals, are detached. It is
not necessary to specify nor to manage, inside the agent, such things as deadlines
or counting the received proposals: the artifact is in charge of these aspects.

The decoupling allows us to change the definition of the artifact without
the need of changing the agents’ implementation. The Cnp class in Listing 1.1
detaches the commitments when a certain number of proposals is received. We
can substitute such a class with class CnpTimer, which detaches commitments
when a given deadline expires. This modification does not have any impact on
the agents, whose programs remain unchanged, but for the line in which an agent
focuses on (or creates) an artifact; e.g., for the initiator, the only change occurs
in line 5 (see the following listing), in which the initiator creates a different type
of artifact reifing the CNP protocol (the participant case is similar).

1 /* I n i t i a l goa l s */
2 ! startCNP .
3 /* Plans */
4 +!startCNP : true
5 <− makeArt i fact ( " cnp " , " cnp . CnpTimer " , [ ] ,C) ;
6 f o cus (C) ;
7 enact ( " initiator " ) .

Listing 1.4. The initiator code, using CnpTimer.

Table 2 compares JaCaMo (with interaction [32]), with JaCaMo+ along some
important characteristics that a MAS should feature. Let us discuss these dimen-
sions, with a particular attention to those where the two platforms differ from
one another. JaCaMo and JaCaMo+ do not equally support autonomy, in the
sense that an agent can autonomously selects its own duties. JaCaMo with inter-
action just offers an agent to follow a predetermined path (a guideline) through
which the agent has to fulfill a precise pattern of obligations. JaCaMo+, instead,

96



JaCaMo with Interaction JaCaMo+

Autonomous selection of obligations X X
Maintainability X X
Monitoring Support X X
Modular Definition of Protocols X X
Flexibility X X
Robustness X X
Interaction not spread across the agents code X X

Table 2. Comparison among JaCaMo with interaction and JaCaMo+.

offers an agent a tool, the interaction artifact, through which it can communi-
cate with other agents and act together with others. The choice, however, of
how and when been involved into an interaction remains within the scope of the
agents. The adoption of commitments, in fact, assures that an agent assumes the
responsibility for a task only when, by its own choice, performs a specific action
on the interaction artifact. This has an impact on the property of flexibility and
robustness. An interaction that is structured based on obligations only hinders
agents when they need to adapt to unforeseen conditions (flexibility) or when
they need to react to unwanted situations (robustness). The agent, in fact, is
not free to delegate obligations, schedule them differently, etc. All the agent can
do is to perform the actions that, instructed by the interaction protocol, resolve
its obligations.

Protocols in [32] aim at defining guidelines to the use of resources in an orga-
nization. This, however, limits the modularity of interaction protocols because
protocols depend on operations that are defined in the organization and there
is no explicit association of which actions pertain to which roles. Thus, for in-
stance, a participant may execute a cfp and the interaction artifact would allow
it to do so. JaCaMo+ interaction protocols, instead, include the definitions of
the needed operations, and specify which of them will empower the various role
players. For both proposals the interaction logic is captured by the artifact and
is not spread across the agent codes. Both include functionalities for monitoring
the on-going interaction. In [32] the normative structure is leveraged to this aim,
while in JaCaMo+ this can be done inside each of the protocol artifacts.

5 Conclusions

In this paper we presented JaCaMo+, and extension to JaCaMo that enables
social behaviors into its agents. We started from the interaction protocols based
on obligations proposed in [32]. These protocols are suitable for modeling inter-
actions among different elements of a MAS (i.e., not only interactions between
agents, but also between agents and objects). However, obligation-based proto-
cols reduce agent interactions to messages that an agent is obliged to send to
another agent; that is, social relationships among agents are not handled di-
rectly. In other words, an obligation-based protocol can be adopted only in an

97



organization that gives guidelines about how interactions should be carried on,
but it is not applicable in those organizations where similar guidelines are not
available.

To cope with these more challenging situations, our intuition is to define an
interaction in terms of goals and commitments. Commitments, in fact, are at
the right level of abstraction for modeling directed relationships between agents.
Moreover, since commitments have a normative power, they enable the agents
to reason about the behavior of others; a commitment creates expectations in
the creditor about the behavior that the debtor will assume in the near future.

Note that our view is also backed up by the practical rules discussed in
[28], which highlight how goals and commitments are each other related. In
particular, in this paper we have proposed to use the same rules as a sort of
methodology for programming the Jason agents. An initial implementation of
our proposal is provided by the JaCaMo+ platform. The tests (which involve
from 5 to 100 agents) show that it scales up quite well, despite the introduction
of commitments, but a more thorough testing will be performed in the near
future.

The shift from obligations to commitments is beneficial in many respects.
First of all, the autonomy of the agents is better supported because, although
charged with goals to be achieved, they are free in deciding how to fulfill their
goals. It follows that agents are deliberative, and this paves the way to self-* ap-
plications, including the ability to autonomously take advantage from opportuni-
ties, and the ability of properly reacting to unexpected events (self-adaptation).
For instance, by finding a way for accomplishing an organizational goal taking
into account the current state of the MAS, which is hardly foreseeable at de-
sign time. Moreover, the interplay between goals and commitments opens the
way to the integration of self-governance mechanisms into organizational con-
texts. Thus, our concluding claim is that directly addressing social relationships
increases the robustness of the whole MAS.

In the future, we intend to investigate how agents can leverage on their
deliberative capabilities, and use it not only to program interactions, but to
plan social interactions. Moreover, the modular nature of the implementation
facilitates the development of extensions for tackling richer, data-aware contexts
[12,22,13]. We are also interested in tackling, in the implementation, a more
sophisticate notion of social context and of enactment of a protocol in a social
context [4], as well as to introduce a typing system along the line of [2].

Acknowledgements

The authors would like to thank the anonymous reviewers for their comments,
which helped improving the paper.

References

1. Matteo Baldoni, Cristina Baroglio, and Federico Capuzzimati. Social computing
in JaCaMo. In Proc. of ECAI, volume 263 of Frontiers in Artificial Intelligence

98



and Applications, pages 959–960. IOS Press, 2014.
2. Matteo Baldoni, Cristina Baroglio, and Federico Capuzzimati. Typing Multi-Agent

Systems via Commitments. In F. Dalpiaz, J. Dix, and M. B. van Riemsdijk,
editors, Post-Proc. of the 2nd International Workshop on Engineering Multi-Agent
Systems, EMAS 2014, Revised Selected and Invited Papers, number 8758 in LNAI,
pages 388–405. Springer, 2014.

3. Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio.
Programming with Commitments and Goals in JaCaMo+ (Extended Abstract).
In Proc. of 14th International Conference on Autonomous Agents and Multiagent
Systems, AAMAS 2015, July 4th-8th 2015.

4. Matteo Baldoni, Cristina Baroglio, Amit K. Chopra, and Munindar P. Singh. Com-
posing and Verifying Commitment-Based Multiagent Protocols. In M. Wooldridge
and Q. Yang, editors, Proc. of 24th International Joint Conference on Artificial
Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25th-31th 2015.

5. Matteo Baldoni, Cristina Baroglio, Elisa Marengo, and Viviana Patti. Constitutive
and Regulative Specifications of Commitment Protocols: a Decoupled Approach.
ACM Trans. on Intelligent Sys. and Tech., Special Issue on Agent Communication,
4(2):22:1–22:25, March 2013.

6. Matteo Baldoni, Cristina Baroglio, Viviana Patti, and Elisa Marengo. Constitutive
and Regulative Specifications of Commitment Protocols: a Decoupled Approach
(Extended Abstract). In M. Wooldridge and Q. Yang, editors, Proc. of 24th In-
ternational Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25th-31th 2015.

7. Tristan M. Behrens, Koen V. Hindriks, and Jürgen Dix. Towards an environ-
ment interface standard for agent platforms. Annals of Mathematics and Artificial
Intelligence, 61(4):261–295, 2011.

8. Fabio L. Bellifemine, Giovanni Caire, and Dominic Greenwood. Developing Multi-
Agent Systems with JADE. John Wiley & Sons, 2007.

9. Olivier Boissier, Rafael H. Bordini, Jomi F. Hübner, Alessandro Ricci, and Andrea
Santi. Multi-agent oriented programming with JaCaMo. Science of Computer
Programming, 78(6):747 – 761, 2013.

10. Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldridge. Programming
Multi-Agent Systems in AgentSpeak Using Jason. John Wiley & Sons, 2007.

11. Frances M. T. Brazier, Barbara M. Dunin-Keplicz, Nick R. Jennings, and Jan
Treur. Desire: Modelling Multi-Agent Systems in a Compositional Formal Frame-
work. Int. J. of Cooperative Information Systems, 06(01):67–94, March 1997.

12. Federico Chesani, Paola Mello, Marco Montali, and Paolo Torroni. Representing
and monitoring social commitments using the event calculus. Autonomous Agents
and Multi-Agent Systems, 27(1):85–130, 2013.

13. Amit K. Chopra and Munindar P. Singh. Cupid: Commitments in relational alge-
bra. In Proc. of the 29th AAAI Conf, pages 2052–2059. AAAI Press, 2015.

14. Rosaria Conte, Cristiano Castelfranchi, and Frank Dignum. Autonomous Norm
Acceptance. In ATAL, volume 1555 of LNCS, pages 99–112. Springer, 1998.

15. Natalia Criado, Estefania Argente, Pablo Noriega, and Vicent Botti. Reasoning
about constitutive norms in BDI agents. Logic Journal of IGPL, 22(1):66–93, 2014.

16. Natalia Criado, Estefania Argente, Pablo Noriega, and Vicent Botti. Reasoning
about norms under uncertainty in dynamic environments. International Journal
of Approximate Reasoning, 2014.

17. Mehdi Dastani, Davide Grossi, John-Jules Ch. Meyer, and Nick A. M. Tinnemeier.
Normative Multi-agent Programs and Their Logics. In KRAMAS, volume 5605 of
LNCS, pages 16–31. Springer, 2008.

99



18. Yves Demazeau. From interactions to collective behaviour in agent-based systems.
In In: Proceedings of the 1st. European Conference on Cognitive Science. Saint-
Malo, 1995.

19. Frodi Hammer, Alireza Derakhshan, Yves Demazeau, and Henrik Hautop Lund. A
multi-agent approach to social human behaviour in children’s play. In Proceedings
of the IEEE/WIC/ACM international conference on Intelligent Agent Technology,
pages 403–406. IEEE Computer Society, 2006.

20. Felipe Meneguzzi and Michael Luck. Norm-based behaviour modification in BDI
agents. In AAMAS (1), pages 177–184. IFAAMAS, 2009.

21. Felipe Meneguzzi, Pankaj R. Telang, and Munindar P. Singh. A first-order formal-
ization of commitments and goals for planning. In AAAI. AAAI Press, 2013.

22. Marco Montali, Diego Calvanese, and Giuseppe De Giacomo. Verification of data-
aware commitment-based multiagent system. In Proc. of AAMAS, pages 157–164.
IFAAMAS/ACM, 2014.

23. Daniel Okouya, Nicoletta Fornara, and Marco Colombetti. An infrastructure
for the design and development of open interaction systems. In M. Cossentino,
A. El Fallah Seghrouchni, and M. Winikoff, editors, Post-Proc. of the 2nd In-
ternational Workshop on Engineering Multi-Agent Systems, EMAS 2014, Revised
Selected and Invited Papers, number 8245 in LNAI, pages 215–234. Springer, 2013.

24. Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Artifacts in the a&a meta-
model for multi-agent systems. JAAMAS, 17(3):432–456, 2008.

25. Andrea Omicini and Franco Zambonelli. TuCSoN: a coordination model for mobile
information agents. In Proc. of IIIS, pages 177–187. IDI – NTNU, Trondheim
(Norway), 8–9 June 1998.

26. Munindar P. Singh. An ontology for commitments in multiagent systems. Artif.
Intell. Law, 7(1):97–113, 1999.

27. Munindar P. Singh. Commitments in multiagent systems some controversies, some
prospects. In Fabio Paglieri, Luca Tummolini, Rino Falcone, and Maria Miceli,
editors, The Goals of Cognition. Essays in Honor of Cristiano Castelfranchi, chap-
ter 31, pages 601–626. College Publications, London, 2011.

28. Pankaj R. Telang, Neil Yorke-Smith, and Munindar P. Singh. Relating Goal and
Commitment Semantics. In Proc. of ProMAS, volume 7212 of LNCS, pages 22–37.
Springer, 2012.

29. Alexander Thiele, Thomas Konnerth, Silvan Kaiser, Jan Keiser, and Benjamin
Hirsch. Applying JIAC V to Real World Problems: The MAMS Case. In MATES,
volume 5774 of LNCS, pages 268–277. Springer, 2009.

30. Danny Weyns, Andrea Omicini, and James Odell. Environment as a first class
abstraction in multiagent systems. JAAMAS, 14(1):5–30, 2007.

31. Pinar Yolum and Munindar P. Singh. Commitment Machines. In Intelligent Agents
VIII, 8th Int. WS, ATAL 2001, volume 2333 of LNCS, pages 235–247. Springer,
2002.

32. Maicon R. Zatelli and Jomi F. Hübner. The Interaction as an Integration Compo-
nent for the JaCaMo Platform. In F. Dalpiaz, J. Dix, and M. B. van Riemsdijk,
editors, Post-Proc. of the 2nd International Workshop on Engineering Multi-Agent
Systems, EMAS 2014, Revised Selected and Invited Papers, number 8758 in LNAI,
pages 431–450. Springer, 2014.

100



Evaluating Compliance:
From LTL to Abductive Logic Programming

Marco Montali1, Federico Chesani2, Marco Gavanelli3, Evelina Lamma3, and
Paola Mello2

1 Free University of Bozen-Bolzano
Piazza Domenicani 3, 39100 – Bolzano (Italy)

montali@inf.unibz.it
2 University of Bologna

V.le Risorgimento 2, 40136 – Bologna (Italy)
{ federico.chesani | paola.mello }@unibo.it

3 University of Ferrara
Via Saragat 1, 44122 – Ferrara (Italy)

{ marco.gavanelli | evelina.lamma }@unife.it

Abstract. The compliance verification task amounts to establishing if
the execution of a system, given in terms of observed events, does re-
spect a given property. In the past both the frameworks of Temporal
Logics and Logic Programming have been extensively exploited to as-
sess compliance. In this work we review the LTL and the Abductive
Logic Programming frameworks in the light of compliance evaluation,
and formally investigate the relationship between the two approaches.
We define a notion of compliance within each approach, and then we
show that an arbitrary LTL formula can be expressed in SCIFF, by pro-
viding an automatic translation procedure from LTL to SCIFF which
preserves compliance.

Keywords: Linear Temporal Logic, Abductive Logic Programming, Compli-
ance Verification, Business Process Management.

1 Introduction

Linear Temporal Logic (LTL) [12] specifications are traditionally used for ex-
pressing the properties that a reactive system should exhibit (or avoid), and are
exploited by model checking tools for formal verification (e.g., [15,9]). Recently,
LTL has been also used to describe the system under study itself, in fields like
Business Process Management (BPM) and Service Oriented Computing (SOC):
e.g., the DECLARE system [24] and the ConDec language [23,20] adopt LTL to
model business processes, business rules and policies.

In these domains, a relevant task is to assess compliance, usually defined as
checking if an implementation faithfully meets the requirements of a specifica-
tion. The LTL models correspond to linear Kripke structures representing the

101



execution traces (i.e., sequences of events) occurred during a specific instanti-
ation of the system, while entailment becomes a compliance evaluator w.r.t. a
regulatory specification expressed as an LTL formula. Such approach has been
used, for example, in [6] for static compliance verification of BPMN business
processes, and in [1] for auditing event logs.

Recently, Logic Programming (LP) based approaches have been applied for
specification and verification of normative systems [5,14], web services [25,7]
and business processes as well [11,20]. The LP framework nicely meets the ad-
vantages of a declarative, first-order specification, grounded on a model-based
semantics, and equipped with an operational proof procedure. Abductive Logic
Programming (ALP, [17]), in particular, integrates abductive reasoning into LP,
supporting an hypothesis-making mechanism.

In [2] we have defined the abductive proof procedure named SCIFF, originally
developed for specification and verification of open societies of “computees” (a
sort of agents), and later applied to normative systems [4,8], web service interac-
tion [3,21] and BPM [22,20]. SCIFF specifications are given in terms of integrity
constraints linking occurring events to expectations about the future course of
events, and the declarative semantics has been given in terms of compliance of
a given trace with respect to a SCIFF specification.

In this paper we investigate the relation between the LTL-based approach
and the SCIFF framework, showing that if we focus on the compliance task,
an LTL model can be (formally and correctly) translated into a SCIFF one.
Starting from the seminal work in [13] about Separated Normal Forms (SNF)
for LTL formulae, we define proper mapping functions and show how any LTL
formula can be expressed within the SCIFF formalism. Then, we formally define
the notion of compliance in both the approaches, we identify a tight equivalence
relation, and we prove how such equivalence is indeed maintained when moving
from the LTL approach to the SCIFF-based one.

2 Linear Temporal Logic

In this section, we provide a brief introduction to (propositional) Linear-time
Temporal Logic (LTL), in particular w.r.t. the notion of compliance; the inter-
ested reader can refer to [12] for a more general introduction.

LTL formulae are built up from atomic propositions, whose truth values
change over time. The LTL time structure F , also called frame, models a single,
linear timeline; formally, F is a totally ordered set (K ,≺) [12].

Definition 1 (LTL model). Let P be the set of all atomic propositions in the
system. An LTL model M for P is a triple (K ,≺, v) where v : P → 2K is a
function which maps each proposition in P to the set of time instants at which
the proposition holds.

We are interested in systems characterized by dynamics consisting of a stream
of events. In this respect, each proposition represents a possible event that may
occur in an instance of the system. More specifically, a proposition e ∈ P is

102



true in a certain state if at that state the event denoted by e occurs. Under this
interpretation, LTL models correspond to execution traces.

Definition 2 (LTL execution trace). Given a set E of atomic propositions
(representing possible events), an LTL execution trace TL is an LTL model hav-
ing (N, <) as time structure and E as the set of atomic propositions. In particu-
lar, TL = (N, <, vocc), where vocc : E → 2N is a valuation function mapping each
event e ∈ E to the set of all time instants i ∈ N at which e occurs.

We will use the following abbreviations: TL(i) will denote the i-th state of TL,
i.e. the subset {e ∈ E | i ∈ vocc(e)}.

2.1 Syntax of LTL

LTL formulae are defined by using (i) atomic propositions, i.e., events, together
with the two special constants true and false; (ii) classical propositional con-
nectives, i.e., ¬, ∧, ∨ and ⇒; (iii) temporal operators, i.e., © (next time), U
(until), ♦ (eventually), � (globally) and W (weak until). An LTL formula is
recursively defined as: each event e ∈ E is a formula; if ϕ and ψ are formulae,
then ¬ϕ, ϕ∧ψ,©ψ, and ϕUψ are formulae. Other LTL formulae can be defined
as abbreviations:

– ϕ ∨ ψ , ¬(¬ϕ ∧ ¬ψ) and ϕ⇒ ψ , ¬ϕ ∨ ψ;
– true , ¬ϕ ∨ ϕ and false , ¬true;
– ♦ϕ , trueUϕ, �ϕ , ¬♦¬ϕ and ψWϕ , ψUϕ ∨�ψ.

2.2 Semantics of LTL and Compliance

The semantics of LTL is given w.r.t. an LTL execution trace, and w.r.t. a specific
state. We will use |=L to denote the logical entailment in the LTL setting.
M, i |=L ϕ means that ϕ is true at time i in model M. |=L is defined by
induction on the structure of the formulae4:

(TL |=L ϕ) iff (TL, 0 |=L ϕ);
(TL, i |=L e) iff e ∈ TL(i) (i.e., i ∈ vocc(e));
(TL, i 6|=L e) iff e 6∈ TL(i);
(TL, i |=L ¬ϕ) iff (TL, i 6|=L ϕ);
(TL, i |=L ϕ ∧ ψ) iff (TL, i |=L ϕ) and (TL, i |=L ψ);
(TL, i |=L ϕ ∨ ψ) iff (TL, i |=L ϕ) or (TL, i |=L ψ);
(TL, i |=L ϕ⇒ ψ) iff (TL, i 6|=L ϕ) or (TL, i |=L ψ);
(TL, i |=L ©ϕ) iff (TL, i+ 1 |=L ϕ);
(TL, i |=L ψUϕ) iff ∃k ≥ i s.t. (TL, k |=L ϕ) and ∀i ≤ j < k (TL, j |=L ψ);
(TL, i |=L ♦ϕ) iff ∃j ≥ i s.t. (TL, j |=L ϕ);
(TL, i |=L �ϕ) iff ∀j ≥ i (TL, j |=L ϕ);

4 For the sake of readability, we explicitly show the semantics of ♦, � and W, even if
their meaning can be obtained from the semantics of U and �.

103



(TL, i |=L ψWϕ) iff either (TL, i |=L ψUϕ) or (TL, i |=L �ψ).

When LTL is employed to formalize compliance rules, the declarative seman-
tics selects those events that must be contained (or avoided) in certain states so
as to fulfil them, separating compliant traces from non-compliant ones. In this
respect, |=L plays the role of a compliance evaluator.

Definition 3 (LTL Compliance). An LTL trace TL is compliant with a LTL
formula ϕ if and only if TL entails ϕ:

cmpLTL(TL, ϕ) , TL |=L ϕ.

When LTL formulae are used to express business constraints/rules of a regu-
latory model, as for example in the ConDec language [23], then the LTL formula
used for compliance is the conjunction of all formulae contained in the regulatory
model. From an operational viewpoint, the compliance of a formula ϕ w.r.t. a
TL is verified by means of model checking algorithms.

3 The SCIFF Framework

In the following we will briefly recap the main features of the SCIFF framework.
The interested reader can refer to [2] for a detailed and comprehensive presenta-
tion. A SCIFF specification S is an Abductive Logic Program 〈KB,A, IC〉 [17]
where: (i) KB is a (static) knowledge base (a Logic Program [19]); (ii) A is a
special set of predicates, called abducibles; two special abducibles, namely E/2
and EN/2, are used to represent the expectations; (iii) IC is a set of SCIFF
integrity constraints, relating happened events with expectations.

Roughly speaking, given a goal G, abductive reasoning looks for a set of
literals ∆ built from predicates A such that the goal is entailed by the program
KB ∪ ∆, and the set of integrity constraints IC is entailed too. The set ∆ is
referred to as an abductive explanation (see Definition 6).

Three special predicates are used to model happened events and positive/neg-
ative expectations. Happened events are denoted by using the (non abducible)
predicate H(Ev, T ), where Ev is a term representing the occurred event, while
T explicitly represents the time at which the event occurred. In the remainder
of this paper we will assume the time domain relies on natural numbers.

Definition 4 (SCIFF Execution Trace). A SCIFF execution trace T (or
simply a SCIFF trace) is a set of positive ground H(E, T ) atoms.

A specific execution of the system under study is called an instance, and it is
formally identified by the SCIFF specification modeling the system and by the
execution trace produced during the instance execution.

Definition 5 (SCIFF Instance). Given a SCIFF specification S = 〈KB,A, IC〉
and a trace T , 〈S, T 〉 is an instance of S.

104



Positive and negative expectations model expected and forbidden events.
They are represented by E(Ev, T ) and EN(Ev, T ), where Ev is a term describing
the event, and T is a term or a variable. The intended meaning is that event Ev
is expected to occur/not occur at time T .

SCIFF Integrity Constraints (IC) are mainly used to relate happened events
with expectations. They are body → head rules, where body contains a conjunc-
tion of happened events, general abducibles, and defined predicates, while head
contains a disjunction of conjunctions of expectations, general abducibles, and
defined predicates. When the body is matched with events and abducibles, the
IC is triggered, and expectations occurring in the head are assumed (abduced).

Definition 6 (Abductive explanation ∆). Given a SCIFF instance 〈S, T 〉,
a set ∆ ⊆ A is an abductive explanation for 〈S, T 〉 if and only if

Comp (KB ∪ T ∪∆) ∪ CET∪TX |= IC

where Comp is the (two-valued) completion of a theory [18], CET stands for
Clark Equational Theory [10] and TX is the CLP constraint theory [16], param-
etrized by the domain X .

We remind for completeness that CET is provided by the following axioms:

– c 6= c′ c, c′ any pair of distinct constants
– f(x1, . . . , xn) 6= g(y1, . . . , ym) f, g any pair of distinct functors
– f(x1, . . . , xn) = f(y1, . . . , yn)→ x1 = y1 ∧ . . . xn = yn
– f(x1, . . . , xn) 6= c f any functor, c any constant
– τ(x) 6= x τ(x) any term structure in which x is free.
– x = y → [W (x)↔W (y)] W any formula

together with the usual rules of reflexivity, symmetry and transitivity for equal-
ity. Fixing a CLP theory corresponds to instantiate the parameter X and the
set of allowed constraints. Therefore, different structures can be chosen without
affecting the notion of SCIFF’s abductive explanation. We will instantiate such
a parameter to N, with linear equations and dis-equations. The theory of con-
straints TN defines the symbols +,−, ∗, /,=, >,<,≥, . . . with the usual meanings
(e.g., 1 < 2 + 2 is evaluated to true).

Remark 1 (Abductive explanations and sub-specifications). If ∆ is an abduc-
tive explanation for 〈S, T 〉, then ∆ is an abductive explanation also for 〈S ′ =
〈KB,A, IC′〉, T 〉, where IC′ ⊆ IC.

Being able to generate hypotheses might not be enough: in specific domains
like, e.g., legal reasoning, a further step of verification of the hypotheses against
the observed events (available data) is mandatory. Hence, the SCIFF framework
provides also an hypotheses-confirmation mechanism, based on the formal no-
tions of fulfillment and violation. First of all, expectations must be E-consistent :
the same event cannot be expected and prohibited at the same time.

105



Definition 7 (E-consistency). An abducible set ∆ is E-consistent iff for each
event e and for each time t it holds that {E(e, t),EN(e, t)} * ∆

The relationship between expectations and happened events is instead captured
by the notions of fulfillment and violation.

Definition 8 (T -Fulfillment). Given a SCIFF trace T and an abducible set
∆, ∆ is T -fulfilled iff for each event e and for each time t: E(e, t) ∈ ∆ →
H(e, t) ∈ T and EN(e, t) ∈ ∆→ H(e, t) /∈ T

Definition 9 (T -Violation). Given a SCIFF trace T and an abducible set ∆,
∆ is T -violated iff it exists at least one event e and time t such that: E(e, t) ∈
∆ ∧H(e, t) /∈ T , or EN(e, t) ∈ ∆ ∧H(e, t) ∈ T

Given an abductive explanation ∆, fulfillment acts as a classifier that separates
the legal/correct execution traces with respect to ∆ from the wrong ones.

Definition 10 (Compliance in SCIFF). A trace T is compliant with a SCIFF
specification S if and only if there exists an abducible set ∆ such that:

1. ∆ is an abductive explanation for 〈S, T 〉;
2. ∆ is E-consistent;
3. ∆ is T -fulfilled.

If this is the case, we write cmpSCIFF
∆ (T ,S) or simply cmpSCIFF (T ,S).

4 Relating LTL and SCIFF

LTL and SCIFF rely on different logics, but when capturing regulatory models
they both act as compliance evaluators, capturing the same idea of compliance.
To capture some similarity w.r.t. compliance, we propose a mapping between
LTL and SCIFF. First of all, we need to provide a mapping between an LTL
trace TL and the corresponding SCIFF trace T (and vice versa).

Definition 11 (Trace mapping). Given an LTL trace TL = (N, <, vocc) and
the set of atomic propositions E, we map any possible pair (e, i) into a corre-
sponding SCIFF event H(e, i), where e ∈ E and i ∈ N.

A trace mapping tm is a transformation which maps an arbitrary LTL trace
TL onto a corresponding SCIFF one, by applying the event mapping to each
proposition belonging to TL, i.e. to each e ∈ E and for each i ∈ vocc(e):

tm(TL) =
{
H(e, i)|e ∈ E , i ∈ vocc(e)

}

Example 1. Let us consider an LTL execution trace TL = (N, <, vocc), where
E = {a, b, c, d} is the set of propositional events and vocc is defined as follows:

vocc(a) = {0, 1} vocc(b) = {2} vocc(c) = {3} vocc(d) = ∅

Then tm (TL) =
{

H(a, 0), H(a, 1), H(b, 2), H(c, 3)
}

106



The inverse translation, which starts from a SCIFF execution trace and produces
a corresponding LTL trace, will be denoted by tm−1.

Thanks to the trace mapping function tm, it is possible to evaluate whether
the “same” execution trace complies with an LTL and a SCIFF specification: if
the two models agree, then they express in some sense “equivalent” prescriptions
w.r.t. the trace. Generalizing, if such an agreement is valid for all the possible
execution traces, then the two specifications are behaviorally equivalent.

Definition 12 (Behavioural equivalence w.r.t. compliance). A SCIFF
specification S and an LTL formula ϕ are behaviorally equivalent w.r.t. compli-
ance (ϕ c! S) if and only if for each LTL trace TL it holds that:

cmpLTL (TL, ϕ)⇐⇒ cmpSCIFF (tm (TL) ,S) .

We might notice that Definition 12 does not pose any constraint on the SCIFF
specification S: indeed, only the trace TL is somehow constrained by the appli-
cation of the mapping function tm.

5 On the Expressiveness of SCIFF

We show now that an arbitrary LTL formula can be expressed in SCIFF by pro-
viding an automatic translation procedure from LTL to SCIFF which preserves
the compliance equivalence. To this end, we exploit the Separated Normal Form
(SNF) for LTL formulae.

5.1 A Separated Normal Form for LTL Formulae

Fisher and colleagues [13] introduced SNF to express an arbitrary LTL formula
by adopting a conjunction of three-basic forms, while preserving satisfiability.

Definition 13 (SNF Formula [13]). An LTL formula ϕ is in SNF iff ϕ is a
conjunction of formulas of the following forms:

start =⇒
∨

c

lc (an initial LTL-clause)

�
(∧

a

ka =⇒ ©
∨

d

ld

)
(a step LTL-clause)

�
(∧

b

kb =⇒ ♦l
)

(a sometime LTL-clause)

where ki and lj are literals (i.e., atomic propositions or negation of atomic propo-
sitions) and start is a special symbol true only at the initial time (i.e., whose
valuation function is the set {0}). In this case, we say that ϕ is an SNF formula.

Definition 14 (LTL to SNF translation [13]). snf is a function which
translates an arbitrary LTL formula to a corresponding SNF formula.

107



During the transformation, new proposition symbols are introduced to rename
complex sub-formulae. Hence, we distinguish between propositions used to rep-
resent activities/events, and those used for renaming.

Definition 15 (Proposition symbols, renaming and event sets). Given
an LTL formula ϕ, P (ϕ) is the set of proposition symbols contained in ϕ. Given
an SNF formula σ s.t. σ = snf(ϕ), it holds that P (σ) = E(σ) ∪ R (σ), where:

1. event set E(σ) is the set of atomic propositions contained in the original LTL
formula ϕ, which denote events (E(σ) = P (ϕ))

2. renaming set R (σ) is the set of atomic propositions used for renaming during
the transformation.

Example 2. Let us consider LTL “precedence” formula stating that the send receipt
activity can be executed only after having executed the pay activity:

ϕ = ¬send receipt W pay

Hence, P (ϕ) = {pay, send receipt}. The SNF translation of ϕ is:

σ = snf [¬send receipt W pay] =

= start⇒ x ∧





start⇒ (¬x ∨ ¬send receipt ∨ pay)∧
true⇒© (¬x ∨ ¬send receipt ∨ pay)∧
start⇒ (¬x ∨ y ∨ pay)∧
true⇒© (¬x ∨ y ∨ pay)∧
y⇒© (¬send receipt ∨ pay)∧
y⇒© (y ∨ pay)

Therefore, R (σ) = {start,x,y, true}.

5.2 Translation from SNF Formulae to SCIFF

We now provide a syntactic procedure which translates an arbitrary SNF formula
to SCIFF, and prove that such a translation preserves compliance.

Definition 16 (IC-mapping). An IC-mapping icm is a function which trans-
lates an SNF formula to a set of SCIFF integrity constraints, defined as5:

5 Abducible predicates will be represented as bold terms.

108



icm

[∧

i

ϕi

]
,
⋃

i

icm [ϕi]

icm

[
start =⇒

∨

c

lc

]
, icm [start, 0]→

∨

c

icm [lc, 0] .

icm

[
�
(∧

a

ka =⇒ ©
∨

d

ld

)]
,
∧

a

icm [ka, T ]→
∨

d

(icm [ld, T2] ∧ T2 = T + 1) .

icm

[
�
(∧

a

ka =⇒ ♦l
)]
,
∧

a

icm [ka, T ]→ icm [l, T2] ∧ T2 ≥ T.

icm [start, 0] , occ(start, 0)

icm [true, T ] , true(T )

icm [a, T ] , occ(a, T )

icm [¬a, T ] , not occ(a, T )

Where a stands for a generic propositional symbol. The IC-mapping maps the
presence of a certain proposition in a given state onto an abducible occ/2,
stating that the proposition occurs in that state. Conversely, the absence of
the proposition is mapped onto an abducible not occ/2.

Definition 17 (S-mapping sm). Given an SNF formula ϕ and a set V ⊆ P (ϕ)
of proposition symbols, the S-mapping sm translates ϕ to a SCIFF specification
depending on V . sm is defined as:

sm : ϕ,V 7−→ 〈∅, {E/2,EN/2, true/1,occ/2,not occ/2}, IC)〉

where

IC = icm(ϕ) ∪ {
true→ occ(start, 0). (S)

true→ true(0). (T1)

true(T )→ true(T2) ∧ T2 = T + 1. (T2)

∀p ∈ P (ϕ), p 6= start, true(T )→ occ(p, T ) ∨ not occ(p, T ). (2V )

occ(X,T ) ∧ not occ(X,T )→ ⊥. (C)

H(X,T ) ∧X ∈ V → occ(X,T ). (O)

occ(X,T ) ∧X ∈ V → E(X,T ). (E1)

not occ(X,T ) ∧X ∈ V → EN(X,T ). } (E2)

S-mapping applies IC-mapping and then augments the obtained constraints with
further general rules. Such rules capture specific aspects of the LTL semantics:

– (S) translates the special start symbol, which is introduced by SNF and is
true only at the initial state (i.e., at time point 0).

109



– (T1) and (T2) formalize the LTL true atom, which is implicitly subject to
the formula �(true). To this aim, the true abducible is introduced, using
an initial rule (T1) and a recursive rule.

– (2V ) and (C) are used to model the two-valued semantics of LTL, i.e., that in
each state either a proposition is either true or false. We exclude the symbol
“start”, which is introduced by Fisher et al. as a special symbol holding only
in the initial state.

