
Computational Thinking for Beginners:
A Successful Experience using Prolog

Silvio Beux, Daniela Briola, Andrea Corradi, Giorgio Delzanno, Angelo
Ferrando, Federico Frassetto, Giovanna Guerrini, Viviana Mascardi, Marco
Oreggia, Francesca Pozzi?, Alessandro Solimando, and Armando Tacchella

DIBRIS, University of Genoa, Italy – CNR, Italy

Abstract. We discuss a logic-based methodology that we adopted to
teach basic concepts of programming to high school students with a
scientific profile and very basic knowledge of computer science. For our
experiments we combined lectures on inductive reasoning with Prolog,
practice on natural language processing and ontologies, and evaluations
based on questionnaires before and after the workshop.

1 Introduction

The idea that thinking might be understood as a form of computation, as recently
suggested by one of the main experts in knowledge representation and reasoning
in artificial intelligence [11], is extremely fascinating. In his book, H. Levesque
shows how to support students to make the connection between thinking and
computing by learning to write computer programs in Prolog for a variety of
tasks that require thought, including understanding natural language.

Taking inspiration from recent experiments during a workshop for high school
students organized by the “Guidance, Promotion and Tutoring Committee” of
the Computer Science Degrees at the University of Genova1, we present a pro-
posal for a condensed course for uninitiated aimed at introducing basic and ad-
vanced programming concepts using declarative languages like Prolog, following
Levesque’s “thinking as computation” metaphor. Our work is inspired to semi-
nal proposals by Kowalski [7,8,9] and to more recent works such as the “Prolog
programming: a do-it-yourself course for beginners” by Kristina Striegnitz2.

Although Prolog as a programming language for novices has been heavily
criticized in the past because of the misconceptions it may generate [13], many
resources for teaching Prolog to beginners can be found on the web. Among
them, we can mention implementations like Visual Prolog for Tyros3, Strawberry

? Dr. Francesca Pozzi is affiliated with CNR; all the other authors are affiliated with
DIBRIS.

1 http://informatica.dibris.unige.it/.
2 http://cs.union.edu/~striegnk/courses/esslli04prolog/.
3 http://www.visual-prolog.com/download/73/books/tyros/tyros73.pdf.

http://informatica.dibris.unige.it/
http://cs.union.edu/~striegnk/courses/esslli04prolog/
http://www.visual-prolog.com/download/73/books/tyros/tyros73.pdf

Prolog4, Pretty Prolog5, the book Learn Prolog Now! [3], also available online6,
as well as many tutorials. This abundance of teaching material witnesses that
the Prolog community is extremely lively, and convinced us that it was worth
teaching Prolog to students with no programming skills. This decision was also
motivated by previous attempts with Scratch and its spin-offs Byob and SNAP!7,
that – albeit suitable for allowing beginners to write an almost complex program
in a few hours – were perceived as not enough professional.

The course requires about 12 hours and it is thought as a crash course for
high school students with different profiles. Its template can be instantiated in
many different ways, provided that no previous programming skills are assumed.
Our experience with the course was carried out during a workshop involving 39
high school students over three days. The course has a leitmotif — which, in our
case, was ontology-driven sentiment analysis — and it is organized in modules
as follows.

– Module 1: a preliminary lecture on a general topic in computer science and
artificial intelligence that will provide the main running example for the class
and laboratory sessions (1 hour).

– Module 2: an introduction to basic concepts of natural language, logic,
knowledge representation and programming with the pure fragment of Prolog
(2 hours) followed by an introduction to inductive definitions and basic data
structures such as lists (2 hours).

– Module 3: an introduction to existing tools supporting exercises related to
the main application discussed in the first module (1-2 hour).

– Module 4: a practical session with Prolog aimed at developing an applica-
tion related to the main topic of the course (5-6 hours).

In addition to a description of the teaching activities above, in this paper we
address also the problem of evaluating the results of the workshop. In particular,
we try to assess whether questionnaires compiled at the beginning and at the
end of the workshop can help us in evaluating the impact of the event on the
students.

