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Abstract. Our intuitive understanding of context has been formulated
by Dey, as the information describing the situation of an entity. In the
case of simple information sources, determining the relevant information
describing the situation or context of an entity is straightforward. This
is not the case when several information sources can be used, essentially
to generate high level contexts. We set out to show that extracting the
relevant context information from the combination of multiple informa-
tion sources can be achieved by considering contexts as clusters in the
data. We demonstrate this by analyzing a set of real measured data. A
cluster structure in the data is visualized and it is shown how different
user contexts are associated with different clusters. The cluster structure
of context data can be modelled using a dynamic mixture model which
gives insight into which properties a clustering algorithm should have in
order to be used in a context recognition application.

1 Introduction

In order to understand context and develop applications that can be used for
context recognition the first most important step is to define context. Dey’s
definition of context [1], where context is the information that can be used to
describe the situation of an entity, is a formal statement of our intuitive under-
standing of context. However, in order to understand this definition of context
and apply it in a practical situation we are obliged to define information. In the
case where only a single information source is considered, for example location,
then the information in the source is easily identified. On the other hand when
given a set of information sources that could potentially be used to characterize
a user’s situation the problem remains of identifying which information from the
different sources is relevant in describing the context. In other words, Dey defines
context as information which for a simple information source is obvious and can
be considered low level context but for several sources the definition of relevant
information or high level context is not obvious. In what follows we investigate
how high level contexts can be generated by combining or fusing the output of
several different information sources and our proposition is to define contexts as
clusters in the data. This leads to a very practical definition of context in the
case where information is available from several different sources. Furthermore
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algorithms for clustering data are robust in the presence of noise and hence we
can also include the case of imperfect information sources in our definition of
context. To illustrate what this proposition means in practise, a set of recorded
context sensor data is analyzed. First the direct correlation between the outputs
of the information sources is calculated, a basic indicator of a cluster structure
in the data, and shown to vary between different user contexts. Second, the data
is clustered in an unsupervised manner using the Self-Organizing Map (SOM)
[2] in such a way that the cluster structure can be visualized using the U-Matrix
representation [3]. In this visual representation it is clear that data samples from
the same user context are classified to the same cluster.

Data clustering [4] is a widely used method for feature extraction from noisy
data and as such, based on our proposal, can be used for context recognition
where the extracted features correspond to high level contexts. As pointed out
in [5], [6] many current context aware applications make unrealistic assump-
tions about the quality of the available context information. Typically these
approaches, often based on ontologies [7], [8], [9] make the inherent assump-
tion that the lower-level context information, typically coming from sensors, is
error-free. Hence, our clustering proposal based on data clustering algorithms
which can deal with very noisy and corrupted information in a robust manner
can be considered a novel approach to context recognition. Clustering of sen-
sor data with application to context recognition has been described by [10]. In
this case the clustering was mostly used as a preprocessing stage to generate
cues that could be used in symbolic Artificial Intelligence (AI) techniques and
not considered as a means of fusing information sources to generate higher level
contexts.

In Sec. 2 we briefly describe the set of measured sensor signals used in our
cluster analysis and the different user contexts in which they were recorded. In
Sec. 3 we look at some of the individual sensor signals and their characteristics.
Here we identify and describe some different user contexts recorded in the data.
The correlation and cluster structure of the result of fusing the data from the
different sources is analyzed in Sec. 4. In Sec. 5, based on the discussion in Sec. 4
a dynamic mixture model is suggested as an appropriate means of modelling
context data. In a very brief manner it is pointed out that data which is modelled
by a dynamic mixture model presents problems for classic clustering algorithms.
Sec. 6 contains the conclusions.