– (O), (E1) and (E2) relate the (not) occurrence of each proposition in each
state with the SCIFF concepts of happened events and expectations.

The next theorem states that sm preserves compliance: an arbitrary SNF
formula can be translated to a behaviourally equivalent SCIFF specification.

Theorem 1 (SCIFF can express SNF formulae ). Given an SNF formula
σ and the SCIFF specification S = sm [σ, P (σ)], it holds that σ c! S.

Proof. Since LTL and SCIFF share the same semantics for logical symbols
AND(∧), OR (∨), and implication(⇒ in LTL and → in SCIFF), we will fo-
cus only on the simplest SNF-forms, consisting of single proposition symbols
(instead of conjunctions/disjunctions).

σ = (start⇒ l)
If l is a positive literal, say, l = a, each compliant LTL execution trace TL
must satisfy the property that a ∈ TL(0), because start always holds in state
0. The obtained S contains the corresponding IC

icm[start⇒ a] = occ(start, 0)→ occ(a, 0).

By taking into account also the two general ICs (S) and (E1), all abductive
explanations of S must expect a at time point 0, i.e., they must contain
E(a, 0). Therefore, each compliant trace T must contain H(a, 0). By con-
sidering the trace mapping function tm, this is exactly the same property
required for compliant LTL traces, and therefore compliance is preserved by
switching from σ to S or vice-versa. The case in which l is a negative literal,
say, l = ¬a, can be proven in a similar way.

σ = (k ⇒©l)
Let us consider a first case where both k and l are positive literals, and focus
on one side of the equivalence ( c ); the other side can be proven in a very
similar way. To disprove c , one must find an execution trace TL which is
compliant with σ, but whose corresponding trace T is not compliant with
S = sm [σ, P (σ)]. Notice that, by Definition 17 (applying (O) and (E1)), S
explicitly foresees that in case k happens at a time t, then l is expected to
happen at time t2, t2 = t + 1. Hence, to violate S, T must contain, for a
certain time t the event H(k, t), while H(l, t2) 6∈ T . By applying the tm−1

function on this trace, one obtains a TL which obeys the following properties:
(1) k ∈ TL(t), and (2) l 6∈ TL(t + 1). The second property in particular
implies that TL is not compliant with σ, hence the initial hypothesis does not

110



hold. The other side of the implication ( c  ) can be proved in the same way,
exploiting again the characteristics of the tm function. This same proving
schema can be applied also to the case where k is a positive literal, and
l is a negative literal: the only difference is that S will contain a negative
expectation EN, rather than a positive one as before.
Let us now consider the case in which k is a negative literal, say k = ¬a,
and l is a positive literal, say l = b; again, the case in which l is a negative
literal can be proven in the same way. Each compliant TL trace must obey
the following property: ∀ t, a ∈ TL(t)∨b ∈ TL(t+1). The IC obtained by the
application of icm is not occ(a, T )→ occ(b, T2)∧T2 = T +1. For each time
t, if a happens at time t then rule (O) states that occ(a, t) is abduced, rule
(C) prevents not occ(a, t) to be abduced and thus the IC does not trigger.
If, conversely, a does not happen at time t, by rule (2V ) we can have two
options. In the first, occ(a, t) is abduced, which imposes that also E(a, t) is
abduced (rule E1); since a does not happen at time t, this assumption is not
fulfilled. In the second, not occ(a, t) is abduced, the IC triggers, abducing
occ(b, t + 1), which in turn triggers (E1), imposing that b is expected to
happen at time t + 1. Therefore, each SCIFF compliant execution trace T
must satisfy that ∀ t,H(a, t) ∈ T ∨ H(b, t + 1) ∈ T , which is equivalent,
under tm, to the property on LTL traces.

σ = (k ⇒ ♦l)
This case of a simple sometime LTL-clause trivially follows from the dis-
cussion made for the previous LTL-clause. The only difference is that the
constraint T2 = T + 1 is substituted by T2 ≥ T in this more general case.

Having proven that sm preserves compliance for each SNF basic form, we must
prove that the translation preserves compliance when applied to a conjunction
of these forms. This is straightforward, because a trace complies with a SCIFF
specification if all the integrity constraints are respected.

5.3 Translation of Arbitrary LTL Formulae to SCIFF

We now demonstrate that also an arbitrary LTL formula can be encoded in
SCIFF preserving compliance. The main technical problem is that the SNF trans-
lation introduces new symbols (used for renaming complex sub-formulae) which
do not represent events. At the SNF level, the distinction between concrete events
and renaming symbols gets lost, and therefore the SCIFF specification produced
by applying in cascade the SNF and the sm translation does not preserve com-
pliance w.r.t. the original LTL formula: positive expectations are imposed also
on renaming symbols, which however do not appear in the original LTL formula.

To overcome this issue, the intuitive idea is to restrict the translation sm

function only to events. The first step is therefore to define, in both settings, a
suitable trace projection, which filters an execution trace by maintaining only
certain symbols (in particular, the ones which correspond to events).

Definition 18 (SCIFF trace projection). Given a SCIFF execution trace T
and a set V of predicate symbols, the trace projection of T on V (T |V ) is the

111



subset of T containing only events taken from V :

T |V , {H(e, t) | H(e, t) ∈ T ∧ e ∈ V }

Definition 19 (LTL trace projection). Given an LTL execution trace TL =
(N, <, vocc) and a set V of proposition symbols, the trace projection of TL on V
(TL|V ) is the projection of TL containing only events taken from V :

TL|V = (N, <, vocc′) s.t. vocc
′(e) ,

{
vocc(e) if e ∈ V ;
∅ otherwise.

Lemma 1 (Commutativity between trace projection and trace map-
ping). For each LTL execution trace TL and for each set of proposition symbols
V

tm [TL|V ] = tm [TL] |V

Proof. From the definitions of trace mapping (Def. 11) and of trace projection
(Def. 18 and 19).

We now briefly recall one of the main results presented in [13], which proves
that SNF preserves satisfiability, i.e., in our setting, that it preserves compli-
ance. Lemma 2 reviews the satisfiability result by explicitly taking into account
execution traces. In particular, it states that execution traces compliant respec-
tively with an LTL formula and its corresponding SNF are exactly the same if
we restrict the comparison only to concrete events.

Theorem 2 (SNF preserves satisfiability [13]). An LTL formula ϕ is sat-
isfiable iff snf(ϕ) is satisfiable.

Lemma 2 (Compliance preservation via extended traces, adapted from
[13]). For each LTL formula ϕ, it holds that

∀ TL cmpLTL (TL, snf [ϕ]) =⇒ cmpLTL

(
TL|E(snf[ϕ]), ϕ

)

∀ TL cmpLTL (TL, ϕ) =⇒ ∃T ′L s.t. TL = T ′L|E(snf[ϕ]) ∧ cmpLTL (T ′L, snf [ϕ])

where we remember that (by Definition 15) E (snf [ϕ]) = P (ϕ). With such pre-
liminaries, it is possible to prove that each LTL formula is translatable to a
SCIFF specification, preserving compliance.

Theorem 3 (SCIFF can express LTL). Given an arbitrary LTL formula ϕ
and the SCIFF specification S = sm [snf [ϕ] , P (ϕ)], it holds that S c! ϕ.

Proof. Let us denote σ = snf [ϕ]. From Def. 12, and by remembering that the
event set of σ contains all the proposition symbols of ϕ (P (ϕ) = E(σ)), one has
to prove that

∀TL, cmpLTL(TL, ϕ)⇐⇒ cmpSCIFF (tm [TL], sm [σ,E(σ)])

112



We will prove firstly one way of the implication (=⇒), and then the opposite
direction (⇐=). Both the proofs are organized in the same way: by applying the
results obtained in Lemma 1, Lemma 2, and Theorem 1, the problem of proving
a formula is reduced to prove another, simpler formula. Hence, each proof starts
with a diagram that shows how each previous result is applied to a formula, and
then the simpler formula is proved.
(=⇒) Let us consider the following schema:

∀ TL, cmpLTL(TL, ϕ) =====
(∗)
===⇒ cmpSCIFF (tm [TL], sm [σ,E(σ)])

∃T ′L, TL = T ′L|E(σ)

∧cmpLTL(T ′L, σ)

Lemma 2�

wwwwww

=========
Theorem 1

⇒ cmpSCIFF (tm [T ′L], sm [σ, P (σ)])

(†)

~wwwwwwww

The schema shows that proving (∗) reduces to prove (†), i.e., we prove that

cmpSCIFF (tm [T ′L], sm [σ, P (σ)]) =⇒ cmpSCIFF

(
tm
[
T ′L|E(σ)

]
, sm [σ,E(σ)]

)
(†)

By taking into account abducible sets, Def. 15 and Lemma 1, (†) becomes:

cmpSCIFF
∆
(
T ,SER ) =⇒ cmpSCIFF

∆′ (T |E(σ),SE) (‡)

where SER = sm [σ,E(σ) ∪ R (σ)], SE = sm [σ,E(σ)] and T = tm [T ′L]. To prove
(‡), we demonstrate that

∆′ = ∆ \ {E(e, t)|e ∈ R (σ)} \ {EN(e, t)|e ∈ R (σ)}

obeys the three properties required by the Definition 10 of SCIFF compliance:

1. ∆′ is an abductive explanation for SE
T |E(σ)

. The only difference between SE

and SER is that, for the first specification, rules (O), (E1) and (E2) of Def. 17
do not trigger for events outside E(σ) (in particular, they do not trigger for
events inside R (σ)). From Remark 1, ∆ is therefore a suitable abductive ex-
planation for SE too. Furthermore, being (E1) and (E2) the only constraints
involving positive and negative expectations concerning elements in R (σ), it
is not required for an abductive explanation to contain them anymore.

2. ∆′ is E-consistent, because ∆′ ⊆ ∆ and ∆ is E-consistent.
3. ∆′ is T |E(σ)-fulfilled. Since T |E(σ) is a projection of T , ∆′ ⊆ ∆ and ∆ is
T -fulfilled, no negative expectation in ∆′ can be violated by T |E(σ). Positive
expectations concerning elements in E(σ) are maintained in ∆′, and so are
the corresponding happened events after the trace projection. Positive ex-
pectations concerning elements in R (σ) are removed from ∆ when obtaining
∆′, and therefore the application of the trace projection, which rules out
happened events concerning elements in R (σ), does not affect fulfillment.

113



(⇐=) We move then to prove the other way of the double implication stated in
this theorem. Again, let us consider the following schema:

cmpLTL

(
tm−1 [T ] , ϕ

)
⇐==========

(∗∗)
∀ T , cmpSCIFF (T , sm [σ,E(σ)])

cmpLTL

(
tm−1 [T ′] , σ

)

Lemma 2, then Lemma 1

~wwwwwww
⇐===========

Theorem 1 ∃ T ′, T = T ′|E(σ)

∧cmpSCIFF (T ′, sm [σ, P (σ)])

(§)�

wwwwww

The schema shows that proving (∗∗) reduces to prove (§), i.e. we prove that

∀ T , cmpSCIFF
∆
(
T ,SE) =⇒ ∃ T ′, T = T ′|E(σ) ∧ cmpSCIFF

∆′ (T ′,SER ) (§)

where SER = sm [σ,E(σ) ∪ R (σ)] and SE = sm [σ,E(σ)].

First of all, it is worth noting that SER extends SE by imposing that rules
(O), (E1) and (E2) can be also triggered by occ/not occ abducibles involving
symbols in R (σ), generating a larger set of expectations. Since T ′ ⊇ T , an
abductive explanation ∆′ can be therefore found for SER by extending ∆ with
the new generated expectations: ∆′ = ∆ ∪ ∆E

R ∪ ∆EN
R , where ∆E

R and ∆EN
R

respectively represent the inserted positive and negative expectations.

∆′ is E-consistent. Indeed, since ∆E
R and ∆EN

R contain only expectations
generated by rules (E1) and (E2), by construction we have:

∀ E(a, t), E(a, t) ∈ ∆E
R ⇒ occ(a, t) ∈ ∆′

∀ EN(a, t), EN(a, t) ∈ ∆EN
R ⇒ not occ(a, t) ∈ ∆′

(§§)

Let us suppose by absurdum that there exist a, t (with a ∈ R (σ)) s.t. E(a, t) ∈
∆E

R and EN(a, t) ∈ ∆EN
R . In this case, (§§) would state that occ(a, t) ∈ ∆′ and

not occ(a, t) ∈ ∆′. This would violate rule (C), making impossible that ∆′ is
an abductive explanation.

An execution trace T ∗ compliant with SER can be therefore built as follows:

T ∗ = T ∪ T R , where H(a, t) ∈ T R ⇔ E(a, t) ∈ ∆E
R

Under this choice:

1. ∆′ is left untouched by T ∗. Indeed, the only impact of T R on the ICs of SER

is to trigger rule (O), generating corresponding occ abducibles. However,
from (§§) we know that all these abducibles are already contained in ∆′.

2. ∆′ is T ∗-fulfilled by construction.

3. T ∗|E(σ) = T , because all the happened events contained in T R involve sym-
bols belonging to R (σ), and are therefore ruled out by applying the projec-
tion.

114



6 Discussion and Conclusion

In this work we compare the framework SCIFF with the widely adopted LTL,
from the viewpoint of the compliance verification task. To this end, we have
proposed a formal notion of compliance for each one of the approaches, and
defined the equivalence of the two notions. Then we provide an automatic trans-
lation between LTL-based and SCIFF-based specifications. We prove that such
translation preserves the notion of compliance, w.r.t. the defined equivalence.

LTL-based techniques for verification have a number of strengths and weak-
nesses, as well as the SCIFF framework that inherits advantages and limits of
LP approaches. An important result of this work is to better clarify the links
between the two techniques: this opens up to the possibility of an integrated
approach based on Computational Logic, where the best of both worlds (LTL
and SCIFF) can be coherently exploited. E.g., LP-based approaches support the
use of variables and constraints over them, allowing to model systems where also
data and data relations/constraints are taken into account.

A limit of the presented approach stems from the semi-decidability issues
of (refutation-based) logic programming. SCIFF inherits such characteristics: as
a consequence, not any possible LTL specification could be directly reasoned
about in SCIFF. From an operational viewpoint the problem can be avoided
by restricting to a significant fragment of LTL, and provide ad-hoc translations
for which termination is guaranteed. Alternatively, it is possible to notice that a
number of applications inherently require finite traces, like e.g. business processes
[23], that are developed to reach a business goal (such as delivery a product) in a
finite number of steps. Automatic translation of any LTL formula within a finite
trace semantics into a SCIFF corresponding model is matter of ongoing work.

References

1. van der Aalst, W., de Beer, H., van Dongen, B.: Process Mining and Verification
of Properties: An Approach based on Temporal Logic. In: Meersman, R., Tari,
Z. (eds.) Proceedings of the OTM 2005 Confederated International Conferences
CoopIS, DOA, and ODBASE. LNCS, vol. 3760, pp. 130–147. Springer (2005)

2. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Ver-
ifiable agent interaction in abductive logic programming: the SCIFF framework.
ACM Transactions on Computational Logic 9(4), 29:1–29:43 (Aug 2008)

3. Alberti, M., Gavanelli, M., Lamma, E., Chesani, F., Mello, P., Montali, M.: An
abductive framework for a-priori verification of web services. In: Bossi, A., Maher,
M.J. (eds.) Procs. of PPDP 2006, July 10-12, 2006, Venice, Italy. pp. 39–50. ACM,
New York, USA (2006)

4. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P., Sartor, G.: Map-
ping deontic operators to abductive expectations. Computational & Mathematical
Organization Theory 12(2-3), 205–225 (2006)

5. Artikis, A., Sergot, M., Pitt, J.: Specifying Norm-Governed Computational Soci-
eties. ACM Transactions on Computational Logic 10(1), 1–42 (2009)

6. Awad, A., Decker, G., Weske, M.: Efficient Compliance Checking Using BPMN-
Q and Temporal Logic. In: Dumas, M., Reichert, M., Shan, M.C. (eds.) 6th Intl.
Conf. BPM 2008. LNCS, vol. 5240, pp. 326–341. Springer (2008)

115



7. Baldoni, M., Baroglio, C., Martelli, A., Patti, V.: Reasoning about interaction
protocols for customizing web service selection and composition. Journal of Logic
and Algebraic Programming 70(1), 53–73 (2007)

8. Chesani, F., Mello, P., Montali, M., Torroni, P.: Commitment Tracking via the Re-
active Event Calculus. In: Boutilier, C. (ed.) Proceedings of the 21st International
Joint Conference on Artificial Intelligence (IJCAI 2009). pp. 91–96 (2009)

9. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri,
M., Sebastiani, R., Tacchella, A.: Nusmv 2: An opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV. Lecture Notes in Computer
Science, vol. 2404, pp. 359–364. Springer (2002)

10. Clark, K.L.: Negation as Failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data
Bases, pp. 293–322. Plenum Press (1978)

11. De Nicola, A., Missikoff, M., Proietti, M., Smith, F.: A logic-based method for busi-
ness process knowledge base management. In: Bergamaschi, S., Lodi, S., Martoglia,
R., Sartori, C. (eds.) 8th Italian Symposium on Advanced Database Systems. pp.
170–181. Rimini, Italy (2010)

12. Emerson, E.A.: Temporal and Modal Logic. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, Volume B: Formal Models and Sematics. Elsevier
and MIT Press (1990)

13. Fisher, M., Dixon, C., Peim, M.: Clausal Temporal Resolution. ACM Transactions
on Computational Logic 2(1), 12–56 (2001)

14. Fornara, N., Colombetti, M.: Specifying artificial institutions in the event calculus.
In: Dignum, V. (ed.) Handbook of Research on Multi-Agent Systems: Semantics
and Dynamics of Organizational Models. pp. 335–366. IGI Global (2009)

15. Holzmann, G.: The model checker spin. Software Engineering, IEEE Transactions
on 23(5), 279–295 (1997)

16. Jaffar, J., Maher, M.J., Marriott, K., Stuckey, P.J.: The semantics of constraint
logic programs. J. Log. Program. 37(1-3), 1–46 (1998)

17. Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive Logic Programming. Journal of
Logic and Computation 2(6), 719–770 (1993)

18. Kunen, K.: Negation in logic programming. J. Log. Program. 4(4), 289–308 (1987)
19. Lloyd, J.W.: Foundations of Logic Programming. Springer, 2nd edn. (1987)
20. Montali, M.: Specification and Verification of Declarative Open Interaction Models:

a Logic-Based Approach, LNBIP, vol. 56. Springer (2010)
21. Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.:

Declarative Specification and Verification of Service Choreographies. ACM Trans-
actions on the Web 4(1) (2010)

22. Montali, M., Torroni, P., Chesani, F., Mello, P., Alberti, M., Lamma, E.: Ab-
ductive logic programming as an effective technology for the static verification of
declarative business processes. Fundamenta Informaticae 102(3-4), 325–361 (2010)

23. Pesic, M., van der Aalst, W.M.P.: A Declarative Approach for Flexible Business
Processes Management. In: Eder, J., Dustdar, S. (eds.) Procs. of the BPM 2006
Workshops. LNCS, vol. 4103, pp. 169–180. Springer (2006)

24. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: Full Support for
Loosely-Structured Processes. In: Procs. IEEE EDOC 2007. pp. 287–300. IEEE
Computer Society (2007)

25. Roman, D., Kifer, M.: Semantic Web Service Choreography: Contracting and En-
actment. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin,
T.W., Thirunarayan, K. (eds.) Procs. ISWC 2008. LNCS, vol. 5318, pp. 550–566.
Springer (2008)

116



Towards a tableau-based procedure for PLTL
based on a multi-conclusion rule and logical

optimizations

Mauro Ferrari1, Camillo Fiorentini2, Guido Fiorino3

1 DiSTA, Univ. degli Studi dell’Insubria, Via Mazzini, 5, 21100, Varese, Italy
2 DI, Univ. degli Studi di Milano, Via Comelico, 39, 20135 Milano, Italy

3 DISCO, Univ. degli Studi di Milano-Bicocca, Viale Sarca, 336, 20126, Milano, Italy

Abstract. We present an ongoing work on a proof-search procedure
for Propositional Linear Temporal Logic (PLTL) based on a one-pass
tableau calculus with a multiple-conclusion rule. The procedure exploits
logical optimization rules to reduce the proof-search space. We also dis-
cuss the performances of a Prolog prototype of our procedure.

1 Introduction

In recent years, we have introduced new tableau calculi and logical optimization
rules for propositional Intuitionistic Logic [4] and propositional Gödel-Dummett
Logic [7]. As an application of these results, we have implemented theorem
provers for these logics [3, 7] which outperform their competitors. The above
quoted calculi and optimizations are the result of a deep analysis of the Kripke
semantics of the logic at hand. In this paper, we apply such a semantical analysis
to PLTL. In particular, we present a refutation tableau calculus and some logical
optimizations for PLTL and we briefly discuss a prototype Prolog implementa-
tion of the resulting proof-search procedure.

As for related work, our tableau calculus lies in the line of the one-pass calculi
based on sequents and tableaux calculi [14, 2, 10], whose features are suitable for
automated deduction. We also cite as related the approaches based on sequent
calculi discussed in [12, 13] and the natural deduction based proof-search tech-
niques discussed in [1]. The results in [8, 15] are based on resolution, thus they
are related less to our approach.

2 Tableau calculus and replacement rules

We consider the language based on a denumerable set of propositional variables
V, the logical constants > (true), ⊥ (false), ¬ and ∨ and the modal operators
◦ (next) and U (until). We define �A as ¬(>U¬A). Given a set of formulas S,
we denote with ◦S the set {◦A | A ∈ S}.

PLTL is semantically characterized by rooted linearly ordered Kripke models;
formally, a PLTL-model is a structure K = 〈P,≤, ρ, V 〉 where P is the set of

117



S, AUB
S, B | S, A,¬B, ◦(AUB)

U
S,¬(AUB)

S,�¬B | S,¬A,¬B | S, A,¬B, ◦¬(AUB)
¬U

S,¬ ◦A
S, ◦¬A

¬◦ S, A ∨B
S, A | S, B

∨
S,¬(A ∨B)

S,¬A,¬B
¬∨ S,¬¬A

S, A
¬¬ S,¬>

S,⊥
¬> S,¬⊥

S,>
¬⊥

T , ◦A, ◦B
A,B+, ◦B | A,H1 | . . . | A,Hm

Lin

T ⊆ V ∪ {¬p | p ∈ V} ∪ {>,⊥}, A is a possibly empty set,
B = {U1, . . . , Um} is a possibly empty set, with Ui = AiUBi or Ui = ¬(AiUBi)

B+ = {U+
i |Ui ∈ B}, where

(AUB)+ = A
(¬(AUB) )+ = ¬B

(AUB)− = B
(¬(AUB) )− = ¬A,¬B

Hi = {◦U1, U
+
1 , . . . , ◦Ui−1, U

+
i−1} ∪ {U−

i } ∪ {Ui+1, . . . , Um} (i = 1, . . . ,m)

Fig. 1. The tableau calculus for PLTL

worlds, ≤ is a linear well-order with minimum ρ and no maximum element, V is
a function associating with every world α ∈ P the set of propositional variables
satisfied in α. Given α ∈ P , the immediate successor of α, denoted by α′, is the
minimum of the <-successors of α. The satisfiability of a formula A in a world
α of K, written K, α  A (or simply α  A), is defined as follows:

– for p ∈ V, α  p iff p ∈ V (α); α  >; α 1 ⊥;
– α  ¬A iff α 1 A; α  A ∨B iff α  A or α  B;
– α  ◦A iff α′  A;
– α  AUB iff ∃β ≥ α : β  B and ∀γ : α ≤ γ < β, γ  A.

The following properties can be easily proved. The latter one follows by the fact
that ≤ is a well-order, hence, if B is satisfiable in some γ ≥ α, there exists the
minimum γ∗ ≥ α satisfying B.

– α  �A iff ∀β ≥ α, β  A;
– α 1 AUB iff (∀γ ≥ α, γ 1 B) or (∃β ≥ α :β 1 A and ∀γ :α ≤ γ ≤ β, γ 1 B).

A set of formulas S is satisfiable in α (K, α  S) if every formula of S is satisfiable
in α; S is satisfiable if it is satisfiable in some world of a PLTL-model. The rules of
the tableau calculus T for PLTL are given in Fig. 1. The peculiar rule of T is the
rule Lin inspired by the multiple-conclusion rule for Gödel-Dummett Logic DUM
presented in [6, 7]. DUM is semantically characterized by intuitionistic linearly
ordered Kripke models; the multi-conclusion rule for DUM simultaneously treats
a set of implicative formulas while Lin simultaneously treats a set of modal
formulas. We remark, that the number of conclusions of rule Lin depends on the
number of formulas in B; if B is empty, Lin has A as only conclusion.

The rules of T are sound is the sense that, if the premise of a rule is sat-
isfiable then one of its conclusions is satisfiable. We briefly discuss, by means

118



S,�A
S[>/A],�A

R-�
S,�¬A

S[⊥/A],�¬A
R-�¬

S, A
S{>/A}, A

R-cl
S,¬A

S{⊥/A},¬A
R-cl¬

S
S[>/p]

�+ if p�+ S

S
S[⊥/p]

�− if p�− S

For for l ∈ {+,−}, p�l S iff p�lH for every H ∈ S where,
p�lH is defined as follows:

– p�+ p and p�− ¬p and p�lH, if H ∈ (V \ {p}) ∪ {>,⊥};
– p�l (A ∨B) iff p�lA and p�lB;
– p�l (AUB) iff p�lA and p does not occur in B;
– p�l ¬(AUB) iff p�lB and p does not occur in A;
– if A 6= BUC, then p�+ ¬A iff p�−A and p�− ¬A iff p�+A;
– p�l ◦A iff p�lA;

Fig. 2. Optimization rules for PLTL

of an example, the soundness of rule Lin. The application of rule Lin to ◦B =
{◦(A1UB1), ◦¬(A2UB2)} generates as conclusions the sets:

C = {A1,¬B2} ∪ ◦B , H1 = {B1,¬(A2UB2)} , H2 = {◦(A1UB1), A1,¬A2,¬B2}.
Let us assume that α  ◦B; we show that at least one of the conclusions is
satisfiable. We have α′  A1UB1 and α′  ¬(A2UB2). Note that:

– α′  A1UB1 ⇒ ∃β1 ≥ α′ : β1  B1 and ∀γ : α′ ≤ γ < β1, γ  A1.

– α′  ¬(A2UB2) ⇒
{

(i) ∀γ ≥ α′, γ 1 B2 or

(ii) ∃β2 ≥ α′ : β2 1 A2 and ∀γ : α′ ≤ γ ≤ β2, γ 1 B2

If (i) holds either α′ < β1 and α′  C, or α′ = β1 and α′  H1. Now, let us
suppose that (ii) holds; then:

– if α′ < β1 and α′ < β2, then α′  C;
– if α′ = β1, then α′  H1;
– if α′ < β1 and α′ = β2, then α′  H2.

The notions of proof-table and branch are defined as usual. A set S of formulas is
closed if it either contains ⊥ or it contains a formula A and its negation. Branches
of a proof-table are generated alternating saturation phases, where rules different
from Lin are applied as long as possible, and applications of rule Lin. We remark
that, at the end of a saturation phase, we get a set of formulas which only
contains literals, >, ⊥ and formulas prefixed with ◦. If during the saturation
phase a closed set is generated the construction of the branch is aborted. During
branch construction loops can be generated, hence a loop-checking mechanism
is needed to assure termination. A loop is a sequence of consecutive sets of
formulas S1, . . . ,Sn in a branch such that S1 = Sn and Si 6= Si+1 for every
1 ≤ i < n. Whenever, during a branch construction, a loop is detected the

119



branch construction is aborted. A loop is closed if there exist i ∈ {1, . . . , n− 1}
and AUB ∈ Si (¬(AUB) ∈ Si, respectively) such that B 6∈ Sj ({¬A,¬B} 6⊆ Sj ,
respectively) for every 1 ≤ j < n. A loop is open if it is not closed. A branch is
closed if it contains a closed set of formulas or a closed loop and open otherwise.
The proof of the completeness theorem for T is based on a procedure extracting
a PLTL-model satisfying S from an open branch starting with S.

Although multi-conclusion rules as Lin can generate a huge number of branches,
as discussed in [7], theorem provers using these kind of rules can be effective.

To improve the performances of the above procedure we exploit the optimiza-
tion rules depicted in Fig. 2 which are inspired by the rules presented in [11, 4].
In rules R-� and R-�¬ (R stands for Replacement), S[B/A] denotes formula
substitution, that is the set of formulas obtained by replacing every occurrence
of A in S with B. In rules R-cl and R-cl¬, S{B/A} denotes partial formula
substitution, that is the set of formulas obtained by replacing every occurrence
of A in S which is not under the scope of a modal connective with B. As for rules
�+ and �− , they can be applied if the propositional variable p has constant
polarity in S (p�l S). We remark that rules �+ and �− are the PLTL version
of the rules T-permanence and T¬-permanence of [4].

All the rules of Fig. 2 have the property that the premise is satisfiable iff the
conclusion is. In the proof search procedure we apply the optimization rules and
the usual boolean simplification rules [11, 4] at every step of a saturation phase.

3 Implementations and performances

To perform some experiments on the benchmark formulas for PLTL, we have
implemented β, a theorem prover written in Prolog4. At present β is a very sim-
ple prototype that implements T and the rules in Fig. 2. On the third column of
the table in Fig. 4 we report the performances of β. For every family of formulas
in the benchmark we indicate the number of formulas of the family solved within
one minute. All tests were conducted on a machine with a 2.7GHz Intel Core
i7 CPU with 8GB memory. All the optimizations rules we have described are
effective in speeding-up the deduction. Indeed, without the described optimiza-
tions, timings of β are some order of magnitude greater and almost no formula is
decided within one minute. In the fourth column of Fig. 4 we report the figures
related to PLTL, an OCaml prover based on the one-pass tableau calculus of [14].
Although in general PLTL outperforms β, there are families where our prototype
is more efficient than PLTL and this is encouraging for further research.

To conclude, we have presented our ongoing research on automated deduction
for PLTL. In this note we have discussed a new proof-theoretical characterization
of PLTL based on a multiple-conclusion rule and some optimization rules useful
to cut the size of the proofs. As regards the future work, we aim to apply to
the case of PLTL other optimizations introduced in the context of Intuitionistic
logic as the permanence rules of [4] and the optimizations exploiting the notions
of local formula [3] and evaluation [5].

4 Available at http://www2.disco.unimib.it/fiorino/beta.tgz

120



Family Status β PLTL

lift sat. 76 42

anzu-amba sat. 18 38

acacia-demo-v3 sat. 12 12

anzu-genbuf sat. 28 26

rozier counters sat. 35 65

Family Status β PLTL

lift unsat. 0 8

schuppan-O1 unsat. 27 10
schuppan-O2 unsat. 7 10
schuppan-phltl unsat. 5 3

Fig. 3. Comparison between β and PLTL

References

1. A. Bolotov, O. Grigoriev, and V. Shangin. Automated natural deduction for propo-
sitional linear-time temporal logic. In TIME (2007), pages 47–58. IEEE Computer
Society, 2007.

2. K. Brünnler and M. Lange. Cut-free sequent systems for temporal logic. Journal
of Logic and Algebraic Programming, 76(2):216–225, 2008.

3. M. Ferrari, C. Fiorentini, and G. Fiorino. fCube: An efficient prover for intuition-
istic propositional logic. In C. G. Fermüller et al., editor, LPAR-17, volume 6397
of LNCS, pages 294–301. Springer, 2010.

4. M. Ferrari, C. Fiorentini, and G. Fiorino. Simplification rules for intuitionis-
tic propositional tableaux. ACM Transactions on Computational Logic (TOCL),
13(2):14:1–14:23, 2012.

5. M. Ferrari, C. Fiorentini, and G. Fiorino. An evaluation-driven decision procedure
for G3i. ACM Transactions on Computational Logic (TOCL), 6(1):8:1–8:37, 2015.

6. G. Fiorino. Tableau calculus based on a multiple premise rule. Information Sci-
ences, 180(19):371–399, 2010.

7. G. Fiorino. Refutation in Dummett logic using a sign to express the truth at the
next possible world. In T. Walsh, editor, IJCAI 2011, pages 869–874. IJCAI/AAAI,
2011.

8. M. Fisher, C. Dixon, and M. Peim. Clausal temporal resolution. ACM Transactions
on Computational Logic (TOCL), 2(1):12–56, 2001.

9. J. Gaintzarain, M. Hermo, P. Lucio, and M. Navarro. Systematic semantic tableaux
for PLTL. Electronic Notes in Theoretical Computer Science, 206:59–73, 2008.

10. J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro, and F. Orejas. Dual systems of
tableaux and sequents for PLTL. Journal of Logic and Algebraic Programming,
78(8):701–722, 2009.

11. F. Massacci. Simplification: A general constraint propagation technique for propo-
sitional and modal tableaux. In Harrie de Swart, editor, TABLEAUX’98, volume
1397 of LNCS, pages 217–232. Springer-Verlag, 1998.

12. B. Paech. Gentzen-systems for propositional temporal logics. In E. Börger et al.,
editor, CSL’88, volume 385 of LNCS, pages 240–253. Springer, 1988.

13. R. Pliuskevicius. Investigation of finitary calculus for a discrete linear time logic by
means of infinitary calculus. In J. Barzdins et al., editor, Baltic Computer Science,
volume 502 of LNCS, pages 504–528. Springer, 1991.

14. S. Schwendimann. A new one-pass tableau calculus for PLTL. In H. C. M. de Swart,
editor, TABLEAUX’98, volume 1397 of LNCS, pages 277–291. Springer, 1998.

15. M. Suda and C. Weidenbach. Labelled superposition for PLTL. In N. Bjørner
et al., editor, LPAR-18, volume 7180 of LNCS, pages 391–405. Springer, 2012.

121



Ontoceramic: an OWL ontology for ceramics
classification

Domenico Cantone1, Marianna Nicolosi-Asmundo1, Daniele Francesco
Santamaria1, and Francesca Trapani2

1 Department of Mathematics and Computer Science, University of Catania
email: {cantone,nicolosi}@dmi.unict.it, daniele.f.santamaria@gmail.com

2 Department of Humanistic Sciences, University of Catania
email: patercolo@alice.it

Abstract. In this note, we describe Ontoceramic, an OWL 2 ontology
for cataloguing and classifying ancient ceramics. Ontoceramic has been
defined through a synergic effort of computer scientists and archaeol-
ogists, by taking into account the most important papers in the field.
It has been designed with the purpose of efficiently addressing signifi-
cant problems concerning knowledge management about ceramics such
as, for instance, classification by shape and type, and analysis of findings
by their components. Ontoceramic implements CIDOC CRM, the stan-
dard ontology for describing concepts and relationships used in cultural
heritage documentation, and LinkedGeoData for describing locations.