2 Introduction to the Course Leitmotif

The first module of the course introduces the course leitmotif, i.e., ontology-
driven sentiment analysis.

Sentiment analysis, also known as opinion mining, is a linguistic analysis
technique where a body of text is examined to characterize the tonality of the
document8. It was first introduced by Pang, Lee and Vaithyanathan in 2002

4 http://www.dobrev.com/.
5 https://code.google.com/p/prettyprolog/.
6 http://learnprolognow.org/lpnpage.php?pageid=top.
7 https://snap.berkeley.edu/.
8 Definition from The Financial Times Lexicon, http://lexicon.ft.com/Term?term=
sentiment-analysis.

http://www.dobrev.com/
https://code.google.com/p/prettyprolog/
http://learnprolognow.org/lpnpage.php?pageid=top
https://snap.berkeley.edu/
http://lexicon.ft.com/Term?term=sentiment-analysis
http://lexicon.ft.com/Term?term=sentiment-analysis

[17]; a survey by two of these three authors dating back to 2008 [14] defines
opinion mining and sentiment analysis as areas dealing with the computational
treatment of opinion, sentiment, and subjectivity in text. Given the growth of
user-generated contents, sentiment analysis is useful in social media monitoring
to automatically characterize the overall feeling or mood of groups of people, e.g.,
how consumers feel with respect to a specific brand or company. To make an
example, Thomson Reuters uses sentiment analysis in a number of its different
products to provide traders with information about how companies are faring in
news articles.

In the context of computer science, an ontology is a specification of a con-
ceptualization. That is, an ontology is a description (like a formal specification
of a program) of the concepts and relationships that can exist for an agent or
a community of agents [5]. One of the first papers describing the idea of using
an ontology to drive the classification of texts by providing lexical variations
and synonyms of terms that could be met in the documents was [15]. The do-
main of interest was that of online product reviews. Among other examples of
ontology-driven sentiment analysis we may mention [4,1,6,10].

Our initial lecture was entitled “Ontologies and text classification: two rel-
evant elements to program thinking machines”. It first introduced the notion
of ontologies and their application, then mentioned the semantic web [2], and
finally introduced the general problem of classifying texts and its application to
sentiment analysis. As the lecture was only 1 hour long, the topics were just
touched upon. A more technical presentation of the steps to be faced in order
to detect the polarity of a textual document was given as part of the practical
session with Prolog discussed in Section 5.

3 Introduction to Inductive Reasoning with Prolog

The goal of the second module of the course is to introduce the main concepts of
the computational paradigm underlying Prolog. To simplify the task, it is conve-
nient to consider the pure fragment of Prolog without use of complex predicates
tied to the evaluation strategies of the interpreter, e.g., “cut”. The lectures are
divided in four parts, discussed in detail in the rest of the Section.

The first part introduces the key ingredients of the Prolog language, i.e., the
distinction between a program, a query, and the interpreter. The program is
viewed here as the representation of some knowledge, and thus we only consid-
ered Datalog-like programs containing predicates and constants. Free variables
were introduced together with queries. We started with simple examples of as-
sertions in natural language like: Mia is a person, Jody is a person, Yolanda is
a person, Jody plays guitar. The above mentioned assertions were represented
then via the facts:

person(mia). person(jody). person(yolanda). plays(jody,guitar).

The example was mainly used to (i) explain the difference between a predicate
and a constant, and (ii) show how unary predicates can be used to describe con-
cepts, constants to describe instances, and binary predicates to describe relations

between instances of concepts. Before introducing variables and clauses, we gave
an intuition on how the Prolog environment works by using simple queries like
?- person(mia). We showed examples of successful queries, failures and errors
to emphasize the differences between them. Noticeably, students could immedi-
ately see the parallel between the Prolog framework and classical examples of
human-computer interaction thanks to the yes/no dialog of the interpreter. We
explained here that the intelligence of the machine is programmed by writing an
appropriate knowledge base, i.e., the programmer’s task is to give intelligence to
the machine.

