
Abductive Logic Programming for
Datalog± ontologies

Marco Gavanelli1, Evelina Lamma1, Fabrizio Riguzzi2, Elena Bellodi1,
Riccardo Zese1, and Giuseppe Cota1

1 Dipartimento di Ingegneria – University of Ferrara
2 Dipartimento di Matematica e Informatica – University of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy [name.surname]@unife.it

Abstract. Ontologies are a fundamental component of the Semantic
Web since they provide a formal and machine manipulable model of a
domain. Description Logics (DLs) are often the languages of choice for
modeling ontologies. Great effort has been spent in identifying decidable
or even tractable fragments of DLs. Conversely, for knowledge represen-
tation and reasoning, integration with rules and rule-based reasoning
is crucial in the so-called Semantic Web stack vision. Datalog± is an
extension of Datalog which can be used for representing lightweight on-
tologies, and is able to express the DL-Lite family of ontology languages,
with tractable query answering under certain language restrictions. In
this work, we show that Abductive Logic Programming (ALP) is also
a suitable framework for representing Datalog± ontologies, supporting
query answering through an abductive proof procedure, and smoothly
achieving the integration of ontologies and rule-based reasoning. In par-
ticular, we consider an Abductive Logic Programming framework named
SCIFF and derived from the IFF abductive framework, able to deal
with existentially (and universally) quantified variables in rule heads,
and Constraint Logic Programming constraints. Forward and backward
reasoning is naturally supported in the ALP framework. The SCIFF lan-
guage smoothly supports the integration of rules, expressed in a Logic
Programming language, with Datalog± ontologies, mapped into SCIFF
(forward) integrity constraints. The main advantage is that this inte-
gration is achieved within a single language, grounded on abduction in
computational logic.

1 Introduction

The main idea of the Semantic Web is making information available in a form
that is understandable and automatically manageable by machines [21]. Ontolo-
gies are engineering artefacts consisting of a vocabulary describing some domain,
and an explicit specification of the intended meaning of the vocabulary (i.e., how
concepts should be classified), possibly together with constraints capturing ad-
ditional knowledge about the domain. Ontologies therefore provide a formal and
machine manipulable model of a domain, and this justifies their use in the Se-
mantic Web.

In order to realize this vision, the W3C has supported the development of
a family of knowledge representation formalisms of increasing complexity for
defining ontologies, called Web Ontology Language (OWL). Ontologies are a
fundamental component of the Semantic Web, and Description Logics (DLs) are
often the languages of choice for modeling them.

Several DL reasoners, such us Pellet [32], RacerPro [19] and HermiT [31], are
used to extract implicit information from the modeled ontologies, and most of
them implement the tableau algorithm in a procedural language. Nonetheless,
some tableau expansion rules are non-deterministic, thus requiring to implement
a search strategy in an or-branching search space. A different approach is to
provide a Prolog-based implementation for the tableau expansion rules [34].

Extensive work focused on developing tractable DLs, identifying the DL-Lite
family [14], for which answering conjunctive queries is in AC0 in data complexity.

In a related research direction, [11] proposed Datalog±, an extension of Dat-
alog with existential rules for defining ontologies. Datalog± can be used for
representing lightweight ontologies, and encompasses the DL-Lite family [10].
By suitably restricting the language syntax and adopting appropriate syntactic
conditions, also Datalog± achieves tractability [9].

In this work we consider the Datalog± language and show how ontologies
expressed in this language can be also modeled in an Abductive Logic Program-
ming (ALP) framework, where query answering is supported by the underlying
ALP proof procedure. ALP has been proved a powerful tool for knowledge repre-
sentation and reasoning [24], taking advantage from ALP operational support as
(static or dynamic) verification tool. ALP languages are usually equipped with
a declarative (model-theoretic) semantics, and an operational semantics given
in terms of a proof-procedure. Several abductive proof procedures have been de-
fined (both backward, forward, and a mix of the two such), with many different
applications (diagnosis, monitoring, verification, etc.). Among them, the IFF ab-
ductive proof-procedure [17] was proposed to deal with forward rules, and with
non-ground abducibles. This proof procedure has been later extended [4], and
the resulting proof procedure, named SCIFF, can deal with both existentially
and universally quantified variables in rule heads, and Constraint Logic Pro-
gramming (CLP) constraints [23]. The resulting system was used for modeling
and implementing several knowledge representation frameworks, such as deontic
logic [6], normative systems, interaction protocols for multi-agent systems [7],
Web services choreographies [2], etc.

Here we concentrate on Datalog± ontologies, and show how an ALP language
enriched with quantified variables (existential to our purposes) can be a useful
knowledge representation and reasoning framework for them. We do not focus
here on complexity results of the overall system, which is, however, not tractable.

Forward and backward reasoning is naturally supported by the ALP proof
procedure, and the considered SCIFF language smoothly supports the integra-
tion of rules, expressed in a Logic Programming language, with ontologies ex-
pressed in Datalog±. In fact, SCIFF allows us to map Datalog± ontologies into
the forward integrity constraints on which it is based.