1 Introduction

In the last decades, the task of efficiently organize the classification pro-
cess of archaeological findings – with particular focus on ceramics – has
become more and more relevant for scholars and researchers in the field
[10]. Currently, in fact, archaeological findings cataloguing and classifi-
cation are often performed either by traditional methods, like hard-copy
archives, or by standard digital techniques, like relational databases.
However, such methods have severe drawbacks. For instance, they are
often based on tools mainly developed and maintained locally; hence,
they usually store partial data, rarely shared with the whole scientific
community. This results in an incoherent use of information. Also, they
do not support flexible data-management and information retrieval al-
gorithms due to the lack of advanced reasoning means such as logical
inferencing, consistency and soundness check.
Semantic web is a vision of the World Wide Web in which information
carries an explicit meaning, so it can be automatically processed and in-
tegrated by machines, and data can be accessed and modified at a global
level, resulting in increased coherence and dissemination of knowledge.
Moreover, by means of automated reasoning procedures, it is possible to
extract implicit information present in data, thus permitting to gain a
deeper knowledge of the domain. Informally, in the context of computer
science, an ontology defines a set of representational primitives (classes
and attributes) with which to model a domain of knowledge or discourse

122



[11]. In the last years, the potential of ontologies has been recognized
by archaeologists [1, 9]. Some projects have been undertaken concern-
ing either single typologies of archaeological findings or several different
materials related to each other [4, 7].
In this contribution we describe Ontoceramic [12, 3], an OWL 2 (On-
tology Web Language 2) defined by a synergic effort between computer
scientists and archaeologists as a first step to overcome the problem of
efficiently mechanize the task of correctly cataloguing ceramics and to
make such knowledge easily retrievable by scholars and researchers in
the field.
This initial definition of the ontology takes into account the most im-
portant papers in the field [4] and strongly relies on ICCD (Istituto
Centrale per il Catalogo e la Documentazione) data sheets. The lat-
ter choice is motivated by the need of easily importing data from rela-
tional databases currently used in archaeological institutions (i.e., univer-
sities, museums, superintendences of cultural heritage). Moreover, onto-
ceramic implements the ontology CIDOC CRM [9] that provides a formal
structure and definitions for describing concepts and relationships used
in cultural heritage documentation, and furnishes the “semantic glue”
needed to integrate different sources of information, such as the ones
published by museums, libraries, and archives. Ontoceramic also imple-
ments LinkedGeoData [13], a large ontology for spatial knowledge base.
It consists of more than 90 classes, 33 object properties, and 20 data
properties. It includes a number of SWRL (Semantic Web Rule Lan-
guage) rules1 allowing several reasoning tasks on the knowledge domain
in a short time.
The expressive power of the language underlying Ontoceramic has been
studied in [12, 2]. In particular, in [12], we defined an OWL 2 profile
constructed from a decidable fragment of set theory and proved that the
computational complexity of the consistency problem for Ontoceramic
knowledge bases is NP-complete.
Ontoceramic has been developed using the Protégé editor2 and classified
by the Hermit,3 Pellet,4 and FaCT++5 reasoners.

2 Ontoceramic

Ontoceramic aims at covering different aspects of the ceramic classifica-
tion and cataloguing problem.
To begin with, Ontoceramic helps in identifying unambiguously the lo-
cation of findings. One can have many locations to consider for a specific
finding such as province, region, state, and so on. Locations are intro-
duced by means of a taxonomy of OWL classes. Association between
locations is performed by means of a taxonomy of object-properties. The

1 http://www.w3.org/Submission/SWRL/
2 http://protege.stanford.edu
3 http://hermit-reasoner.com
4 https://www.w3.org/2001/sw/wiki/Pellet
5 http://owl.cs.manchester.ac.uk/tools/fact/

123



path allowed is shown in Fig. 2, where double-hoop entities are optional.
Classes and object-properties involved are shown in Fig. 1. Reasoning
tasks involving places are strengthened using SWRL rules of the type
of the ones showed in Fig. 3. The entity “Localisation” is equivalent
to “LinkedGeoData:Place”; equivalences between subclasses of “Local-
isation” and of “Place” are not reported here for space reasons. The
object-property “hasLocalisation” is a subproperty of the CIDOC prop-
erty “P54 has current permanent location”.

Fig. 1. Classes and properties for lo-
cations.

Fig. 2. Allowed path for locations.

Fig. 3. SWRL rules for reasoning
with locations.

Ontoceramic is also able to handle components belonging to a specific
object. For example, a cup can be found broken in three disjoint parts
that may require distinct descriptions. Usually, in hard-copy versions of
ceramic catalogues, components of a object are included in a descriptive
field of the archive. Thus, information about each component can be
extracted manually by the users or by means of search keys. In Ontoce-
ramic, instead, objects as well as their fragments are considered as enti-
ties. Such classes are subclasses of the CIDOC “E22 Man-Made Object”.
Each fragment is associated to the object it belongs to by the object-
property “IsFragmentOf”. Analogously, each object is associated to its
components by the object-property “hasFragment” (notice that “has-
Fragment” and “IsFragmentOf” are inverses of each other) and, in par-
ticular, also by its sub-properties. Subproperties of “hasFragment” are
intended to relate an object with one of its fragments, taking care of
its correct functionality in the object. Thanks to this construction, one

124



can precisely describe every part of an object. “isFragmentOf” is a sub-
property of the CIDOC “P46 is composed of”. Types of fragments that
can be implemented and also extended are described in Fig. 4. Object-
properties which associate objects to their fragments are shown in the
taxonomy illustrated in Fig. 5.

Fig. 4. Classes of fragments. Fig. 5. Properties for fragments.

The class of an object is structured in a taxonomy as shown in Fig. 6. To
assign a class to an object, the object-property “hasClass” is provided,
having “Object” as domain and “Class” as range. The type of an object
is represented in the “Object” taxonomy. “Class” is a subclass of CIDOC
“E25 Man-Made Feature”.

Sample and sector of a finding are represented by the classes “Sample”
and “Sector”, respectively. Instances of these classes are associated to an
object by means of the “hasSample” and “hasSector” object-properties.

Ontoceramic can also specify the color of a finding using the Munsell
Color System by means of the data-property “hasColor”. This prop-
erty is endowed with three sub-data-properties, namely “hasChroma”,
“hasHue”, and “hasValue”, for Munsell chroma, hue, and value, respec-
tively. In addition, one can provide the discovery date and a general ad-
ditional description of the object under consideration using, respectively,
the “hasSiteDate” and “hasGeneralDescription” data-properties.

For objects and fragments one can specify their measurements. For ex-
ample, thickness of an object can be represented by the generic data-
property “hasThickness” and by its specific subproperties. For instance,
the data-property “hasWallThickness” is used when we indicate the
thickness of the object wall, “hasBottomThickness”, instead, is used
when we indicate the thickness of the foot, and so on. The hierarchy
of these properties is shown in Fig. 7.

It is possible to specify whether a fragment can be physically associated
with another fragment to compose a unique object. In this case the “is-
FittedWith” object-property is applied. One can indicate the number
of the box and the number of the sheet of the hard-copy archive of an
object description using a “nonNegativeInteger” value in “hasBox” and
“hasSheet” data-properties, respectively.

125



Fig. 6. Taxonomy of Classes.

Fig. 7. Data-Properties for
measurement.

Fig. 8. Taxonomy for
Shapes.

To solve a problem concerning the management of the shape of a finding,
the “Shape” taxonomy is provided, as shown in Fig. 8. The shape of an
object is represented by the “Shape” class. Instances of this class and of
its subclasses are associated to an object by means of the “hasShape”
object-property. Every instance of the class “Shape” can be uniquely
identified by the properties “hasFirstShapeDescriptor”, “hasSecondSha-
peDescriptor”, “hasThirdShapeDescriptor”, which are subproperties of
the “hasShapeDescriptor” data-property. For each data-property, a string
value can be specified: these values will be the keys for the “Shape” in-
stances. These properties can be used as additional human-readable de-
scriptors. At present, Ontoceramic supports only few types of “shape”
and of “shape type”, but one can add an arbitrary number of these
classes and possibly assert equivalences among them. Currently, there is
no world-wide agreement on the use of a specific nomenclature to indi-
cate the shape and the type of an object. The “Shape” taxonomy is an
attempt to face this problem providing a class for each type of shape and
several classes for each specific shape; where required, an equivalence re-
lation can be established among the shape classes or their sub-classes,
to identify shapes which are identical with respect to the classification
system but which have been called with different names. For example,
in Fig. 8 “Lamboglia 1A” and “Hayes 8” are represented as equivalent.
The class “Shape” is a subclass of CIDOC “E25 Man-Made Feature”.

126



3 Conclusions and future work

In this preliminary work we have presented an ontology which takes ad-
vantage of semantic web technologies in order to accomplish several tasks
related to ancient ceramics cataloguing and classification such as reason-
ing on location, shape, and type of findings. We are currently populating
Ontoceramic with datasets of ceramics coming from excavations located
in eastern Sicily. We also plan to include support for stratigraphic ex-
cavations, bibliographic references management including authors and
revisors, and identification of the production factory.

References

1. Angelis S., Benardou A., Chatzidiakou N., Constantopoulos P., Dal-
las C., Hughes L. M., Papachristopoulos L., Papaki E., Pertsas V.,
Documenting and reasoning about research on ancient Corinthia us-
ing the NeDiMAH Methods Ontology (NeMO), Computer Applica-
tions and Quantitative Methods in Archaeology (CAA), 2015.

2. Cantone D., Longo C., Nicolosi-Asmundo M., Santamaria D. F., Web
ontology representation and reasoning via fragments of set theory.
To appear in Proc. of the 9th International Conference on Web Rea-
soning and Rule Systems, 2015.

3. Cantone D., Nicolosi-Asmundo M., Santamaria D. F., Trapani F.,
An ontology for ceramics cataloguing, Computer Applications and
Quantitative Methods in Archaeology (CAA), 2015.

4. Corti L., I beni culturali e la loro catalogazione. Bruno Mondadori,
Milano 2003.

5. DBpedia, http://dbpedia.org.
6. M. Doerr. The CIDOC CRM - An ontological approach to semantic

interoperability of metadata. AI Magazine 24(3): 75-92 (2003).
7. Felicetti A., Scarselli T., Mancinelli M. L., Niccolucci F., Mapping

ICCD Archaeological Data to CIDOC CRM: the RA Schema, Prac-
tical Experiences with CIDOC CRM and its Extensions (CRMEX),
Malta, 26 September 2013.

8. Gašević D., Djurić, D., Devedžić V., Model Driven Engineering and
Ontology Development (2nd ed.). Springer. pp. 194. ISBN 978-3-642-
00282-3, 2009.

9. Letricot R., Szabados A.V., L’ontologie CIDOC CRM appliquée aux
objets du patrimoine antique. In Archeologia e Calcolatori, supple-
mento 5, 2014, pp. 257-272.

10. Moscati P., Archeologia e società dell’informazione, in
http://www.treccani.it/enciclopedia/archeologia-e-societa-dell-
informazione (XXI Secolo).

11. Encyclopedia of Database Systems, Ling Liu and M. Tamer zsu
(Eds.), Springer-Verlag, 2009.

12. Santamaria D. F., A Set-Theoretical Representation for OWL 2 Pro-
files, LAP Lambert Academic Publishing, ISBN 978-3-659-68797-6,
2015.

13. Stadler C., Lehmann J., Höffner K., Auer S. (2012), LinkedGeoData:
A Core for a Web of Spatial Open Data, Semantic Web Journal 3
(4), 333-354.

127



Abductive Logic Programming for
Datalog± ontologies

Marco Gavanelli1, Evelina Lamma1, Fabrizio Riguzzi2, Elena Bellodi1,
Riccardo Zese1, and Giuseppe Cota1

1 Dipartimento di Ingegneria – University of Ferrara
2 Dipartimento di Matematica e Informatica – University of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy [name.surname]@unife.it

Abstract. Ontologies are a fundamental component of the Semantic
Web since they provide a formal and machine manipulable model of a
domain. Description Logics (DLs) are often the languages of choice for
modeling ontologies. Great effort has been spent in identifying decidable
or even tractable fragments of DLs. Conversely, for knowledge represen-
tation and reasoning, integration with rules and rule-based reasoning
is crucial in the so-called Semantic Web stack vision. Datalog± is an
extension of Datalog which can be used for representing lightweight on-
tologies, and is able to express the DL-Lite family of ontology languages,
with tractable query answering under certain language restrictions. In
this work, we show that Abductive Logic Programming (ALP) is also
a suitable framework for representing Datalog± ontologies, supporting
query answering through an abductive proof procedure, and smoothly
achieving the integration of ontologies and rule-based reasoning. In par-
ticular, we consider an Abductive Logic Programming framework named
SCIFF and derived from the IFF abductive framework, able to deal
with existentially (and universally) quantified variables in rule heads,
and Constraint Logic Programming constraints. Forward and backward
reasoning is naturally supported in the ALP framework. The SCIFF lan-
guage smoothly supports the integration of rules, expressed in a Logic
Programming language, with Datalog± ontologies, mapped into SCIFF
(forward) integrity constraints. The main advantage is that this inte-
gration is achieved within a single language, grounded on abduction in
computational logic.

1 Introduction

The main idea of the Semantic Web is making information available in a form
that is understandable and automatically manageable by machines [21]. Ontolo-
gies are engineering artefacts consisting of a vocabulary describing some domain,
and an explicit specification of the intended meaning of the vocabulary (i.e., how
concepts should be classified), possibly together with constraints capturing ad-
ditional knowledge about the domain. Ontologies therefore provide a formal and
machine manipulable model of a domain, and this justifies their use in the Se-
mantic Web.

128



In order to realize this vision, the W3C has supported the development of
a family of knowledge representation formalisms of increasing complexity for
defining ontologies, called Web Ontology Language (OWL). Ontologies are a
fundamental component of the Semantic Web, and Description Logics (DLs) are
often the languages of choice for modeling them.

Several DL reasoners, such us Pellet [32], RacerPro [19] and HermiT [31], are
used to extract implicit information from the modeled ontologies, and most of
them implement the tableau algorithm in a procedural language. Nonetheless,
some tableau expansion rules are non-deterministic, thus requiring to implement
a search strategy in an or-branching search space. A different approach is to
provide a Prolog-based implementation for the tableau expansion rules [34].

Extensive work focused on developing tractable DLs, identifying the DL-Lite
family [14], for which answering conjunctive queries is in AC0 in data complexity.

In a related research direction, [11] proposed Datalog±, an extension of Dat-
alog with existential rules for defining ontologies. Datalog± can be used for
representing lightweight ontologies, and encompasses the DL-Lite family [10].
By suitably restricting the language syntax and adopting appropriate syntactic
conditions, also Datalog± achieves tractability [9].

In this work we consider the Datalog± language and show how ontologies
expressed in this language can be also modeled in an Abductive Logic Program-
ming (ALP) framework, where query answering is supported by the underlying
ALP proof procedure. ALP has been proved a powerful tool for knowledge repre-
sentation and reasoning [24], taking advantage from ALP operational support as
(static or dynamic) verification tool. ALP languages are usually equipped with
a declarative (model-theoretic) semantics, and an operational semantics given
in terms of a proof-procedure. Several abductive proof procedures have been de-
fined (both backward, forward, and a mix of the two such), with many different
applications (diagnosis, monitoring, verification, etc.). Among them, the IFF ab-
ductive proof-procedure [17] was proposed to deal with forward rules, and with
non-ground abducibles. This proof procedure has been later extended [4], and
the resulting proof procedure, named SCIFF, can deal with both existentially
and universally quantified variables in rule heads, and Constraint Logic Pro-
gramming (CLP) constraints [23]. The resulting system was used for modeling
and implementing several knowledge representation frameworks, such as deontic
logic [6], normative systems, interaction protocols for multi-agent systems [7],
Web services choreographies [2], etc.

Here we concentrate on Datalog± ontologies, and show how an ALP language
enriched with quantified variables (existential to our purposes) can be a useful
knowledge representation and reasoning framework for them. We do not focus
here on complexity results of the overall system, which is, however, not tractable.

Forward and backward reasoning is naturally supported by the ALP proof
procedure, and the considered SCIFF language smoothly supports the integra-
tion of rules, expressed in a Logic Programming language, with ontologies ex-
pressed in Datalog±. In fact, SCIFF allows us to map Datalog± ontologies into
the forward integrity constraints on which it is based.

129



In the following, Section 2 briefly introduces Datalog±. Section 3 introduces
Abductive Logic Programming and the SCIFF language, with a mention to its
abductive proof procedure. Section 4 shows how the considered Datalog± lan-
guage can be mapped into SCIFF, and the kind of queries that the abductive
proof procedure can handle. Section 5 illustrates related work. Section 6 con-
cludes the paper, and outlines future work.

2 Datalog±

Datalog± extends Datalog by allowing existential quantifiers, the equality pred-
icate and the truth constant false in rule heads. Datalog± can be used for rep-
resenting lightweight ontologies and is able to express the DL-Lite family of
ontology languages [10]. By suitably restricting the language syntax, Datalog±

achieves tractability [9].
In order to describe Datalog±, let us assume (i) an infinite set of data con-

stants ∆, (ii) an infinite set of labeled nulls ∆N (used as “fresh” Skolem terms),
and (iii) an infinite set of variables ∆V . Different constants represent different
values (unique name assumption), while different nulls may represent the same
value. We assume a lexicographic order on ∆ ∪ ∆N , with every symbol in ∆N

following all symbols in ∆. We denote by X vectors of variables X1, . . . , Xk with
k ≥ 0. A relational schema R is a finite set of relation names (or predicates).
A term t is a constant, null or variable. An atomic formula (or atom) has the
form p(t1, . . . , tn), where p is an n-ary predicate, and t1, . . . , tn are terms. A
database D for R is a possibly infinite set of atoms with predicates from R
and arguments from ∆ ∪ ∆N . A conjunctive query (CQ) over R has the form
q(X) = ∃YΦ(X,Y), where Φ(X,Y) is a conjunction of atoms having as argu-
ments variables X and Y and constants (but no nulls). A Boolean CQ (BCQ)
over R is a CQ having head predicate q of arity 0 (i.e., no variables in X).

We often write a BCQ as the set of all its atoms, having constants and
variables as arguments, and omitting the quantifiers. Answers to CQs and BCQs
are defined via homomorphisms, which are mappings µ : ∆ ∪∆N ∪∆V → ∆ ∪
∆N∪∆V such that (i) c ∈ ∆ implies µ(c) = c, (ii) c ∈ ∆N implies µ(c) ∈ ∆∪∆N ,
and (iii) µ is naturally extended to term vectors, atoms, sets of atoms, and
conjunctions of atoms. The set of all answers to a CQ q(X) = ∃YΦ(X,Y) over
a database D, denoted q(D), is the set of all tuples t over ∆ for which there
exists a homomorphism µ : X ∪Y → ∆ ∪∆N such that µ(Φ(X,Y)) ⊆ D and
µ(X) = t. The answer to a BCQ q = ∃YΦ(Y) over a database D, denoted q(D),
is Yes, denoted D |= q, iff there exists a homomorphism µ : Y → ∆ ∪∆N such
that µ(Φ(Y)) ⊆ D, i.e., if q(D) 6= ∅.

Given a relational schema R, a tuple-generating dependency (or TGD) F is
a first-order formula of the form ∀X∀YΦ(X,Y) → ∃ZΨ(X,Z), where Φ(X,Y)
and Ψ(X,Z) are conjunctions of atoms over R, called the body and the head of
F , respectively. Such F is satisfied in a database D for R iff, whenever there
exists a homomorphism h such that h(Φ(X,Y)) ⊆ D, there exists an extension
h′ of h such that h′(Ψ(X,Z)) ⊆ D. We usually omit the universal quantifiers in

130



TGDs. A TGD is guarded iff it contains an atom in its body that involves all
variables appearing in the body.

Query answering under TGDs is defined as follows. For a set of TGDs T onR,
and a database D for R, the set of models of D given T , denoted mods(D,T ),
is the set of all (possibly infinite) databases B such that D ⊆ B and every
F ∈ T is satisfied in B. The set of answers to a CQ q on D given T , denoted
ans(q,D, T ), is the set of all tuples t such that t ∈ q(B) for all B ∈ mods(D,T ).
The answer to a BCQ q over D given T is Yes, denoted D ∪ T |= q, iff B |= q
for all B ∈ mods(D,T ).

A Datalog± theory may contain also negative constraints (or NC), which are
first-order formulas of the form ∀XΦ(X) → ⊥, where Φ(X) is a conjunction
of atoms (not necessarily guarded). The universal quantifiers are usually left
implicit.

Equality-generating dependencies (or EGDs) are the third component of a
Datalog± theory. An EGD F is a first-order formula of the form ∀XΦ(X) →
Xi = Xj , where Φ(X), called the body of F , is a conjunction of atoms, and
Xi and Xj are variables from X. We call Xi = Xj the head of F . Such F is
satisfied in a database D forR iff, whenever there exists a homomorphism h such
that h(Φ(X)) ⊆ D, it holds that h(Xi) = h(Xj). We usually omit the universal
quantifiers in EGDs.

The chase is a bottom-up procedure for deriving atoms entailed by a database
and a Datalog± theory. The chase works on a database through the so-called
TGD and EGD chase rules.

The TGD chase rule is defined as follows. Given a relational database D for
a schema R, and a TGD F on R of the form ∀X∀YΦ(X,Y)→ ∃ZΨ(X,Z), F is
applicable to D if there is a homomorphism h that maps the atoms of Φ(X,Y) to
atoms of D. Let F be applicable and h1 be a homomorphism that extends h as
follows: for each Xi ∈ X, h1(Xi) = h(Xi); for each Zj ∈ Z, h1(Zj) = zj , where
zj is a “fresh” null, i.e., zj ∈ ∆N , zj 6∈ D, and zj lexicographically follows all
other labeled nulls already introduced. The result of the application of the TGD
chase rule for F is the addition to D of all the atomic formulas in h1(Ψ(X,Z))
that are not already in D.

The EGD chase rule is defined as follows. An EGD F on R of the form
Φ(X) → Xi = Xj is applicable to a database D for R iff there exists a homo-
morphism h : Φ(X)→ D such that h(Xi) and h(Xj) are different and not both
constants. If h(Xi) and h(Xj) are different constants in ∆, then there is a hard
violation of F . Otherwise, the result of the application of F to D is the database
h(D) obtained from D by replacing every occurrence of h(Xi) with h(Xj) if
h(Xi) precedes h(Xj) in the lexicographic order, and every occurrence of h(Xj)
with h(Xi) if h(Xj) precedes h(Xi) in the lexicographic order.

The chase algorithm consists of an exhaustive application of the TGD and
EGD chase rules that may lead to an infinite result. The chase rules are applied
iteratively: in each iteration (1) a single TGD is applied once and then (2) the
EGDs are applied until a fix point is reached. EGDs are assumed to be separable
[12]. Intuitively, separability holds whenever: (i) if there is a hard violation of an

131



EGD in the chase, then there is also one on the database w.r.t. the set of EGDs
alone (i.e., without considering the TGDs); and (ii) if there is no hard violation,
then the answers to a BCQ w.r.t. the entire set of dependencies equals those
w.r.t. the TGDs alone (i.e., without the EGDs).

The two problems of CQ and BCQ evaluation under TGDs and EGDs are
logspace-equivalent [11]. Moreover, query answering under TGDs is equivalent
to query answering under TGDs with only single atoms in their heads [9]. Hence-
forth, we focus only on the BCQ evaluation problem and we assume that every
TGD has a single atom in its head. A BCQ q on a database D, a set TT of TGDs
and a set TE of EGDs can be answered by performing the chase and checking
whether the query is entailed by the extended database that is obtained. In this
case we write D ∪ TT ∪ TE |= q.

Example 1. Let us consider the following ontology for a real estate information
extraction system, a slight modification of the one presented in Gottlob et al.
[18]:

F1 = ann(X, label), ann(X, price), visible(X)→ priceElem(X)
If X is annotated as a label, as a price and is visible, then it is a price element.

F2 = ann(X, label), ann(X, priceRange), visible(X)→ priceElem(X)
If X is annotated as a label, as a price range, and is visible, then it is a price
element.

F3 = priceElem(E), group(E,X)→ forSale(X)
If E is a price element and is grouped with X, then X is for sale.

F4 = forSale(X)→ ∃P price(X,P )
If X is for sale, then there exists a price for X.

F5 = hasCode(X,C), codeLoc(C,L)→ loc(X,L)
If X has postal code C, and C’s location is L, then X’s location is L.

F6 = hasCode(X,C)→ ∃L codeLoc(C,L), loc(X,L)
If X has postal code C, then there exists L such that C has location L and so
does X.

F7 = loc(X,L1), loc(X,L2)→ L1 = L2
If X has the locations L1 and L2, then L1 and L2 are the same.

F8 = loc(X,L)→ advertised(X)
If X has a location L then X is advertised.

Suppose we are given the database

codeLoc(ox1, central), codeLoc(ox1, south), codeLoc(ox2, summertown)

hasCode(prop1, ox2), ann(e1, price), ann(e1, label), visible(e1),

group(e1, prop1)

The atomic BCQs priceElem(e1), forSale(prop1) and advertised(prop1) eval-
uate to true, while the CQ loc(prop1, L) has answers q(L) = {summertown}.
In fact, even if loc(prop1, z1) with z1 ∈ ∆N is entailed by formula F5, for-
mula F7 imposes that summertown = z1. If F7 were absent then q(L) =
{summertown, z1}.

132



Answering BCQs q over databases and ontologies containing NCs can be per-
formed by first checking whether the BCQ Φ(X) evaluates to false for each NC
of the form ∀XΦ(X) → ⊥. If one of these checks fails, then the answer to the
original BCQ q is positive, otherwise the negative constraints can be simply
ignored when answering the original BCQ q.

A guarded Datalog± ontology is a quadruple (D,TT , TC , TE) consisting of a
database D, a finite set of guarded TGDs TT , a finite set of negative constraints
TC and a finite set of EGDs TE that are separable from TT . The data complexity
(i.e., the complexity where both the query and the theory are fixed) of evaluating
BCQs relative to a guarded Datalog± theory is polynomial [9].

In the case in which the EGDs are key dependencies and the TGDs are
inclusion dependencies, Cal̀ı et al. [13] proposed a backward chaining algorithm
for answering BCQ. A key dependency κ is a set of EGDs of the form

{r(X, Y1, . . . , Ym), r(X, Y ′1 , ..., Y
′
m)→ Yi = Y ′i }1≤i≤m

A TGD of the form r1(X,Y)→ ∃Zr2(X,Z), where r1 and r2 are predicate names
and no variable appears more than once in the body nor in the head, is called an
inclusion dependency. The key dependencies must not interact with the inclusion
dependencies, similarly to the semantic separability condition mentioned above
for TGDs and EGDs. In this case once it is known that no hard violation occurs,
queries can be answered by considering the inclusion dependencies only, ignoring
the key dependencies. A necessary and sufficient syntactic condition for non
interaction is based on the construction of CD-graphs [13].

3 ALP and its proof procedure

Abductive Logic Programming (ALP, for short) is a family of programming
languages that integrate abductive reasoning into logic programming. An ALP
program is a logic program, consisting of a set of clauses, that can contain in the
body some distinguished predicates, belonging to a set A and called abducibles.
The aim is finding a set of abducibles EXP, built from symbols in A that,
together with the knowledge base, is an explanation for a given known effect
(also called goal G):

KB ∪EXP |= G. (1)

Also, EXP should satisfy a set of logic formulae, called Integrity Constraints
IC:

KB ∪EXP |= IC. (2)

E.g., a knowledge base might contain a set of rules stating that a person is a
nature lover

natureLover(X)← hasAnimal(X,Y ),pet(Y ).
natureLover(X)← biologist(X).

From this knowledge base one can infer, e.g., that each person who owns a pet
is a nature lover. However, in some cases we might have the information that

133



kevin is a nature lover, and wish to infer more information about him. In such a
case we might label predicates hasAnimal, pet and biologist as abducible (in
the following, abducible predicates are written in bold) and apply an abductive
proof procedure to the knowledge base. Two explanations are possible: either
there exists an animal that is owned by kevin and that is a pet:

(∃Y ) hasAnimal(kevin, Y ),pet(Y )

or kevin is a biologist:

biologist(kevin)

We see that the computed answer includes abduced atoms, which can contain
variables.

Integrity constraints can help reducing the number of computed explana-
tions, ruling out those that are not possible. For example, the following integrity
constraint states that to become a biologist one needs to be at least 25 years
old:

biologist(X),age(X,A)→ A ≥ 25

We might know that kevin is a child, and have a definition of the predicate
child:

child(X)← age(X,A), A < 10.

In this example we see the usefulness of constraints as in Constraint Logic Pro-
gramming [23]: the symbols <,≥, ... are handled as constraints, i.e., they are not
predicates defined in a knowledge base, but they associate a numeric domain to
the involved variables and restrict it according to constraint propagation. Now,
the goal natureLover(kevin), child(kevin) returns only one possible explana-
tion:

(∃Y )(∃A) hasAnimal(kevin, Y ),pet(Y ),age(kevin,A) A < 10

since the option that kevin is a biologist is ruled out. Note that we do not need
to know the exact age of kevin to rule out the biologist hypothesis.
SCIFF [4] is a language in the ALP class, originally designed to model and

verify interactions in open societies of agents [7], and it is an extension of the
IFF proof-procedure [17]. As in the IFF language, it considers forward integrity
constraints of the form

body → head

where the body is a conjunction of literals and the head is a disjunction of
conjunctions of literals. While in the IFF the literals can be built only on defined
or abducible predicates, in SCIFF they can also be CLP constraints, occurring
events (only in the body), or positive and negative expectations.

Definition 1. A SCIFF Program is a pair 〈KB, IC〉 where KB is a set of
clauses and IC is a set of forward rules called Integrity Constraints (ICs, for
short in the following).

134



SCIFF considers a (possibly dynamically growing) set of facts (named event
set) HAP, that contains ground atoms H(Event[, T ime]). This set can grow
dynamically, during the computation, thus implementing a dynamic acquisi-
tion of events. Some distinguished abducibles are called expectations. A posi-
tive expectation, written E(Event[, T ime]) means that a corresponding event
H(Event[, T ime]) is expected to happen, while EN(Event[, T ime]) is a negative
expectation, and requires events H(Event[, T ime]) not to happen. To simplify
the notation, we will omit the Time argument from events and expectations
when not needed, as it is for our purposes.

While events are ground atoms, expectations can contain variables. In pos-
itive expectations all variables are existentially quantified (expressing the idea
that a single event is enough to support them), while negative expectations are
universally quantified, so that any event matching with a negative expectation
leads to inconsistency with the current hypothesis. CLP [23] constraints can be
imposed on variables. The computed answer includes in general three elements:
a substitution for the variables in the goal (as usual in Prolog), the constraint
store (as in CLP), and the set EXP of abduced literals.

The declarative semantics of SCIFF includes the classic conditions of abduc-
tive logic programming

KB ∪HAP ∪EXP |= G
KB ∪HAP ∪EXP |= IC

plus specific conditions to support the confirmation of expectations.
Positive expectations are confirmed if

KB ∪HAP ∪EXP |= E(X)→ H(X),

while negative expectations are confirmed (or better they are not violated) if

KB ∪HAP ∪EXP |= EN(X) ∧H(X)→ false.

The declarative semantics of SCIFF also requires that the same event cannot
be expected both to happen and not to happen

KB ∪HAP ∪EXP |= E(X) ∧EN(X)→ false (3)

The SCIFF proof-procedure is a rewriting system that defines a proof tree,
whose nodes represent states of the computation. A set of transitions rewrite a
node into one or more children nodes. SCIFF inherits the transitions of the IFF
proof-procedure [17], and extends it in various directions. We recall the basics of
SCIFF; a complete description is in [4], with proofs of soundness, completeness,
and termination. An efficient implementation of SCIFF is described in [5].

Each node of the proof is a tuple T ≡ 〈R,CS, PSIC,EXP〉, where R is the
resolvent, CS is the CLP constraint store, PSIC is a set of implications (called
Partially Solved Integrity Constraints) derived from propagation of integrity con-
straints, and EXP is the current set of abduced literals. The main transitions,
inherited from the IFF are:

135



Unfolding replaces a (non abducible) atom with its definitions;
Propagation if an abduced atom a(X) occurs in the condition of an IC (e.g.,

a(Y )→ p), the atom is removed from the condition (generatingX = Y → p);
Case Analysis given an implication containing an equality in the condition

(e.g., X = Y → p), generates two children in logical or (in the example,
either X = Y and p, or X 6= Y );

Equality rewriting rewrites equalities as in the Clark’s equality theory;
Logical simplifications other simplifications like (true→ A)⇔ A, etc.

SCIFF includes also the transitions of CLP [23] for constraint solving. Finally,
in this paper we consider the generative version of SCIFF, previously called
also g-SCIFF [3], in which also the H events in the set HAP are considered
as abducibles, and can be assumed like the other abducible predicates, beside
being provided as input in the event set HAP.

4 Mapping Datalog± into ALP programs

In this section, we show that a Datalog± program can be represented as a set
of SCIFF integrity constraints and an event set. SCIFF abductive declarative
semantics provides the model-theoretic counterpart to Datalog± semantics. Op-
erationally, query answering is achieved bottom-up via the chase in Datalog±,
while in the ALP framework it is supported by the SCIFF proof procedure.
SCIFF is able to integrate a knowledge base KB, expressed in terms of Logic
Programming clauses, possibly with abducibles in their body, and to deal with
integrity constraints.

To our purposes, we consider only SCIFF programs with an empty KB, ICs
with only conjunctions of positive expectations and CLP constraints (or false)
in their heads. We show that this subset of the language suffices to represent
Datalog± ontologies.

We map the finite set of relation names of a Datalog± relational schema R
into the set of predicates of the corresponding SCIFF program.

Definition 2. The τ mapping is recursively defined as follows, where A is an
atom, M can be either H or E, and F1, F2, . . . are formulae:

τ(Body → Head) = τH(Body)→ τE(Head)
τH(A) = H(A)
τE(A) = E(A)

τM(F1 ∧ F2) = τM(F1) ∧ τM(F2)
τM(false) = false

τM(Yi = Yj) = Yi = Yj
τE(∃X A) = A

A Datalog± database D for R corresponds to the (possibly infinite) SCIFF
event set HAP, since there is a one-to-one correspondence between each tuple in
D and each (ground) fact in HAP. This mapping is denoted as HAP = τH(D).

136



Notice that since the SCIFF event set can dynamically grow, new constants can
be introduced as a new event occurs (these new constants correspond to those
in the set ∆N of Datalog±).