In the second part we introduced increasingly complex queries to pave the
way towards clauses and inductive definitions. We started from simple queries
such as ?- person(X). showing also how to get multiple answers using the ‘;’
command. We then moved to other examples based on binary predicates such
as ?- plays(jody,X), ?- plays(X,Y). These examples were used to describe
the interplay between constants and variables, and to introduce (informally)
the notion of matching and unification. The next important concept to intro-
duce was that of conjunctive queries. For this purpose, we used examples such as
?- person(jody) , plays(jody,guitar), ?- person(X) , plays(X,guitar).
We explained the logical interpretation of comma as conjunction, and interpreted
the shared variable X as a communication channel between two subqueries: the
first one instantiates it, the second one validates the instantiation. We intro-
duced then the notion of clause as a way to define implicit knowledge, i.e., to
derive new facts without need of enumerating all of them. The first examples
were used to illustrate the syntax of a clause:

happy(jim).

hasMp3(jim).

listens2Music(jim) :- happy(jim), hasMp3(jim).

We explained the semantics using the following assertions: Jim is happy. Jim has
an MP3 player. If Jim is happy and has got an MP3 player, he listens to music.
The use of ground rules, which allows only one specific inference, is quickly
abandoned by introducing free variables to show how to infer several new facts
with a single clause:

guitarist(X) :- plays(X,guitar).

The third part was dedicated to inductive definitions. We started from in-
ductive definitions not involving data structures. The classical example was the
program defining the transitive closure of a given relation. We used here the
relation son defined as follows.

son(giovanni,gabriele). son(gabriele,marco). son(marco,margherita).

We first juxtaposed the ancestor relation over the different definitions of the
son relation. We then showed how to combine the son and ancestor relations in
order to deduce all other cases. In the explanation we avoided inductive defi-
nitions on ancestor predicates only. The following pictures give a diagrammatic

presentation of the inductive definition (introduced step by step in the lecture).
We started from the redefining the facts of the son relation by using ancestor.

The ancestor relation was introduced step by step using the transitive closure:

Finally we completed the diagram of the new relation as follows:

The use of inductive steps defined by combining son and ancestor (instead of
applying the transitive closure on ancestor only) worked well and did not cause
ambiguity in the explanations. In this way, we immediately focused the attention
on the standard way to avoid non terminating recursive definitions in Prolog.
The intuition behind the base step of the inductive definition was first expressed
using assertions in natural language like: For every X,Y, if X is a son of Y, then
Y is an ancestor of X. The assertion was then formalized as the Prolog clause

ancestor(Y,X) :- son(X,Y).

Again we stressed the fact that clauses with free variables can be used to define
new facts on top of existing ones without need of enumerating all of them,
i.e., clauses define implicit knowledge. Similarly, the inductive step was first
expressed using assertions in natural language like: For every X,Y, if X is a son
of Y and Z is an ancestor of Y, then Z is an ancestor of X. The assertion was
then formalized via the Prolog clause

ancestor(Z,X) :- son(X,Y) , ancestor(Z,Y).

We concluded the example by showing the possible result of a query.
The fourth and last part of the lectures was dedicated to simple data struc-

tures like lists. We first introduced the syntax and the intuition behind the data

structures. To explain how to manipulate lists in Prolog, we started by defining
a predicate to check if a list contains names of persons only. To explain how
the definition works, we consider a procedural interpretation of a recursive def-
inition (consume elements until the list becomes empty). We used the parallel
with the transitive closure example to split the definition in base and inductive
steps, respectively. However we listed the inductive step before the base step to
emphasize the idea that to process a list we first have to consume their elements,
and then define what happens when the list becomes empty. We then moved to
more complicated examples like member. To define the member predicate we first
used the assertion in natural language for the base step: The name X is in the
list head. If the name X is in the list L, then X occurs in the list extended with
Y different from X. We presented then the clauses:

member(X,[X|L]).

member(X,[Y|L]):-X=/=Y,member(X,L).