In the following, Section 2 briefly introduces Datalog±. Section 3 introduces
Abductive Logic Programming and the SCIFF language, with a mention to its
abductive proof procedure. Section 4 shows how the considered Datalog± lan-
guage can be mapped into SCIFF, and the kind of queries that the abductive
proof procedure can handle. Section 5 illustrates related work. Section 6 con-
cludes the paper, and outlines future work.

2 Datalog±

Datalog± extends Datalog by allowing existential quantifiers, the equality pred-
icate and the truth constant false in rule heads. Datalog± can be used for rep-
resenting lightweight ontologies and is able to express the DL-Lite family of
ontology languages [10]. By suitably restricting the language syntax, Datalog±

achieves tractability [9].
In order to describe Datalog±, let us assume (i) an infinite set of data con-

stants ∆, (ii) an infinite set of labeled nulls ∆N (used as “fresh” Skolem terms),
and (iii) an infinite set of variables ∆V . Different constants represent different
values (unique name assumption), while different nulls may represent the same
value. We assume a lexicographic order on ∆ ∪ ∆N , with every symbol in ∆N

following all symbols in ∆. We denote by X vectors of variables X1, . . . , Xk with
k ≥ 0. A relational schema R is a finite set of relation names (or predicates).
A term t is a constant, null or variable. An atomic formula (or atom) has the
form p(t1, . . . , tn), where p is an n-ary predicate, and t1, . . . , tn are terms. A
database D for R is a possibly infinite set of atoms with predicates from R
and arguments from ∆ ∪ ∆N . A conjunctive query (CQ) over R has the form
q(X) = ∃YΦ(X,Y), where Φ(X,Y) is a conjunction of atoms having as argu-
ments variables X and Y and constants (but no nulls). A Boolean CQ (BCQ)
over R is a CQ having head predicate q of arity 0 (i.e., no variables in X).

We often write a BCQ as the set of all its atoms, having constants and
variables as arguments, and omitting the quantifiers. Answers to CQs and BCQs
are defined via homomorphisms, which are mappings µ : ∆ ∪∆N ∪∆V → ∆ ∪
∆N∪∆V such that (i) c ∈ ∆ implies µ(c) = c, (ii) c ∈ ∆N implies µ(c) ∈ ∆∪∆N ,
and (iii) µ is naturally extended to term vectors, atoms, sets of atoms, and
conjunctions of atoms. The set of all answers to a CQ q(X) = ∃YΦ(X,Y) over
a database D, denoted q(D), is the set of all tuples t over ∆ for which there
exists a homomorphism µ : X ∪Y → ∆ ∪∆N such that µ(Φ(X,Y)) ⊆ D and
µ(X) = t. The answer to a BCQ q = ∃YΦ(Y) over a database D, denoted q(D),
is Yes, denoted D |= q, iff there exists a homomorphism µ : Y → ∆ ∪∆N such
that µ(Φ(Y)) ⊆ D, i.e., if q(D) 6= ∅.

Given a relational schema R, a tuple-generating dependency (or TGD) F is
a first-order formula of the form ∀X∀YΦ(X,Y) → ∃ZΨ(X,Z), where Φ(X,Y)
and Ψ(X,Z) are conjunctions of atoms over R, called the body and the head of
F , respectively. Such F is satisfied in a database D for R iff, whenever there
exists a homomorphism h such that h(Φ(X,Y)) ⊆ D, there exists an extension
h′ of h such that h′(Ψ(X,Z)) ⊆ D. We usually omit the universal quantifiers in

TGDs. A TGD is guarded iff it contains an atom in its body that involves all
variables appearing in the body.

Query answering under TGDs is defined as follows. For a set of TGDs T onR,
and a database D for R, the set of models of D given T , denoted mods(D,T),
is the set of all (possibly infinite) databases B such that D ⊆ B and every
F ∈ T is satisfied in B. The set of answers to a CQ q on D given T , denoted
ans(q,D, T), is the set of all tuples t such that t ∈ q(B) for all B ∈ mods(D,T).
The answer to a BCQ q over D given T is Yes, denoted D ∪ T |= q, iff B |= q
for all B ∈ mods(D,T).

A Datalog± theory may contain also negative constraints (or NC), which are
first-order formulas of the form ∀XΦ(X) → ⊥, where Φ(X) is a conjunction
of atoms (not necessarily guarded). The universal quantifiers are usually left
implicit.

Equality-generating dependencies (or EGDs) are the third component of a
Datalog± theory. An EGD F is a first-order formula of the form ∀XΦ(X) →
Xi = Xj , where Φ(X), called the body of F , is a conjunction of atoms, and
Xi and Xj are variables from X. We call Xi = Xj the head of F . Such F is
satisfied in a database D forR iff, whenever there exists a homomorphism h such
that h(Φ(X)) ⊆ D, it holds that h(Xi) = h(Xj). We usually omit the universal
quantifiers in EGDs.

The chase is a bottom-up procedure for deriving atoms entailed by a database
and a Datalog± theory. The chase works on a database through the so-called
TGD and EGD chase rules.

