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Abstract. When operating on cyclic data, programmers have to take
care in assuring that their programs will terminate; in our opinion, this
is a task for the interpreter. We present a Prolog meta-interpreter that
checks for the presence of cyclic computations at runtime and returns a
failure if this is the case, thus allowing inductive predicates to properly
deal with cyclic terms.
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1 Introduction

Sometimes, non-termination is the desired behavior of a program; most of the
time, it is not. Nevertheless, in a programming language in which all programs
terminate, there are always-terminating programs that cannot be written in
it [11]. Non-termination is a necessary evil, a powerful feature that we need, but
we do not actually want most of the time.

No work has been done to apply inductive semantics to the complete Herbrand
model of Coinductive Logic Programming [8]. With the usual operational seman-
tics, structural-recursive inductive predicates diverge when operating on infinite
terms. Since infinite derivations do not belong to the inductive semantics [3],
we propose a new operational semantics where infinite regular derivations of
inductive predicate fail. While this implies a performance overhead, sometimes it
is what a programmer would have done by hand, but faster and less error-prone.

In section 2, we illustrate briefly the notions of (co-)inductive model and give
the declarative and operational semantics of co-logic programming. In section 3,
we present our contribution, both as operational semantics and as Prolog code,
and show some examples of use. In section 4, we compare our meta-interpreter
with a standard Prolog interpreter. In section 5, we compare our work with the
state of the art, draw conclusions and state possible future work.

2 About Inductive and Coinductive Semantics

Let the Herbrand universe H be a set of terms. We denote a clause as A ←
B1, . . . , Bn where A ∈ H and ∀ i ∈ {1 . . . n} . Bi ∈ H. A logic program P is a
couple (F,C), where F is a set of predicate symbols and C is a set of clauses.
The Herbrand base of P , written HP , is the set of all the ground terms of the



form p(t), where p ∈ F and t is a tuple of terms. An interpretation of P is an
element of P(HP ), where P denotes the power-set constructor. A logic program
P induces a one-step-inference function IP .

IP : P(HP )→ P(HP )

S 7→ {A ∈ HP | (A← B1, . . . , Bn) ∈ P ∧ ∀i ∈ {1 . . . n} . Bi ∈ S}

A model of a logic program P is a fix-point of IP , that is, an interpretation S
such that IP (S) = S.

Consider the logic program {p(1, 2)← true}∪{p(X,X)← p(X,X) | X ∈ H}:
written below in Prolog syntax.

p(1,2).
p(X,X) :- p(X,X).

both {p(1, 2)} and {p(1, 2)} ∪ {p(X,X) ∈ HP | X ∈ HP} are models. Due to
the Knaster–Tarski theorem [10], any logic program has a smallest model, called
inductive, and a biggest one, called coinductive.

The usual Logic Programming (LP) semantics is inductive, therefore HP

contains only atoms inferred by finite derivations [3]; using the coinductive in-
terpretation, we obtain the complete Herbrand base that contains also atoms
inferred by infinite derivations. Simon et al. [7,8] have extended LP to co-Logic
Programming (co-LP), which allows the programmer to choose between inductive
and coinductive semantics for each predicate. The Prolog interpreters SWI-Prolog
and YAP support co-LP.

We show the co-LP operational semantics as given by Ancona and Dovier1 [2].
An hypothetical goal G is a couple 〈E ut L〉, where E is a set of equations and L is
a list of pairs (A,S), where A is an atom and S is a set of atoms that represents
the ancestors of A in the call stack. Given a program P and two hypothetical
goals G = 〈E ut (p(s1, . . . , sn), S1), (A2, S2), . . . , (Au, Su)〉 and G′, we define the
rewriting rule G c̀o G′ by cases as follows:
1. if p is a coinductive predicate and there is an atom p(t1, . . . , tn) in S1

such that E′ = E ∪ {s1 = t1, . . . , sn = tn} is solvable, then G′ = 〈E′ ut
(A2, S2), . . . , (Au, Su)〉;

2. if there is a clause p(t1, . . . , tn)← B1, . . . , Bm that is a renaming of a clause
in P with fresh variables and E′ = E ∪ {s1 = t1, . . . , sn = tn} is solvable,
then G′ = 〈E′ ut (B1, S

′), . . . , (Bm, S′), (A2, S2), . . . , (Au, Su)〉 where S′ =
S1 ∪ {p(s1, . . . , sn)}.

3 Finite failure

Let us consider the problem of checking whether an element appears in a list.

member(E,[E|_]).
member(E,[_|L]) :- member(E,L).

1 The original semantics allows expanding any subgoal. For simplicity, our semantics
always expands the first.



This naïve Prolog definition does not terminate if the second parameter is a
cyclic list not containing E. This is not the desired behavior: we would like member
to either succeed or fail in a finite amount of time. Simply applying coinduction
to member leads to an erroneous semantics: for example, L=[1|L], member(2,L)
succeeds even if L does not contain 2, because the second call unifies with the
first.

The definition to let it work on infinite lists leads to a more convoluted
predicate member2 that relies on the extra-logical cut operator !.

member2(E,L) :- member2 ([],E,L).
member2(H,E,L) :- member(L,H), !, fail.
member2(_,E,[E|_]).
member2(H,E,L) :- L=[_|T], member2 ([L|H],E,T).

The predicate we are trying to define is inherently inductive [7]. Our aim is
to allow inductive predicates to work correctly on the complete Herbrand base.
Since infinite derivations are not computable, the resolution procedure fails when
it finds one.