We used a similar approach to introduce other operations like notin (X is not in
a list L), add (add X to a list), and add* (add X if it is not already in L). We also
introduced examples of nested lists. Finally, we used (nested) lists to represent
and manipulate syntax trees of simple natural language sentences. Specifically,
we considered the syntax tree of a text formed by a list of sentences. A sentence
was represented as a list of words as specified by the grammar of the considered
language, e.g., noun-verb-object We then defined examples of tokens like

noun(mia). noun (jody). verb(plays). object(guitar). object(drums).

The assertion if S is a noun, V is a verb, O is an object, then S V O is a sentence
was modeled via the clause

sentence([S,V,O]):-noun(S),verb(V),object(O).

This allowed us to give an inductive definition of a text as follows.

text([]).

text([F|T]) :- sentence(F) , text(T).

Finally, we put all together and showed examples of derivations of queries like
?- text ([[mia,plays,drums], [jody,plays,guitar]]). Again, we used
the metaphor of traversal with consumption element-by-element to manipulate
nested lists as in the case of simple lists.

4 Practical Session with an Ontology Editor

The third module is meant to introduce the tools useful for the specific course
domain — in our case, ontology-driven sentiment analysis. Depending on the
domain and related tools, this module may require different amount of time.
In our instantiation of the course, we opted for a domain that allowed us to
introduce intuitive and user-friendly tools, that high-school students could use

with as little training as possible. In particular, the tool session was organized
as a practical laboratory session aimed at introducing the Protégé Ontology
Editor. The main reasons for our choice is that the course teachers already had
a background on this tool, and that the university students helping during the
session had seen Protégé during the “Intelligent Systems and Machine Learning”
Master’s course. A second reason is that the Web Protégé version9 can be used
online without requiring any installation.

Because of hard time constraints we could not make an introductory lecture
on Protégé, so the students just learned by doing during the practical sessions.
Some students observed that it would have been useful to introduce the tool
beforehand, so we plan to find at least half an hour for explaining the tool and
the proposed exercises in the next course editions. The exercises we proposed
are based on the Newspaper Example available from the Protégé Frames User’s
Guide10. The Newspaper ontology associated with that guide was made available
to the students in their temporary home for easier use.

Exercise 1. The first exercise aimed at making the students acquainted with
Protégé by exploring the already made newspaper ontology. The text was the
following:

1. Open the Protégé ontology editor and select the Newspaper ontology. The
ontology domain is that of managing the costs and organization of a news-
paper. The ontology can answer the following questions:

– Who is responsible for each section of the newspaper?

– What is the content of each article in a section, and who is its author?

– Who does each author report to?

– What is the layout and cost of each section?

2. Explore the ontology and experiment with addition and removal of new
classes, instances, properties.

Exercise 2. The second exercise was related to the course leitmotiv and asked
to design and implement a simple ontology for the opinion mining in the hotel
reviews domain, using names in English. The students could save their ontology
and were informed that they could have used it in the next module. Students
were suggested to identify the positive terms that they could expect in a pos-
itive review (for example charming, excellent, polite, clean,), the negative
ones (dirty, bad, unsafe, ...) and the neutral ones. Then they were suggested
to organize them in an ontology having three main branches, one for positive,
one for negative and one for neutral words in this domain. To take inspiration
for the words, we suggested to read some real reviews available for example on
TripAdvisor.

9 http://webprotege.stanford.edu.
10 http://protegewiki.stanford.edu/wiki/PrF_UG.

http://webprotege.stanford.edu
http://protegewiki.stanford.edu/wiki/PrF_UG

Exercise 3. In case some students still had time, we proposed to create and run
some queries on the newspaper ontology used in the first exercise, such as

– Find the journal that contains the article “Destination Mars” and save the
query;

– Find the journals that either contain the article “Destination Mars” or have
less than 100 pages and save the query.

5 Practical Session with Prolog

The last module of the course integrates all the competencies gained in the
previous modules and proposes exercises with increasing complexity, aimed at
developing a simple but working application for ontology-driven sentiment anal-
ysis. It uses pieces of Prolog code developed by the teachers, offering predicates
that make use of external libraries.