2 Sensor Signal Data Set

One of the contributing reasons to the increasing interest in context awareness is
the availability of small, cheap, low power sensors that can be distributed in an
environment or on the user. These sensors can be used to sense different environ-
mental characteristics such as temperature, acceleration, humidity etc. Location
in terms of GSM Cell IDs and location area codes1 can also be considered as
1 In an urban area a cell may have a radius of several 100 meters with a LAC consisting

of several cells.
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a signal, in essence, sensed by a mobile phone. However, despite the fact that
such sensor signals are considered as the basis of context awareness, surprisingly
little real measured data exists. The Nokia Context Dataset is a set of measured
context data and is available at [11]. In what follows the raw signals of this
data set, publicly, available at this location and described in [12] is analyzed.
However, the public version of this data is only available in a quantized form.
A complete description of the data is available in [11], but in brief, the data set
consists of a set of feature files for 43 different recording sessions numbered from
0–42. In each recording session the same user carried a mobile phone, sensor
box and laptop PC, going from home to the workplace or vice-versa. During the
journey the user walks, takes a bus and Metro and sometimes uses a car. On
occasion slightly different or very different routes/modes of transport are taken.
During the session, sensors recorded 3-axis acceleration, atmospheric pressure,
temperature, humidity etc. The ambient audio was recorded on the laptop using
a microphone and sound card. On the mobile phone, the user’s location was
recorded as Cell ID and Location Area Code (LAC) as defined by the GSM
network. After each recording session the sensor signals were low pass filtered
where appropriate and sampled once every second. The audio signal energy was
furthermore averaged over a 10 second interval and the average sampled every
second. Similarly the accelerometer signal magnitude was averaged and sampled
every second to give the average user activity. In what follows different signals
and sets of signals from these recordings are analyzed.

3 Single Sensor Signals

In order to appreciate the diverse nature and characteristics of the individual
sensor signals it is useful to look at an example subset of sensors in a single
recording session. Figure 1 shows the temperature, Cell ID, average user activity
and average background sound level during recording session 35 in the Nokia
Context Dataset. Referring to Fig. 1 (a) it is possible to identify different 7
distinct user contexts which are summarized in Table 1. The user is inside from
0–5 minutes and then briefly walks outside to the metro station between 5–8
minutes. From 8–16 minutes the user is inside the station and takes the Metro.
From 16-22 minutes the user walks to the bus and waits at the bus stop. Between
22-55 minutes the user is in a crowded bus. From the bus the user walks outside
again, briefly walking into to a shop and then continuing home arriving there at
approximately 75 minutes. Some time after 75 minutes the sensor box is removed
from the pocket and placed on a table. The recording took place during the
winter with a substantial difference between the inside and outside temperature.
It is clear there is a certain time lag between a change in real temperature (i.e.
between inside and outside) and the time it takes the thermometer to reach this
real temperature. The reasons for this is due to the location of the thermometer
in the user’s outside pocket which could be considered semi-insulated. This is
compared to the temperature variation after 75 minutes where it would seem
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that when the sensor box is left on the table and in contact with free air then
the temperature stabilizes much quicker.
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Fig. 1. Variation of temperature, Cell ID, average user activity and average sound level
during the single recording session no. 35 from the Nokia Context Dataset at [11].(See
Table 1).

In the measurement of location, as determined by the Cell ID of the GSM
network, Fig. 1 (b) shows a plot of the changes in the Cell ID for the same
recording session. After 75 minutes when the physical location of the device is
static it is clear however the Cell ID changes in a somewhat random manner
between Cell IDs 7, 9 from 75 to approximately 85 minutes and then remains
stable. This of course is related to the the conditions of the GSM network, GSM
network load, and radio transmission environment. Figure 1 (c) shows the av-
erage user activity, as determined from the accelerometer, during the recording.
The activity feature seems quite noisy and even during the bus trip when the
user is stationary there is an elevated activity level, obviously related to the
movement and vibration of the bus. However, even when walking the activity
level changes quite significantly. Figure 1 (d) shows the average sound level dur-
ing the recording. The randomness of this signal is not unlike that of the average
user activity.

Table 2 shows the mean and variance of the average user activity and sound
levels in the different user contexts. It is clear that changes in the characteristics
of a signal are correlated with changes in the user’s context. For example the
average user activity in contexts 1, 2, 3, 4, 6 when the user is moving is greater
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Table 1. Different user contexts and the associated time intervals for session 35 of the
Nokia Context Dataset at [11]. See Fig. 1.

Context
No.