A Datalog TGD F of the kind body → head is mapped into the SCIFF
integrity constraint IC = τ(F ), where the body is mapped into conjunctions of
SCIFF atoms, and head into conjunctions of SCIFF abducible atoms. Existential
quantifications of variables occurring in the head of the TGD are maintained in
the head of the SCIFF IC, but they are left implicit in the SCIFF syntax, while
the rest of the variables are universally quantified with scope the entire IC.

Given a set of TGDs T , let us denote the mapping of T into the corresponding
set IC of SCIFF integrity constraints, as IC = τ(T ).

Recall that for a set of TGDs T on R, and a database D for R, the set of
models of D given T , denoted mods(D,T ), is the set of all (possibly infinite)
databases B such that D ⊆ B and every F ∈ T is satisfied in B. For any such
database B, we can prove that there exists an abductive explanation EXP =
τE(B), HAP′ = τH(B) such that:

HAP′ ∪EXP |= IC

where HAP′ ⊇ HAP = τH(D), and IC = τ(T ).
Finally, Datalog± negative constraints NC are mapped into SCIFF ICs with

head false, and equality-generating dependencies EGDs into SCIFF ICs, each
one with an equality CLP constraint in its head.

Therefore, informally speaking, the set of models of D given T , mods(D,T ),
corresponds to the set of all the abductive explanations EXP satisfying the set
of SCIFF integrity constraints IC = τ(T ).

A Datalog± CQ q(X) = ∃YΦ(X,Y) over R is mapped into a SCIFF goal
G = τE(Φ(X,Y)), where τE(Φ(X,Y)) is a conjunction of SCIFF atoms. No-
tice that in the SCIFF framework we have therefore a goal with existential
variables only, and among them, we are interested in computed answer substi-
tutions for the original (tuple of) variables X (and therefore Y variables can be
made anonymous).

A Datalog± BCQ q = Φ(Y) is mapped similarly: G = τE(Φ(Y)).
Recall that in Datalog± the set of answers to a CQ q on D given T , denoted

ans(q,D, T ), is the set of all tuples t such that t ∈ q(B) for all B ∈ mods(D,T ).
With abuse of notation, we will write q(t) to mean answer t for q on D given T .

We can hence state the following theorems for (model-theoretic) completeness
of query answering.

Theorem 1 (Completeness of query answering). For each answer q(t) of
a CQ q(X) = ∃YΦ(X,Y) on D given T , in the corresponding SCIFF program
〈∅, τ(IC)〉 there exists an answer substitution θ and an abductive explanation
EXP ∪HAP′ for goal G = τE(Φ(X, )) such that:

〈∅, τ(IC)〉 |=g
HAP Gθ

where HAP = τH(D), IC = τ(T ), and Gθ = τE(Φ(t, )).

137



Corollary 1 (Completeness of boolean query answering). If the answer
to a BCQ q = ∃YΦ(Y) over D given T is Yes, denoted D ∪ T |= q, then in
the corresponding SCIFF program there exists an abductive explanation EXP∪
HAP′ such that:

〈∅, τ(IC)〉 |=g
HAP Gθ

where HAP = τH(D), IC = τ(T ), and G = τE(Φ( )).

The SCIFF proof procedure has been proved sound w.r.t. SCIFF declarative
semantics in [4], therefore for each abductive explanation EXP for a given goal
G in a SCIFF program, there exists a SCIFF-based computation producing a set
of abducibles (positive expectations to our purposes) δ ⊆ EXP, and a computed
answer substitution for goal G possibly more general than θ.

Example 2 (Real estate information extraction system in ALP). Let us conclude
this section by re-considering the Datalog± ontology for the real estate informa-
tion extraction system of Example 1. TGDs F1-F8 are one-to-one mapped into
the following SCIFF ICs:
IC1 : H(ann(X, label)),H(ann(X, price)),H(visible(X))→ E(priceElem(X))
IC2 : H(ann(X, label)),H(ann(X, priceRange)),H(visible(X))

→ E(priceElem(X))
IC3 : H(priceElem(E)),H(group(E,X))→ E(forSale(X))
IC4 : H(forSale(X))→ (∃P ) E(price(X,P ))
IC5 : H(hasCode(X,C)),H(codeLoc(C,L))→ E(loc(X,L))
IC6 : H(hasCode(X,C))→ (∃L) E(codeLoc(C,L)),E(loc(X,L))
IC7 : H(loc(X,L1)),H(loc(X,L2))→ L1 = L2
IC8 : H(loc(X,L))→ E(advertised(X))

The database is then simply mapped into the following event set HAP:

{H(codeLoc(ox1, central)),H(codeLoc(ox1, south)),

H(codeLoc(ox2, summertown)),H(hasCode(prop1, ox2)),H(ann(e1, price)),

H(ann(e1, label)),H(visible(e1)),H(group(e1, prop1))}
The SCIFF proof procedure applies ICs in a forward manner, and it infers

the following set of abducibles from the program above:

EXP = {E(priceElem(e1)),E(forSale(prop1)),∃P E(price(prop1, P )),

E(loc(prop1, summertown)),E(advertised(prop1))}
plus the corresponding H atoms, that are not reported for the sake of brevity.

Each of the (ground) atomic queries of Example 1 is entailed in the SCIFF
program above, since there exist sets EXP and HAP′ such that:

HAP′ ∪EXP |= E(priceElem(e1)),E(forSale(prop1)),E(advertised(prop1))

The query ∃L E(loc(prop1, L)) is entailed as well, considering the unification
L = summertown since:

HAP′ ∪EXP |= E(loc(prop1, summertown)).

138



It is worth noting that the SCIFF framework is much more expressive than
the restricted version used in this paper; in fact, in the mapping we used an
empty KB, but in general the Knowledge Base can be a logic program, that can
includes expectations, abducible literals, as well as CLP constraints. Beside the
forward propagation of Integrity Constraints, SCIFF supports also backward
reasoning.

5 Related Work

Various approaches has been followed to reason upon ontologies.
Usually, DL reasoners implement a tableau algorithm using a procedural lan-

guage. Since some tableau expansion rules are non-deterministic, the developers
have to implement a search strategy from scratch.

Pellet [32] is a free open-source Java-based reasoner for SROIQ with simple
datatypes (i.e., for OWL 1.1). It implements a tableau-based decision proce-
dure for general TBoxes (subsumption, satisfiability, classification) and ABoxes
(retrieval, conjunctive query answering). It supports the OWL-API, the DIG
interface, and the Jena interface and comes with numerous other features.

Pellet can compute the set of all the explanations for given queries by exploit-
ing the tableau algorithm. An explanation is roughly a subset of the knowledge
base (KB) that is sufficient for entailing the query. It applies Reiter’s hitting
set algorithm [29] to find all the explanations. This is a black box method: Pel-
let repeatedly removes an axiom from the KB and then computes again a new
explanation exploiting the tableau algorithm on the new KB, recording all the
different explanations so found.

Differently from Pellet, reasoners written in Prolog can exploit Prolog’s back-
tracking facilities for performing the search. This has been observed in various
works. In [8, 28] the authors proposed a tableau reasoner in Prolog for First Or-
der Logic (FOL) based on free-variable semantic tableaux. However, the reasoner
is not tailored to DLs.

Hustadt, Motik and Sattler [22] presented the KAON2 algorithm that ex-
ploits basic superposition, a refutational theorem proving method for FOL with
equality, and a new inference rule, called decomposition, to reduce a SHIQ KB
into a disjunctive Datalog program, while DLog [25, 33] is an ABox reasoning
algorithm for the SHIQ language that allows to store the content of the ABox
externally in a database and to answer instance check and instance retrieval
queries by transforming the KB into a Prolog program.

Meissner presented the implementation of a reasoner for the DL ALCN writ-
ten in Prolog [26] which was then extended and reimplemented in the Oz lan-
guage [27]. Starting from [26], Herchenröder [20] implemented heuristic search
techniques in order to reduce the inference time for the DL ALC. Faizi [15] added
to [20] the possibility of returning information about the steps executed during
the inference process for queries but still handled only ALC.

A different approach is the one by Ricca et al. [30] that presented OntoDLV,
a system for reasoning on a logic-based ontology representation language called

139



OntoDLP. This is an extension of (disjunctive) ASP and can interoperate with
OWL. OntoDLV rewrites the OWL KB into the OntoDLP language, can retrieve
information directly from external OWL Ontologies and answers queries by using
ASP.

TRILL [34, 35] adopts a Prolog-based implementation for the tableau expan-
sion rules for ALC description logics. Differently from previous reasoners, TRILL
is also able to return explanations for the given queries. Moreover, TRILL differs
in particular from DLog for the possibility of answering general queries instead
of instance check and instance retrieval only.

As reported in Section 2, reasoning upon Datalog± ontologies is achieved,
instead, via the chase bottom-up procedure, which is exploited for deriving atoms
entailed by a database and a Datalog± theory.

In this work, instead, we apply an abductive logic programming proof-procedure
to reason upon ontologic data. It is worth to notice that in a previous work [1]
the SCIFF proof-procedure was interfaced with Pellet to perform ontological
reasoning; in the current work, instead, SCIFF is directly used to perform the
reasoning by mapping atoms in the ontology to SCIFF concepts (like events and
expectations).

6 Conclusions and Future Work

In this paper, we addressed representation and reasoning for Datalog± ontologies
in an Abductive Logic Programming framework, with existential (and univer-
sal) variables, and Constraint Logic Programming constraints in rule heads. The
underlying proof procedure, named SCIFF, is inspired by the IFF proof proce-
dure, and had been implemented in Constraint Handling Rules [16]. The SCIFF
system has already been used for modeling and implementing several knowledge
representation frameworks, also providing an effective reasoning system.

Here we have considered Datalog± ontologies, and shown how the SCIFF
language can be a useful knowledge representation and reasoning framework for
them. In fact, the underlying abductive proof procedure can be directly exploited
as an ontological reasoner for query answering and consistency check. To the best
of our knowledge, this is the first application of ALP to model and reason upon
ontologies.

Moreover, the considered SCIFF language smoothly supports the integration
of rules, expressed in a Logic Programming language, with ontologies expressed
in Datalog±, since a logic program can be added as (non-empty) KB to the set
of ICs, therefore considering deductive rules besides the forward ICs themselves.
Moreover, through dynamic acquisition of events in its HAP set, SCIFF might
also supports inline incrementality of the extensional part of the knowledge base
(namely, the ABox).

Many issues have not been addressed in this paper, and they will be subject
of future work. First of all, we have not focused here on complexity results. Fu-
ture work will be devoted to identify syntactic conditions guaranteeing tractable
ontologies in SCIFF, in the style of what has been done for Datalog±.

140



A second issue for future work concerns experimentation and comparison
with other approaches, even not Logic Programming (LP, for short) based, on
real-size ontologies.

Finally, SCIFF language is richer than the subset here used to represent
Datalog± ontologies. It can support, in fact, negative expectations in rule heads,
with universally quantified variables too, which basically represent the fact that
something ought not to happen, and the proof procedure can identify violations
to them.

Therefore, the richness of the language, and the potential of its abductive
proof procedure pave the way to add further features to Datalog± ontologies.

References

1. Alberti, M., Cattafi, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Montali,
M., Torroni, P.: A computational logic application framework for service discovery
and contracting. International Journal of Web Services Research 8(3), 1–25 (2011)

2. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Montali, M.: An
abductive framework for a-priori verification of web services. In: Maher, M. (ed.)
Proceedings of the Eighth Symposium on Principles and Practice of Declarative
Programming. pp. 39–50. ACM Press, New York, USA (Jul 2006)

3. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Security
protocols verification in Abductive Logic Programming: a case study. In: Dikenelli,
O., Gleizes, M.P., Ricci, A. (eds.) Proceedings of ESAW’05, Lecture Notes in Ar-
tificial Intelligence, vol. 3963, pp. 106–124. Springer-Verlag (2006)

4. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Ver-
ifiable agent interaction in abductive logic programming: the SCIFF framework.
ACM Transactions on Computational Logic 9(4) (2008)

5. Alberti, M., Gavanelli, M., Lamma, E.: The CHR-based implementation of the
SCIFF abductive system. Fundamenta Informaticae 124(4), 365–381 (2013)

6. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Sartor, G., Torroni, P.: Mapping
deontic operators to abductive expectations. Computational and Mathematical
Organization Theory 12(2–3), 205 – 225 (Oct 2006)

7. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Specification and
verification of agent interactions using social integrity constraints. Electronic Notes
in Theoretical Computer Science 85(2) (2003)

8. Beckert, B., Posegga, J.: leanTAP: Lean tableau-based deduction. J. Autom. Rea-
soning 15(3), 339–358 (1995)

9. Cal̀ı, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering un-
der expressive relational constraints. In: International Conference on Principles of
Knowledge Representation and Reasoning. pp. 70–80. AAAI Press (2008)

10. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework
for tractable query answering over ontologies. In: Symposium on Principles of
Database Systems. pp. 77–86. ACM (2009)

11. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: Tractable query answering over ontologies
with Datalog±. In: International Workshop on Description Logics. CEUR Work-
shop Proceedings, vol. 477. CEUR-WS.org (2009)

12. Cal̀ı, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog±: A family
of logical knowledge representation and query languages for new applications. In:

141



IEEE Symposium on Logic in Computer Science. pp. 228–242. IEEE Computer
Society (2010)

13. Cal̀ı, A., Gottlob, G., Pieris, A.: Tractable query answering over conceptual
schemata. In: International Conference on Conceptual Modeling. LNCS, vol. 5829,
pp. 175–190. Springer (2009)

14. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The dl-lite family. J.
Autom. Reasoning 39(3), 385–429 (2007)

15. Faizi, I.: A Description Logic Prover in Prolog. Bachelor’s thesis, Informatics Math-
ematical Modelling, Technical University of Denmark (2011)

16. Frühwirth, T.: Theory and practice of constraint handling rules. Journal of Logic
Programming 37(1-3), 95–138 (Oct 1998)

17. Fung, T.H., Kowalski, R.A.: The IFF proof procedure for abductive logic program-
ming. Journal of Logic Programming 33(2), 151–165 (Nov 1997)

18. Gottlob, G., Lukasiewicz, T., Simari, G.I.: Conjunctive query answering in proba-
bilistic Datalog+/- ontologies. In: International Conference on Web Reasoning and
Rule Systems. LNCS, vol. 6902, pp. 77–92. Springer (2011)

19. Haarslev, V., Hidde, K., Möller, R., Wessel, M.: The racerpro knowledge represen-
tation and reasoning system. Semantic Web 3(3), 267–277 (2012)

20. Herchenröder, T.: Lightweight Semantic Web Oriented Reasoning in Prolog:
Tableaux Inference for Description Logics. Master’s thesis, School of Informatics,
University of Edinburgh (2006)

21. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
CRCPress (2009)

22. Hustadt, U., Motik, B., Sattler, U.: Deciding expressive description logics in the
framework of resolution. Inf. Comput. 206(5), 579–601 (2008)

23. Jaffar, J., Maher, M.: Constraint logic programming: a survey. Journal of Logic
Programming 19-20, 503–582 (1994)

24. Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive Logic Programming. Journal of
Logic and Computation 2(6), 719–770 (1993)

25. Lukácsy, G., Szeredi, P.: Efficient description logic reasoning in Prolog: The DLog
system. TPLP 9(3), 343–414 (2009)

26. Meissner, A.: An automated deduction system for description logic with ALCN
language. Studia z Automatyki i Informatyki 28-29, 91–110 (2004)

27. Meissner, A.: A simple distributed reasoning system for the connection calculus.
Vietnam Journal of Computer Science 1(4), 231–239 (2014), http://dx.doi.org/
10.1007/s40595-014-0023-8

28. Posegga, J., Schmitt, P.: Implementing semantic tableaux. In: DAgostino, M., Gab-
bay, D., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp. 581–629.
Springer Netherlands (1999), http://dx.doi.org/10.1007/978-94-017-1754-0_
10

29. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

30. Ricca, F., Gallucci, L., Schindlauer, R., Dell’Armi, T., Grasso, G., Leone, N.: On-
toDLV: An ASP-based system for enterprise ontologies. J. Log. Comput. 19(4),
643–670 (2009)

31. Shearer, R., Motik, B., Horrocks, I.: Hermit: A highly-efficient owl reasoner. In:
OWLED (2008)

32. Sirin, E., Parsia, B., Cuenca-Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. Journal of Web Semantics 5(2), 51–53 (2007)

142



33. Straccia, U., Lopes, N., Lukacsy, G., Polleres, A.: A general framework for rep-
resenting and reasoning with annotated semantic web data. In: Fox, M., Poole,
D. (eds.) Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010. AAAI Press (2010),
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1590

34. Zese, R., Bellodi, E., Lamma, E., Riguzzi, F.: A description logics tableau rea-
soner in Prolog. In: Cantone, D., Asmundo, M.N. (eds.) CILC. CEUR Workshop
Proceedings, vol. 1068, pp. 33–47. CEUR-WS.org (2013)

35. Zese, R., Bellodi, E., Lamma, E., Riguzzi, F., Aguiari, F.: Semantics and infer-
ence for probabilistic description logics. In: Bobillo, F., Carvalho, R.N., da Costa,
P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T.,
Nickles, M., Pool, M. (eds.) Uncertainty Reasoning for the Semantic Web III -
ISWC International Workshops, URSW 2011-2013, Revised Selected Papers. Lec-
ture Notes in Computer Science, vol. 8816, pp. 79–99. Springer (2014)

143



Towards Fuzzy Granulation in OWL Ontologies

Francesca A. Lisi and Corrado Mencar

Dipartimento di Informatica, Università degli Studi di Bari “Aldo Moro”, Italy
{francesca.lisi,corrado.mencar}@uniba.it

Abstract. The integration of fuzzy sets in ontologies for the Semantic
Web can be achieved in different ways. In most cases, fuzzy sets are
defined by hand or with some heuristic procedure that does not take into
account the distribution of available data. In this paper, we describe a
method for introducing a granular view of data within an OWL ontology.

1 Introduction

Endowing OWL ontologies with capabilities of representing and processing im-
precise knowledge is a highly desirable feature since the Semantic Web is full
of imprecise and uncertain information coming from perceptual data (i.e., data
coming from subjective judgments), incomplete data, data with errors, etc. [16].
Moreover, even in the case that precise information is available, imprecise knowl-
edge could be advantageous: tolerance to imprecision may lead to concrete bene-
fits such as compact knowledge representation, and efficient and robust reasoning
[20]. Additionally, humans continually acquire, manipulate and communicate im-
precise knowledge: therefore any ontology capable of expressing imprecise knowl-
edge, when a precise alternative leads to a complex representation, could be more
interpretable by human users, i.e. easier to read and understand [1].

A number of mathematical tools are available to deal with imprecision and
uncertainty in knowledge representation. The choice of the right tool depends on
the type of imprecision. In particular, imprecision due to the lack of boundaries in
concepts (such as coldness in the domain of indoor temperatures, interestingness
of movies, etc.) are well modeled through fuzzy sets. In essence, fuzzy sets define
collections of objects whose membership can be partial. Differently to probability
measures, the degree of membership does not measure how likely an object is
referred by a concept, but rather it quantifies how much the concept is applicable
to the object. Fuzziness pervades human reasoning and allows it to intelligently
act in complex environments: since fuzzy sets make possible a computational
representation of concepts with no sharp boundaries, they enable machines to
carry out human-centered information processing and reasoning [5].

The integration of fuzzy sets in ontologies for the Semantic Web can be
achieved in different ways (see [19] for an updated overview). However, in most
cases, fuzzy sets are defined by hand or with some heuristic procedure that does
not take into account the distribution of available data. In this paper, we propose
the adoption of a fuzzy clustering procedure to automatically acquire fuzzy sets

144



from data. Also, we exploit the resulting clusters, together with fuzzy quantifiers,
to develop a granular view of the individuals in an OWL ontology.

The paper is structured as follows. Section 2 presents some preliminary in-
formation on Description Logics1 (2.1), Fuzzy Set Theory (2.2), and Fuzzy DLs
(2.3). Section 3 describes the proposed granulation method on OWL schemas at
increasing levels of complexity. Finally, Section 4 draws some conclusive remarks
along with future research directions.

2 Preliminaries

2.1 Description Logics

Description Logics (DLs) are a family of decidable First Order Logic (FOL)
fragments that allow for the specification of structured knowledge in terms
of classes (concepts), instances (individuals), and binary relations between in-
stances (roles) [2]. Complex concepts (denoted with C) can be defined from
atomic concepts (A) and roles (R) by means of the constructors available for
the DL in hand. The members of the DL family differ from each other as for
the set of constructors, thus for the complexity of concept expressions they can
generate. For the sake of illustrative purposes, we present here a salient represen-
tative of the DL family, namely ALC [15], which is often considered to illustrate
some new notions related to DLs. A DL Knowledge Base (KB) K = 〈T ,A〉 is a
pair where T is the so-called Terminological Box (TBox) and A is the so-called
Assertional Box (ABox). The TBox is a finite set of General Concept Inclusion
(GCI) axioms which represent is-a relations between concepts, whereas the ABox
is a finite set of assertions (or facts) that represent instance-of relations between
individuals (resp. couples of individuals) and concepts (resp. roles). Thus, when
a DL-based ontology language is adopted, an ontology is nothing else than a
TBox (i.e., the intensional level of knowledge), and a populated ontology corre-
sponds to a whole KB (i.e., encompassing also an ABox, that is, the extensional
level of knowledge).

The semantics of DLs can be defined directly with set-theoretic formalizations
or through a mapping to FOL (as shown in [8]). Specifically, an interpretation
I = (∆I , ·I) for a DL KB consists of a domain ∆I and a mapping function
·I . For instance, I maps a concept C into a set of individuals CI ⊆ ∆I , i.e. I
maps C into a function CI : ∆I → {0, 1} (either an individual belongs to the
extension of C or does not belong to it). Under the Unique Names Assumption
(UNA) [13], individuals are mapped to elements of ∆I such that aI 6= bI if
a 6= b. However UNA does not hold by default in DLs. An interpretation I is a
model of a KB K iff it satisfies all axioms and assertions in T and A. In DLs a
KB represents many different interpretations, i.e. all its models. This is coherent
with the Open World Assumption (OWA) that holds in FOL semantics. A DL
KB is satisfiable if it has at least one model. We also write C vK D if in any

1 We recap that DLs are the logical foundation of the standard for web ontology
languages belonging to the OWL 2 family [12].

145



Table 1. Syntax and semantics of constructs for ALC(D).

bottom (resp. top) concept ⊥ (resp. >) ∅ (resp. ∆I)
atomic concept A AI ⊆ ∆I

abstract role R RI ⊆ ∆I ×∆I

concrete role T TI ⊆ ∆I ×∆D

individual a aI ∈ ∆I

concrete value v vI ∈ ∆D

concept intersection C uD CI ∩DI

concept union C tD CI ∪DI

concept negation ¬C ∆I \ CI

universal abstract role restriction ∀R.C {x ∈ ∆I | ∀y (x, y) ∈ RI → y ∈ CI}
existential abstract role restriction ∃R.C {x ∈ ∆I | ∃y (x, y) ∈ RI ∧ y ∈ CI}
universal concrete role restriction ∀T.d {x ∈ ∆I | ∀z (x, z) ∈ TI → z ∈ dD}

existential concrete role restriction ∃T.d {x ∈ ∆I | ∃z (x, z) ∈ TI ∧ z ∈ dD}

general concept inclusion C v D CI ⊆ DI

concept assertion a : C aI ∈ CI

abstract role assertion (a, b) : R (aI , bI) ∈ RI

concrete role assertion (a, v) : T (aI , vI) ∈ TI

model I of K, CI ⊆ DI (concept C is subsumed by concept D). Moreover we
write C @K D if C vK D and D 6vK C. The consistency check, which tries to
prove the satisfiability of a DL KB K, is the main reasoning task in DLs. It is
performed by applying decision procedures mostly based on tableau calculus.
All other reasoning tasks can be reformulated as consistency checks.

In many applications, it is important to equip DLs with expressive means that
allow to describe “concrete qualities” of real-world objects such as the length of a
car. The standard approach is to augment DLs with a so-called concrete domain
(or datatype theory) D = 〈∆D, ·D〉, which consists of a datatype domain ∆D

(e.g., the set of real numbers in double precision) and a mapping ·D that assigns
to each data value an element of ∆D, and to every n-ary datatype predicate d
an n-ary (typically, n = 1) relation over ∆D [3]. In DLs extended with concrete
domains, each role is therefore either abstract (denoted with R) or concrete
(denoted with T ). The set of constructors for ALC(D) is reported in Table 1.

2.2 Fuzzy Set Theory

A crisp set A over a Universe of Discourse X is characterised by a function
A : X → {0, 1}, that is, for any x ∈ X either x ∈ A (i.e., A(x) = 1) or x 6∈ A
(i.e., A(x) = 0). A fuzzy set F over X is characterised by a membership function
F : X → [0, 1]. For a fuzzy set F , unlike crisp sets, x ∈ X belongs to F to a
degree F (x) in [0, 1].

The trapezoidal, the triangular, the left-shoulder, and the right-shoulder
functions are frequently used as membership functions of fuzzy sets (see Fig. 1
for a graphical representation). In particular, the trapezoidal function is defined

146



dcba
0

1

x cba
0

1

x ba
0

1

x ba
0

1

x

(a) (b) (c) (d)

Fig. 1. Four notable membership functions of fuzzy sets: (a) Trapezoidal, (b) triangu-
lar, (c) left-shoulder, and (d) right-shoulder.

as follows: let a < b ≤ c < d be rational numbers then

trz(a, b, c, d)(x) =





0 if x < a
(x− a)/(b− a) if x ∈ [a, b)
1 if x ∈ [b, c]
(d− x)/(d− c) if x ∈ (c, d]
0 if x > d .

(1)

Note that triangular, left-shoulder and right-shoulder fuzzy sets are special cases
of trapezoidal fuzzy sets.2

Fuzzy sets can be used to represent information granules, i.e. collections
of objects kept together due to their similarity, proximity, etc. [4]. Information
granules promote abstraction as far as they can be labeled by symbolic terms.
Information granules represented by fuzzy sets are good candidates to represent
perceptual information, thus they could be conveniently labeled by linguistic
terms coming from natural language. The granularity level (quantifiable as the
area of the membership function, for fuzzy sets) assesses the specificity of an
information granule: the most specific information granule is a set with a single
element (precise information); on the other extreme, an information granule
covering the whole universe of discourse is the least specific.

Fuzzy clustering Although fuzzy sets have a greater expressive power than
crisp sets, their usefulness depends critically on the capability to construct ap-
propriate membership functions for various given concepts in different contexts.
The problem of constructing meaningful membership functions is not a trivial
one (see, e.g., [10, Chapter 10]). One easy method is to define a uniform Strong
Fuzzy Partition (SFP) usually with 5 ± 2 fuzzy sets. A SFP is a collection of
fuzzy sets (usually with triangular or trapezoidal fuzzy sets) such that, for each
element of the Universe of Discourse, the sum of memberships of all fuzzy sets
is always 1. SFPs with trapezoidal fuzzy sets greatly enhance the efficiency of
calculations because they guarantee that each element has non-zero membership
degree for at most two fuzzy sets. A uniform SFP is based on fuzzy sets with the
same granularity. It is very simple to define a uniform SFP, but this approach
does not take into account the distribution of available data; in fact, coarse

2 By convention, whenever the denominator of one of the fractions in (1) is 0, the
membership degree is 1.

147



grained fuzzy sets are more useful to cover regions of the Universe of Discourse
where data are more sparse; on the other hand, data crammed in small areas
are better represented by more specific (fine grained) fuzzy sets.

The derivation of a SFP with variable granularity, adapted to available data,
can be achieved through fuzzy clustering. A widespread algorithm for fuzzy clus-
tering is Fuzzy C-Means (FCM) [6], an extension of the well-known K-Means
that accommodates partial memberships of data to clusters. FCM, applied to
one-dimensional, numerical data, can be used to derive a set of c clusters char-
acterized by prototypes π1, π2, . . . , πc, with πj ∈ R and πj < πj+1. These proto-
types, along with the range of data, provide enough information to define a SFP
with two trapezoidal fuzzy sets and c− 2 triangular fuzzy sets according to the
following rules:

Fj =




trz (m,m, π1, π2) if j = 1
trz (πj−1, πj , πj , πj+1) if 1 < j < c
trz (πc−1, πc,M,M) if j = c.

(2)

where [m,M ] is the range of data. In Fig. 2 an example of SFP, consisting of
five fuzzy sets with variable granularity, is depicted.

Fig. 2. Example of SFP consisting of c = 5 fuzzy sets with variable granularity.

Fuzzy quantifiers Fuzzy sets, like crisp sets, can be quantified in terms of
their cardinality. Several definitions of cardinality of fuzzy sets are possible [9],
although in this paper we consider only relative scalar cardinalities like the
relative σ-count, defined for a finite Universe of Discourse X as:

σ(F ) =

∑
x∈X F (x)

|X| (3)

A relative scalar cardinality yields a value within [0, 1] (being |∅| = 0 and
|X| = 1). On this interval, a number of fuzzy sets can be defined to repre-
sent granular concepts about cardinalities, such as Many (see Fig. 3 for some

148



notable examples). These concepts are called fuzzy quantifiers. Note that the
usual existential quantifier (∃) and universal quantifier (∀) can be represented
as special cases of fuzzy quantifiers: Q∃(x) = 1 iff x > 0, 0 otherwise; Q∀(x) = 1
iff x = 1, 0 otherwise.

Fig. 3. Some notable fuzzy quantifiers: None, Few, Some, Many, and Most.

Given a fuzzy quantifier Q and a fuzzy set F , the membership degree Q(σ(F ))
can be intended as the degree of truth of a fuzzy proposition of the form “Qx
are F” (e.g.“Many x are Tall”).

2.3 Fuzzy Description Logics

In fuzzy DLs, an interpretation I = (∆I , ·I) consists of a nonempty (crisp) set
∆I (the domain) and of a fuzzy interpretation function ·I that, e.g., maps a
concept C into a function CI : ∆I → [0, 1] and, thus, an individual belongs to
the extension of C to some degree in [0, 1], i.e. CI is a fuzzy set. The definition
of ·I for ALC(D) with fuzzy concrete domains is reported in [18]. In particular,
·D maps each concrete role into a function from ∆D to [0, 1]. Typical examples
of datatype predicates are

d := ls(a, b) | rs(a, b) | tri(a, b, c) | trz(a, b, c, d) | ≥v | ≤v | =v , (4)

where e.g. ≥v corresponds to the crisp set of data values that are greater or
equal than the value v.

Axioms in a fuzzy ALC(D) KB K = 〈T ,A〉 are graded, e.g. a GCI is of
the form 〈C1 v C2, α〉 (i.e. C1 is a sub-concept of C2 to degree at least α). We
may omit the truth degree α of an axiom; in this case α = 1 is assumed. An
interpretation I satisfies an axiom 〈τ, α〉 if (τ)

I ≥ α. I is a model of K iff
I satisfies each axiom in K. We say that K entails an axiom 〈τ, α〉, denoted
K |= 〈τ, α〉, if any model of K satisfies 〈τ, α〉. Further details of the reasoning
procedures for fuzzy DLs can be found in [17].

Fuzzy quantifiers have been also studied in fuzzy DLs. In particular, Sanchez
and Tettamanzi [14] define an extension of fuzzy ALC(D) involving fuzzy quan-
tifiers of the absolute and relative kind, and using qualifiers. They also provide
algorithms for performing two important reasoning tasks with their DL: Reason-
ing about instances, and calculating the fuzzy satisfiability of a fuzzy concept.

149



3 Fuzzy Granulation of OWL Schemas

In this Section we show our proposal of introducing a granular view within an
ontology. We shall proceed incrementally starting from the simplest case. For
the sake of simplicity, we shall use the OWL terminology henceforth instead of
the DL terminology (We remind the reader that class stands for concept, and
property stands for role).

3.1 Case 1

Let C be a class and T a functional datatype property connecting instances of
C to values in a numerical range d. See Fig. 4 for a graphical representation of
this costruct.

Fig. 4. Graphical representation of a functional datatype property T with domain C
and range over a numerical datatype d.

This schema can be directly translated into a table (see Table 2) with two
columns and as many rows as the number of individuals of C for which T holds.

Table 2. Tabular representation of the OWL schema depicted in Fig. 4.

C T

a1 v1
a2 v2
· · · · · ·
an vn

The dataset in Table 2 can be easily granulated in a number of fuzzy sets
F1, F2, . . . , Fc by applying, e.g., the fuzzy clustering method mentioned in Sec-
tion 2.2. In essence, the granulation process puts individuals in the same in-
formation granule if their respective values are similar. The use of fuzzy sets
to define granules ensures a gradual membership degree of individuals to such
granules, where the maximal membership is assigned to individuals detected as
“prototypes” of each granule. Each fuzzy set represents a fuzzy concept, and can
be tagged by a linguistic term, e.g. Low.

150



Table 3. Granulated individuals obtained from Table 2.

C F1 F2 · · · Fc

a1 µ11 µ12 · · · µ1c

a2 µ21 µ22 · · · µ2c

· · · · · · · · · · · · · · ·
an µn1 µn2 · · · µnc

The result of granulation can be represented in a new table (see Table 3),
where each individual ai is associated to a row of membership values µij , being

µij = Fj(vi) (5)

For each granule Fj , the relative cardinality σ(Fj) can be computed by means
of the formula in Eq. (3). Given a fuzzy quantifier Qk, the membership degree

qjk = Qk(σ(Fj)) (6)

identifies the degree of truth of the fuzzy proposition “Qkx are Fj”. In this
way, a new table can be constructed from a collection Q1, Q2, . . . , Qm of fuzzy
quantifiers, as shown in Table 4. If cm � n, a sensible reduction of data can
be achieved to represent the original property through a granulated view. (To
further reduce data, a threshold τ can be set, so that all qjk less than τ are set
to zero.)

Table 4. Quantified cardinalities for the granules reported in Table 3.

Q1 Q2 · · · Qm

F1 q11 q12 · · · q1m
F2 q21 q22 · · · q2m
· · · · · · · · · · · · · · ·
Fc qc1 qc2 · · · qcm

The new granulated view can be integrated in the ontology as follows. The
fuzzy sets Fj are the starting point for the definition of new subclasses of C
defined as Dj ≡ Cu∃T.Fj . Also, a new class Granule is defined, with individuals
g1, g2, . . . , gc, where each individual gj is an information granule corresponding
to Fj . Each individual in Dj is then mapped to gj by means of an object property
mapsTo. Also, the cardinality of information granules is modeled by means of a
datatype property hasCardinality with domain in Granule and range in the
datatype domain xsd:double. Moreover, for each fuzzy quantifier Qk, a new
class is introduced, which models one of the fuzzy sets over the cardinalities
of information granules. The connection between the class Granule and each
class Qk is established through hasCardinality, once fuzzified, with degrees
identified as in Table 4. Note that the fuzzy proposition “Qkx are Fj” is then
represented as the fuzzy assertion gj : ∃hasCardinality.Qk.