A short lecture introduces the goal of the pratical Prolog session by means
of an example. Given an ontology like the one depicted in Figure 1 and a review
like

This hotel is beautiful! It is in a great location, easy to walk anywhere
around the city. Very nice, comfortable room with lovely views. Staff
can speak English. Fantastic breakfast with many different types of foods
available. I would stay here again in a heartbeat.

we asked the students how could we manage to obtain a classification like

6,[review] 6,[positive,review] 1,[nice]

1,[lovely] 1,[great] 1,[comfortable]

1,[beautiful] 1,[available]

Fig. 1. A basic ontology for sentiment analysis in the hotel review domain (only the
negative branch is shown for space constraints).

During this short lecture we emphasized that, in order to reach our goal, we
had to fix the language of both the text and the ontology (we agreed on English)
and we needed

– a tokenizer for transforming a text into the list of its elements (words, punc-
tuation), in order to operate on lists and not directly on text;

– a list of English stopwords to be filtered out before processing the text, as
they do not contribute to the text’s semantics;

– a stemmer for removing most common morphological and inflectional endings
from English words in order to normalize the terms in both the ontology and
the text, to make their matching possible;

– a tool for reading an OWL ontology from file and transforming it into some
format easy to manipulate.

Exercises 1, 2. The first practical exercise did not depend on the domain. In
particular, it was taken from the SWISH web site http://swish.swi-prolog.

org/example/movies.pl and it is based on querying and extending a movie
database. The second exercise asked the students to implement the predicate for
removing a ground item from a ground list.

Exercise 3. The third exercise, whilst still being a classical one for Prolog be-
ginners, started to move towards the actual problem to be solved. We asked to
implement a subtractList predicate for subtracting a list from another one, but
we contextualized the problem supposing to have a list of words that represents
all the words that are found in a review, and a list of stopwords and punctuation
elements. The goal is to remove the stopwords from the list of words retrieved
from a text.

We made available to the students the following material:

– The file stopwords.txt containing 430 English stopwords and punctuation
marks.

– The emotions.owl ontology sketched in Figure 1. Since the students had
already completed the laboratory with Protégé, we told them that they could
use their own ontology instead of the provided one.

– A textclassifier.pl Prolog piece of code offering all the solutions to the
exercises, but implemented as predicates with different names. We asked the
students to refrain from reading this file thoroughly — as they would have
found the solved exercises —, but just to consult it to find implementation
of auxiliary predicates. The text classifier used the following SWI Prolog
libraries:
• The RDF database (library(semweb/rdf db))11 for reading an ontol-

ogy and transforming it into a set of Prolog facts.
• The Porter Stem (library(porter stem))12 implementing the Porter

stemmer [16].

11 http://www.swi-prolog.org/pldoc/man?section=semweb-rdf-db.
12 http://www.swi-prolog.org/pldoc/man?section=porter-stem.

http://swish.swi-prolog.org/example/movies.pl
http://swish.swi-prolog.org/example/movies.pl
http://www.swi-prolog.org/pldoc/man?section=semweb-rdf-db
http://www.swi-prolog.org/pldoc/man?section=porter-stem

– A set of reviews of hotels in Genova, downloaded from the Booking.com
site13.

We provided the following suggestions to verify that the code was correct:

1. Consult the textclassifier.pl file which contains the Prolog code to im-
plement a basic ontology-driven text classifier. The code offers many useful
predicates to make your work easier.

2. Use the predicate fromTextToList(FileName, List) that takes as its first
argument the name of a file and unifies the second argument with the list of
the words found in the file: this predicate will allow you to read the contents
of a file, be it a review or the stopwords.txt file, and turn it into a list that
Prolog can manage.

3. After having called the predicate you implemented for subtracting a list from
another one, use the predicate printList(List) to print the result.

We also provided an example of goals to call and the expected output:

?- [textclassifier].