1 2 3 4 5 6 7

minutes 0–5 5–8 8–16 16–22 22–55 55–75 >75

Detail Inside
office

Walk
outside to
Metro

Inside
Metro
station,
travelling
on Metro

Walk to
and wait
at bus
stop

Sit in a
crowded
bus

Walk
outside,
briefly
inside

Arrive
home

than when the user is in the bus in context 5, which is in turn greater than when
the user is at home. Similar difference between the average and variance of the
sound level in different user contexts is also noticeable. For example there is a
factor of 10 difference in the mean and variance between contexts 5, 7, the bus
and home context.

Table 2. Mean and variance of the average user activity and average sound levels for
different user contexts from session 35. See Fig. 1.

Context No. 1 2 3 4 5 6 7

Activity mean 0.1017 0.2747 0.1250 0.1826 0.0541 0.1731 0.0318
level var 0.0133 0.0157 0.0173 0.0285 0.0014 0.0161 0.0056

Sound mean 0.0003 0.0007 0.0014 0.0015 0.0017 0.0009 0.0002
level var (×10−6 ) 0.0552 0.1559 0.3430 0.2373 0.1915 0.6905 0.0146

4 The Fusion of Multiple Sensor Signals

It is straightforward to detect the variation in the characteristics of a single sen-
sor signal during changes of a user context. However it is interesting to analyze
the correlation between the changes in the characteristics of several sensor sig-
nals and changes in user contexts. In fact the combination of a group of sensors
or sources can be defined as a higher level context. In order to obtain a large data
sample and an even distribution of different types of recording sessions the data
from 12 sessions numbered 27, 28, 30, 31, 34, . . . , 39, 41, 42 in the Nokia context
dataset are used. These sessions are pairs of ”going to” and ”coming from work”
recording sessions on the same day. For example session 40 is a coming from work
recording without an associated going to work recording session on the same day
and so is not included. During the following analysis the values of the Cell ID,
LAC, temperature, relative humidity, dew point, average user activity, average
sound level are used to form a 7 dimensional data vector, the numerical values
denoted by x = (x1, x2, x3, x4, x5, x6, x7) ∈ IR7, at every second of the record-
ing. The vector x represents the fusion of the information sources. Over the 12
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recording sessions this corresponds to a total of over 59, 000 data samples corre-
sponding to over 16 hours of recorded context data. Note, that strictly speaking,
representing Cell ID and LAC by real numbers as part of a vector is dubious
in general. However, in the case of these recordings it turns out for the most
part, rather by accident than design, the consecutive Cell ID and LAC numbers
do actually indicate the relative physical proximity of the Cells and LACs to
each other as can be understood from Fig. 1 (b) and for this reason only, they
are treated as real numbers. Each of the variables xi, i = 1, . . . , 7 is normalized
before processing by removing the average and dividing by the variance. Table 3
shows the cross correlation matrix between the different variables over all data
samples and hence user contexts. Some general observations include an expected
general high correlation of 0.7 between x3, x5 the temperature and dew point
and 0.87 between x4, x5 the humidity and dew point. The average sound level
is generally significantly correlated with all variables except the average user
activity. On the other hand the average user activity is small but significantly
negatively correlated with the relative humidity and dew point. These correla-
tions are over the whole data set and do not reflect the correlations that may
exist between variables in different user contexts. In Table 4 the correlation coef-
ficients between the xi’s in context 2 (8–25 minutes) of session 35 are illustrated,
corresponding to the user walking to the Metro station. Clearly now there is a
change in the correlation coefficients with respect to the general case and it seems
that more of the variables are strongly positively correlated. The correlation is
strong between the Cell ID and LAC as the distance covered is quite small which
also means these two variables are strongly correlated with all other variables.
Apart from the Cell ID and LAC compared to the general case of Table 3 there
is now a strong negative correlation of −0.53 between the temperature and user
activity. This most likely reflects the case of the user walking outside and being
stationary when inside. The strong positive correlation between average sound
level and user activity is also noticeable reflecting also that the user is walking
outside on a busy street. Table 5 shows the correlation coefficients between the
xi’s in context 5 (22–55 minutes) of session 35, corresponding to the user in a
moving bus. Clearly now there is a change in the correlation coefficients with
respect to both the general case and the case of Table 4. As an example, there is
a decreased correlation between the Cell ID and LAC compared to the previous
2 cases, most likely due to the fact that context 5 is when the user is travelling
in a bus. There is a very large change in the correlation between temperature
and average sound level at −0.52 in context 3 to 0.17 in context 5. It is clear
from further comparison of the correlations that they do change, sometimes quite
significantly between different user contexts.