The TGD chase rule is defined as follows. Given a relational database D for
a schema R, and a TGD F on R of the form ∀X∀YΦ(X,Y)→ ∃ZΨ(X,Z), F is
applicable to D if there is a homomorphism h that maps the atoms of Φ(X,Y) to
atoms of D. Let F be applicable and h1 be a homomorphism that extends h as
follows: for each Xi ∈ X, h1(Xi) = h(Xi); for each Zj ∈ Z, h1(Zj) = zj , where
zj is a “fresh” null, i.e., zj ∈ ∆N , zj 6∈ D, and zj lexicographically follows all
other labeled nulls already introduced. The result of the application of the TGD
chase rule for F is the addition to D of all the atomic formulas in h1(Ψ(X,Z))
that are not already in D.

The EGD chase rule is defined as follows. An EGD F on R of the form
Φ(X) → Xi = Xj is applicable to a database D for R iff there exists a homo-
morphism h : Φ(X)→ D such that h(Xi) and h(Xj) are different and not both
constants. If h(Xi) and h(Xj) are different constants in ∆, then there is a hard
violation of F . Otherwise, the result of the application of F to D is the database
h(D) obtained from D by replacing every occurrence of h(Xi) with h(Xj) if
h(Xi) precedes h(Xj) in the lexicographic order, and every occurrence of h(Xj)
with h(Xi) if h(Xj) precedes h(Xi) in the lexicographic order.

The chase algorithm consists of an exhaustive application of the TGD and
EGD chase rules that may lead to an infinite result. The chase rules are applied
iteratively: in each iteration (1) a single TGD is applied once and then (2) the
EGDs are applied until a fix point is reached. EGDs are assumed to be separable
[12]. Intuitively, separability holds whenever: (i) if there is a hard violation of an

EGD in the chase, then there is also one on the database w.r.t. the set of EGDs
alone (i.e., without considering the TGDs); and (ii) if there is no hard violation,
then the answers to a BCQ w.r.t. the entire set of dependencies equals those
w.r.t. the TGDs alone (i.e., without the EGDs).

The two problems of CQ and BCQ evaluation under TGDs and EGDs are
logspace-equivalent [11]. Moreover, query answering under TGDs is equivalent
to query answering under TGDs with only single atoms in their heads [9]. Hence-
forth, we focus only on the BCQ evaluation problem and we assume that every
TGD has a single atom in its head. A BCQ q on a database D, a set TT of TGDs
and a set TE of EGDs can be answered by performing the chase and checking
whether the query is entailed by the extended database that is obtained. In this
case we write D ∪ TT ∪ TE |= q.

Example 1. Let us consider the following ontology for a real estate information
extraction system, a slight modification of the one presented in Gottlob et al.
[18]:

F1 = ann(X, label), ann(X, price), visible(X)→ priceElem(X)
If X is annotated as a label, as a price and is visible, then it is a price element.

F2 = ann(X, label), ann(X, priceRange), visible(X)→ priceElem(X)
If X is annotated as a label, as a price range, and is visible, then it is a price
element.

F3 = priceElem(E), group(E,X)→ forSale(X)
If E is a price element and is grouped with X, then X is for sale.

F4 = forSale(X)→ ∃P price(X,P)
If X is for sale, then there exists a price for X.

F5 = hasCode(X,C), codeLoc(C,L)→ loc(X,L)
If X has postal code C, and C’s location is L, then X’s location is L.

F6 = hasCode(X,C)→ ∃L codeLoc(C,L), loc(X,L)
If X has postal code C, then there exists L such that C has location L and so
does X.

F7 = loc(X,L1), loc(X,L2)→ L1 = L2
If X has the locations L1 and L2, then L1 and L2 are the same.

F8 = loc(X,L)→ advertised(X)
If X has a location L then X is advertised.

Suppose we are given the database

codeLoc(ox1, central), codeLoc(ox1, south), codeLoc(ox2, summertown)

hasCode(prop1, ox2), ann(e1, price), ann(e1, label), visible(e1),

group(e1, prop1)

The atomic BCQs priceElem(e1), forSale(prop1) and advertised(prop1) eval-
uate to true, while the CQ loc(prop1, L) has answers q(L) = {summertown}.
In fact, even if loc(prop1, z1) with z1 ∈ ∆N is entailed by formula F5, for-
mula F7 imposes that summertown = z1. If F7 were absent then q(L) =
{summertown, z1}.

Answering BCQs q over databases and ontologies containing NCs can be per-
formed by first checking whether the BCQ Φ(X) evaluates to false for each NC
of the form ∀XΦ(X) → ⊥. If one of these checks fails, then the answer to the
original BCQ q is positive, otherwise the negative constraints can be simply
ignored when answering the original BCQ q.

A guarded Datalog± ontology is a quadruple (D,TT , TC , TE) consisting of a
database D, a finite set of guarded TGDs TT , a finite set of negative constraints
TC and a finite set of EGDs TE that are separable from TT . The data complexity
(i.e., the complexity where both the query and the theory are fixed) of evaluating
BCQs relative to a guarded Datalog± theory is polynomial [9].

In the case in which the EGDs are key dependencies and the TGDs are
inclusion dependencies, Cal̀ı et al. [13] proposed a backward chaining algorithm
for answering BCQ. A key dependency κ is a set of EGDs of the form

{r(X, Y1, . . . , Ym), r(X, Y ′1 , ..., Y
′
m)→ Yi = Y ′i }1≤i≤m

A TGD of the form r1(X,Y)→ ∃Zr2(X,Z), where r1 and r2 are predicate names
and no variable appears more than once in the body nor in the head, is called an
inclusion dependency. The key dependencies must not interact with the inclusion
dependencies, similarly to the semantic separability condition mentioned above
for TGDs and EGDs. In this case once it is known that no hard violation occurs,
queries can be answered by considering the inclusion dependencies only, ignoring
the key dependencies. A necessary and sufficient syntactic condition for non
interaction is based on the construction of CD-graphs [13].