?- fromTextToList(’./review5.txt’, Review5List),

fromTextToList(’./stopwords.txt’, StopWordsList),

subtractList(ListReview5, StopWordsList, Review5WithoutSWList),

printList(Review5WithoutSWList).

extremely comfortable welcoming excellent service conveniently situated

railway station main sights palazzo reale best breakfast buffet

experienced week visit italy adjacent restaurant tralalero good

The file review5.txt contained

Extremely comfortable, welcoming, with excellent service and conveniently
situated for the railway station and most of the main sights, such as
Palazzo Reale. By far the best breakfast buffet I experienced during a
two-week visit to Italy! Its adjacent restaurant, Tralalero, is also very
good.

Exercise 4. The fourth exercise asked to implement the listStem(LWords,

LStem) predicate for obtaining the list of word stems, from the list of original
words. The students could use the auxiliary predicate extendedPorterStem(X,

Y) offered by textclassifier.pl to obtain the stemmed word of X and unify
it with Y.

Exercise 5. With the fifth exercise, we started to practice with an ad-hoc Prolog
representation of ontologies. textclassifier.pl implements a loadOntology

predicate which, given the OWL ontology file name, asserts information on the
ontology classes and subclass relationships. The asserted fact also provides in-
formation on the concept name and its stem. For example, by calling
loadOntology(’./emotions.owl’), the following facts are asserted into the
Prolog Knowledge Base:

13 http://www.booking.com/reviews/it/hotel/bristol-palace.en-gb.html.

http://www.booking.com/reviews/it/hotel/bristol-palace.en-gb.html

class(http://www.owl-ontologies.com/o.owl#amazing,[amazing],[amaz])

class(http://www.owl-ontologies.com/o.owl#available,[available],[avail])

class(http://www.owl-ontologies.com/o.owl#bad,[bad],[bad])

class(http://www.owl-ontologies.com/o.owl#beautiful,[beautiful],[beauti])

class(http://www.owl-ontologies.com/o.owl#best,[best],[best])

class(http://www.owl-ontologies.com/o.owl#charming,[charming],[charm])

class(http://www.owl-ontologies.com/o.owl#positive_review,

[positive,review], [posit,review])

........

subClass(http://www.owl-ontologies.com/o.owl#amazing,

http://www.owl-ontologies.com/o.owl#positive_review)

subClass(http://www.owl-ontologies.com/o.owl#available,

http://www.owl-ontologies.com/o.owl#positive_review)

subClass(http://www.owl-ontologies.com/o.owl#bad,

http://www.owl-ontologies.com/o.owl#negative_review)

subClass(http://www.owl-ontologies.com/o.owl#beautiful,

http://www.owl-ontologies.com/o.owl#positive_review)

The exercise asked the students to load emotions.owl and query the knowledge
base in order to answer the following question:

1. Which are the words and stems associated with the ontology class
http://www.owl-ontologies.com/o.owl#amazing?

2. Which ontology concept has the word list [tasty] associated with?

3. Which ontology concept has the stem list [unavail] associated with?

4. Which ontology concept has the stem list that contains posit?

5. Which is the direct superclass of the class whose word list is [lovely]?

6. Which are all the superclasses of the class whose stem list is [excel]?

We also asked the students to make experiments with the ontology they
implemented in the Tools Session.

Exercise 6. The last exercise was the most challenging one, as it asked to put
all the bricks implemented so far together, in order to implement an ontology-
driven text classifier. We gave very limited written hints and we proposed a few
variants of the text classification program for listing not only the words occurring
in both the text and the ontology (after being stemmed), but also in counting
their occurrences: if “beautiful” occurs twice, it should be counted twice and
contribute to a more positive evaluation. Another variation we proposed was to
use the subClassOf semantic relations present in the ontology to classify the text
not only based on the words that coincide with classes in the ontology, but also
with their superclasses.

Exercise 7. Since one implementation of the text classifier was available, we
concluded this Prolog practical session by asking the students that could not
complete Exercise 6, to experiment with our own implementation in order to see
a program at work.