3.1 Operational semantics

We give the operational semantics where the inductive predicates fail when the
derivation diverges. We define the rewriting rule co in a similar way to rule c̀o
in section 2, except for the second point:
2. if p is not inductive or if there is not an atom p(t1, . . . , tn) in S1 such that

E′ = E ∪ {s1 = t1, . . . , sn = tn} is solvable, use the second point of the
definition of c̀o.
In the second point if the p is coinductive we can behaves as c̀o; if p is

inductive we can proceed with the resolution only if it is not already in the call
stack, co behaves as c̀o. If it is in the call stack than atom could not be resolved
and the resolution will fails.

3.2 Meta-interpreter

The implementation of a meta-interpreter follows the implementation of [1,7,8]
but it returns a failure when it finds a cycle during the resolution inductive
predicate. It is sound and complete with respect to co.

cosld(G) :- solve([],G).
solve(H,(G1,G2)) :- !, solve(H,G1), solve(H,G2).
solve(_,A) :- built_in(A), !, A.
solve(H,A) :- member(A,H), !, coinductive(A).
solve(H,A) :- clause(A,As), solve ([A|H],As).
coinductive (1).

The first argument of solve is the list of already processed atoms, used to avoid
infinite computation; the second is the goal to resolve. The predicate solve has
four clauses:



1. resolution distributes on conjunction as usual, with the same H in both calls,
because it depends only on the ancestors;

2. resolution for built_in predicates is the default one;
3. if the atom A is in the hypotheses, the resolution succeeds if A is coinductive

and fails otherwise;
4. if none of the above applies, the resolution proceeds normally.

Here we can avoid keeping the coinductive hypotheses for every atom in the
goals, because we exploit the Prolog call stack to have the same result.

To mark a predicate p as coinductive, the source file must contain the
fact coinductive(p(_,. . .,_)).. The declaration coinductive(1) assures that the
coinductive predicate is defined even if there are no coinductive predicates.

This meta-interpreter keeps track of every non-built_in atom. We can im-
prove efficiency by requiring to explicitly mark the inductive predicates and using
the standard resolution procedure for the unmarked ones.

3.3 More Examples

Infinite trees. Let us represent a tree as t(E,Ts), where E is the element of the
node and Ts is a finite list of sub-trees.

The predicate member_tree(E,T) searches a tree T for a node with element E.

member_tree(E,t(E, _)).
member_tree(E,t(_,Ts)) :- member(T,Ts), member_tree(E,T).

When using a standard interpreter, similarly to member and infinite lists, the
predicate member_tree is not guaranteed to terminate with an infinite tree; for
example, T1=t(1,[T1,T2]), T2=t(2,[T2,T3]), T3=t(3,[T3]), member_tree(3,T1)
loops forever. Using our meta-interpreter, the goal succeeds correctly: during the
resolution of the first recursive call member_tree(3,T), the call stack contains the
atom member_tree(3,T1); T unifies with T1, so the goal fails; then, backtracking
takes place, T unifies with T2 and the resolution continues in similar way until
reaching member_tree(3,T3).

Graphs. Finding a path between two nodes is a common operation on graphs.
We encode the previous tree as a graph represented by an adjacency list, obtaining
[1-[1,2],2-[2,3],3-[1,3]].

The predicate path(N1,N2,G,P) searches for a path P from the node N1 to the
node N2 in the graph G.

path(N1,N1,G,[N1]) :- neighbors(N1 ,G,_).
path(N1,N2,G,[N1|P]) :- neighbors(N1 ,G,Ns), member(N3 ,Ns),

path(N3,N2,G,P).
neighbors(N, [N-Ns|_], Ns).
neighbors(N1, [N2-_|G], Ns) :- N1 \= N2, neighbors(N1 , G, Ns).



4 Comparison with ISO Prolog

Our meta-interpreter and a standard Prolog interpreter are not complete with
respect to the inductive interpretation and not comparable to each other. Let us
look at the following predicate.
p(3).
p(A) :- p(B).

In the inductive interpretation of the predicate p, p(x) holds for any x. This is
the behavior of the standard interpreter; but, in our meta-interpreter, p(x) fails
for any x 6= 3, because A and B always unify.

Consider the predicate member, but with the order of the clauses reversed.
member(E,[_|L]) :- member(L).
member(E,[E|_]).

In this case, the query L=[1|L], member(1,L) should succeed, because (1, L) is in
the inductive interpretation. The query succeeds with our meta-interpreter, but
does not terminate with a standard Prolog interpreter.

5 Conclusion

In this work we show an operational semantics that allow inductive predicates
to behave correctly on the complete Herbrand base; moreover we show how it
is possible with a simple meta-interpreter to have inductive predicates that fail
when they have a infinite, but rational, proof.

A meta-interpreter by Ancona [1] executes a user-specified predicate when
it finds a cycle: it can simulate ours by executing fail. Moura obtained similar
results [5]. This system is more expressive, but the relation with the standard
Prolog semantics is not clear.

Tabling [6,9,4] uses a table to store the sub-goals encountered during the
evaluation and their answers. When it finds the same sub-goal again, it uses
the information from the table; this allows to increase performance and ensure
termination. In tabling, when a goal is found in the table but its answer is not
yet available, instead of failing as we do, it suspends the current evaluation and
try another clause. When the resolution of this second clause finish providing an
answer it resume the first one and continue its evaluations using the the answer.
We do not have such behavior, and in this respect, our semantics is similar to
the classical Prolog one.

As future work, we plan to prove soundness with respect to the inductive
semantics and to investigate whether completeness is attainable. Unification is
not ideal for checking whether the resolution procedure is in a loop, because it
succeeds too often. We are looking for a relation that better suits our needs.
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