3 ALP and its proof procedure

Abductive Logic Programming (ALP, for short) is a family of programming
languages that integrate abductive reasoning into logic programming. An ALP
program is a logic program, consisting of a set of clauses, that can contain in the
body some distinguished predicates, belonging to a set A and called abducibles.
The aim is finding a set of abducibles EXP, built from symbols in A that,
together with the knowledge base, is an explanation for a given known effect
(also called goal G):

KB ∪EXP |= G. (1)

Also, EXP should satisfy a set of logic formulae, called Integrity Constraints
IC:

KB ∪EXP |= IC. (2)

E.g., a knowledge base might contain a set of rules stating that a person is a
nature lover

natureLover(X)← hasAnimal(X,Y),pet(Y).
natureLover(X)← biologist(X).

From this knowledge base one can infer, e.g., that each person who owns a pet
is a nature lover. However, in some cases we might have the information that

kevin is a nature lover, and wish to infer more information about him. In such a
case we might label predicates hasAnimal, pet and biologist as abducible (in
the following, abducible predicates are written in bold) and apply an abductive
proof procedure to the knowledge base. Two explanations are possible: either
there exists an animal that is owned by kevin and that is a pet:

(∃Y) hasAnimal(kevin, Y),pet(Y)

or kevin is a biologist:

biologist(kevin)

We see that the computed answer includes abduced atoms, which can contain
variables.

Integrity constraints can help reducing the number of computed explana-
tions, ruling out those that are not possible. For example, the following integrity
constraint states that to become a biologist one needs to be at least 25 years
old:

biologist(X),age(X,A)→ A ≥ 25

We might know that kevin is a child, and have a definition of the predicate
child:

child(X)← age(X,A), A < 10.

In this example we see the usefulness of constraints as in Constraint Logic Pro-
gramming [23]: the symbols <,≥, ... are handled as constraints, i.e., they are not
predicates defined in a knowledge base, but they associate a numeric domain to
the involved variables and restrict it according to constraint propagation. Now,
the goal natureLover(kevin), child(kevin) returns only one possible explana-
tion:

(∃Y)(∃A) hasAnimal(kevin, Y),pet(Y),age(kevin,A) A < 10

since the option that kevin is a biologist is ruled out. Note that we do not need
to know the exact age of kevin to rule out the biologist hypothesis.
SCIFF [4] is a language in the ALP class, originally designed to model and

verify interactions in open societies of agents [7], and it is an extension of the
IFF proof-procedure [17]. As in the IFF language, it considers forward integrity
constraints of the form

body → head

where the body is a conjunction of literals and the head is a disjunction of
conjunctions of literals. While in the IFF the literals can be built only on defined
or abducible predicates, in SCIFF they can also be CLP constraints, occurring
events (only in the body), or positive and negative expectations.

Definition 1. A SCIFF Program is a pair 〈KB, IC〉 where KB is a set of
clauses and IC is a set of forward rules called Integrity Constraints (ICs, for
short in the following).

SCIFF considers a (possibly dynamically growing) set of facts (named event
set) HAP, that contains ground atoms H(Event[, T ime]). This set can grow
dynamically, during the computation, thus implementing a dynamic acquisi-
tion of events. Some distinguished abducibles are called expectations. A posi-
tive expectation, written E(Event[, T ime]) means that a corresponding event
H(Event[, T ime]) is expected to happen, while EN(Event[, T ime]) is a negative
expectation, and requires events H(Event[, T ime]) not to happen. To simplify
the notation, we will omit the Time argument from events and expectations
when not needed, as it is for our purposes.

While events are ground atoms, expectations can contain variables. In pos-
itive expectations all variables are existentially quantified (expressing the idea
that a single event is enough to support them), while negative expectations are
universally quantified, so that any event matching with a negative expectation
leads to inconsistency with the current hypothesis. CLP [23] constraints can be
imposed on variables. The computed answer includes in general three elements:
a substitution for the variables in the goal (as usual in Prolog), the constraint
store (as in CLP), and the set EXP of abduced literals.

The declarative semantics of SCIFF includes the classic conditions of abduc-
tive logic programming

KB ∪HAP ∪EXP |= G
KB ∪HAP ∪EXP |= IC

plus specific conditions to support the confirmation of expectations.
Positive expectations are confirmed if

KB ∪HAP ∪EXP |= E(X)→ H(X),

while negative expectations are confirmed (or better they are not violated) if

KB ∪HAP ∪EXP |= EN(X) ∧H(X)→ false.

The declarative semantics of SCIFF also requires that the same event cannot
be expected both to happen and not to happen

KB ∪HAP ∪EXP |= E(X) ∧EN(X)→ false (3)

The SCIFF proof-procedure is a rewriting system that defines a proof tree,
whose nodes represent states of the computation. A set of transitions rewrite a
node into one or more children nodes. SCIFF inherits the transitions of the IFF
proof-procedure [17], and extends it in various directions. We recall the basics of
SCIFF; a complete description is in [4], with proofs of soundness, completeness,
and termination. An efficient implementation of SCIFF is described in [5].