Discussion. Although we did not carefully trace the results achieved by the stu-
dents during their practical experience, we can say that about 10-12 students
out of 39 were able to complete the 6th exercise. This result was extremely sur-
prising for all the instructors. In fact, having taught Prolog for many years to
students with a solid background on imperative and object-oriented program-
ming, we were aware of the difficulties that students meet when moving from
the logic programming theory to the practice and we did not expect that some
students could face and complete Exercise 6.

Without claiming to make a scientifically founded assertion, our feeling was
that the lack of skills in imperative programming of the high school students,
made them open to “think directly in Prolog”, without trying to design im-
perative algorithms and then fit them into logical rules. We plan to take more
precise statistics on the completion of the practical exercises in the next edi-
tions of the workshop, and maybe propose this course also to students with a
computer science background, in order to confirm these feelings.

6 Evaluation

Our evaluation is targeted to understand — in a quantitative way — whether
the students were able to improve their computational thinking capabilities after
the workshop.

To this purpose, data were collected the first and the last day of the workshop
via a questionnaire, with some overlap w.r.t. the general one. The aim was to
collect information about the profile of the students and to check their ability to
solve easy logic problems. The questionnaire was proposed before and after the
experience in order to test whether the experience increased student’s knowledge
of the subjects.

A First part (profile part) of the specific questionnaire asked students to
provide information about their gender, grade, their favorite subject at school
(Humanities, Science, Technical subject, Language or Arts), their daily use of
computers (from 1 = less than half an hour, to 4 = more than 2 hours), their per-
ceived level of academic achievement (from 1 = excellent to 4 = barely passing),
whether they were planning to enroll in a course at the University (yes, maybe,
no) and whether they were planning to enroll in a program in Computer Science
(yes, maybe, no). In the Second part (questions part) students were asked to
answer questions based on logic skills; for this part no specific knowledge is pro-
vided or expected. They were recommended to answer only the questions they
were able to solve, without trying to answer randomly. Accordingly, the score
for every answer was: +1 if right, 0 for blank, and -0.5 if wrong. With this choice
of weights, since every question has three alternatives and only one is correct,
choosing randomly between the answers yields an expected score of

1

3
· 1 − 1

3
· 0.5 − 1

3
· 0.5 = 0

We first tested whether the experience increased student’s knowledge of the
subjects. The statistical test is performed by using a paired t-test to check the

difference in the results of the Second part before (Time 1) and after (Time
2) the experience. Our results indicate that at Time 2 students are slightly
more likely to correctly solve questions, but not sufficiently to have a statistical
significance; this emerges even by splitting the population on a subject-base
or on a perceived level-base. As a possible explanation, we could consider the
relatively small amount of questions provided in the questionnaire, and also to
the very condensed format of the training.

C.S.program Post Cert. Post Uncert.

Pre Cert. 23 1
Pre Uncert. 7 4

Fig. 2. Interest of enrollment at the Computer Science program: the rows and the
columns depict respectively the occurrence or the answers during the test before and
after the experience.

Since the experience had the main goal of adequately introducing a Com-
puter Science curriculum, it was also interesting to test whether the experience
modified students’ intentions to enroll either in the University or in the Com-
puter Science program. The difference between certainty and uncertainty in the
intention was tested at Time 1 and Time 2 by performing an exact McNemar
test [12]. Regarding the interest to enroll at the University, there was no sig-
nificant result: only 2 students passed from uncertainty to certainty (p = 0.47).
The same statistical test was performed on the interest to enroll at the Com-
puter Science program and the result showed that a small proportion of students
switched from uncertainty to certainty in their intention to enroll (see Fig. 2)
with a p− value of 0.07. Even if this result is higher than our statistical signifi-
cance threshold (0.05), the fact that the p-value is close to it suggests that the
experience might have helped them make up their mind. Despite the limitations
of this study (i.e., relatively low sample size, small number of questions, lack
of observations by external observers) we can conjecture that with an improved
and enlarged set of questions, significant results can be achieved to better guide
teachers in their choice of course contents.