151



Example 1. In the tourism domain, we might consider an OWL ontology which
encompasses the datatype property hasPrice with the class Hotel as domain
and range in the datatype domain xsd:double. Let us suppose that the room
price for Hotel Verdi (instance verdi of Hotel) is 105, i.e. the KB contains the
assertion (verdi, 105):hasPrice. By applying fuzzy clustering to hasPrice,
we might obtain three fuzzy sets (Low, Medium, High) from which the following
classes are derived

LowPriceHotel ≡ Hotel u ∃hasPrice.Low
MidPriceHotel ≡ Hotel u ∃hasPrice.Medium
HighPriceHotel ≡ Hotel u ∃hasPrice.High.

With respect to these classes verdi shows different degrees of membership, e.g.
verdi is a low-price hotel at degree 0.8 and a mid-price hotel at degree 0.2 (see
Fig. 5 for a graphical representation). Subsequently, we might be interested in
obtaining aggregated information about hotels. Here the class Granule comes
into play. Quantified cardinalities allow us, for instance, to represent the fact that
“Many hotels are low-price” as the fuzzy assertion lph : ∃hasCardinality.Many
with truth degree 0.7, where lph is an instance of Granule (i.e., it is an infor-
mation granule) which corresponds to LowPriceHotel, and Many is one of the
fuzzy sets obtained from hasCardinality. Note that verdi, being an instance of
LowPriceHotel, maps to lph, i.e. (verdi, lph) : mapsTo holds to some degree.

3.2 Case 2

A natural extension of the proposed granulation method follows when the class
C is specialized in subclasses, as in Fig. 6. In this case, there are as many tables
with the same structure of Table 2 as the number of subclasses.

Analogously, for each subclass SubCj a structure of fuzzy information gran-
ules Fj1, Fj2, . . . , Fjc is produced and quantified according to the usual fuzzy
quantifiers Q1, Q2, . . . , Qm. (The quantifiers do not depend on the subclass as
their definition is fixed for all information granules.)

Example 2. Following Example 1, one may think of having a subsumption hierar-
chy with the class Accommodation as the root and Hotel and B&B as subclasses
(see Fig. 7). Hotels are granulated in three fuzzy subclasses (LowPriceHotel,
MidPriceHotel and HighPriceHotel) while B&Bs are granulated in two fuzzy
subclasses (CheapB&B and ExpensiveB&B). These fuzzy classes are related to the
classes representing fuzzy quantifiers via Granule analogously to Example 1.

3.3 Case 3

A case of particular interest is given by OWL schemas representing ternary re-
lations. A ternary relation is a subset of the Cartesian product involving three
domains C ×D ×N (for our purposes, we will assume N a numerical domain).

152



Fig. 5. Graphical representation of the output of the fuzzy granulation process on the
OWL schema described in Fig. 4 and instantiated with concepts reported in Example 1.
Fuzzy classes are depicted in gray.

Because of DL restrictions, however, ternary relations are not directly repre-
sentable in OWL, yet they can be indirectly represented through an auxiliary
class E, two object properties R1 and R2, and one datatype property T , as
depicted in Fig. 8.

The structure in Fig. 8 corresponds to a tabular representation with three
columns, and as many rows as the number of elements of the relation, as in
table 5. By removing one of the two columns in Table 5, the resulting table is in
accordance with Table 2, which was the starting point of the granulation process.
In particular, as in the previous cases, a number of fuzzy sets F1, F2, . . . , Fc can
be derived starting from the dataset represented in Table 5, where one column
has been dropped. (We henceforth assume to drop column C.)

In order to connect information granules with classes, we proceed as follows.
Given an individual a ∈ C, a subset of Table 5 can be obtained, as in Table 6.

153



Fig. 6. Variant of the OWL schema shown in Fig. 4 for the case of C having subclasses.

Table 5. Tabular representation of the OWL schema depicted in Fig. 8.

C D T

a1 b1 v1
· · · · · · · · ·
ai bj vk
· · · · · · · · ·
an bm vl

More precisely, for each information granule Fj , it is possible to compute the
relative cardinality

σja =

∑na

i=1 Fj (vai)

na
(7)

Such cardinality can be quantified according to the fuzzy quantifiers Q1, . . . , Qm.
The result is a table similar to Table 4, but now related to the individual a.

Table 6. A slice of Table 5 obtained by fixing an individual a in C.

C D T

a ba1 va1

a ba2 va2

· · · · · · · · ·
a bana

vana

Information granules, connected with the individuals in C, are arranged in
the ontology in a way that merges the modeling of ternary relations as in Fig. 8
with the granular model illustrated in case 1. The new classes, representing
information granules, are defined as E′j ≡ Eu∃R2.Du∃T.Fj . They are connected
to E in order to express a granular view of the relation between C and D.
Finally, a natural extension of this case allows the specialization of the class D
in subclasses (as in case 2).

154



Fig. 7. Graphical representation of the output of the fuzzy granulation process on the
OWL schema reported in Fig. 6 and instantiated with the concepts used in Example 2.

Example 3. With reference to the touristic domain, we might also consider the
distances between hotels and attractions (see Fig. 9). This is clearly a case
of ternary relation which requires to be modeled through an auxiliary class
Distance which is connected to the classes Hotel and Attraction by means of
the object properties hasDistance and isDistanceFor, respectively, and plays
the role of domain for a datatype property hasValue with range xsd:double.
The knowledge that “Hotel Verdi has a distance of 100 meters from the British
Museum” can be therefore modeled as follows:

(verdi, d1) : hasDistance
(d1, british museum) : isDistanceFor
(d1, 100) : hasValue

After fuzzy granulation, the imprecise sentence “Hotel Verdi has a low dis-
tance from many attractions” can be considered as a consequence of the previous
and the following axioms and assertions

LowDistance ≡ Distance u ∃isDistanceFor.Attraction u ∃hasValue.Low
d1 : LowDistance (to some degree)
(d1, ld) : mapsTo
(ld, 0.5) : hasCardinality
ld : ∃hasCardinality.Many (to some degree)

where Many is defined as mentioned in Example 1.

155



Fig. 8. Graphical representation of the OWL schema modeling a ternary relation.

4 Conclusions

This paper presents a starting point for introducing a granular view of data
within an OWL ontology. According to the ideas presented in the paper, a num-
ber of individuals belonging to the ontology can be replaced by information
granules, represented as fuzzy sets. In particular, the connection between the
existing individuals (not involved in granulation) and the granulated view is
possible by exploiting the peculiar representation of ternary relations in OWL.

This work is in a preliminary stage. We are currently evaluating the possibil-
ity of representing the output of our fuzzy granulation method by using OWL
2, i.e. within the current Semantic Web languages as suggested by Bobillo and
Straccia in their proposal of Fuzzy OWL 2 [7]. In a certain sense, we are pursuing
an alternative direction in comparison with the work of Sanchez and Tettamanzi
[14] which, if implemented, could lead to the extension of current Semantic Web
languages. However, it should be noted that there are some non-negligible restric-
tions to make their approach work in current fuzzy DLs. Notably, the approach
considers a finite number of individuals, which causes a mismatch with the usual
semantics for DLs (i.e., OWA with infinite interpretations).

Future research is aimed at integrating our fuzzy granulation approach within
inductive learning algorithms, such as Foil-DL [11], with the aim of verifying
the benefits of information granulation in terms of efficiency and effectiveness of
the learning process, as well as in terms of interpretability of the learning results.

Acknowledgements This work was partially funded by the Università degli
Studi di Bari “Aldo Moro” under the IDEA Giovani Ricercatori 2011 grant
“Dealing with Vague Knowledge in Ontology Refinement”.

References

1. Alonso, J.M., Castiello, C., Mencar, C.: Interpretability of Fuzzy Systems: Current
Research Trends and Prospects. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer

156



Handbook of Computational Intelligence. Springer Berlin / Heidelberg (2015)
2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.):

The Description Logic Handbook: Theory, Implementation and Applications (2nd
ed.). Cambridge University Press (2007)

3. Baader, F., Hanschke, P.: A scheme for integrating concrete domains into concept
languages. In: Mylopoulos, J., Reiter, R. (eds.) Proceedings of the 12th Interna-
tional Joint Conference on Artificial Intelligence. Sydney, Australia, August 24-30,
1991. pp. 452–457. Morgan Kaufmann (1991)

4. Bargiela, A., Pedrycz, W.: Granular computing: an introduction. Springer Science
& Business Media (2003)

5. Bargiela, A., Pedrycz, W.: Human-centric information processing through granular
modelling, vol. 182. Springer Science & Business Media (2009)

6. Bezdek, J.C.: Fuzzy clustering. In: Ruspini, E.H., Bonissone, P.P., Pedrycz, W.
(eds.) Handbook of Fuzzy Computation, p. 2. Institute of Physics Pub. (1998)

7. Bobillo, F., Straccia, U.: Representing fuzzy ontologies in OWL 2. In: FUZZ-IEEE
2010, IEEE International Conference on Fuzzy Systems, Barcelona, Spain, 18-23
July, 2010, Proceedings. pp. 1–6. IEEE (2010)

8. Borgida, A.: On the relative expressiveness of description logics and predicate
logics. Artificial Intelligence 82(1–2), 353–367 (1996)

9. Dubois, D., Prade, H.: Fuzzy cardinality and the modeling of imprecise quantifi-
cation. Fuzzy sets and Systems 16(3), 199–230 (1985)

10. Klir, G.J., Yuan, B.: Fuzzy sets and fuzzy logic: theory and applications. Prentice-
Hall, Inc. (1995)

11. Lisi, F.A., Straccia, U.: Dealing with incompleteness and vagueness in inductive
logic programming. In: Cantone, D., Nicolosi Asmundo, M. (eds.) Proceedings of
the 28th Italian Conference on Computational Logic, Catania, Italy, September
25-27, 2013. CEUR Workshop Proceedings, vol. 1068, pp. 179–193. CEUR-WS.org
(2013), http://ceur-ws.org/Vol-1068/paper-l12.pdf

12. OWL 2 Web Ontology Language Document Overview: http://www.w3.org/TR/

2009/REC-owl2-overview-20091027/. W3C (2009)
13. Reiter, R.: Equality and domain closure in first order databases. Journal of ACM

27, 235–249 (1980)
14. Sanchez, D., Tettamanzi, A.G.: Fuzzy quantification in fuzzy description logics.

In: Sanchez, E. (ed.) Fuzzy Logic and the Semantic Web, Capturing Intelligence,
vol. 1, pp. 135 – 159. Elsevier (2006)

15. Schmidt-Schauss, M., Smolka, G.: Attributive concept descriptions with comple-
ments. Artificial Intelligence 48(1), 1–26 (1991)

16. Stoilos, G., Simou, N., Stamou, G., Kollias, S.: Uncertainty and the Semantic Web.
IEEE Intelligent Systems 21 (2006)

17. Straccia, U.: Reasoning within fuzzy description logics. Journal of Artificial Intel-
ligence Research 14, 137–166 (2001)

18. Straccia, U.: Description logics with fuzzy concrete domains. In: UAI ’05, Proceed-
ings of the 21st Conference in Uncertainty in Artificial Intelligence, Edinburgh,
Scotland, July 26-29, 2005. pp. 559–567. AUAI Press (2005)

19. Straccia, U.: Foundations of Fuzzy Logic and Semantic Web Languages. CRC Stud-
ies in Informatics Series, Chapman & Hall (2013)

20. Zadeh, L.A.: Is there a need for fuzzy logic? Information sciences 178(13), 2751–
2779 (2008)

157



Fig. 9. Graphical representation of the output of the fuzzy granulation process on the
OWL schema reported in Fig. 8 and instantiated with the concepts used in Example 3.

158



Preferential Description Logics meet Sports
Entertainment: Cardinality Restrictions and Perfect

Extensions for a Better Royal Rumble Match

Gian Luca Pozzato

Dipartimento di Informatica - Università di Torino - Italy
gianluca.pozzato@unito.it

Abstract. In this work we include cardinality restrictions and degrees of expect-
edness of inclusions in preferential Description Logics. We enrich the language
of the nonmonotonic Description Logic DL-LitecT, obtained by adding a typ-
icality operator T to standard DL-Litecore , by allowing inclusions of the form
T(C) vd D, where d is a degree of expectedness. We then propose a syntactic
notion of extension of an ABox, in order to assume typicality assertions about
individuals satisfying cardinality restrictions on concepts. Moreover, we define
an order relation among such extended ABoxes, that allows to define a notion of
perfect extension as the minimal one with respect to such an order relation. We
apply this machinery to a problem coming from sports entertainment, namely the
problem of maximizing the approval rating by the people attending to the Royal
Rumble match, an annual wrestling event involving thirty athletes.

1 Introduction

The term sports entertainment has been coined by the World Wrestling Federation (now
World Wrestling Entertainment, WWE, http://www.wwe.com) to describe professional
wrestling, a combat sport combining athletics with theatrical performance. As a differ-
ence with typical athletics and games, which are conducted for competition, the main
objective of sports entertainment, and especially of professional wrestling, is to enter-
tain an audience. The owner of WWE, Vincent Kennedy McMahon, often mentions
that his company has to “Give the People What They Want”. Wrestling matches are
driven by storylines provided by a creative team, and their outcomes are generally pre-
determined: duration, sequence of athletic moves, external interferences and, obviously,
winners of the contests. Each athlete plays a specific role and follows a script, whereas
injuries (and deaths) are only due to accidents, for instance because of a wrongly exe-
cuted maneuver.

One of the most attractive events in professional wrestling is the WWE Royal Rum-
ble match: thirty athletes are involved in this competition, and the winner receives a title
shot in the main annual event of the company. The objective of each participant is to
eliminate all the other competitors by tossing them over the top rope of the ring; an ath-
lete is eliminated if both his feet touch the floor outside the ring. The match starts with
the two participants who have drawn entry numbers one and two, with the remaining
competitors entering the ring at regular timed intervals, usually 90 seconds, according
to their entrance number assigned by means of a lottery. On the contrary, the assignment
of entrance numbers to the participants, the sequence of eliminations (who eliminates

159



who), the last man being eliminated, as well as the winner himself are determined by
the choices of the creative team and scheduled in all the details.

In the last two years, the Royal Rumble match has been marked by an extremely
negative audience reaction: the trivial sequence of eliminations, as well as the fact that
both the winners have been predicted before the match by professional wrestling web
sites, lead the people in the arena to “boo” every single action of the show.

In this work we move a first step in order to tackle the problem of defining the
script of the perfect Royal Rumble match. The idea it to support (not to replace) the
creative team in the activities of selecting 1. the entrance number of the participants
2. the group of finalists, i.e. the last two or three athletes remaining in the ring after
all other competitors have been eliminated 3. the winner of the match. To this aim, we
exploit preferential Description Logics recently introduced in [13, 17, 19, 14].

Nonmonotonic extensions of Description Logics (DLs) have been actively investi-
gated since the early 90s [5, 3, 6, 12, 13, 17, 10]. A simple but powerful nonmonotonic
extension of DLs is proposed in [13, 17, 16, 14]: in this approach “typical” or “normal”
properties can be directly specified by means of a “typicality” operator T enriching the
underlying DL; the typicality operator T is essentially characterized by the core proper-
ties of nonmonotonic reasoning axiomatized by either preferential logic [20] or rational
logic [21]. In these logics one can express defeasible inclusions such as “normally, a top
player returning from an injury wins the Royal Rumble match”:

T(Returning u Top) vWinner

As a difference with standard DLs, in these extensions one can consistently express
exceptions and reason about defeasible inheritance as well. For instance, a knowledge
base can consistently express that “normally, a face wrestler is supported by the crowd”,
whereas “typically, a face wrestler who is supposed to win the Royal Rumble match is
not supported by the crowd” as follows:

PredictedFace v Face
T(Face) v Supported
T(PredictedFace) v ¬Supported

The approach based on the typicality operator has been first introduced for the basic DL
ALC [13]. In [14], the authors have extended this approach also to the logic DL-Litecore
of the DL-Lite family. This logic is specifically tailored for effective query answering
over DL knowledge bases containing a large amount of data, however, thanks to its
computational complexity, it is considered a lightweight Description Logic: indeed, the
problem of subsumption and the satisfiability of a knowledge base in DL-Litecore are
NLOGSPACE in the size of the TBox [8, 9]. In this work, we restrict our concerns to
the logic DL-LitecT, whose expressive power is sufficient for the application to sports
entertainment presented in Section 4.

The logic DL-LitecT results to be too weak in several application domains. Indeed,
although the operator T is nonmonotonic (T(C) v E does not imply T(C uD) v E),
the logic DL-LitecT is monotonic, in the sense that if the fact F follows from a given
knowledge base KB, then F also follows from any KB’⊇KB. As a consequence, unless
a KB contains explicit assumptions about typicality of individuals, there is no way of

160



inferring defeasible properties about them: in the above example, if KB contains the
fact that Daniel is a face wrestler, i.e. Face(daniel) belongs to KB, it is not possible to
infer that he is supported by the crowd (Supported(daniel)). This would be possible
only if the KB contained the stronger information that Daniel is a typical face wrestler,
namely that T(Face)(daniel) belongs to KB.

In order to overwhelm this limit and perform useful inferences, in [17, 14] the au-
thors have introduced a nonmonotonic extension of the logic DL-LitecT based on a
minimal model semantics. Intuitively, the idea is to restrict our consideration to models
that maximize typical instances of a concept when consistent with the knowledge base.
The resulting logic, called DL-LitecTmin, supports typicality assumptions, so that if
one knows that Daniel is a face wrestler, one can nonmonotonically assume that he is
also a typical face wrestler and therefore that he is supported by the crowd.

From a semantic point of view, the logic DL-LitecTmin is based on a preference
relation among DL-LitecT models and a subsequent notion of minimal entailment re-
stricted to models that are minimal with respect to such preference relation.

In several applications the assumptions of typicality in DL-LitecTmin seem to be
too strong, for instance when the need arises of bounding the cardinality of the extension
of a given concept, that is to say the number of domain elements being members of such
a concept, as introduced in [4]. As an example, consider the following KB:

T(Face) vWinner
T(Returning) vWinner
T(Predicted) vWinner

If the assertional part of the KB contains the facts that:

Face(daniel),
Returning(dave),
Predicted(roman)

whose meaning is that Daniel is a face athlete, Dave is returning from an injury, and
that Roman has been predicted to win the Royal Rumble match, respectively, then in
DL-LitecTmin we conclude that

T(Face)(daniel)
T(Returning)(daniel)
T(Predicted)(roman)

and then that Dave, Daniel and Roman are all winners. This happens in DL-LitecTmin

because it is consistent to make the three assumptions above, that hold in all minimal
models, however one should be interested in three distinct, but related aspects that can-
not be captured by DL-LitecTmin as it is:

– first, one would like to restrict his attention to models/situations satisfying cardi-
nality restrictions (in the example, there is only one winner, therefore the three
assumptions above must be mutually exclusive);

161



– second, one could need to express different degrees of expectedness of typicality
inclusions: for instance, normally a top face wrestler wins the Royal Rumble match,
however this is in general more surprising with respect to the fact that, typically,
a returning top wrestler wins. In other words, both the two inclusions represent
typical properties, but the latter one seems to be more predictable;

– third, making all the consistent assumptions about prototypical properties should
be in contrast with the need of taking into account a reasonable but “surprising
enough” (or not obvious) scenario: in sports entertainment, a quite unpredictable
script should help to obtain a positive reaction from the crowd.

In this work, we propose a new extension of the standard Description Logic DL-Litecore
for reasoning about typicality called DL-LitecTexp, whose aim is to restrict reasoning
in DL-LitecT to “non trivial” scenarios respecting restrictions on the cardinality of con-
cepts, in order to match the needs of proposing memorable scripts for events in sports
entertainment. The original contribution of this work can be summarized as follows:

– we introduce a new Description Logic of typicality, called DL-LitecTexp, allowing
to express a degree of expectedness of typicality assumptions, that is to say TBoxes
are extended by (i) inclusions of the form T(C) vd D where d is a positive integer,
such that an inclusion with degree d is more “trivial” (or “obvious”) with respect to
another one with degree d′ ≤ d, as well as by (ii) restrictions on the cardinality of
concepts;

– we introduce a notion of extension of an ABox for the logic DL-LitecTexp, corre-
sponding to a set of typicality assumptions that can be performed in DL-LitecTmin

for individual constants, then we introduce an order relation among extensions
whose basic idea is to prefer extensions representing more surprising scenarios;

– we define notions of entailment in DL-LitecTexp, relying on existing reasoners for
DL-LitecT, but allowing to restrict our concern to “non trivial” scenarios, corre-
sponding to minimal extensions with respect to the order relation among extensions
of the previous point.

The plan of the paper is as follows. In Section 2 we briefly recall preferential DLs
DL-LitecT and DL-LitecTmin. In Section 3 we introduce the logic DL-LitecTexp, al-
lowing to express degrees of expectedness of typicality inclusions as well as to deal
with cardinality restrictions: we introduce notions of eligible and perfect extensions of
an ABox for the logic DL-LitecTexp, allowing to describe a plausible, but unexpected
scenario. In Section 4 we apply DL-LitecTexp in the context of sports entertainment
to find a script for a better Royal Rumble match. Issues that will be object of future
research are described in the concluding Section 5.

2 Preferential Description Logics DL-LitecT and DL-LitecTmin

The logic DL-LitecT is obtained by adding to standard DL-Litecore the typicality op-
erator T [14]. The intuitive idea is that T(C) selects the typical instances of a concept
C. We can therefore distinguish between the properties that hold for all instances of
concept C (C v D), and those that only hold for the normal or typical instances of C
(T(C) v D).

162



The language of DL-LitecT is defined as follows.

Definition 1. We consider an alphabet of concept names C, of role names R, and of
individual constants O. Given A ∈ C and S ∈ R, we define

R := S | S−
CL := A | ∃R.> | T(A)
CR := A | ¬A | ∃R.> | ¬∃R.>

A DL-LitecT KB is a pair (TBox, ABox). TBox contains a finite set of concept inclusions
of the form CL v CR. ABox contains assertions of the form C(a) and R(a, b), where
C is a concept CL or CR, R ∈ R, and a, b ∈ O.

In order to provide a semantics to the operator T, the definition of a modelM = 〈∆, I〉
used in “standard” terminological logic DL-Litecore , where ∆ is the domain and I is
a function mapping each concept C to its extension CI ⊆ ∆, is extended by a global
preference relation among individuals of∆: in this respect, x < y means that x is “more
normal” than y, and that the typical members of a concept C are the minimal elements
of C with respect to this relation. In this framework, an element x ∈ ∆ is a typical
instance of some concept C if x ∈ CI and there is no C-element in ∆ more typical
than x. The typicality preference relation is partial. The basic idea is that the operator T
is characterized by a set of postulates that are essentially a reformulation of the Kraus,
Lehmann and Magidor’s axioms of preferential logic P [20]. Intuitively, the assertion
T(C) v D corresponds to the conditional assertion C |∼ D of P. T has therefore all
the “core” properties of nonmonotonic reasoning.

Definition 2 (Well-foundedness). Given an irreflexive and transitive relation < over
∆ and S ⊆ ∆, we define Min<(S) = {x : x ∈ S and @y ∈ S s.t. y < x}. We say that
< is well-founded if and only if, for all S ⊆ ∆, for all x ∈ S, either x ∈ Min<(S) or
∃y ∈Min<(S) such that y < x.

Definition 3 (Multilinearity). Given a preference relation < over a domain ∆, we say
that < is multilinear if, for all u, v, z ∈ ∆, if u < z and v < z, then either u = v or
u < v or v < u.

Definition 4. A model of DL-LitecT is any structure 〈∆,<, I〉, where: ∆ is the do-
main; I is the extension function that maps each extended concept C to CI ⊆ ∆, and
each role R to a RI ⊆ ∆ × ∆; < is an irreflexive, transitive, well-founded (Defi-
nition 2) and multilinear (Definition 3) relation over ∆. I is defined for atomic con-
cepts A ∈ C end extended to complex concepts in the usual way (as for DL-Litecore ):
(¬A)I = ∆\AI , (∃S.>)I = {x ∈ ∆ | ∃y ∈ ∆ and (x, y) ∈ SI}, (∃S−.>)I = {x ∈
∆ | ∃y ∈ ∆ and (y, x) ∈ SI}; in addition, (T(C))I =Min<(C

I).

Given a modelM of Definition 4, I can be extended so that it assigns to each individual
a of O a distinct element aI of the domain ∆ (unique name assumption). We say that
M satisfies an inclusion C v D if CI ⊆ DI , and thatM satisfies C(a) if aI ∈ CI ,
S(a, b) if (aI , bI) ∈ SI , and S−(a, b) if (bI , aI) ∈ SI . Moreover,M satisfies TBox

163



if it satisfies all its inclusions, andM satisfies ABox if it satisfies all its formulas.M
satisfies a KB (TBox,ABox), if it satisfies both TBox and ABox.

We can also define a notion of entailment in DL-LitecT. Given a query F (either an
inclusion C v D or an assertion of the form C(a) or an assertion of the form R(a, b)),
we say that F is entailed from a KB in DL-LitecT if F holds in all DL-LitecT models
satisfying KB, and we write KB |=DL-LitecT

F .
The semantics of the typicality operator can be specified by modal logic. The in-

terpretation of T can be split into two parts: for any x of the domain ∆, x ∈ (T(C))I

just in case (i) x ∈ CI , and (ii) there is no y ∈ CI such that y < x. Condition (ii) can
be represented by means of an additional modality �, whose semantics is given by the
preference relation < interpreted as an accessibility relation. The interpretation of � in
M is as follows: (�C)I = {x ∈ ∆ | for every y ∈ ∆, if y < x then y ∈ CI}. We
immediately get that x ∈ (T(C))I if and only if x ∈ (C u�¬C)I .

Even if the typicality operator T itself is nonmonotonic (i.e. T(C) v E does not
imply T(C uD) v E), what is inferred from a KB can still be inferred from any KB’
with KB⊆ KB’. In order to perform nonmonotonic inferences, in [17] the authors have
strengthened the above semantics by restricting entailment to a class of minimal (or
preferred) models. Intuitively, the idea is to restrict entailment to models that minimize
the untypical instances of a concept. The resulting logic is called DL-LitecTmin.

Given a KB, we consider a finite set LT of concepts: these are the concepts whose
untypical instances we want to minimize. We assume that the set LT contains at least
all concepts C such that T(C) occurs in the KB or in the query F . As we have already
said, x ∈ CI is typical for C if x ∈ (�¬C)I . Minimizing the untypical instances of
C therefore means to minimize the objects falsifying �¬C for C ∈ LT. Hence, for a
given modelM = 〈∆,<, I〉, we can define:

M�−
LT

= {(x,¬�¬C) | x 6∈ (�¬C)I , with x ∈ ∆,C ∈ LT}.

Definition 5 (Preferred and minimal models). Given two models M = 〈∆, <, I〉
and M′ = 〈∆′, <′, I ′〉 of a knowledge base KB, we say that M is preferred to M′
w.r.t. LT, and we writeM <LT

M′, if (i) ∆ = ∆′, (ii)M�−
LT
⊂M′�−LT

, (iii) aI = aI
′

for all a ∈ O. M is a minimal model for KB (w.r.t. LT) if it is a model of KB and
there is no other modelM′ of KB such thatM′ <LT

M.

Definition 6 (Minimal Entailment in DL-LitecTmin). A query F is minimally en-
tailed in DL-LitecTmin by KB with respect to LT if F is satisfied in all models of KB
that are minimal with respect to LT. We write KB |=DL-LitecTmin

F .

3 The Logic DL-LitecTexp: between DL-LitecT and DL-LitecTmin

In this section we define an alternative semantics that allows us to express a degree of
expectedness for the typicality inclusions and to limit the number of typicality assump-
tions in the ABox in order to obtain less predictable scenarios. The basic idea is similar
to the one proposed in [13], where a completion of an ALC + T ABox is proposed
in order to assume that every individual constant of the ABox is a typical element of

164



the most specific concept he belongs to, if this is consistent with the knowledge base.
Here we propose a similar, algorithmic construction in order to compute only some as-
sumptions of typicality of domain elements/individual constants, in order to describe an
alternative, surprising but not counterintuitive scenario, satisfying suitable constraints
about the cardinality of the extensions of concepts. To this aim, we further extend a
TBox with cardinality restrictions as defined in [4], that is to say axioms of the form
either (≥ n C) or (≤ n C) or (= n C), where n is a positive integer.

First of all, let us define the language L of the logic DL-LitecTexp:

Definition 7. We consider an alphabet of concept names C, of role names R, and of
individual constants O. Given A ∈ C and S ∈ R, we define

R := S | S−
CR := A | ¬A | ∃R.> | ¬∃R.>

A DL-LitecTexp KB is a pair (TBox, ABox). TBox contains axioms of the form:

– CR v CR;
– T(A) vd CR, where A ∈ C and d ∈ N+ is called the degree of expectedness;
– (≥ n CR), where n ∈ N+;
– (≤ n CR), where n ∈ N+;
– (= n CR), where n ∈ N+.

ABox contains assertions of the form C(a) and R(a, b), where C is a concept of CR,
R ∈ R, and a, b ∈ O.

3.1 Extensions of the ABox and order among extensions

Given an inclusion T(C) vd D, the more the degree of expectedness is high, the
more the inclusion is, in some sense, “obvious”, not surprising. Given another inclusion
T(C ′) vd′ D

′, with d′ < d, we assume that this inclusion is less “obvious”, more
surprising with respect to the other one. As an example, let KB contain T(Student) v4

SocialNetworkUser and T(Student) v2 PartyParticipant , representing that typical
students make use of social networks, and that normally they go to parties; however, the
second inclusion is less obvious with respect to the first one.

Given a KB, we define a finite set C of concepts for the evaluation of typical prop-
erties. We assume that, for all T(C) vd D ∈ KB, then C ∈ C.

Given an individual a explicitly named in the ABox, we define the set of “plausible”
typicality assumptions T(C)(a) that can be minimally entailed from KB in the logic
DL-LitecTmin, with C ∈ C. We then consider an ordered set of pairs (a,C) of all
possible assumptions T(C)(a), for all concepts C ∈ C and all individual constants a
occurring in ABox. This is formally stated in the next definition:

Definition 8 (Assumptions in DL-LitecTexp). Given a KB=(TBox,ABox) and the set
of concepts C, we define, for each individual name a occurring in ABox:

Ca = {C ∈ C | KB |=DL-LitecTmin
T(C)(a)}

165



We also define CABox = {(a,C) | C ∈ Ca and a occurs in ABox} and we impose an
order on the elements of CABox:

CABox =< (a1, C1), (a2, C2), . . . , (an, Cn) > .

Furthermore, we define the ordered multiset:

dABox =< d1, d2, . . . , dn >

respecting the order imposed on CABox, where di = avg({d ∈ N+ | T(Ci) vd D ∈
TBox}).
Intuitively, the ordered multiset dABox contains tuples of the form< d1, d2, . . . , dn >,
where di is the degree of expectedness of the assumption T(C)(a), such that (a,C) ∈
CABox at position i. di corresponds to the average of all the degrees d of typicality
inclusions T(C) vd D in the TBox.

In order to define alternative scenarios, where not all plausible assumptions are
taken into account, we consider different extensions of the ABox and we introduce an
order among them, allowing to range from unpredictable to trivial ones. Starting from
tuples< d1, d2, . . . , dn > in dABox, the first step is to build all alternative tuples where
0 is used in place of some di to represent that the corresponding typicality assertion
T(C)(a) is no longer assumed (Definition 9). Furthermore, we define the extension of
the ABox corresponding to a string so obtained (Definition 10). To give an intuitive
idea, before introducing the formal definitions, let us consider the following example:

Example 1. Given a KB, let the only typicality inclusions in TBox be T(C) v1 D
and T(E) v2 F . Let a and b be the only individual constants occurring in the ABox.
Suppose also that (i) KB |=DL-LitecTmin

T(C)(a), (ii) KB |=DL-LitecTmin
T(C)(b),

and (iii) KB |=DL-LitecTmin
T(E)(b). We have that:

CABox = {(a,C), (b, C), (b, E)}
dABox =< 1, 1, 2 >

Other possible tuples are: < 0, 0, 2 >, corresponding to extending the ABox with the
only assumption T(E)(b); < 0, 1, 0 >, corresponding to extending the ABox with
the only assumption T(C)(b); < 1, 0, 0 >, corresponding to extending the ABox
with T(C)(a); < 0, 1, 2 >, corresponding to extending the ABox with the assump-
tions T(C)(b) and T(E)(b); < 1, 0, 2 >, corresponding to extending the ABox with
T(C)(a) and T(E)(b);< 1, 1, 0 >, corresponding to extending the ABox with T(C)(a)
and T(C)(b); < 0, 0, 0 >, corresponding to not extending the ABox (the set of typical-
ity assumptions is empty).

Let us now introduce formal definitions for the above mentioned notions of string of
plausible assumptions and of extension of an ABox corresponding to a string.

Definition 9 (Strings of plausible assumptions S). Given a KB=(TBox,ABox) and the
set CABox, let dABox =< d1, d2, . . . , dn > be the ordered multiset of Definition 8. We
define the set S of all the strings of plausible assumptions with respect to KB as

S = {< s1, s2, . . . , sn >| ∀i = 1, 2, . . . , n either si = di or si = 0}

166



Definition 10 (Extension of the ABox). Let KB=(TBox,ABox) and let CABox =<
(a1, C1), (a2, C2), . . . , (an, Cn) > as in Definition 8. Given a string of plausible as-
sumptions < s1, s2, . . . , sn >∈ S of Definition 9, we define the extension ÂBox of the
ABox corresponding to the string as

ÂBox = {T(Ci)(ai) | (ai, Ci) ∈ CABox and si 6= 0}

It is easy to observe that, in DL-LitecTmin, the set of typicality assumptions that can
be inferred from a KB corresponds to the extension of the ABox corresponding to the
string dABox, that is to say no element is set to 0: all the typicality assertions of in-
dividuals occurring in the ABox, that are consistent with the KB, are assumed. This
corresponds to the “most obvious” situation. On the contrary, in DL-LitecT, no typical-
ity assumptions can be derived from a KB, and this corresponds to extending the ABox
by the assertions corresponding to the string < 0, 0, . . . , 0 >, i.e. by the empty set. This
corresponds to the most surprising situation. Between them, all the other strings of S
(Definition 9), corresponding to alternative extensions of the ABox, that we propose to
order as follows:

Definition 11 (Order between extensions). Given a KB=(TBox,ABox) and the set S
of strings of plausible assumptions (Definition 9), let s =< s1, s2, . . . , sn > and r =<
r1, r2, . . . , rn >, with s, r ∈ S . Furthermore, let ÂBoxs and ÂBoxr be the extensions
of the ABox corresponding to s and r (Definition 10), respectively. We say that s ≤ r if
there exists a bijection δ between s and r such that, for each (si, rj) ∈ δ, it holds that
si ≤ rj , and there is at least one (si, rj) ∈ δ such that si < rj . We say that ÂBoxs is
more surprising (or less trivial) than ÂBoxr if s ≤ r.