Each node of the proof is a tuple T ≡ 〈R,CS, PSIC,EXP〉, where R is the
resolvent, CS is the CLP constraint store, PSIC is a set of implications (called
Partially Solved Integrity Constraints) derived from propagation of integrity con-
straints, and EXP is the current set of abduced literals. The main transitions,
inherited from the IFF are:

Unfolding replaces a (non abducible) atom with its definitions;
Propagation if an abduced atom a(X) occurs in the condition of an IC (e.g.,

a(Y)→ p), the atom is removed from the condition (generatingX = Y → p);
Case Analysis given an implication containing an equality in the condition

(e.g., X = Y → p), generates two children in logical or (in the example,
either X = Y and p, or X 6= Y);

Equality rewriting rewrites equalities as in the Clark’s equality theory;
Logical simplifications other simplifications like (true→ A)⇔ A, etc.

SCIFF includes also the transitions of CLP [23] for constraint solving. Finally,
in this paper we consider the generative version of SCIFF, previously called
also g-SCIFF [3], in which also the H events in the set HAP are considered
as abducibles, and can be assumed like the other abducible predicates, beside
being provided as input in the event set HAP.

4 Mapping Datalog± into ALP programs

In this section, we show that a Datalog± program can be represented as a set
of SCIFF integrity constraints and an event set. SCIFF abductive declarative
semantics provides the model-theoretic counterpart to Datalog± semantics. Op-
erationally, query answering is achieved bottom-up via the chase in Datalog±,
while in the ALP framework it is supported by the SCIFF proof procedure.
SCIFF is able to integrate a knowledge base KB, expressed in terms of Logic
Programming clauses, possibly with abducibles in their body, and to deal with
integrity constraints.

To our purposes, we consider only SCIFF programs with an empty KB, ICs
with only conjunctions of positive expectations and CLP constraints (or false)
in their heads. We show that this subset of the language suffices to represent
Datalog± ontologies.

We map the finite set of relation names of a Datalog± relational schema R
into the set of predicates of the corresponding SCIFF program.

Definition 2. The τ mapping is recursively defined as follows, where A is an
atom, M can be either H or E, and F1, F2, . . . are formulae:

τ(Body → Head) = τH(Body)→ τE(Head)
τH(A) = H(A)
τE(A) = E(A)

τM(F1 ∧ F2) = τM(F1) ∧ τM(F2)
τM(false) = false

τM(Yi = Yj) = Yi = Yj
τE(∃X A) = A

A Datalog± database D for R corresponds to the (possibly infinite) SCIFF
event set HAP, since there is a one-to-one correspondence between each tuple in
D and each (ground) fact in HAP. This mapping is denoted as HAP = τH(D).

Notice that since the SCIFF event set can dynamically grow, new constants can
be introduced as a new event occurs (these new constants correspond to those
in the set ∆N of Datalog±).

A Datalog TGD F of the kind body → head is mapped into the SCIFF
integrity constraint IC = τ(F), where the body is mapped into conjunctions of
SCIFF atoms, and head into conjunctions of SCIFF abducible atoms. Existential
quantifications of variables occurring in the head of the TGD are maintained in
the head of the SCIFF IC, but they are left implicit in the SCIFF syntax, while
the rest of the variables are universally quantified with scope the entire IC.

Given a set of TGDs T , let us denote the mapping of T into the corresponding
set IC of SCIFF integrity constraints, as IC = τ(T).

Recall that for a set of TGDs T on R, and a database D for R, the set of
models of D given T , denoted mods(D,T), is the set of all (possibly infinite)
databases B such that D ⊆ B and every F ∈ T is satisfied in B. For any such
database B, we can prove that there exists an abductive explanation EXP =
τE(B), HAP′ = τH(B) such that:

HAP′ ∪EXP |= IC

where HAP′ ⊇ HAP = τH(D), and IC = τ(T).
Finally, Datalog± negative constraints NC are mapped into SCIFF ICs with

head false, and equality-generating dependencies EGDs into SCIFF ICs, each
one with an equality CLP constraint in its head.

Therefore, informally speaking, the set of models of D given T , mods(D,T),
corresponds to the set of all the abductive explanations EXP satisfying the set
of SCIFF integrity constraints IC = τ(T).

A Datalog± CQ q(X) = ∃YΦ(X,Y) over R is mapped into a SCIFF goal
G = τE(Φ(X,Y)), where τE(Φ(X,Y)) is a conjunction of SCIFF atoms. No-
tice that in the SCIFF framework we have therefore a goal with existential
variables only, and among them, we are interested in computed answer substi-
tutions for the original (tuple of) variables X (and therefore Y variables can be
made anonymous).

A Datalog± BCQ q = Φ(Y) is mapped similarly: G = τE(Φ(Y)).
Recall that in Datalog± the set of answers to a CQ q on D given T , denoted

ans(q,D, T), is the set of all tuples t such that t ∈ q(B) for all B ∈ mods(D,T).
With abuse of notation, we will write q(t) to mean answer t for q on D given T .