7 Conclusions

In this paper we have discussed a format for a tutorial about the basic concepts
underlying the computational thinking paradigm using a declarative language
like Prolog. The tutorial is centered around a specific application domain. In this
paper we discussed the domain of Natural Language Processing, Semantic Web
and Ontologies, three hot topics in Computer Science and Artificial Intelligence
with several important real-life applications. The domain was adopted as main
example in a workshop for high school students taught at the University of
Genoa.

The tutorial is based on a crash-course that introduces the application do-
main, followed by lectures on declarative programming, on the use of tools, and
practical sessions to learn the basics of programming, and a final project in
which the students apply their new programming skills to a concrete problem.
Declarative languages are used here to introduce complex concepts like recursive
and inductive definitions with the help of natural language assertions. Ontologies
and natural language processing are particularly useful to give an application-
oriented flavor to the workshop.

References

1. Matteo Baldoni, Cristina Baroglio, Viviana Patti, and Paolo Rena. From tags to
emotions: Ontology-driven sentiment analysis in the social semantic web. Intelli-
genza Artificiale, 6(1):41–54, 2012.

2. Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific
American, pages 29–37, May 2001.

3. Patrick Blackburn, Johan Bos, and Kristina Striegnitz. Learn Prolog Now!, vol-
ume 7 of Texts in Computing. College Publications, 2006.

4. Marcirio Chaves and Cássia Trojahn. Towards a multilingual ontology for ontology-
driven content mining in social web sites. In Proc. of ISWC 2010, Volume I, 2010.

5. Thomas R. Gruber. A translation approach to portable ontology specifications.
Knowl. Acquis., 5(2):199–220, June 1993.

6. Efstratios Kontopoulos, Christos Berberidis, Theologos Dergiades, and Nick Bassil-
iades. Ontology-based sentiment analysis of twitter posts. Expert Syst. Appl.,
40(10):4065–4074, 2013.

7. Robert A. Kowalski. Logic as a computer language for children. In ECAI, pages
2–10, 1982.

8. Robert A. Kowalski. Logic as a computer language for children. In New Horizons in
Educational Computing, (ed. M. Yazdani), Ellis Horwood Ltd., Chichester, pages
121–144, 1984.

9. Robert A. Kowalski. A proposal for an undergraduate degree in the uses of logic. In
Artificial Intelligence in Higher Education, CEPES-UNESCO International Sym-
posium, Prague, CSFR, October 23-25, 1989, Proceedings, pages 94–97, 1989.

10. Maurizio Leotta, Silvio Beux, Viviana Mascardi, and Daniela Briola. My MOoD, a
multimedia and multilingual ontology driven MAS: Design and first experiments in
the sentiment analysis domain. In Cristina Bosco, Erik Cambria, Rossana Dami-
ano, Viviana Patti, and Paolo Rosso, editors, Proceedings of the 2nd Workshop on
Emotion and Sentiment in Social and Expressive Media (ESSEM) 2015, a satellite
workshop of AAMAS 2015, 2015.

11. Hector J. Levesque. Thinking as Computation. The MIT Press, 2012.
12. Quinn McNemar. Note on the sampling error of the difference between correlated

proportions or percentages. Psychometrika, 12(2):153–157, June 1947.
13. Patrick Mendelsohn, T.R.G. Green, and Paul Brna. Programming languages in

education: The search for an easy start. In J.-M. Hoc, T. R. G. Green, R. Samurçay,
and D. J. Gilmore, editors, Psychology of Programming, pages 175–200. London,
Academic Press, 1990.

14. Bo Pang and Lillian Lee. Opinion mining and sentiment analysis. Found. Trends
Inf. Retr., 2(1-2):1–135, January 2008.

15. Jantima Polpinij and Aditya K. Ghose. An ontology-based sentiment classifica-
tion methodology for online consumer reviews. In Proc. of IEEE/WIC/ACM WI-
IAT’08, pages 518–524, 2008.

16. Martin F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.
17. Peter D. Turney. Thumbs up or thumbs down? Semantic orientation applied to

unsupervised classification of reviews. In Proc. of ACL 2002, pages 417–424, 2002.

	Computational Thinking for Beginners: A Successful Experience using Prolog