Intuitively, a string s whose elements are “lower” than the ones of another string r
corresponds to a less trivial ABox. For instance, recalling Example 1, let us consider
the strings s =< 1, 1, 0 > and r =< 1, 0, 2 >, we have that s ≤ r, because there
exists a bijection {(1, 1), (0, 0), (1, 2)} whose pairs (si, ri) are such that si ≤ ri. The
assumptions T(C)(a) and T(C)(b) corresponding to s are then considered less trivial
than T(C)(a) and T(E)(b) corresponding to r. It is worth noticing that the order of
Definition 11 is partial: as an example, the strings < 1, 1 > and < 0, 2 > are not
comparable, in the sense that neither < 1, 1 > ≤ < 0, 2 > nor < 0, 2 > ≤ < 1, 1 >. In
order to choose between two incomparable situations, we introduce the following notion
of weak order. Intuitively, the idea is as follows: given two incomparable extensions
ÂBoxs and ÂBoxr, we assume that ÂBoxs is weakly less trivial than ÂBoxr if ÂBoxr

is strictly included in another extension ÂBoxu more trivial than ÂBoxs.

Definition 12 (Weak preference). Given a KB=(TBox,ABox), let ÂBoxs and ÂBoxr be
two extensions of the ABox such that neither ÂBoxs is more surprising than ÂBoxr nor
ÂBoxr is more surprising than ÂBoxs. We say that ÂBoxs is (weakly) more surprising
(or (weakly) less trivial) than ÂBoxr if there exists an extension ÂBoxu of ABox such
that (i) ÂBoxs is more surprising than ÂBoxu (Definition 11) and (ii) ÂBoxr ⊂ ÂBoxu.

As an example, let

167



ÂBoxs = {T(C)(a)},
ÂBoxr = {T(D)(b)},
ÂBoxu = {T(D)(b),T(E)(b)}

be three extensions of the ABox of a given KB=(TBox,ABox), corresponding to s =<
1, 0, 0 >, r =< 0, 1, 0 >, and u =< 0, 1, 2 >, respectively. We have that s =<
1, 0, 0 > and r =< 0, 1, 0 > are not comparable with respect to the relation ≤. How-
ever, we have that (i) s ≤ u and that (ii) ÂBoxr ⊂ ÂBoxu, therefore we conclude that
ÂBoxs is (weakly) more surprising (or (weakly) less trivial) than ÂBoxr.

3.2 Cardinality restrictions on concepts and perfect extensions

In general, it could be useful to restrict logical entailment to models in which the car-
dinality of the extensions of some concepts is bounded. More expressive DLs allow to
specify (un)qualified number restrictions, in order to specify the number of possible el-
ements filling a given role R. As an example, number restrictions allow to express that
a student attends to 3 courses. Number restrictions are therefore “localized to the fillers
of one particular role” [4], for instance we can have Student v≥ 3Attends.Course as
a restriction on the number of role fillers of the role Attends . However one could need
to express global restrictions on the number of domain elements belonging to a given
concept, for instance to express that in the whole domain there are exactly 3 courses. In
DLs not allowing cardinality restrictions one can only express that every student must
attend to three courses, but not that all must attend to the same ones.

In the logic DL-LitecTexp, cardinality restrictions on concepts are added to the
TBox as in Definition 7. They are expressions of the form either (≥ n C) or (≤ n C)
or (= n C), where n is a positive integer and C is an extended concept.

Definition 13. Given a DL-LitecT modelM = 〈∆,<, I〉, where I is extended so that
it assigns to each individual a ofO a distinct element aI of the domain∆ (unique name
assumption), we say thatM satisfies:

– (elements of a TBox)
• an inclusion C v D if CI ⊆ DI ;
• a typicality inclusion T(C) vd D if Min<(C

I) ⊆ DI ;
• a cardinality restriction of the form (≥ n C) if ]CI ≥ n
• a cardinality restriction of the form (≤ n C) if ]CI ≤ n
• a cardinality restriction of the form (= n C) if ]CI = n

– (elements of an ABox)
• an assertion of the form C(a) if aI ∈ CI

• an assertion of the form R(a, b) if (aI , bI) ∈ RI .

Given a KB=(T ∪ C,ABox), where T is a set of inclusions and C is a set of axioms
of cardinality restrictions, we say that a model M satisfies KB if it satisfies all the
inclusions in T , all the axioms of cardinality restrictions in C and all the assertions in
ABox.

Given a KB=(TBox,ABox), we say that an extension of ABox is an eligible extension
if it admits a DL-LitecT model as in Definition 13:

168



Definition 14 (Eligible extension ÂBox). Given a DL-LitecT KB=(TBox,ABox) and
an extension ÂBox of ABox as in Definition 10, we say that ÂBox is eligible if there
exists a DL-LitecT modelM that satisfies KB’=(TBox, ABox ∪ ÂBox).

Definition 15 (Minimal (perfect) extensions). Given a KB=(TBox,ABox) and the set
S of strings of plausible assumptions (Definition 9), we say that an eligible extension
ÂBoxs is minimal if there is no other eligible extension ÂBoxr which is (weakly) more
surprising (or (weakly) less trivial) than it.

Given the above definitions, we can define a notion of entailment in DL-LitecTexp. Intu-
itively, given a query F , we check whether F follows in the monotonic logic DL-LitecT
from a given KB, whose ABox is augmented with extensions that are minimal (perfect)
as in Definition 15. We can reason either in a skeptical way, by allowing that F is en-
tailed if it follows in all KBs, obtained by considering each minimal extension of the
ABox, or in a credulous way, by assuming that F is entailed if there exists at least one
extension of the ABox allowing such inference. This is stated in a rigorous manner by
the following definition:

Definition 16 (Entailment in DL-LitecTexp). Given a KB=(TBox,ABox) and given C
a set of concepts, let E the set of all extensions of ABox that are minimal as in Definition
15. Given a query F , we say that (i) F is skeptically entailed from KB in DL-LitecTexp,
written KB |=sk

DL-LitecTexp F , if (TBox, ABox ∪ ÂBox) |=DL-LitecT
F for all ÂBox ∈

E; (ii) F is credulously entailed from KB in DL-LitecTexp, written KB |=cr
DL-LitecTexp

F , if there exists ÂBox ∈ E such that (TBox, ABox ∪ ÂBox) |=DL-LitecT
F .

Let us conclude this section with an example of how the proposed approach works.

Example 2. Let us recall and simplify the example of the Introduction. Consider a
KB=(TBox,ABox) where TBox is as follows:

T(Face) v1 Winner
T(Predicted) v2 Winner
T(Returning) v3 Winner

expressing that, normally, a returning athlete wins the Royal Rumble match, and this
is more predictable with respect to the fact that an athlete whose victory has been pre-
dicted, typically wins the match. Furthermore, normally a face wrestler wins the Royal
Rumble match, but this inclusion is the most unexpected among the ones belonging to
the KB. ABox contains the following facts about Dean, Roman, and Dave:

Face(dean)
Face(roman)
Predicted(roman)
Returning(dave)

Moreover, the TBox is enriched by the cardinality restriction (= 1 Winner), i.e. we
restrict our concern to models in which there is only one winner.

Let C = {Face,Predicted ,Returning}. By Definition 8 above, we have that:

169



Cdean = {Face}
Croman = {Face,Predicted}
Cdave = {Returning}

and, obviously, CABox = Cdean ∪ Croman ∪ Cdave . Concerning the degrees of
expectedness, we have:

dABox =< 1, 1, 2, 3 >

The leftmost 1 is due to the fact that T(Face) v1 Winner belongs to the TBox, and we
have that in DL-LitecTmin one can assume that Dean is a T(Face). Similarly, the other
1 is due to the fact the in DL-LitecTmin we can assume T(Face)(roman). Similarly,
we have 2 in the multiset dABox, by the presence of T(Predicted) v2 Winner in the
TBox and the fact that T(Predicted)(roman) is minimally entailed from the KB. Last,
3 is justified by the presence of T(Returning) v3 Winner and the fact that we can
assume T(Returning)(dave).

As mentioned above, in DL-LitecTmin the minimal model semantics forces all the
consistent typicality assumptions, namely we are considering an ABox extended with
the following facts:

T(Face)(dean)
T(Face)(roman)
T(Predicted)(roman)
T(Returning)(dave)

corresponding (in the sense of Definition 10) to the multiset < 1, 1, 2, 3 >. However,
from the resulting KB, in DL-LitecT we obtain that Dean, Roman and Dave are all win-
ners, against the fact that we want to have only one winner: the extension corresponding
to < 1, 1, 2, 3 > is indeed not eligible in the sense of Definition 14.

In order to find only one winner and to obtain a non-trivial outcome of the match,
let us consider the set S of all plausible strings of typicality assumptions (Definition 9):

S = {< 1, 1, 2, 3 >, < 0, 1, 2, 3 >, < 1, 0, 2, 3 >, < 1, 1, 0, 3 >, < 1, 1, 2, 0 >,
< 0, 0, 2, 3 >, < 1, 0, 0, 3 >, < 0, 1, 0, 3 >, < 1, 0, 2, 0 >, < 0, 1, 2, 0 >, < 1, 1, 0, 0 >,

< 0, 0, 0, 3 >, < 0, 0, 2, 0 >, < 1, 0, 0, 0 >, < 0, 1, 0, 0 >, < 0, 0, 0, 0 >}

The only eligible extensions of ABox, corresponding to the above strings are:

ÂBox1 = {T(Returning)(dave)} , corresponding to < 0, 0, 0, 3 >

ÂBox2 = {T(Predicted)(roman)} , corresponding to < 0, 0, 2, 0 >

ÂBox3 = {T(Face)(dean)} , corresponding to < 1, 0, 0, 0 >

ÂBox4 = {T(Face)(roman)} , corresponding to < 0, 1, 0, 0 >

ÂBox5 = {T(Face)(roman),T(Predicted)(roman)}, corresponding to <
0, 1, 2, 0 >

We aim at choosing the less trivial scenario. To this aim, we observe that ÂBox3

and ÂBox4 are less trivial than ÂBox5, because < 1, 0, 0, 0 > ≤ < 0, 1, 2, 0 > and
< 0, 1, 0, 0 > ≤ < 0, 1, 2, 0 >. Furthermore, ÂBox3 and ÂBox4 are less trivial than
ÂBox1 (again, < 1, 0, 0, 0 > ≤ < 0, 0, 0, 3 > and < 0, 1, 0, 0 > ≤ < 0, 0, 0, 3 >).

170



T(Face) v1 Winner

T(Returning) v4 Winner

T(Predicted) v4 Winner

T(Face) v3 Final

T(MidCarder) v4 FastExit

T(MidFace) v4 EarlyEntrance

T(Heel) v2 EarlyEntranceT(BigMan) v4 Final

MidFace v Face

MidHeel v Heel

MidHeel v MidCarder

MidFace v MidCarder

T(MidHeel) v1 ¬EarlyEntrance

T(Face) v2 EarlyEntrance

T(Heel) v2 Final

Heel(wyatt)

Heel(kane)

BigMan(kane)

Face(bryan)

Returning(bryan)

Predicted(reigns)

Face(reigns)

BigMan(bigshow)

Face(ryback)

(= 2 EarlyEntrance)

( 3 Final)

(� 2 Final)

(= 1 Winner)

BodyBuilder(ryback)

Face(ziggler)

T(BodyBuilder) v3 FastExit

Fig. 1. A portion of the KB in DL-LitecTexp adopted for the application to sports entertainment.

Moreover, ÂBox3 and ÂBox4 are less trivial than ÂBox2 (again, < 1, 0, 0, 0 > ≤
< 0, 0, 0, 2 > and < 0, 1, 0, 0 > ≤ < 0, 0, 0, 2 >). The strings < 1, 0, 0, 0 > and
< 0, 1, 0, 0 > are not comparable, however ÂBox3 is weakly less trivial than ÂBox4,
since ÂBox4 ⊂ ÂBox5 and < 1, 0, 0, 0 > ≤ < 0, 1, 2, 0 >. This allows to conclude
that ÂBox3 is minimal (the perfect extension) and to suggest that Dean has to be chosen
as the winner of the Royal Rumble match.

4 DL-LitecTexp meets Sports Entertainment: a Better Royal
Rumble match

In Figure 1 we present a small portion of the simple ontology with exceptions we have
considered in order to suggest an alternative, possibly better script of the Royal Rumble
2015. We have considered athletes involved in the Royal Rumble 2015, that took place
on January 25, 2015 at the Wells Fargo Center in Philadelphia, Pennsylvania: Roman
Reigns, widely predicted, won the contest. One minimal/perfect extension suggests the
following alternative script: the match starts with a returning, face athlete, Daniel Bryan,
and another face superstar, Ryback. Dolph Ziggler is the winner, with Bray Wyatt being
the last athlete eliminated. We have then asked over 30 wrestling experts and fans about
the result, and all of them found it very interesting and significantly better than the
original one. Obviously, this is only a preliminary feedback, we aim at taking care
of a more precise evaluation of the quality (in terms of non triviality) of the scenario
proposed by adopting the machinery described in this work.

5 Conclusions and Future Issues

We have moved a first step in the direction of an alternative semantics for preferen-
tial Description Logics and its application in the context of sports entertainment. We
have introduced the Description Logic of typicality DL-LitecTexp, an extension of
DL-Litecore with a typicality operator T allowing to:

171



– express typicality inclusions of the form T(A) vd B, where d is a positive integer
representing a degree of expectedness;

– reason in presence of restrictions on the cardinality of concepts;
– perform plausible inferences in presence of alternative, non-trivial scenarios.

We are currently working on studying the complexity of standard reasoning tasks in
DL-LitecTexp. We have chosen the logic DL-LitecTmin as the base logic of our ap-
proach also thanks to its computational properties: in [14] the authors have shown that
minimal entailment in DL-LitecTmin is in Πp

2 . We strongly conjecture that adding car-
dinality restrictions and the machinery for finding the perfect extension of an ABox is
absorbed by the complexity of reasoning in DL-LitecTmin, and is therefore inexpen-
sive. We also intend to develop and implement proof methods for reasoning in the logic
DL-LitecTexp of optimal complexity.

One limit of the proposed approach is that the computation of the extension of the
ABox only applies to individuals explicitly named in the knowledge base. This is one
of the limits of the completion of an ALC + T ABox in [13] as well. We aim at ex-
tending our work in order to also consider the individuals introduced by the existential
restrictions (e.g. (∃HasSon.>)(bob), the son of Bob). To this aim, we can define the
assumptions in DL-LitecTexp on domain elements rather than on individual constants.
In our approach, we first consider all possible typicality assumptions that are minimally
entailed in DL-LitecTmin from a KB without cardinality restrictions, and then we re-
strict our concern to models satisfying cardinality restrictions and the ABox extended
with such assumptions. We aim at studying an alternative approach in which cardinality
restrictions are directly expressed in the initial KB, and the notion of preference among
extensions of the ABox is replaced by a preference relation of expectedness among
models, thus allowing to consider domain elements not explicitly named in the ABox.

The above mentioned alternative approach suggests the opportunity of studying ex-
tensions of Description Logics of typicality with restrictions on the cardinality of con-
cepts. This task is of its own interest. As far as we know, no other non-monotonic
extension of DLs (DLS+default rules [3], DLs+circumscription [5], DLs+ Lifschitz’s
nonmonotonic logic MKNF [12, 22], DLs+rational closure [11, 18, 19]) has been ex-
tended to reason in presence of cardinality constraints.

In this work we have tried to tackle a problem coming from sports entertainment,
however the logic DL-LitecTexp of typicality with degree of expectedness can find sev-
eral alternative applications. As an example, it could be applied in healthcare and med-
ical diagnosis, where ontologies with exceptions should be useful for reasoning about
defeasible inheritance (e.g. normally, the heart is positioned in the left-hand side of the
chest, however people with situs inversus have the heart positioned in the right-hand
side). Sometimes, the “obvious” diagnosis given a set of symptoms is not the right one:
the semantics of DL-LitecTexp could be used in order to formulate a “mystery” diagno-
sis, alternative to the standard one.

As a further direction, we aim at extending our approach to other Description Log-
ics. On the one hand, we want to take into account other lightweight DLs, for instance
the logics of the EL family, allowing for conjunction (u) and (qualified) existential re-
striction (∃R.C). Despite their relatively low expressivity, they are relevant for several
applications, in particular in the bio-medical domain; for instance, small extensions

172



of EL can be used to formalize medical terminologies, such as the GALEN Medical
Knowledge Base, the Systemized Nomenclature of Medicine, and the Gene Ontology
used in bioinformatics. In [1, 2, 7] it is shown that reasoning in EL and several of its
extensions remains tractable (i.e., polynomial-time decidable) in the presence of the
TBox, and even of general concept inclusions (GCIs). An extension EL⊥Tmin with the
typicality operator has been introduced in [14]. On the other hand, we want to consider
more expressive Description Logics, in particular the logics underlying the standard
language for ontology engineering OWL. In this direction, it seems to be promising an
alternative approach to non-monotonic semantics for the typicality operator based on a
notion of rational closure in DLs [18]. As a difference with the semantics adopted in
this paper, the semantics in [15, 18] exploits an alternative notion of preference among
models, based on the idea of minimizing the rank of objects in the domain (that is, their
level of “untypicality”), rather than minimizing the ¬2¬C-elements in the models.
This alternative way of minimizing typicality has the nice property that corresponds
to a simple reformulation of rational closure for the Description Logic ALC [18]. A
similar correspondence has also been proved for the more expressive SHIQ in [19].

References
1. Baader, F.: Terminological cycles in a description logic with existential restrictions. In: Pro-

ceedings of the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI-
03). pp. 325–330 (2003)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L., Saffiotti, A.
(eds.) Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJ-
CAI 2005). pp. 364–369. Professional Book Center, Edinburgh, Scotland, UK (August 2005)

3. Baader, F., Hollunder, B.: Priorities on defaults with prerequisites, and their application in
treating specificity in terminological default logic. Journal of Automated Reasoning (JAR)
15(1), 41–68 (1995)

4. Baader, F., Buchheit, M., Hollunder, B.: Cardinality restrictions on concepts. Artificial Intel-
ligence 88(1-2), 195–213 (1996)

5. Bonatti, P.A., Lutz, C., Wolter, F.: DLs with Circumscription. In: KR. pp. 400–410 (2006)
6. Bonatti, P.A., Faella, M., Sauro, L.: Defeasible inclusions in low-complexity dls: Prelimi-

nary notes. In: Boutilier, C. (ed.) Proceedings of the 21st International Joint Conference on
Artificial Intelligence (IJCAI 2009). pp. 696–701 (2009)

7. Brandt, S.: Polynomial time reasoning in a description logic with existential restrictions,
gci axioms, andwhat else? In: de Mántaras, R.L., Saitta, L. (eds.) Proceedings of the 16th
European Conference on Artificial Intelligence (ECAI 2004). pp. 298–302. IOS Press (2004)

8. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite: Tractable
Description Logics for Ontologies. In: Veloso, M., Kambhampati, S. (eds.) Proceedings of
the 20th National Conference on Artificial Intelligence and the 17th Innovative Applications
of Artificial Intelligence Conference. pp. 602–607. AAAI Press / The MIT Press, Pittsburgh,
Pennsylvania, USA (July 2005)

9. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable Reasoning
and Efficient Query Answering in Description Logics: The DL-Lite Family. Journal of Au-
tomated Reasoning (JAR) 39(3), 385–429 (2007)

10. Casini, G., Straccia, U.: Rational closure for defeasible description logics. In: Janhunen,
T., Niemelä, I. (eds.) Logics in Artificial Intelligence - Proceedings of the12th European
Conference (JELIA 2010). Lecture Notes in Computer Science (LNCS), vol. 6341, pp. 77–
90. Springer (2010)

173



11. Casini, G., Straccia, U.: Defeasible Inheritance-Based Description Logics. Journal of Artifi-
cial Intelligence Research (JAIR) 48, 415–473 (2013)

12. Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and negation
as failure. ACM Transactions on Computational Logics (ToCL) 3(2), 177–225 (2002)

13. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: ALC+T: a preferential extension of
description logics. Fundamenta Informaticae 96, 341–372 (2009)

14. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Reasoning about typicality in low com-
plexity DLs: the logics EL⊥Tmin and DL-LitecTmin. In: Walsh, T. (ed.) Proceedings of the
22nd International Joint Conference on Artificial Intelligence (IJCAI 2011). pp. 894–899.
IOS Press, Barcelona, Spain (2011)

15. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A minimal model semantics for non-
monotonic reasoning. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) Logics in Artificial
Intelligence - Proceedings of the 13th European Conference (JELIA 2012). Lecture Notes
in Artificial Intelligence (LNAI), vol. 7519, pp. 228–241. Springer-Verlag, Toulouse, France
(September 2012)

16. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Preferential vs Rational Description
Logics: which one for Reasoning About Typicality? . In: Coelho, H., Studer, R., Wooldridge,
M. (eds.) Proceedings of the 19th European Conference on Artificial Intelligence (ECAI
2010). FAIA (Frontiers in Artificial Intelligence and Applications), vol. 215, pp. 1069 –
1070. IOS Press, Lisbon, Portugal (August 2010)

17. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A NonMonotonic Description Logic
for Reasoning About Typicality. Artificial Intelligence 195, 165 – 202 (2013)

18. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Minimal model semantics and rational
closure in description logics. In: Eiter, T., Glimm, B., Kazakov, Y., Krötzsch, M. (eds.) Infor-
mal Proceedings of the 26th International Workshop on Description Logics. CEUR Work-
shop Proceedings, vol. 1014, pp. 168–180. CEUR-WS.org (2013)

19. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Rational closure in SHIQ. In: DL
2014, 27th International Workshop on Description Logics. CEUR Workshop Proceedings,
vol. 1193, pp. 543–555. CEUR-WS.org (2014)

20. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and
cumulative logics. Artificial Intelligence 44(1-2), 167–207 (1990)

21. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artificial Intel-
ligence 55(1), 1–60 (1992)

22. Motik, B., Rosati, R.: Reconciling Description Logics and rules. Journal of the ACM 57(5)
(2010)

174



Games with Additional Winning Strategies∗

Vadim Malvone, Aniello Murano, and Loredana Sorrentino

Università degli Studi di Napoli Federico II

Abstract. In game theory, deciding whether a designed player wins a
game corresponds to check whether he has a winning strategy. There
are situations in which it is important to know whether some extra
winning strategy also exists. In this paper we investigate this question
over two-player finite games, under the reachability objective. We provide
an automata-based technique that, given such a game, it allows to decide
in linear time whether the game admits more than a winning strategy.
We discuss along the paper some case studies and use them to show how
to apply our solution methodology.

1 Introduction

Game theory is a very powerful mathematical framework with several useful
applications in different fields. In economics, it is used to deal with solution
concepts such as Nash equilibrium [18]. In computer science, it is applied to solve
problems in robotics, multi-agent system verification and planning [1, 15,20–22].

In the basic setting, a game consists of two players playing in a turn-based
manner, i.e, the moves of the players are interleaved. Solving a two-player game
amounts to check whether one of the players has a winning strategy. That is, he
can use a sequence of moves (a strategy) that makes him to satisfy the game
target, no matter how his opponent plays. In several settings, however, having
instead a more precise (quantitative) answer would be beneficial. For example,
in planning a rescue, it would be useful to know whether a robot team has more
than a winning strategy from a critical stage, just to have a backup plan in case
the scenario changes during the rescue. Such a redundancy allows to strengthen
the ability of winning the game and therefore its safety.

In this paper, we address the quantitative question of checking whether a
player has more than a strategy to win a two-player finite game G. We investigate
this problem under the reachability target and show an automata-based solution
to solve it in linear time. Precisely, we build an automaton that accepts only trees
that are witnesses of more than one winning strategy for the designed player
over the game G. Hence, we reduce the addressed quantitative question to the
emptiness of this automaton. To give an evidence of our approach, we report on
some cooperative and adversarial game examples.
Related works. Counting strategies has been deeply exploited in the formal
verification setting [3,5,7–9,13] by means of infinite duration games. The automata
construction we use here takes inspiration from the ones used in [2, 9, 19].
∗ This paper is partially supported by the FP7 EU project 600958-SHERPA.

175



2 Case Studies

In this section we consider two different case studies of two-player games. In the
first case the players behave adversarial. In the second one, they are cooperative.

Cop and Robber Game. Assume we have a maze where a cop aims to catch a
robber, while the latter, playing adversarial, aims for the opposite. For simplicity,
we assume the maze to be a grid divided in rooms, each of them named by its
coordinates in the plane (see Figure 1). Each room can have one or more doors
that allow the robber and the cop to move from one room to another. Each door
has associated a direction along with it can be crossed. Both the cop and the
robber can enter every room. The cop, being in a room, can physically block only
one of its doors. The robber can move in another room if there is a non-blocked
door he can take, placed between the two rooms, with the right direction. The
robber wins the game if he can reach one of the safe places (EXIT) situated in
the four corners of the maze. Otherwise, the robber is blocked in a room or he
can never reach a safe place, and thus the cop wins the game. We assume that
both the cop and the robber are initially siting in the middle of the maze, that is
in the room (1, 1). Starting from the maze depicted in Figure 1, one can see that
the robber has only one strategy to win the game. Consider now two orthogonal
variations of the maze. For the first one, consider flipping the direction of the
door d12. In this case, the robber loses the game. As second variation, consider
flipping the direction of the door d4. Then the robber wins the game and he has
now two strategies to accomplish it.

Escape Game. Assume we have an arena similar to the one described in the
previous example, but now with a cooperative interaction between two players,
a human and a controller, aiming at the same target. Precisely, consider the
arena depicted in Figure 2 representing a building where a fire is occurring. The
building consists of rooms and, as before, each room has one-way doors and its
position is determined by its coordinates. We assume that there is only one exit
in the corner (2, 2). One can think of this game as a simplified version of an
automatic control station that starts working after an alarm fire occurs and all
doors have been closed. Accordingly, we assume that the two players play in turn
and at the starting moment all doors are closed. At each control turn, he opens
one door of the room in which the human is staying. The human turn consists of
taking one of the doors left open if its direction is in accordance with the move.
We assume that there is no communication between the players, but the move.
We start the game with the human siting in the room (0, 0) and the controller
moving first. It is not hard to see that the human can reach the exit trough the
doors d1, d4, d7, d10 opened by the controller. Actually, this is the only possible
way the human has to reach the exit. Conversely, if we consider the scenario in
which the direction of the door d3 is flipped, then there are two strategies to let
the human to reach the exit. Therefore, the latter scenario can be considered as
better (i.e., more robust) than the former. Clearly, this extra information can be
used to improve an exit fire plan at its designing level.

176



d1
↑

d2
↓

→d3

→d4

←d5

d6
↓

d7
↓

→d8

→d9

→d10

d11
↑

d12
↓

EXIT EXIT

EXITEXIT

H

0

1

2

10 2

Fig. 1. Cop and Robber Game.

d1
↓

d2
↑

←d3

→d4

→d5

d6
↑

d7
↓

→d8

←d9

→d10

d11
↓

d12
↓

H

EXIT

0

1

2

10 2

Fig. 2. Escape Game.

3 The Game Model

In this paper, we consider two-player turn-based games that are suitable to
represent the case studies we have introduced in the previous section. Precisely,
we consider games consisting of an arena and a target. The arena describes the
configurations of the game through a set of states, being partitioned between the
two players. In each state, only the player that owns it can take a move. This
kind of interaction is also known as token-passing. About the target, we consider
the reachability objective, that is some states are declared target. A winning
strategy for a designed player is a path from the initial state to a target state. If
such a winning strategy exists we say that the player wins the game. Clearly, the
player has more than a winning strategy if there are different paths reaching a
target state. The formal definition of the considered game model follows.

Definition 1. A turn-based two-player reachability game ( 2TRG, for short),
played between Player 0 and Player 1, is a tuple G , < St, sI , tr, W >, where
St is a finite non-empty set of states, partitioned in St and St with Sti being
the set of states of Player i, sI ∈ St is a designated initial state, W is a set of
target states, and tr ⊆ Sti× St−i, for i ∈ {0, 1} is a transition function mapping
a state of a player to a state belonging to the other player.

The previous two case studies can be easily modeled using a 2TRG. We now
give some details. As set of states we use all the rooms in the maze, together with
the status of their doors. For example, the state ((0, 0), {dc1, dc3}) is the initial
state of the Escape Game where dci means that the door di is closed. For an open
door, instead, we will use the label o in place of c. Formally, let Di,j be the set of
doors (up to four) belonging to the room (i, j), which can be flagged either with
c (closed) or o (open), then we set St ⊆ {((i, j), Di,j) | 0 ≤ i, j ≤ 2}. Transitions
are taken by the human/robber in order to change the room (coordinates) or by
the cop/controller to change the status of its doors. These moves are taken in
accordance with the shape of the maze. The partitioning of the states between
the players follows immediately, as well as the definition of the target states.

177



4 Searching for Multiple Winning Strategies

To check whether Player 1 has a winning strategy in a 2TRG G one can use
a classic backward algorithm. We briefly recall it. Let succ : St → 2St be the
function that for each state s ∈ St in G gives the set of its successors. The
algorithm starts from a set S equal to W. Iteratively, it tries to increase S by
adding all states that sutisfy one following conditions holds: (i) s ∈ St and
succ(s) ⊆ S; or, (ii) s ∈ St and succ(s) ∩ S 6= ∅. If S increases at each iteration
and at a certain point we enter the initial state, then Player 1 wins the game.

In case one wants to ensure that more than a winning strategy exists, the
above algorithm becomes not appropriate. We use instead a top-down automata-
theoretic approach. To give an intuition of this solution, first consider that in
a 2TRG a witness for a winning strategy is a tree that takes for each node
corresponding to a state s in the game, one successor if s belongs to Player 1, or
all successors, otherwise. Indeed, if all the leaves of this tree are target states,
then surely Player 1 has a winning strategy over the game. In case we want to
ensure that at least two winning strategies exist then at a certain point along the
tree Player 1 must take two successors. We build a tree automaton that accepts
exactly this kind of witness trees. For the lack of space, we omit the definition of
tree and the related concepts. We refer for this to [19].

Definition 2. A nondeterministic tree automaton (NTA, for short) is a tuple
A , < Q, Σ, q0, δ, F >, where Q is a set of states, Σ is an alphabet, q0 ∈ Q is
an initial state, δ : Q×Σ → 2Q

∗
is a transition function mapping pairs of states

and symbols to a set of states, and F ⊆ Q is a set of the accepting states.

An NTA A recognizes trees and works as follows. For a node tree labeled
by σ and A being in a state s, it sends different copies of itself to successors in
accordance with δ. For example, if δ(s, σ) = {(s1, s2), (s3, s4)} either A proceeds
with (s1, s2) or (s3, s4), by associating them to two (possibly different) successors.
By L(A) we denote the set of trees accepted by A. It is not empty if L(A) 6= ∅.

We now give the main result of this paper, i.e. we show that it is possible
to decide in linear time whether, in a 2TRG, Player 1 has more than a winning
strategy. We later report on the application of this result along the case studies.

Theorem 1. For a 2TRG game G it is possible to decide in linear time whether
Player 1 has more than a strategy to win the game.

Proof (sketch). Consider a 2TRG game G. We build an NTA A that accepts
all trees that are witnesses of more than a winning strategy for Player 1 over
G. We briefly describe the automaton. It uses St × {ok, split} as set of states
where ok and split are flags and the latter is used to remember that along
the tree Player 1 has to ensure the existence of two winning strategies by
opportunely choosing a point where to "split". We use a one-letter alphabet
Σ, as this set takes no role. For the initial state we set q0 = (sI , split). For
the transitions, starting from a state q = (s, flag), we distinguish between two
cases: (i) s ∈ St. If flag = ok then δ(q) = succ(s) × {ok}, otherwise, let

178



succ(s) = {s1, . . . , sn} then δ(q) = {((s1, f1), . . . , (sn, fn))} and there exists
1 ≤ i ≤ n such that fi = split and for all j 6= i, we have fj = ok. (ii) s ∈ St.
If flag = ok then δ(q) = {((s′, ok))} with s′ ∈ succ(s), otherwise, we have
δ(q) = {((s′, ok), (s′′, ok)), ((s′, split))}, with s′, s′′ ∈ succ(s) and s′ 6= s′′. The
set of accepting states is W × {ok}. A tree is accepted by A if at a certain point
Player 1 can take two successors in G both leading to a target state.

The size of the automaton is just linear in the size of the game. Moreover, by
using the fact that, from [19], checking the emptiness of an NTA can be performed
in linear time, the desired complexity result follows. �

Consider the Escape Game example. By applying the above construction, the
automaton A accepts an empty language. Indeed, for each input tree, A always
leads to a leaf containing either a state with a non-target component (i.e., the
tree is a witness of a losing strategy) or with a flag split (i.e., Player 1 cannot
select two winning strategies). Conversely, consider the same game, but flipping
the direction of the door d3 in the maze. In this case, A accepts exactly one tree.
Indeed starting from the initial state (((0, 0), {dc1, dc3}), split), A sends two copies
of itself to two successors in the tree, respectively with states (((0, 0), {do1, dc3}), ok)
and (((0, 0), {dc1, do3}), ok), corresponding to two different winning strategies for
the controller.

A similar reasoning can be exploited with the Cop and Robber Game example.
Indeed, the automaton accepts an empty language. Conversely, by flipping the
door d4, it accepts the tree that is witnessing of two different winning strategies
each of them going through one of the two doors left unblocked by the cop.

5 Conclusion and Future Work

In this paper we have introduced a simple but effective automata-based method-
ology to check whether a player has more than a winning strategy in a two-player
game under the reachability objective. We have showed how this methodology can
be applied in practice by reporting on its use over two different game scenarios,
one cooperative and one adversarial. We believe that the solution algorithm we
have conceived in this paper can be used as core engine to count strategies in
more involved game scenarios and in many solution concepts reasoning.

This work opens to several interesting questions and extensions. For instance,
it would be worth investigating game scenarios in which one or both players
have imperfect information regarding some moves of the other player. The
imperfect information setting is an important field of study in game theory with
several practical applications. For some related works see [6, 12, 14]. Another
interesting direction would be to consider the counting of strategies in multi-agent
concurrent games. This kind of games have several interesting applications in
artificial intelligence [20–22]. One can also consider some kind of hybrid game,
where one can opportunely combine team of players working concurrently with
some others playing in a turn-based manner [10, 11, 17]. Last but not least, it
would be worth investigating infinite-state games. These games arise for example
in case the interaction among the players behaves in a recursive way [4, 16].