We can hence state the following theorems for (model-theoretic) completeness
of query answering.

Theorem 1 (Completeness of query answering). For each answer q(t) of
a CQ q(X) = ∃YΦ(X,Y) on D given T , in the corresponding SCIFF program
〈∅, τ(IC)〉 there exists an answer substitution θ and an abductive explanation
EXP ∪HAP′ for goal G = τE(Φ(X,)) such that:

〈∅, τ(IC)〉 |=g
HAP Gθ

where HAP = τH(D), IC = τ(T), and Gθ = τE(Φ(t,)).

Corollary 1 (Completeness of boolean query answering). If the answer
to a BCQ q = ∃YΦ(Y) over D given T is Yes, denoted D ∪ T |= q, then in
the corresponding SCIFF program there exists an abductive explanation EXP∪
HAP′ such that:

〈∅, τ(IC)〉 |=g
HAP Gθ

where HAP = τH(D), IC = τ(T), and G = τE(Φ()).

The SCIFF proof procedure has been proved sound w.r.t. SCIFF declarative
semantics in [4], therefore for each abductive explanation EXP for a given goal
G in a SCIFF program, there exists a SCIFF-based computation producing a set
of abducibles (positive expectations to our purposes) δ ⊆ EXP, and a computed
answer substitution for goal G possibly more general than θ.

Example 2 (Real estate information extraction system in ALP). Let us conclude
this section by re-considering the Datalog± ontology for the real estate informa-
tion extraction system of Example 1. TGDs F1-F8 are one-to-one mapped into
the following SCIFF ICs:
IC1 : H(ann(X, label)),H(ann(X, price)),H(visible(X))→ E(priceElem(X))
IC2 : H(ann(X, label)),H(ann(X, priceRange)),H(visible(X))

→ E(priceElem(X))
IC3 : H(priceElem(E)),H(group(E,X))→ E(forSale(X))
IC4 : H(forSale(X))→ (∃P) E(price(X,P))
IC5 : H(hasCode(X,C)),H(codeLoc(C,L))→ E(loc(X,L))
IC6 : H(hasCode(X,C))→ (∃L) E(codeLoc(C,L)),E(loc(X,L))
IC7 : H(loc(X,L1)),H(loc(X,L2))→ L1 = L2
IC8 : H(loc(X,L))→ E(advertised(X))

The database is then simply mapped into the following event set HAP:

{H(codeLoc(ox1, central)),H(codeLoc(ox1, south)),

H(codeLoc(ox2, summertown)),H(hasCode(prop1, ox2)),H(ann(e1, price)),

H(ann(e1, label)),H(visible(e1)),H(group(e1, prop1))}

The SCIFF proof procedure applies ICs in a forward manner, and it infers
the following set of abducibles from the program above:

EXP = {E(priceElem(e1)),E(forSale(prop1)),∃P E(price(prop1, P)),

E(loc(prop1, summertown)),E(advertised(prop1))}

plus the corresponding H atoms, that are not reported for the sake of brevity.
Each of the (ground) atomic queries of Example 1 is entailed in the SCIFF

program above, since there exist sets EXP and HAP′ such that:

HAP′ ∪EXP |= E(priceElem(e1)),E(forSale(prop1)),E(advertised(prop1))

The query ∃L E(loc(prop1, L)) is entailed as well, considering the unification
L = summertown since:

HAP′ ∪EXP |= E(loc(prop1, summertown)).

It is worth noting that the SCIFF framework is much more expressive than
the restricted version used in this paper; in fact, in the mapping we used an
empty KB, but in general the Knowledge Base can be a logic program, that can
includes expectations, abducible literals, as well as CLP constraints. Beside the
forward propagation of Integrity Constraints, SCIFF supports also backward
reasoning.

5 Related Work

Various approaches has been followed to reason upon ontologies.
Usually, DL reasoners implement a tableau algorithm using a procedural lan-

guage. Since some tableau expansion rules are non-deterministic, the developers
have to implement a search strategy from scratch.

Pellet [32] is a free open-source Java-based reasoner for SROIQ with simple
datatypes (i.e., for OWL 1.1). It implements a tableau-based decision proce-
dure for general TBoxes (subsumption, satisfiability, classification) and ABoxes
(retrieval, conjunctive query answering). It supports the OWL-API, the DIG
interface, and the Jena interface and comes with numerous other features.

Pellet can compute the set of all the explanations for given queries by exploit-
ing the tableau algorithm. An explanation is roughly a subset of the knowledge
base (KB) that is sufficient for entailing the query. It applies Reiter’s hitting
set algorithm [29] to find all the explanations. This is a black box method: Pel-
let repeatedly removes an axiom from the KB and then computes again a new
explanation exploiting the tableau algorithm on the new KB, recording all the
different explanations so found.

Differently from Pellet, reasoners written in Prolog can exploit Prolog’s back-
tracking facilities for performing the search. This has been observed in various
works. In [8, 28] the authors proposed a tableau reasoner in Prolog for First Or-
der Logic (FOL) based on free-variable semantic tableaux. However, the reasoner
is not tailored to DLs.