179



References

1. R. Alur, T. Henzinger, and O. Kupferman. Alternating-Time Temporal Logic.
JACM, 49(5):672–713, 2002.

2. A. Bianco, F. Mogavero, and A. Murano. Graded Computation Tree Logic. In
LICS’09, pages 342–351. IEEE Computer Society, 2009.

3. P. Bonatti, C. Lutz, A. Murano, and M. Vardi. The Complexity of Enriched
muCalculi. LMCS, 4(3):1–27, 2008.

4. L. Bozzelli, A. Murano, and A. Peron. Pushdown Module Checking. FMSD,
36(1):65–95, 2010.

5. D. Calvanese, G. D. Giacomo, and M. Lenzerini. Reasoning in expressive description
logics with fixpoints based on automata on infinite trees. In IJCAI’99, volume 99,
pages 84–89, 1999.

6. K. Chatterjee, L. Doyen, T. A. Henzinger, and J. Raskin. Algorithms for omega-
regular games with imperfect information. Logical Methods in Computer Science,
3(4):1–23, 2007.

7. M. Faella, M. Napoli, and M. Parente. Graded Alternating-Time Temporal Logic.
FI, 105(1-2):189–210, 2010.

8. A. Ferrante and A. Murano. Enriched Mu-Calculi Module Checking. In FOS-
SACS’09, LNCS 5504, pages 183–197. Springer, 2007.

9. A. Ferrante, A. Murano, and M. Parente. Enriched Mu-Calculi Module Checking.
LMCS, 4(3):1–21, 2008.

10. W. Jamroga and A. Murano. On Module Checking and Strategies. In AAMAS’14,
pages 701–708. IFAAMAS, 2014.

11. W. Jamroga and A. Murano. Module checking of strategic ability. In AAMAS’15,
pages 227–235. IFAAMAS, 2015.

12. J.H. Reif. The complexity of two-player games of incomplete information. Journal
of computer and system sciences, 29(2):274–301, 1984.

13. O. Kupferman, U. Sattler, and M. Vardi. The Complexity of the Graded muCalculus.
In CADE’02, LNCS 2392, pages 423–437. Springer, 2002.

14. O. Kupferman and M. Vardi. Module Checking Revisited. In CAV’97, LNCS 1254,
pages 36–47. Springer, 1997.

15. O. Kupferman, M. Vardi, and P. Wolper. Module Checking. IC, 164(2):322–344,
2001.

16. A. Murano and G. Perelli. Pushdown multi-agent system verification. In IJCAI’15,
2015.

17. A. Murano and L. Sorrentino. A game-based model for human-robots interaction.
In WOA’15, CEUR Workshop Proceedings. CEUR-WS.org. To appear, 2015.

18. R. Myerson. Game Theory: Analysis of Conflict. Harvard University Press, 1991.
19. W. Thomas. Automata on infinite objects. In Handbook of Theoretical Computer

Science, Volume B: Formal Models and Sematics (B), pages 133–192. Elsevier and
MIT Press, 1990.

20. M. Wooldridge. Intelligent Agents. In G. Weiss, editor, Multiagent Systems. A
Modern Approach to Distributed Artificial Intelligence. MIT Press: Cambridge,
Mass, 1999.

21. M. Wooldridge. Reasoning about Rational Agents. MIT Press : Cambridge, Mass,
2000.

22. M. Wooldridge. An Introduction to Multi Agent Systems. John Wiley & Sons, 2002.

180



An Authority Degree-Based Evaluation Strategy
for Abstract Argumentation Frameworks

Andrea Pazienza1, Floriana Esposito1,2, and Stefano Ferilli1,2

1 Dipartimento di Informatica – Università di Bari
{name.surname }@uniba.it

2 Centro Interdipartimentale per la Logica e sue Applicazioni – Università di Bari

Abstract. Abstract argumentation allows to determine in an easy, for-
mal way which claims survive in a conflicting dispute. It works by con-
sidering claims as abstract entities, and expressing attack relationships
among them. However, this level of expressiveness prevents abstract ar-
gumentation systems from being directly applied to reasoning processes
where the context is relevant. An outstanding example is when a claim
is supported by appealing to authority, so that the audience assigns reli-
ability to the claim’s justification based on the authority’s renowned ex-
perience in the domain. To handle this, we propose to enrich the classical
representation used in abstract argumentation by associating arguments
with weights that express their degree of authority. The weights’ values
define their strength in the given domain, which in turn should affect the
evaluation of their degree of justification. This paper defines a strategy to
combine these weights in order to determine which arguments withstand
in a dispute concerning a given domain. Such a strategy was implemented
in the ARCA system, that allows to comfortably set up argumentation
problems and solve them using both traditional extension-based seman-
tics and the proposed evaluation approach. ARCA is used to illustrate
the proposed strategy by means of sample use cases.

1 Introduction

Argumentation is a major component of our everyday lives, in that we are
continuously faced with conflicting information and associated inconsistencies.
Roughly, an argument is a bunch of information (i.e., a set of assumptions) from
which conclusions can be drawn, based on a number of reasoning steps. The
assumptions used are called the premises of the argument, while its conclusion
(chosen from many possible ones) is called the claim of the argument. The sup-
port of an argument provides the reason (or, equivalently, a justification) for the
claim of the argument. This structure simplifies understanding of the opinions
of other people and helps in the identification of fallacies in their reasoning.
People usually argue in turns, by providing arguments and counterarguments to
initial arguments. The winner of the argumentation is the arguer with the last
unchallenged argument.

Many strategies can be found in the literature for the identification of the
successful arguments in an argumentation dispute context. Some such strategies

181



are based on the so-called Abstract Argumentation Framework, that will be pre-
sented in the next sections. This model of argumentation takes a set of abstract
arguments, i.e., arguments whose internal structure or specific interpretation is
ignored. The abstract nature of the arguments, and the relationship with non-
monotonic reasoning formalisms, yield a very simple and quite general model
that allows to easily understand which sets of arguments are mutually compat-
ible. Unfortunately, abstract system representations are not always suitable to
depict real situations. This is because abstract systems lack of elements which
can empower the representation setting so that conflicts can be automatically
identified or the strength of a conflict can be determined. For example, the ab-
stract argumentation framework does not allow to consider the weight of each
argument based on the authority of the person who claims it, which may be
relevant to the proper evaluation process of judging an argument.

Sometimes it may be appropriate to cite an authority to support a position.
This argumentative schema is known as argument from authority, or “argumen-
tum ad verecundiam” [17]. Of course, this type of argument can result in a fallacy,
especially if the authority is not really such. For instance, an appeal to authority
can be inappropriate if the person is not qualified to have an expert opinion
on the argument. However, in general an ad verecundiam inductive argument
(i.e., an argument whose conclusion is claimed to follow not with certainty but
with probability) is not necessarily a fallacy, especially when the relevance of
the referred authority is supported by a renowned and proved experience in the
argued domain.

This work proposes a novel approach to handle these situations, that extends
the abstract argumentation setting by allowing the association of arguments to
weights expressing their reliability. Such weights are assigned on the basis of an
authority degree which takes into account the reliability of the authority who
states the argument in the argued domain. The objective is to overcome the low
level of expressiveness that characterizes the standard abstract argumentation
framework, and to make it able to handle different degrees of reliability on the
arguments.

This paper is organized as follows. The next section recalls useful background
information, including related works. Then, Section 3 introduces the abstract ar-
gumentation framework along with the standard evaluation strategies used in the
process of justifying an argument leading to a conclusion. Section 4 describes the
proposed approach and how it is embedded in the standard abstract evaluation
system, and Section 5 concludes the paper and outlines future work issues.

2 Background and Related Work

As a general, informal definition, argumentation involves the identification of
applicable assumptions and conclusions for a given problem under consideration.
In this activity, it often faces conflicting information, which results in the need
to evaluate the justification for the available conclusions. This, in turn, may
involve comparing arguments, evaluating them in some aspects, and judging a

182



set of arguments and counterarguments to consider whether any part of them
can be considered as warranted according to some standard principle. In this
context, it can be also safely assumed that each argument has a proponent, who
is the person putting forward the argument, and that each argument has an
audience, who is the group of people reached by the argument.

Probably the foundational and most important philosophical work for the
development of argumentation was made by Toulmin [15]. In particular, he put
forward the widely accepted definition for the structure of an abstract argument:
an argument has a conclusion that is inferred from available data, a warrant that
allows one to jump to conclusions, and a possible rebuttal, which is another ar-
gument that disagrees with the original argument. This approach is structural
and, in a sense, logical. However, it does not just provide a comprehensive ac-
count of the logic of argumentation, and furthermore, it does not address many
important questions about how to automate the construction or use of layouts
of arguments.

In order to handle arguments systematically, a “formalization” of argumen-
tation is needed. Many professions implicitly or explicitly explore these issues
and, in facts, put the systematic use of arguments at the heart of their work.
Outstanding examples can be found in the legal, medical, and journalistic pro-
fessions. The study of formal argumentation started among critical thinking and
practical reasoning philosophers [14, 16]. Critical thinking is concerned with ar-
gument identification and its evaluation by spotting the weak or missing points
in arguments. Practical reasoning in argumentation is a type of decision making,
in which the arguments are used to determine what is the best course of action
in practical situations, where the knowledge of the world is incomplete.

However, the need to go beyond the systematic handling of arguments mo-
tivates the search for techniques that are able to scale up and deal with sub-
stantial and complex problems. Classical logic is appealing as a starting point
for argumentation: it provides a rich representation formalism and powerful rea-
soning mechanism. Unfortunately, inconsistency causes problems in reasoning
with classical logic [12]. And, as previously pointed out, argumentation inher-
ently involves conflicting (i.e., inconsistent) information. If the knowledge that is
available for constructing arguments is consistent, then no conflicting arguments
can be obtained, and thus no recourse to argumentation is needed.

As a partial response to the issue of inconsistency arising in argumentation,
three main approaches to formalization for argumentation have been proposed
in the literature, namely: abstract systems [8], defeasible systems [13], and co-
herence systems [9]. The first two approaches use formalisms that are much less
expressive (as regards both the complexity of information that can be repre-
sented and the complexity of the inferences that can be drawn) than classical
logic, thereby circumventing the problem of inconsistency as manifested by the
“ex falso sequitur quodlibet” rule. The third approach adopts a simple strategy
to improve the problem of inconsistency.

In particular, abstract systems build on the seminal proposal by Dung [8]. It
is based on the assumption that the structure of a set of arguments and counter-

183



arguments can be expressed by defining a set of arguments and a binary ‘attack’
relationship between pairs of arguments. The attack relationship captures the
situation of one argument undermining the credibility of another. This setting
can be represented as a graph, with each node representing an argument and
each edge representing an ‘attack’. Under this representation, the set of nodes
in the graph is the starting point. Given such a graph, the objective is deter-
mining which subset(s) (called extension(s)) of its nodes (i.e., arguments) can
be accepted. Providing different strategies to answer this question corresponds
to defining different argumentation semantics. In other words, the idea of a se-
mantics is, given an argumentation framework, to specify zero or more sets of
acceptable arguments. Dung also provided a number of semantics, which specify
different evaluation strategies ranging from the credulous to the skeptical (see
next section for more details). Also Caminada proposed new extension based se-
mantics approaches, which produce reasonable results in situations where Dung’s
extensions have drawbacks or don’t exist [5, 4].

The argumentation literature emphasized the importance of considering ad-
ditional criteria, namely preferences, when evaluating arguments in a framework.
Preferences are expressed between arguments and reflect their relative strengths.
In [1] a Preference-based Argumentation Framework (PAF) is built to handle
correctly critical attacks in the framework and to refine the evaluation of argu-
ments.

A first introduction to weighted attack relations in an argumentation frame-
work can be found in [11], where a natural extension of Dung’s model of ar-
gument systems is investigated in order to propose attacks associated with a
weight indicating the relative strength of the attack. Such a model takes the
name of Weighted Argumentation Framework (WAF). This model was further
explored in [10] to check how much inconsistency should be tolerated in a WAF.
This approach permits a much more fine-grained level of analysis of argument
systems than the unweighted case, and can provide useful solutions when con-
ventional argument systems cannot provide any. Furthermore, in [7] weights are
used for relaxing extensions in order to improve the inferential power of the ar-
gumentation framework, while in [3] the authors suggest semirings as a mean to
parametrically represent WAFs.

Another early extension of Dung’s proposal with weights is Value-based Ar-
gumentation Frameworks (VAFs) [2]. In the VAF approach, the strength of an
argument depends on the social values that it advances, and the decision about
whether the attack of one argument on another succeeds depends on the com-
parative strength of the values advanced by the involved arguments.

A more general approach to extending Dung’s proposal is that of Bipolar
Argumentation Frameworks (BAFs), which take into account two kinds of inter-
action between arguments: a positive interaction (by which an argument can help
or support another argument) and a negative interaction (by which an argument
can attack another argument) [6].

184



3 Abstract Argument Systems

An abstract argument system or Argumentation Framework (AF for short), as
introduced by Dung, is a pair 〈A,R〉 consisting of a set A, whose elements are
called arguments, and a binary relation R ⊆ A×A on A, called attack relation.
Given two arguments α, β ∈ A, the relation αRβ represents an attack from α
against β. In general, arguments α and β are in conflict if argument α refutes
argument β or if α is attacking premises supporting β. More precisely, we talk
about:

– Rebutting, when there is an explicit contradiction between conclusions ; or
– Undercutting, when argument α attacks the applicability of a rule that sup-

ports β, without necessarily denying it.

An AF has a typical representation as a directed graph where nodes are argu-
ments and edges are drawn from attacking to attacked arguments. Representing
the structure and meaning of arguments at so high a level of abstraction allows
to better focus on properties that are independent from any specific context, and
makes it applicable to a wide variety of domains. On the other hand, this formal-
ism lacks of expressiveness, which prevents its direct application in any specific
domain. Indeed, in order to set up an AF one first needs to build an underlying
knowledge base, along with mechanisms to generate the set of arguments from
it and determine in which ways these arguments attack each other. Then, once
the AF has been set up, a second issue is how to determine a justification state
for the involved arguments and, in particular, how to identify which are the jus-
tified ones. Informally, an argument is considered to be justified if it survives to
attack relations. Therefore, the next step is to understand which argument is not
defeated from the confrontation with the others. This process, called argument
evaluation, aims at determining the justification state of the arguments in an
abstract argumentation system.

An argumentation semantics is the formal way of determining which argu-
ments or statements can be considered as justified in the argument evaluation
process. Two main approaches to the definition of argumentation semantics are
available in the literature: the labelling-based one and the extension-based one.
In the former, the idea is to define a mapping that associates each argument to
one of a set of labels corresponding to the possible states of argumentsin the
given context. A sensible choice for the set of labels is:

– in for the accepted arguments
– out for the rejected arguments
– undec for undefined (not accepted or refused) arguments.

The labeling operation can be seen as the result of the reasoning carried out by
an agent which analyzes the arguments and marks them as justified, rejected
or temporarily undecided. One of the benefits derived from the use of labelling-
based semantics is the possibility of defining a more refined defeat-status by
introducing different levels of justification and rejection (e.g., ‘very acceptable’,
‘quite acceptable’, ‘not acceptable’).

185



In the extension-based approach the idea is to derive, from an AF, an ‘ex-
tension’ E, that is a subset of A representing a set of argument which are con-
sidered as acceptable. These semantics can assign each node to a single status
(unique-status) or multiple statuses (multiple-status). The difference is in the
management of the temporarily undecided state. A multiple-status semantics
can resolve a mutual attack issue by generating two hypothetical solutions in
which the conflicting arguments can be alternately assumed as acceptable.

By considering the expressiveness of the two approaches to semantics, it can
be observed that any extension-based semantics can be equivalently translated in
a labelling-based one by adopting a set of two labels in and out that correspond
to extension membership. Vice versa, in general an arbitrary assignment of labels
cannot be translated in terms of extensions. This is because labellings always
include a label that corresponds to the extension membership, while other labels
are derivable from extension membership and the attack relation. Consequently,
equivalent extension-based definitions of labelling-based semantics are in general
applicable. This is the reason why extension-based semantics are more widely
exploited in the literature.

A basic requirement for any extension E is derived from its interpretation as
a set of arguments which can survive together. In other words, if an argument
α attacks another argument β, one reasonably does not expect to have them
together in the same extension. This corresponds to the concept of conflict-free
that is at the basis of all extension-based semantics.

Definition 3.1 (conflict-free) Given an Argumentation Framework
AF = 〈A,R〉, a set S ⊆ A is conflict-free iff @α, β ∈ S s.t. αRβ (α attacks β).

A second requirement corresponds to the need of a set of arguments to resist
the attacks it receives from other arguments by counterattacking them. This
feature is based on the notions of acceptable argument and admissible set.

Definition 3.2 (acceptability) Given an Argumentation Framework AF =
〈A,R〉, an argument α ∈ A is acceptable wrt a set S ⊆ A iff ∀β ∈ A : βRα ⇒
∃γ ∈ S s.t. γRβ (α is defended by S).

Definition 3.3 (admissibility) Given an Argumentation Framework AF =
〈A,R〉, a set S ⊆ A is admissible iff S is conflict-free and ∀α ∈ S α is ac-
ceptable wrt S.

Now suppose that the attackers of an argument α are all attacked by an
extension E. Then the attack suffered by α is canceled because E is ‘defending’
α, and α is reinstated because it should belong to E. This property takes the
name of reinstatement and leads to the following principle:

Definition 3.4 (reinstatement principle) Given an Argumentation Frame-
work AF = 〈A,R〉, a semantics satisfies the reinstatement principle iff for all
extensions E ⊆ A it holds that

if α is acceptable w.r.t E then α ∈ E.

186



3.1 Extension-Based Semantics

Since semantics provide the basis for evaluating the justification state of argu-
ments, one may first require that the evaluation basis of an AF is not empty.
Some (labelling- or extension-based) semantics may allow many alternative jus-
tification states for the arguments. Two main alternatives may be considered for
the notion of justification state:

– skeptical justification requires that an argument is accepted in all semantics;
– credulous justification requires that an argument is accepted in at least one

semantics.

Of course in a unique-status approach credulous and skeptical justifications co-
incide, but in multiple-status approaches typically the credulous justification
includes the skeptical justification.

Let us now consider some approaches to determine argumentation semantics
proposed in the literature.

Complete semantics The notion of complete extension is based on the prin-
ciples of admissibility and reinstatement. It is a set which is able to defend itself
and includes all arguments it defends.

Definition 3.5 (complete extension) Given an Argumentation Framework
AF = 〈A,R〉, a set S ⊆ A is complete extension iff S is admissible and @
α ∈ A such that:

– α is acceptable wrt S
– α /∈ S

The following semantics build their own extensions referring to the complete
extensions.

Ground semantics For each AF there exists only one ground extension which
corresponds to the set of arguments that satisfies the conditions of admissibility
and that is minimal with respect to the inclusion relation between the admis-
sible sets of AF. Compared to complete extensions, the ground is the complete
minimal one with respect to set inclusion.

Definition 3.6 (ground extension) Given an Argumentation Framework AF
= 〈A,R〉, a set S ⊆ A is a ground extension iff S is admissible and S is a ⊆-
minimal subset of A.

Preferred semantics A preferred extension S of an AF is the admissible set
of AF which is maximal with respect to set inclusion. For each admissible set E
of AF there exists at least one preferred extension S such that E ⊆ S (it can be
also the empty set). Compared to complete extensions, the preferred extension
is the complete maximal one with respect to set inclusion.

187



Definition 3.7 (preferred extension) Given an Argumentation Framework
AF = 〈A,R〉, a set S ⊆ A is a preferred extension iff S is admissible and S is
a ⊆-maximal subset of A.

Stable semantics A stable extension of an AF is a complete extension which
attacks all arguments that are not its members. Any stable extension is also a
maximal conflict-free set of AF.

Definition 3.8 (stable extension) Given an Argumentation Framework AF
= 〈A,R〉, a set S ⊆ A is a stable extension iff

– S is a complete extension
– S ∪ Sdefeated = A

where Sdefeated = {β ∈ A | α ∈ E ∧ αRβ}

Semi-stable semantics A semi-stable extension [5] S of an AF is a complete
extension which relies on the idea of maximizing not only the arguments belong-
ing the extension but also those attacked by it. Any semi-stable extension S is
also a set with maximal range with respect to the inclusion set.

Definition 3.9 (semi-stable extension) Given an Argumentation Framework
AF = 〈A,R〉, a set S ⊆ A is a stable extension iff

– S is a complete extension
– S ∪ Sdefeated is maximal wrt A

where Sdefeated = {β ∈ A | α ∈ E ∧ αRβ}

Ideal semantics An extension of an AF is called ideal if it corresponds to the
largest admissible set that is a subset of each preferred extension.

Definition 3.10 (ideal extension) Given an Argumentation Framework AF
= 〈A,R〉, a set S ⊆ A is an ideal extension iff S is the admissible ⊆-maximal
subset of A such that ∀Spreferred : S ⊆ Spreferred.

Eager semantics An eager extension of an AF corresponds to the largest
admissible set that is a subset of each semi-stable extension. It relies on a concept
that is similar to the ideal semantics, with the restriction that the admissible set
must be in the intersection of semi-stable extensions.

Definition 3.11 (eager extension) Given an Argumentation Framework AF
= 〈A,R〉, a set S ⊆ A is an eager extension iff S is the admissible ⊆-maximal
subset of A such that ∀Ssemi−stable : S ⊆ Ssemi−stable.

An ordering relationship exists among the semantics described above [5].
The ground, preferred, ideal, eager, semi-stable and stable extensions can be all
obtained starting from complete extensions. In particular, each stable extension
is also semi-stable and each semi-stable extension is also a preferred one. Finally,
by definition, a preferred extension is a complete extension too.

188



4 Authority Degree

The semantics shown above neglect information that, in some cases, may turn
out to be of crucial importance to the argumentation. For instance, the Abstract
Argumentation Framework does not distinguish between rebuttal and undercut-
ting attacks, in order to provide more efficient computation of extensions. Also,
in some cases, it would be advisable to evaluate the set of reliable arguments
by taking into account the context in which the sentences are claimed, and
specifically the trustworthiness of those who claim them. Adding quantitative
information becomes of crucial importance when arguments have different levels
of strength. Hence, adding a weight to arguments allows to give them the right
strength, so as to represent real dialogues.

A first refinement to deal with this scenario could be to distinguish utter-
ances made by domain experts from those made by novices or by outsiders of
the domain of the argumentation. By domain we mean a context in which a
person is skilled. The more confident a person within a domain, the higher his
authority in that domain. For example, in a wine and food context, the opinion
or contradiction of a mathematician has a minor significance compared to that
of a winemaker of unquestionable professionalism. Conversely, in a mathematical
context the winemaker level of reliability should be less than that of the math-
ematician. This degree of reliability might be captured in an Argumentation
Framework by introducing an authority degree associated to nodes, such that
two nodes reporting utterances made by experts in different domains will have
different weights into attacking the same node. Thus, arguments are partitioned
in domains which reflect the area of expertise of each arguer.

A second refinement might be to consider the number of attackers and de-
fenders for a node in the graph. In abstract argumentation terms, the larger the
number of attackers of a node, the more likely it is that it should be defeated,
and, conversely, the larger number of defenders (i.e., of reinstatements) it has,
the more likely it is that it may be admissible.

In general, our proposal is to associate a ‘social ’ weight to attack relations,
preferring large admissible sets which attack external nodes and at the same time
defend their members, rather smaller sets of isolated admissible nodes. In this
setting, the domain-based authority degree works as ‘normalizer ’: it rebalances
weights with the aim of avoiding over-defended conclusions. Another novelty of
our approach is that the authority degree may differ depending on the intended
domain. This is different than in PAFs [1], where preferences are taken into
account at the semantics level. That is, instead of modifying the inputs of Dung’s
framework, PAFs extend semantics with preferences.

4.1 Authority Function

The setting we propose is defined through a number of functions to be used in
the evaluation strategy of justification. In the following, 〈A,R〉 will indicate an
argumentation framework and εα the authority degree for an argument α ∈ A

189



in its domain ∆α. A domain function allows us to focus on the most represented
domains in the framework rather than on niche domains:

Definition 4.1 (domain function) δ : A→ R s.t. ∀α ∈ A :

δ(α) =
Nα
|A|

with Nα number of arguments having domain ∆α.

The domain function δ acts as a moderator to balance the weights of the at-
tacking nodes within the argued context. In fact, this ensures that the arguments
in support of the discussed domain have more relevance.

In the following, we propose three functions which allow to consider the
strength of a group of persons involved in the same domain.

An attacking function returns the number of attacks launched by an argu-
ment towards other nodes.

Definition 4.2 (attacking function) fa : A→ N s.t. ∀α ∈ A :

fa(α) = |U(α)|,where U(α) = {β ∈ A | αRβ ∧ εα · δ(α) ≥ εβ}

A defeating function returns the number of attacks an argument suffers from
other nodes.

Definition 4.3 (defeating function) fd : A→ N s.t. ∀α ∈ A :

fd(α) = |E(α)|,where E(α) = {β ∈ A | βRα ∧ εα < εβ · δ(β)}

A defending function returns the number of attacks suffered by an argument
that are not defended by other sufficiently reliable arguments.

Definition 4.4 (defending function) fr : A→ N s.t. ∀α ∈ A :

fr(α) = |D(α)|,where D(α) = {β ∈ A | βRα ∧ ∃γ ∈ A s.t. γRβ∧εγ ·δ(γ) ≥ εβ}

In the last three functions described above, the domain function δ serves to
support the attacking node in order to contextualize the weight of the attack
compared to the weight of the attacked node.

Now, let call us each argument α ∈ A as authority-node wrt an argument
β ∈ A, that argument which launches attacks towards other nodes β ∈ A such
that εα ∗ δ(α) ≥ εβ . An authority function measures the degree of an argument
α ∈ A based on the number of attacks launched as authority-node wrt β ∈ A
and the number of attacks suffered by other arguments being authority-nodes
against it.

Definition 4.5 (authority function) Let fauthority : N→ N be a function s.t.

fauthority(α) = fa(α)− fd(α) + fr(α)

190



The more attacks launched by α ∈ A as an authority-node wrt β ∈ A, the higher
its fauthority; the more attacks it suffers by arguments which are authority-nodes
against it, the lower its fauthority. Intuitively, if the attacks suffered by a node
α are defended by other authority-nodes, then its authority degree will depend
only on its successful attacks (i.e. attacks towards less reliable nodes). Indeed,
the suffered attacks, which decrease the value of its authority, are balanced by
the number of attacks from which it is defended by authority-nodes. Hence, the
authority function is used to select the ‘stronger’ admissible set: namely the
most reliable set will be the one with the lower number of nodes such that their
authority function value is maximum. In this setting, none of the classical Dung’s
extensions are considered, but only the collection of admissible sets, ordered
according to the value of their fauthority. Then, the smallest admissible set with
highest value of the authority function is chosen as more reliable justified set.
Applying a more skeptical semantics may limit the aim of this paper because
we would lose the sense of the domain’s weight associated to nodes. In general,
an attack is considered valid if the attacker’s authority (decreased by a domain-
dependent factor) is higher than the attacked authority.

Fig. 1 shows an example of a graph depicting an AF. Node labels indicate
the level of authority. Nodes in gray belong to domain ∆′ and those in white
to domain ∆′′. Due to space constraints, we will determine in the following the
authority degree for node α only, using the above functions.

α 3β 8

γ 4

δ 7

ε 9

Fig. 1. AF graph example with authority degrees

Let consider the node α, it’s domain value for domain ∆′ is δ(α) = 2
5 = 0.4;

fa(α) = 0 because 3 · 0.4 = 1.2 s.t. 1.2 � 8 and 1.2 � 9;
fd(α) = 1 because 3 < 8 · 0.6 = 4.8;
fr(α) = 0 because node δ suffers no attack;
fauthority(α) = 0 - 1 + 0 = -1.

The authority functions for the remaining nodes are calculated in the same
way. Then, the smallest admissible set, having the maximum sum of authority
functions values for its members, is chosen as the most reliable justified subset
of arguments.

4.2 ARCA

The proposed strategy was implemented in the ARCA system (acronym for
Abstract Resolution of Conflicts in Argumentation). ARCA includes a logic

191



Fig. 2. ARCA

program core which can compute both the classical extension based semantics
and the proposed authority degree-based evaluation of arguments. On top of it,
ARCA provides a graphic tool (see Fig. 2) to enter and display arguments and
attacks in an AF, and to associate to each claim a domain of origin and a degree
of experience in that domain. It also allows to associate and display utterances
associated to arguments and to show nodes with different colors denoting their
acceptability according to the different semantics. This allows one to easily see
conflicts and observe the differences between different semantic extensions.

4.3 Sample Scenario

Let us now show the various features of ARCA using a sample scenario in which
some professionals olive growers are arguing about the most useful criterion of
olive trees pruning. In mature trees, pruning is mainly required to renew the
fruiting surface of the tree and achieve high yields, maintain vegetative growth
of sprouts, maintain the skeleton structure, contain tree size, favor light penetra-
tion and air circulation inside the canopy, permit control of pests and diseases,
prevent aging of the canopy, and eliminate dead wood.

Three novice croppers, Albert, John and Jack, are expressing their point of
view, according their own (limited) experience:

1. Albert: “When in doubt, less pruning is better.”
2. John: “Not all trees in a grove need to be pruned every year.”
3. Jack: “Pruning should be rapid and simple.”

Samuel, a renowned expert olive grower, counterargues all three statements
according to his large experience: “The type of pruning must be adjusted in
relation to plant age, training system, crop load, product use, environmental
conditions, soil fertility, and farm structure.” Thus, Samuel’s opinion has more

192



Fig. 3. Growers Argumentation

relevance than those of the three novice growers. Hence, his authority degree
is such that the attacks he is suffering have no effect in the argumentation. In
fact, Fig. 3 shows that, among all admissible subsets, the one with higher rank
is precisely the set containing Samuel’s (winning) argument.

Now, suppose Julian, an agronomist, takes part in the discussion. As a person
with special knowledge in soil management and field-crop production, he explains
in which direction new techniques in this domain are going and, therefore, which
strategy is better to accomplish all aims: “Current tendency is to prune olive
trees as little as possible, so as to reduce costs substantially and simplify prun-
ing management.” This sentence attacks Samuel’s claim and generates circular
conflicts between Julian’s claim and the novice growers’ statements. Since Ju-
lian has less practical experience in pruning olive trees, his claim has less weight
in the argumentation. In this situation, the evaluation of extension-based se-
mantics and the ARCA solution are quite different. In skeptical extension-based
semantics such as Semi-Stable and Stable extensions (Fig. 4 (a)), the admis-
sible undefeated set of arguments includes both the claims of novice growers,
and the agronomist’s one. In the ARCA solution (see Fig. 4 (b)), the weight of
the agronomist in the argumentation is such that his argument is undefeated,
despite his weight is lower than Samuel’s one in the argued domain.

Suppose now that Samuel counterattacks also Julian’s claim with another
argument: “Pruning should be more severe on old trees and trees of low vigor
than on young plants, or on trees growing in irrigated conditions and in fertile
soils. The authority weight of Samuel’s last argument determines the winning
arguments in the ARCA solution. Indeed, in Fig. 5 the two arguments expressed
by Samuel are a subset of admissible elements which has a higher rank in the
ARCA solution.

193



Fig. 4. Stable Extension solution (a) versus ARCA solution (b)

This sample scenario clearly shows how the weighted evaluation strategy
of justified arguments may lead to more reliable and sensible results when the
context domain is relevant.

5 Conclusions and Future Work

Abstract Argumentation is a formal approach to define which claims withstand
in a dispute, in which the only expressed property is a binary ‘attack’ relation
representing the rebuttal of an argument to another. The aim is determining an
evaluation strategy that allows to justify conflicting arguments. While several
such strategies have been defined, not always they are useful or sensible. This is
due to the low level of expressiveness of abstract systems which doesn’t allow to
represent all relevant contextual situations. E.g., using an appeal to authority,

194



Fig. 5. Last Samuel’s claim determines the winning arguments

claims may have different weights in the discourse, and justifications might be
evaluated differently. In turn, the weight of a claim depends on the degree of ex-
perience (i.e., the authority) of the person expressing it in a particular domain.
This work proposed a novel evaluation strategy which may take into account
the authority degree of arguments in a given domain in order to understand
which arguments survive in a debate. It was implemented in the ARCA sys-
tem, that allows easily to set up abstract argumentation frameworks and solve
justified arguments with both classical extension-based semantics and the pro-
posed authority-weighted approach. A sample scenario is used to illustrate how
ARCA works and how the proposed strategy is useful to best handle a real-world
argumentation problem in which the reliability of claims is significant.

As future work, we will investigate the adoption of modal logics depending
on the actor’s domain membership. E.g., deontic logic in legal field or tem-
poral logic in historical-literary field. We would also like to implement (semi-
)automatic analysis of arguments expressed in natural language, so as to help
the users of ARCA in setting up their argumentation frameworks. Specifically
concerning the use of weights, we would like to extend the abstract model with
the use of Value-based Argumentation Frameworks in which the justification of
an argument depends on the social values that it advances, and the process of
justification of one argument depends on the strength of the values involved in
the argumentation. Also the extension to Bipolar Argumentation Frameworks
will be considered, so as to distinguish the sense of ‘support’ to an argument
from the sense of ‘defense’ of an argument.

Acknowledgments

This work was partially funded by the Italian PON 2007-2013 project
PON02 00563 3489339 ‘Puglia@Service’.

195



References

[1] Leila Amgoud and Srdjan Vesic. Rich preference-based argumentation frame-
works. International Journal of Approximate Reasoning, 55(2):585 – 606, 2014.

[2] T. J. M. Bench-Capon, S. Doutre, and P. E. Dunne. Value-based argumentation
frameworks. In Artificial Intelligence, pages 444–453, 2002.

[3] Stefano Bistarelli and Francesco Santini. A common computational framework for
semiring-based argumentation systems. In Proceedings of the 2010 Conference on
ECAI 2010: 19th European Conference on Artificial Intelligence, pages 131–136,
Amsterdam, The Netherlands, The Netherlands, 2010. IOS Press.

[4] M. Caminada. Comparing two unique extension semantics for formal argumenta-
tion: Ideal and eager. In BNAIC 2007, pages 81–87, 2007.

[5] M. Caminada, W. A. Carnielli, and P. E. Dunne. Semi-stable semantics. J. Log.
Comput., 22(5):1207–1254, 2012.

[6] C. Cayrol and M.C. Lagasquie-Schiex. On the acceptability of arguments in bipo-
lar argumentation frameworks. In Llúıs Godo, editor, Symbolic and Quantitative
Approaches to Reasoning with Uncertainty, volume 3571 of Lecture Notes in Com-
puter Science, pages 378–389. Springer Berlin Heidelberg, 2005.

[7] Sylvie Coste-Marquis, Sébastien Konieczny, Pierre Marquis, and Mohand Akli
Ouali. Selecting extensions in weighted argumentation frameworks. In Compu-
tational Models of Argument - Proceedings of COMMA 2012, Vienna, Austria,
September 10-12, 2012, pages 342–349, 2012.

[8] P. M. Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artificial intel-
ligence, 77(2):321–357, 1995.

[9] P. E. Dunne and T.J.M. Bench-Capon. Coherence in finite argument systems.
Artificial Intelligence, 141(1–2):187 – 203, 2002.

[10] P. E. Dunne, A. Hunter, P. McBurney, S. Parsons, and M. Wooldridge. Incon-
sistency tolerance in weighted argument systems. In Proceedings of The 8th In-
ternational Conference on Autonomous Agents and Multiagent Systems - Volume
2, AAMAS ’09, pages 851–858, Richland, SC, 2009. International Foundation for
Autonomous Agents and Multiagent Systems.

[11] P. E. Dunne, A. Hunter, P. McBurney, S. Parsons, and M. Wooldridge. Weighted
argument systems: Basic definitions, algorithms, and complexity results. Artificial
Intelligence, 175(2):457 – 486, 2011.

[12] A. C. Kakas, F. Toni, and P. Mancarella. Argumentation for propositional logic
and nonmonotonic reasoning. In Proceedings of the 29th Italian Conference on
Computational Logic, Torino, Italy, June 16-18, 2014., pages 272–286, 2014.

[13] H. Prakken and G. Vreeswijk. Logics for defeasible argumentation. In Handbook
of philosophical logic, pages 219–318. Springer Netherlands, 2002.

[14] H. S. Richardson. Practical Reasoning about Final Ends. Cambridge Studies in
Philosophy. Cambridge University Press, 1997.

[15] S. Toulmin. The Uses of Argument. E-Books von NetLibrary. Cambridge Univer-
sity Press, 2003.

[16] D. Walton. Fundamentals of Critical Argumentation. Critical Reasoning and
Argumentation. Cambridge University Press, 2005.

[17] D. Walton. Appeal to Expert Opinion: Arguments from Authority. Pennsylvania
State University Press, 2010.

196



Towards Visualising Security with Arguments

Stefano Bistarelli1,2, Fabio Rossi1, Francesco Santini2,?, and Carlo Taticchi1

1 Dipartimento di Matematica e Informatica, Università di Perugia, Italy
[bista,rossi,taticchi]@dmi.unipg.it

2 IIT-CNR, Pisa, Italy
francesco.santini@iit.cnr.it

Abstract. Abstract Argumentation has been proved as a simple yet
powerful approach to manage conflicts in reasoning with the purpose
to find subsets of “surviving” arguments. Our intent is to exploit such
form of resolution to visually support the administration of security in
complex systems. For instance, in case threat countermeasures are in
conflict (also with assets) and only some of them can be selected.

1 Introduction and Motivations

An Abstract Argumentation Framework (AAF ), or System, as introduced in a
seminal paper by Dung [6], is simply a pair 〈A,R〉 consisting of a set A whose
elements are called arguments and of a binary relation R on A, called “attack”
relation. An abstract argument is not assumed to have any specific structure
but, roughly speaking, an argument is anything that may attack or be attacked
by another argument. The sets of arguments (or extensions) to be considered
are then defined under different semantics, which are related to varying degrees
of scepticism or credulousness.

In this work, our goal is to start developing a tool to visualise security threats
and related countermeasures as arguments, as if security was a continuous dy-
namic discussion between the administrator and the surveilled system. Existing
automated tools to defend a system from such security threats are one potential
solution, but a completely automated approach could undervalue the strong an-
alytic capabilities of humans, particularly in problematic situations that require
vigilant human oversight.

We measure the strength of subsets of arguments and single arguments in
accordance with Argumentation Theory. We print such strength degrees in differ-
ent colours with the purpose to immediately catch the attention of the Security
Administrator on what is going on in his system, and help him to take a decision
on the set of countermeasures to be considered.

2 Preliminaries

In this section we briefly summarise the background information related to clas-
sical Abstract Argumentation Frameworks (AAFs) [6].

? The author is supported by MIUR PRIN 2010XSEMLC “Security Horizons”.

197



a b c d e

Fig. 1: An example of AAF.

Definition 1 (AAF). An Abstract Argumentation Framework (AAF) is a pair
F = 〈A,R〉 of a set A of arguments and a binary relation R ⊆ A × A, called
the attack relation. ∀a, b ∈ A, aR b (or, a� b) means that a attacks b. An AAF
may be represented by a directed graph whose nodes are arguments and edges
represent the attack relation. A set of arguments S ⊆ A attacks an argument
a, i.e., S � a, if a is attacked by an argument of S, i.e., ∃b ∈ S.b � a. An
argument a ∈ A is defended (in F ) by a set S ⊆ A if for each b ∈ A, such that
b� a, also S � b holds.

Argumentation semantics [6] characterise a collective “acceptability” for ar-
guments. Respectively, adm, com, prf , and stb stand for admissible, complete,
preferred, and stable semantics.

Definition 2 (Semantics [6]). Let F = 〈A,R〉 be an AAF. A set S ⊆ A is
conflict-free (in F), denoted S ∈ cf (F ), iff there are no a, b ∈ S, such that a� b
or b� a ∈ R. For S ∈ cf (F ), it holds that

– S ∈ adm(F ), if each a ∈ S is defended by S;
– S ∈ com(F ), if S ∈ adm(F ) and for each a ∈ A defended by S, a ∈ S holds;
– S ∈ prf (F ), if S ∈ adm(F ) and there is no T ∈ adm(F ) with S ⊂ T ;
– S ∈ stb(F ), if for each a ∈ A\S, S � a;

We also recall that the requirements in Def. 2 define an inclusion hier-
archy on the corresponding extensions, from the most to the least stringent:
stb(F ) ⊆ prf (F ) ⊆ com(F ) ⊆ adm(F ). Moreover, σ(F ) 6= ∅ always holds for
each considered semantics σ (except for the stable one).

Definition 3 (Arguments acceptance-state). Given one of the semantics
σ in Def. 2 and a framework F , an argument a is i) sceptically accepted if
∀S ∈ σ(F ), a ∈ S, ii) a is credulously accepted if ∃S ∈ σ(F ), a ∈ S and a is not
sceptically accepted, and iii) a is rejected if @S ∈ σ(F ), a ∈ S.

Consider F = 〈A,R〉 in Fig. 1, with A = {a, b, c, d, e} and R = {a� b, c� b,
c� d, d� c, d� e, e� e}. In F we have adm(F ) = {∅, {a}, {c}, {d}, {a, c}, {a,
d}}, com(F ) = {{a}, {a, c}, {a, d}}, prf (F ) = {{a, d}, {a, c}}, and stb(F ) =
{{a, d}}. Hence, argument a is sceptically accepted in com(F ), prf (F ) and
stb(F ), while it is only credulously accepted in adm(F ).

3 A Visualisation Example

Consider a small research and development company. This company cooperates
with other (often large) enterprises for the development of complex goods. Such

198



company possesses high-tech knowledge which has to be protected from com-
petitors. The company needs to efficiently use its resources with the purpose to
survive in a highly competitive market. In short, the company has the goal (i.e.,
asset) of ensuring the productivity of operations (QoS).

In this small example, the security-system administrator has identified the
following threats and related security controls (in square brackets): hacker pene-
tration (HP) [host IDS (HI), network IDS (NI)] (where IDS stands for Intrusion
Detection System), employee abuse (EA) [monitoring functionality (MF), audit
procedures (AP)], and compromise of communication channel (CCC) [virtual
private network (VPN), encrypted line (EL)].

We would like to emphasise that abstract arguments have no internal struc-
ture, and are not “directly linked” to classical logic. For this reason, we can
consider multiple sources of information but and belief, such as case law, com-
mon sense, and expert opinion. We can consider information coming from mul-
tiple network-sensors, in the form of logs, warnings, and errors. Facts and beliefs
can be also taken from internal policy documents, and standard documents as
well. For instance the Standard of Good Practice for Information Security, is a
business-focused, practical and comprehensive guide to identifying and manag-
ing information security risks in organizations and their supply chains. The 2011
Standard is aligned with the requirements for an Information Security Manage-
ment System (ISMS) set out in ISO/IEC 27000-series standards, and provides
wider and deeper coverage of ISOIEC 270023 control topics, as well as cloud
computing, information leakage, consumer devices and security governance.

To work on our example we use SecArg4 (Security with Arguments). SecArg
is based on ConArg [4, 5] (ARGumentation with CONstraints), which is an Ab-
stract Argumentation reasoning-tool using the Gecode library5, an efficient C++
environment where to develop constraint-based applications. The input (text)
file passed to SecArg contains the list of arguments partitioned into counter-
measures, threats, assets, and attacks between them: for instance, countermea-
sure(HI), threat(HP), att(HI,HP) (hacker penetration is prevented by a host
IDS). SecArg visually represents the different nature of arguments with different
colours: green for countermeasures, red for threats, and yellow for assets.

A more extended example is represented in Fig. 2. In such AAF we have that
executing a host IDS and a monitoring functionality on the same machine (i.e.,
HI&MF) impacts on its QoS. Hence, we pose an attack between them, and we
also consider not having HI (NotHI) or MF (NotMF). Moreover, we have some
countermeasures in conflict, i.e., EL or VPN, and MF.

We obtain three stable extensions (we use the stable semantics because it is
the most sceptical one, see Sec. 2): i) {AP, VPN, EL, HI, NI, NotMF, QoS}, ii)
{AP, VPN, EL, HI, NI, HI&MF}, and iii) {AP, VPN, EL, NI, NotHI, NotMF,
QoS}. In this case, reasoning in terms of stable or preferred semantics is the
same, since they both returns the same three extensions. Reasoning on the scep-

3
ISO, ISO, and I. E. C. Std. “ISO 27002: 2005.“ Information Technology-Security Techniques-Code
of Practice for Information Security Management. ISO (2005).

4
http://www.dmi.unipg.it/secarg

5
http://www.gecode.org

199



Fig. 2: The AAF with controls, threats
(horizontal filling), and QoS asset.

Fig. 3: Sceptically (thick), credulously
(dotted) accepted, rejected (grey).

tical acceptance of arguments in such three extensions, we obtain that AP, VPN,
EL, NI are sceptically accepted (i.e., “always”). This means that, for the attack-
/countermeasure scenario we have depicted, having audit procedures, a virtual
private network, an encrypted line, and a network IDS is always considered a
valid argument. Therefore, they correspond to a strong suggestion for the se-
curity administrator. On the other hand, there are some other arguments that
are rejected (see Def. 3), that is they never appear in such extensions; for in-
stance EA, HP, MF, and CCC. All three threats are successfully “avoided”, in
the sense that adopted security countermeasures always prevent all of them.
Moreover, also adopting the monitoring functionality countermeasure is not a
good idea given this scenario, since it is rejected as well. Finally, the remain-
ing arguments appear sometimes but not always in such three extensions (they
are credulously accepted, according to Def. 3): NotHI (in 1 extension), HI&MF
(1), HI (2), NotMF (2), QoS (2). The number of times they appear is visually
highlighted in SecArg by filling arguments with different shades of grey, and
also returning the appearance ratio, e.g,. 66.6% for QoS and 33.3% for NotHI.
This can be interpreted as a strength-score for these arguments: for instance,
having an host IDS beats not having it (2 to 1): hence the administrator is
recommended to use it. For the sake of presentation, in Fig. 3 we use thick
continuous circles for sceptically accepted arguments, thin/thick dotted circles
for credulously accepted ones (respectively for lower/higher ratio of appearance,
e.g., QoS is thicker than NotHI), and light-grey circles for rejected arguments.

4 Related and Future Work

Since the application of Argumentation to Cybersecurity-related issues is rela-
tively a new field (or, at least, not deeply investigated), there is a few related
work to be mentioned. A bunch of works applying Argumentation-based conflict-
resolution to the specific case of firewall rules are [1–3]. In our approach, however,
we would like to provide a general reasoning-tool.

200



In [8] the authors suggest the use of Argumentation to provide automated
support for Cybersecurity decisions. Three different tasks where Argumentation
can contribute are surveyed in the paper: first, the establishment of a security
policy, drawing from a range of information on best practice and taking into
account likely attacks and the vulnerability of the system to those attacks. Sec-
ondly, the process diagnosis to determine if an attack is underway after some
apparent anomaly in system operation is detected; the final goal is to decide
what action, if any, should be taken to ensure system integrity. At last, Argu-
mentation can be used to reconfigure a security policy in the aftermath of a
successful attack: this reconfiguration needs to ensure protection against future
similar-attacks, without creating new vulnerabilities.

In [7] the authors propose how arguments can support the decision making
process: the aim is to help the system security administrator to react (or not) to
possible ongoing attacks. For instance, a decision can be taken either to disable
traffic through port 80 or not to disable it.

In the next future we would like to extend SecArg from both the theoretical
and practical point of view by i) interactively changing the AAF with a new
node or attack and immediately see how much such modification impacts on the
strength of arguments; ii) selecting a subset S of arguments and get the minimal
amount of change to the AAF that transforms S into an extension satisfying a
given semantics (e.g., preferred).

References

1. Applebaum, A., Levitt, K.N., Rowe, J., Parsons, S.: Arguing about firewall pol-
icy. In: Verheij, B., Szeider, S., Woltran, S. (eds.) COMMA. Frontiers in Artificial
Intelligence and Applications, vol. 245, pp. 91–102. IOS Press (2012)

2. Bandara, A.K., Kakas, A.C., Lupu, E.C., Russo, A.: Using argumentation logic for
firewall policy specification and analysis. In: State, R., van der Meer, S., O’Sullivan,
D., Pfeifer, T. (eds.) DSOM. LNCS, vol. 4269, pp. 185–196. Springer (2006)

3. Bandara, A.K., Kakas, A.C., Lupu, E.C., Russo, A.: Using argumentation logic for
firewall configuration management. In: Integrated Network Management. pp. 180–
187. IEEE (2009)

4. Bistarelli, S., Rossi, F., Santini, F.: Benchmarking hard problems in random abstract
AFs: The stable semantics. In: Computational Models of Argument - Proceedings
of COMMA. FAIA, vol. 266, pp. 153–160. IOS Press (2014)

5. Bistarelli, S., Rossi, F., Santini, F.: A first comparison of abstract argumentation
reasoning-tools. In: ECAI 2014 - 21st European Conference on Artificial Intelligence.
FAIA, vol. 263, pp. 969–970. IOS Press (2014)

6. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–357 (1995)

7. Martinelli, F., Santini, F.: Debating cybersecurity or securing a debate? - (position
paper). In: Foundations and Practice of Security - 7th International Symposium,
FPS 2014. LNCS, vol. 8930, pp. 239–246. Springer (2014)

8. Rowe, J., Levitt, K., Parsons, S., Sklar, E., Applebaum, A., Jalal, S.: Argumentation
logic to assist in security administration. In: Proceedings of the 2012 Workshop on
New Security Paradigms. pp. 43–52. NSPW ’12, ACM (2012)

201



SUNNY for Algorithm Selection: A Preliminary Study

Roberto Amadini, Fabio Biselli, Maurizio Gabbrielli, Tong Liu, and Jacopo Mauro

Department of Computer Science and Engineering
University of Bologna, Italy.

Abstract. Given a collection of algorithms, the Algorithm Selection (AS) prob-
lem consists in identifying which of them is the best one for solving a given
problem. In this paper we show how we adapted the algorithm selector SUNNY,
originally tailored for constraint solving, to deal with general AS problems. Pre-
liminary investigations based on the AS Library benchmarks already show some
promising results: for some scenarios SUNNY is able to outperform AS state-of-
the-art approaches.

1 Introduction

Given a collection of algorithms, the Algorithm Selection (AS) problem basically con-
sists in identifying which of them is the best one for solving a given problem. Initially
proposed by Rice in 1976 [9], in the last decade AS has attracted some attention [7,10].
In particular, the original notion of AS has been extended by the definition of Algorithm
Portfolio (AP) [6]. In a nutshell, AP approaches exploit a portfolio {A1, . . . , Am} of
different algorithms to get a globally better algorithm. They go beyond the original no-
tion of AS introduced by Rice since APs perform the algorithm selection case-by-case
instead of in advance. When a new, unseen problem p comes, an AP approach tries to
predict which is (or which are) the best constituent algorithm(s)Ai1 , Ai2 , . . . , Aik , with
1 ≤ ij ≤ m, for solving p and then runs such algorithm(s) on p. Scheduling k > 1 al-
gorithms can reduce the risk of selecting only one algorithm —maybe the wrong one—
and possibly enables the knowledge sharing between the scheduled algorithms. How-
ever, note that the boundary between AS and AP is fuzzy: these two related problems
are often considered as equivalent. For this reason, with a little abuse of notation, in the
following we will only use the AS notation for indicating both AS and AP problems.

SUNNY is an algorithm selector tailored for Constraint Programming (CP), where
the algorithms to be selected correspond to different constraint solvers. Originally con-
ceived for solving Constraint Satisfaction Problems (CSPs) only [1], it has been later on
adapted for dealing with Constraint Optimisation Problems (COPs) [3]. SUNNY is also
the algorithm that underpins sunny-cp [4], a constraint solver exploiting a portfolio
of different constituent solvers for solving both CSPs and COPs.

In this paper we present a preliminary evaluation of SUNNY on different AS bench-
marks taken from the Algorithm Selection library (ASlib) [5]. We show that SUNNY
can be applied also outside the CP domain, reaching promising performance in different
fields such as Answer-Set Programming (ASP), Quantified Boolean Formula (QBF),
or the Container Pre-marshalling Problem. Conversely, for the Boolean Satisfiability
(SAT) problems of ASlib there is still a performance gap with the best AS approaches.

202



2 SUNNY

The SUNNY [1] algorithm was originally introduced for constraint solving. Fixed a
solving timeout τ and a portfolioA of algorithms, SUNNY exploits instances similarity
to produce a sequential schedule σ = [(A1, t1), . . . , (Ah, th)] where algorithm Ai ∈ A
has to run for ti seconds and

∑h
i=1 ti = τ . For any input problem x, SUNNY uses a k-

Nearest Neighbours (k-NN) algorithm to select from a training set of known instances
the subset N(x, k) of the k instances closer to the feature vector of x according to the
Euclidean distance. Basically, the feature vector of x is a collection F (x) ∈ Rd of nu-
merical attributes that characterise x (e.g., statistics over the variables or the constraints
of x). Starting from theN(x, k) instances SUNNY relies on three heuristics to compute
the schedule σ: Hsel, for selecting the most promising algorithms {A1, . . . , Ah} ⊆ A
to run;Hall, for allocating to eachAi ∈ A a certain runtime ti ∈ [0, τ ] for i = 1, . . . , h;
Hsch, for scheduling the sequential execution of the algorithms according to their pre-
sumed speed. The heuristics Hsel, Hall, and Hsch depends on the application domain.
For CSPs, Hsel selects the smallest sub-portfolio S ⊆ A that solves the most instances
in N(x, k), by using the runtime for breaking ties. Hall allocates to each Ai ∈ S a
time ti proportional to the instances that S can solve in N(x, k), by using a special
backup solver for covering the instances of N(x, k) not solvable by any solver. Finally,
Hsch sorts the solvers by increasing solving time in N(x, k). For COPs the approach is
similar, but different evaluation metrics are used. We conclude the section by showing
an example of how SUNNY works on a given CSP; for more details about SUNNY we
refer the interested reader to [1, 3].

Example 1 Let x be a CSP, A = {A1, A2, A3, A4} a portfolio, A3 the backup solver,
τ = 1800 seconds the solving timeout, N(x, k) = {x1, ..., x5} the k = 5 neighbours
of x, and the runtimes of solver Ai on problem xj defined as in Table 1. In this case,
the smallest sub-portfolios that solve the most instances (4 to be precise) in N(x, k)
are {A1, A2, A3}, {A1, A2, A4}, and {A2, A3, A4}. The heuristic Hsel selects S =
{A1, A2, A4} because these solvers are faster in solving the instances inN(x, k). Since
A1 and A4 solve 2 instances, A2 solves 1 instance and x1 is not solved by any solver,
the time window [0, τ ] is partitioned in 2 + 2 + 1 + 1 = 6 slots: 2 assigned to A1

and A4, 1 slot to A2, and 1 to the backup solver A3. Finally, Hsch sorts the solvers
by increasing solving time. The final schedule produced by SUNNY is therefore σ =
[(A4, 600), (A1, 600), (A3, 300), (A2, 300)].

x1 x2 x3 x4 x5
A1 τ τ 3 τ 278
A2 τ 593 τ τ τ
A3 τ τ 36 1452 τ
A4 τ τ τ 122 60

Table 1. Runtimes (in seconds). τ means the solver timeout.

203



Scenario m n d τ Domain
ASP 11 1294 138 600 Answer-Set Programming
CSP 2 2024 86 5000 Constraint Satisfaction Problem

MAXSAT 6 876 37 2100 Maximum Satisfiability Problem
PREMARSH 4 527 16 3600 Container Pre-marshalling Problem

PROTEUS 22 4021 198 3600 CSP, with possible encoding into SAT
QBF 5 1368 46 3600 Quantified Boolean Formula

SAT11-HAND 15 296 115 5000 SAT 2011 Competition – Handcrafted problems
SAT11-INDU 18 300 115 5000 SAT 2011 Competition – Industrial problems
SAT11-RAND 9 600 115 5000 SAT 2011 Competition – Random problems
SAT12-ALL 31 1614 115 1200 SAT Challenge 2012 – All problems

SAT12-HAND 31 767 115 1200 SAT Challenge 2012 – Handcrafted problems
SAT12-INDU 31 1167 115 1200 SAT Challenge 2012 – Industrial problems
SAT12-RAND 31 1362 115 1200 SAT Challenge 2012 – Random problems

Table 2. ASlib Scenarios.

3 Evaluation

To evaluate SUNNY on different scenarios we exploited the Algorithm Selection library
(ASlib). ASlib provides standardised format and data for representing AS scenarios al-
lowing the comparison of different AS approaches. Each ASlib scenario contains: an
algorithm space A = {A1, . . . , Am}; a problem space X = {x1, . . . , xn}; a feature
space Fd = {F1, . . . , Fn} where Fj ∈ Rd is the feature vector of the problem xj ; a
performance space Pτ = {P1,1, . . . , Pm,n} where Pi,j ∈ R measures the performance
of algorithm Ai on problem xj within a timeout of τ seconds. ASlib contains 13 het-
erogeneous scenarios1 as summarised in Table 2. The scenarios differ in the number
of algorithms m, problems n, features d, and in the time limits τ . For every scenario,
the runtime is used as performance measure: if algorithm A solves problem x in t < τ
seconds the runtime RunTime(A, x) of A on x is t. Otherwise, RunTime(A, x) = τ .
Each scenario of the ASlib is evaluated with a 10-fold cross validation: X is partitioned
in 10 subsets X1, . . . ,X10 called folds, treating in turn a fold Xi as the test set and the
union

⋃
j 6=i Xj of the other folds as the training set.

Adapting SUNNY to ASlib scenarios was rather straightforward. Fixed a training
set Xtr ⊆ X and a corresponding feature space Ftr, we normalised the feature vectors
by removing all the constant features of Ftr and scaling them in the range [−1, 1].
Then, for each unknown problem x /∈ Xtr, SUNNY computes the neighbourhood
N(x, k) ⊆ Xtr and the resulting schedule σ = [(a1, t1), . . . , (ah, th)] exactly as ex-
plained in Section 2. Following the methodology of [4], we set k =

√
|Xtr| and the

backup solver as the algorithm of A having the lower average RunTime in Xtr.
Table 3 shows for each scenario the Fraction of Solved Instances (FSI) of SUNNY.

As the name underlines, the FSI of an AS approach is the ratio between the number of
instances it solves and all the instances of the scenario. SUNNY is compared against the
state-of-the-art AS approaches reported in [5] (viz., ISAC, SNNAP, aspeed, claspfolio,
claspfolio-pre, zilla, and LLAMA) and two additional baselines: the Single Best Solver
(SBS ), i.e., the algorithm in A with highest FSI, and the Virtual Best Solver (VBS ),
i.e., the oracle approach that for every x ∈ X always select the algorithm A ∈ A for

1 We considered the 1.0.1 version of ASlib. For more details, we refer the reader to [5].

204



Scenario VBS SBS ISAC SNNAP aspeed claspfolio claspfolio-pre zilla LLAMA SUNNY
ASP 0.937 0.859 0.896 0.910 0.890 0.923 0.923 0.915 0.920 0.913
CSP 0.875 0.858 0.859 0.858 0.862 0.872 0.872 0.872 0.873 0.870

MAXSAT 0.853 0.769 0.823 0.818 0.845 0.844 0.844 0.848 0.841 0.842
PREMARSH 1 0.812 0.843 0.753 0.956 0.867 0.945 0.918 0.879 0.949

PROTEUS 0.887 0.628 0.812 0.794 0.867 0.832 0.855 0.838 0.835 0.859
QBF 0.77 0.577 0.692 0.615 0.745 0.744 0.753 0.746 0.751 0.754

SAT11-HAND 0.74 0.497 0.541 0.611 0.676 0.649 0.672 0.655 0.669 0.622
SAT11-INDU 0.843 0.717 0.710 0.740 0.710 0.763 0.763 0.717 0.750 0.730
SAT11-RAND 0.82 0.603 0.773 0.743 0.777 0.805 0.807 0.810 0.797 0.805
SAT12-ALL 0.988 0.753 0.752 0.880 0.778 0.917 0.916 0.926 0.929 0.893

SAT12-HAND 0.701 0.477 0.467 0.580 0.587 0.636 0.638 0.649 0.653 0.608
SAT12-INDU 0.821 0.736 0.735 0.777 0.719 0.788 0.779 0.775 0.775 0.743
SAT12-RAND 0.764 0.731 0.740 0.730 0.724 0.744 0.743 0.737 0.742 0.727

Table 3. Fraction of Solved Instances.

which RunTime(A, x) is minimal. We can see that SUNNY is the best approach for
the QBF scenario, and that for all the non-SAT scenarios it is rather close to the best
performance. Conversely, for the SAT benchmarks its performance is quite poor.

The FSI metric is commonly used for comparing different AS approaches due to
its simplicity and significance. However, it does not take into account the time needed
to solve a problem. To capture also the timing aspects of the resolution, the Penalised
Average Runtime (PAR) measure is often used. PARk represents the average time taken
to solve the problems by giving a penalisation of k × τ seconds for the instances not
solved within the timeout τ .

Table 4 shows the results considering the average PAR10 score. In this case the
SBS is the single algorithm having the lower PAR10 score. Not surprisingly, PAR10 is
strongly anti-correlated to FSI and the results of 4 somehow reflect what observed in
Table 3. However, some differences arise. For instance, in addition to QBF, by consider-
ing PAR10 SUNNY is the best approach also for the PROTEUS scenarios. This means
that in this scenario aspeed solves few instances more than SUNNY, but SUNNY is
on-average faster.

Scenario VBS SBS ISAC SNNAP aspeed claspfolio claspfolio-pre zilla LLAMA SUNNY
ASP 400.2 880.5 653.6 571.2 711.2 487.2 496.0 539.5 509.1 549.0
CSP 6344.3 7201.6 7148.6 7201.6 7163.0 6511.2 6521.4 6491.5 6466.7 6617.8

MAXSAT 3127.2 4893.1 3763.1 3855.7 3748.4 3320.4 3629.3 3234.7 3367.6 3354.9
PREMARSH 227.6 7002.9 5880.8 9042.1 1964.1 5025.0 2395.7 3179.1 4634.2 2221.5

PROTEUS 4105.9 13443.4 6782.5 7430.3 5363.4 6075.1 5525.0 5900.4 6066.6 5254.4
QBF 8337.1 15330.2 11201.3 13954.0 9714.3 9333.6 9089.8 9222.5 9075.0 9064.8

SAT11-HAND 13360.7 25649.1 23325.1 19820.4 16688.4 17975.7 16897.8 17602.4 16906.5 19308.5
SAT11-INDU 8187.5 14605.9 14968.9 13426.8 15008.2 12322.7 12383.9 14621.2 12996.6 14014.9
SAT11-RAND 9186.4 19916.4 11575.1 12984.4 11589.0 9982.4 9936.2 9719.6 10341.2 9960.262
SAT12-ALL 241.3 3079.9 3101.0 1558.6 2810.2 1113.0 1163.2 1014.7 980.3 1429.8

SAT12-HAND 3662.2 6338.9 6466.3 5112.3 5071.9 4450.4 4459.4 4306.3 4252.9 4808.3
SAT12-INDU 2221.5 3266.0 3306.2 2796.8 3499.9 2653.5 2800.2 2838.4 2837.4 3211.891
SAT12-RAND 2872.8 3271.1 3168.8 3289.9 3382.1 3119.6 3161.9 3207.6 3149.6 3327.9

Table 4. Penalised Average Runtime.

205



4 Conclusions

In this work we presented an evaluation of SUNNY algorithm on different Algorithm
Selection (AS) scenarios coming from the Algorithm Selection library (ASlib). Despite
SUNNY is tailored for constraint solving, its adaptation to AS appears to be promising
also in other fields such as Answer-Set Programming (ASP), Quantified Boolean For-
mula (QBF), or the Container Pre-marshalling Problem. Conversely, for the Boolean
Satisfiability (SAT) problems there is still a performance gap with the best approaches.

We would like to remark that in this evaluation we used the default SUNNY ap-
proach without leveraging its settings to fit the different scenarios. As a future work
we would like to try to improve the performance of SUNNY by using well-known tech-
niques like pre-solving, parameters tuning, and feature selection. It would be interesting
to consider also different scenarios, like optimisation and planning problems. Indeed,
the ASlib currently contains a limited number of scenarios for which the only metric
is the runtime. It would be nice also to perform a deeper study to better understand
the SUNNY performance (and in particular why SUNNY is not so good for the SAT
benchmarks).

We strongly encourage the submission of new scenarios and new algorithm selectors
to the ASlib in order to foster the study and the comparison of new and better AS
approaches. For instance, since SUNNY turns out to be the best approach for QBF, it
would be interesting to consider a comparison with the multi-engine solver AQME [8].

We are currently implementing SUNNY as an automated algorithm selector for
ASlib scenarios, with the aim of enrolling it to the next ICON Challenge on Algorithm
Selection. Moreover, we are also interested in studying how SUNNY can be optimally
parallelised to run its algorithms simultaneously on multiple cores. A preliminary in-
vestigation on the SUNNY parallelisation for CSPs and COPs is presented in [2].

References

1. R. Amadini, M. Gabbrielli, and J. Mauro. SUNNY: a Lazy Portfolio Approach for Constraint
Solving. TPLP, 14(4-5):509–524, 2014.

2. R. Amadini, M. Gabbrielli, and J. Mauro. A Multicore Tool for Constraint Solving. In IJCAI,
2015. Pre-print available at: http://arxiv.org/abs/1502.03986.

3. R. Amadini, M. Gabbrielli, and J. Mauro. Portfolio approaches for constraint optimization
problems. AMAI, pages 1–18, 2015.

4. R. Amadini, M. Gabbrielli, and J. Mauro. SUNNY-CP: a Sequential CP Portfolio Solver. In
SAC, 2015. Available at http://www.cs.unibo.it/˜amadini/sac_2015.pdf.

5. Algorithm Selection Library - coseal. https://code.google.com/p/coseal/
wiki/AlgorithmSelectionLibrary.

6. C. P. Gomes and B. Selman. Algorithm portfolios. Artif. Intell., 126(1-2):43–62, 2001.
7. L. Kotthoff. Algorithm selection for combinatorial search problems: A survey. AI Magazine,

35(3):48–60, 2014.
8. L. Pulina and A. Tacchella. A self-adaptive multi-engine solver for quantified boolean for-

mulas. Constraints, 14(1):80–116, 2009.
9. J. R. Rice. The Algorithm Selection Problem. Advances in Computers, 15:65–118, 1976.

10. K. A. Smith-Miles. Towards insightful algorithm selection for optimisation using meta-
learning concepts. In IJCNN, pages 4118–4124. IEEE, 2008.

206



Indice degli autori

De Meo, Pasquale, 46

Agreste, Santa, 46
Amadini, Roberto, 202
Ancona, Davide, I

Baldoni, Matteo, 85
Baroglio, Cristina, 85
Bellodi, Elena, 128
Beux, Silvio, 31
Biselli, Fabio, 202
Bistarelli, Stefano, 197
Briola, Daniela, 31

Cantone, Domenico, 122
Capuzzimati, Federico, 85
Chesani, Federico, 101
Civili, Cristina, 25
Corradi, Andrea, 19, 31
Costantini, Stefania, 53
Cota, Giuseppe, 128

De Gasperis, Giovanni, 53
Delzanno, Giorgio, 31

Esposito, Floriana, 181

Ferilli, Stefano, 181
Ferrando, Angelo, 31, 72
Ferrari, Mauro, 117
Fiorentini, Camillo, 117
Fiorino, Guido, 117
Frassetto, Federico, 19, 31

Gabbrielli, Maurizio, 202
Gavanelli, Marco, 101, 128
Gottlob, Georg, 1
Guerrini, Giovanna, 31

Lamma, Evelina, 101, 128
Lisi, Francesca Alessandra, 144
Liu, Tong, 202

Malvone, Vadim, 175
Maratea, Marco, I

Marchi, Massimo, 46
Mascardi, Viviana, I, 31
Mauro, Jacopo, 202
Mazzette, Antonietta, 66
Mello, Paola, 101
Mencar, Corrado, 144
Micalizio, Roberto, 85
Milazzo, Maria Francesca, 46
Montali, Marco, 101
Murano, Aniello, 175

Nicolosi-Asmundo, Marianna, 122
Nunnari, Salvatore, 46

Olivetti, Nicola, 13
Olivieri, Raffaele, 53
Omodeo, Eugenio, 2
Oreggia, Marco, 31

Pandolfo, Laura, 66
Pazienza, Andrea, 181
Piga, Elena, 66
Pozzato, Gian Luca, 13, 159
Pozzi, Francesca, 31
Provetti, Alessandro, 46
Pulina, Luca, 66

Riguzzi, Fabrizio, 128
Rosati, Riccardo, 25
Rossi, Fabio, 197
Ruiu, Maria Laura, 66

Santamaria, Daniele Francesco, 122
Santini, Francesco, 197
Solimando, Alessandro, 31
Sorrentino, Loredana, 175

Tacchella, Armando, 31
Taticchi, Carlo, 197
Tidore, Camillo, 66
Trapani, Francesca, 122

Vallata, Luca, 2

Zese, Riccardo, 128

207