Hustadt, Motik and Sattler [22] presented the KAON2 algorithm that ex-
ploits basic superposition, a refutational theorem proving method for FOL with
equality, and a new inference rule, called decomposition, to reduce a SHIQ KB
into a disjunctive Datalog program, while DLog [25, 33] is an ABox reasoning
algorithm for the SHIQ language that allows to store the content of the ABox
externally in a database and to answer instance check and instance retrieval
queries by transforming the KB into a Prolog program.

Meissner presented the implementation of a reasoner for the DL ALCN writ-
ten in Prolog [26] which was then extended and reimplemented in the Oz lan-
guage [27]. Starting from [26], Herchenröder [20] implemented heuristic search
techniques in order to reduce the inference time for the DL ALC. Faizi [15] added
to [20] the possibility of returning information about the steps executed during
the inference process for queries but still handled only ALC.

A different approach is the one by Ricca et al. [30] that presented OntoDLV,
a system for reasoning on a logic-based ontology representation language called

OntoDLP. This is an extension of (disjunctive) ASP and can interoperate with
OWL. OntoDLV rewrites the OWL KB into the OntoDLP language, can retrieve
information directly from external OWL Ontologies and answers queries by using
ASP.

TRILL [34, 35] adopts a Prolog-based implementation for the tableau expan-
sion rules for ALC description logics. Differently from previous reasoners, TRILL
is also able to return explanations for the given queries. Moreover, TRILL differs
in particular from DLog for the possibility of answering general queries instead
of instance check and instance retrieval only.

As reported in Section 2, reasoning upon Datalog± ontologies is achieved,
instead, via the chase bottom-up procedure, which is exploited for deriving atoms
entailed by a database and a Datalog± theory.

In this work, instead, we apply an abductive logic programming proof-procedure
to reason upon ontologic data. It is worth to notice that in a previous work [1]
the SCIFF proof-procedure was interfaced with Pellet to perform ontological
reasoning; in the current work, instead, SCIFF is directly used to perform the
reasoning by mapping atoms in the ontology to SCIFF concepts (like events and
expectations).

6 Conclusions and Future Work

In this paper, we addressed representation and reasoning for Datalog± ontologies
in an Abductive Logic Programming framework, with existential (and univer-
sal) variables, and Constraint Logic Programming constraints in rule heads. The
underlying proof procedure, named SCIFF, is inspired by the IFF proof proce-
dure, and had been implemented in Constraint Handling Rules [16]. The SCIFF
system has already been used for modeling and implementing several knowledge
representation frameworks, also providing an effective reasoning system.

Here we have considered Datalog± ontologies, and shown how the SCIFF
language can be a useful knowledge representation and reasoning framework for
them. In fact, the underlying abductive proof procedure can be directly exploited
as an ontological reasoner for query answering and consistency check. To the best
of our knowledge, this is the first application of ALP to model and reason upon
ontologies.

Moreover, the considered SCIFF language smoothly supports the integration
of rules, expressed in a Logic Programming language, with ontologies expressed
in Datalog±, since a logic program can be added as (non-empty) KB to the set
of ICs, therefore considering deductive rules besides the forward ICs themselves.
Moreover, through dynamic acquisition of events in its HAP set, SCIFF might
also supports inline incrementality of the extensional part of the knowledge base
(namely, the ABox).

Many issues have not been addressed in this paper, and they will be subject
of future work. First of all, we have not focused here on complexity results. Fu-
ture work will be devoted to identify syntactic conditions guaranteeing tractable
ontologies in SCIFF, in the style of what has been done for Datalog±.

A second issue for future work concerns experimentation and comparison
with other approaches, even not Logic Programming (LP, for short) based, on
real-size ontologies.

Finally, SCIFF language is richer than the subset here used to represent
Datalog± ontologies. It can support, in fact, negative expectations in rule heads,
with universally quantified variables too, which basically represent the fact that
something ought not to happen, and the proof procedure can identify violations
to them.

Therefore, the richness of the language, and the potential of its abductive
proof procedure pave the way to add further features to Datalog± ontologies.

References

1. Alberti, M., Cattafi, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Montali,
M., Torroni, P.: A computational logic application framework for service discovery
and contracting. International Journal of Web Services Research 8(3), 1–25 (2011)

2. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Montali, M.: An
abductive framework for a-priori verification of web services. In: Maher, M. (ed.)
Proceedings of the Eighth Symposium on Principles and Practice of Declarative
Programming. pp. 39–50. ACM Press, New York, USA (Jul 2006)

3. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Security
protocols verification in Abductive Logic Programming: a case study. In: Dikenelli,
O., Gleizes, M.P., Ricci, A. (eds.) Proceedings of ESAW’05, Lecture Notes in Ar-
tificial Intelligence, vol. 3963, pp. 106–124. Springer-Verlag (2006)

4. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Ver-
ifiable agent interaction in abductive logic programming: the SCIFF framework.
ACM Transactions on Computational Logic 9(4) (2008)

5. Alberti, M., Gavanelli, M., Lamma, E.: The CHR-based implementation of the
SCIFF abductive system. Fundamenta Informaticae 124(4), 365–381 (2013)

6. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Sartor, G., Torroni, P.: Mapping
deontic operators to abductive expectations. Computational and Mathematical
Organization Theory 12(2–3), 205 – 225 (Oct 2006)

7. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Specification and
verification of agent interactions using social integrity constraints. Electronic Notes
in Theoretical Computer Science 85(2) (2003)

8. Beckert, B., Posegga, J.: leanTAP: Lean tableau-based deduction. J. Autom. Rea-
soning 15(3), 339–358 (1995)

9. Cal̀ı, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering un-
der expressive relational constraints. In: International Conference on Principles of
Knowledge Representation and Reasoning. pp. 70–80. AAAI Press (2008)

10. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework
for tractable query answering over ontologies. In: Symposium on Principles of
Database Systems. pp. 77–86. ACM (2009)

11. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: Tractable query answering over ontologies
with Datalog±. In: International Workshop on Description Logics. CEUR Work-
shop Proceedings, vol. 477. CEUR-WS.org (2009)

12. Cal̀ı, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog±: A family
of logical knowledge representation and query languages for new applications. In:

IEEE Symposium on Logic in Computer Science. pp. 228–242. IEEE Computer
Society (2010)

13. Cal̀ı, A., Gottlob, G., Pieris, A.: Tractable query answering over conceptual
schemata. In: International Conference on Conceptual Modeling. LNCS, vol. 5829,
pp. 175–190. Springer (2009)

14. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The dl-lite family. J.
Autom. Reasoning 39(3), 385–429 (2007)

15. Faizi, I.: A Description Logic Prover in Prolog. Bachelor’s thesis, Informatics Math-
ematical Modelling, Technical University of Denmark (2011)

16. Frühwirth, T.: Theory and practice of constraint handling rules. Journal of Logic
Programming 37(1-3), 95–138 (Oct 1998)

17. Fung, T.H., Kowalski, R.A.: The IFF proof procedure for abductive logic program-
ming. Journal of Logic Programming 33(2), 151–165 (Nov 1997)

18. Gottlob, G., Lukasiewicz, T., Simari, G.I.: Conjunctive query answering in proba-
bilistic Datalog+/- ontologies. In: International Conference on Web Reasoning and
Rule Systems. LNCS, vol. 6902, pp. 77–92. Springer (2011)

19. Haarslev, V., Hidde, K., Möller, R., Wessel, M.: The racerpro knowledge represen-
tation and reasoning system. Semantic Web 3(3), 267–277 (2012)

20. Herchenröder, T.: Lightweight Semantic Web Oriented Reasoning in Prolog:
Tableaux Inference for Description Logics. Master’s thesis, School of Informatics,
University of Edinburgh (2006)

21. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
CRCPress (2009)

22. Hustadt, U., Motik, B., Sattler, U.: Deciding expressive description logics in the
framework of resolution. Inf. Comput. 206(5), 579–601 (2008)

23. Jaffar, J., Maher, M.: Constraint logic programming: a survey. Journal of Logic
Programming 19-20, 503–582 (1994)

24. Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive Logic Programming. Journal of
Logic and Computation 2(6), 719–770 (1993)

25. Lukácsy, G., Szeredi, P.: Efficient description logic reasoning in Prolog: The DLog
system. TPLP 9(3), 343–414 (2009)

26. Meissner, A.: An automated deduction system for description logic with ALCN
language. Studia z Automatyki i Informatyki 28-29, 91–110 (2004)

27. Meissner, A.: A simple distributed reasoning system for the connection calculus.
Vietnam Journal of Computer Science 1(4), 231–239 (2014), http://dx.doi.org/
10.1007/s40595-014-0023-8

28. Posegga, J., Schmitt, P.: Implementing semantic tableaux. In: DAgostino, M., Gab-
bay, D., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp. 581–629.
Springer Netherlands (1999), http://dx.doi.org/10.1007/978-94-017-1754-0_
10

29. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

30. Ricca, F., Gallucci, L., Schindlauer, R., Dell’Armi, T., Grasso, G., Leone, N.: On-
toDLV: An ASP-based system for enterprise ontologies. J. Log. Comput. 19(4),
643–670 (2009)

31. Shearer, R., Motik, B., Horrocks, I.: Hermit: A highly-efficient owl reasoner. In:
OWLED (2008)

32. Sirin, E., Parsia, B., Cuenca-Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. Journal of Web Semantics 5(2), 51–53 (2007)

33. Straccia, U., Lopes, N., Lukacsy, G., Polleres, A.: A general framework for rep-
resenting and reasoning with annotated semantic web data. In: Fox, M., Poole,
D. (eds.) Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010. AAAI Press (2010),
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1590

34. Zese, R., Bellodi, E., Lamma, E., Riguzzi, F.: A description logics tableau rea-
soner in Prolog. In: Cantone, D., Asmundo, M.N. (eds.) CILC. CEUR Workshop
Proceedings, vol. 1068, pp. 33–47. CEUR-WS.org (2013)

35. Zese, R., Bellodi, E., Lamma, E., Riguzzi, F., Aguiari, F.: Semantics and infer-
ence for probabilistic description logics. In: Bobillo, F., Carvalho, R.N., da Costa,
P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T.,
Nickles, M., Pool, M. (eds.) Uncertainty Reasoning for the Semantic Web III -
ISWC International Workshops, URSW 2011-2013, Revised Selected Papers. Lec-
ture Notes in Computer Science, vol. 8816, pp. 79–99. Springer (2014)