These cross correlations between the xi’s in different contexts are now inter-
preted as the existence of clusters in the data [4]. One well known approach to
visualization of a cluster structure in high dimensional data is based on the Self-
Organizing (SOM)[2], an unsupervised Artificial Neural Network (ANN). The
SOM consists of a lattice of nodes, in this case a two dimensional lattice, and
associated with each node m is a weight vector wm ∈ IRn with n the dimension
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Table 3. Cross correlation coefficient matrix for the sensor data from the 12 recording
sessions with (x1, x2, x3, x4, x5, x6, x7) representing (Cell ID, LAC, Temperature, Rel-
ative Humidity, Dew Point, average User Activity, average Sound Level) respectively.

x1 x2 x3 x4 x5 x6 x7

x1 1.00 0.53 0.11 0.35 0.32 -0.10 0.43
x2 0.53 1.00 0.25 0.48 0.50 -0.06 0.35
x3 0.11 0.25 1.00 0.27 0.70 0.00 0.20
x4 0.35 0.48 0.27 1.00 0.87 -0.15 0.42
x5 0.33 0.50 0.70 0.87 1.00 -0.12 0.41
x6 -0.10 -0.06 0.00 -0.15 -0.12 1.00 0.02
x7 0.43 0.35 0.20 0.42 0.41 0.02 1.00

Table 4. Cross correlation coefficient matrix for the sensor data recording session 35
for the time interval 5 − 8 minutes, with (x1, x2, x3, x4, x5, x6, x7) representing (Cell
ID, LAC, Temperature, Relative Humidity, Dew Point, average User Activity, average
Sound Level) respectively.

x1 x2 x3 x4 x5 x6 x7

x1 1.00 1.00 -0.69 0.16 -0.31 0.75 0.60
x2 1.00 1.00 -0.69 0.16 -0.31 0.75 0.60
x3 -0.69 -0.69 1.00 -0.71 -0.22 -0.53 -0.52
x4 0.16 0.16 -0.71 1.00 0.84 0.21 0.43
x5 -0.31 -0.31 -0.22 0.84 1.00 -0.14 0.17
x6 0.75 0.75 -0.53 0.21 -0.14 1.00 0.59
x7 0.60 0.60 -0.52 0.43 0.17 0.59 1.00

Table 5. Cross correlation coefficient matrix for the sensor data recording session 35
for the time interval 22 − 55 minutes, with (x1, x2, x3, x4, x5, x6, x7) representing (Cell
ID, LAC, Temperature, Relative Humidity, Dew Point, average User Activity, average
Sound Level) respectively.

x1 x2 x3 x4 x5 x6 x7

x1 1.00 -0.02 -0.27 -0.01 -0.21 0.17 0.21
x2 -0.02 1.00 -0.07 0.38 0.07 -0.20 -0.11
x3 -0.27 -0.07 1.00 0.72 0.98 -0.11 0.17
x4 -0.01 0.38 0.72 1.00 0.85 -0.20 0.18
x5 -0.21 0.07 0.98 0.85 1.00 -0.14 0.19
x6 0.17 -0.20 -0.11 -0.19 -0.14 1.00 0.47
x7 0.21 -0.11 0.17 0.18 0.19 0.47 1.00
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of the input x. After training with all the data samples x the wm form a topo-
logical mapping of the input data which is a vector quantization of the support
S of the input data x. For any given data sample x there is a node v of the SOM
for which ‖x−wv‖ < ‖x−wj‖, ∀j �= v hence v is the best matching or winning
node for x. The distance between the SOM weights, ‖wi − wj‖, of neighboring
lattice nodes i, j is inversely proportional to the probability distribution px of x
in the region of S adjacent to wi, wj . This distance, and hence the representation
of px, is formalized for all nodes in the lattice in terms of the so called U-Matrix
(Unified distance matrix) [3]. Each entry k of the U-Matrix is the average of the
distance ‖wk −wj‖, ∀j ∈ Nk, with Nk the indices of the immediate neighboring
nodes of k on the lattice. For the purposes of visualization the magnitude of
each component of the U-Matrix is coded on the SOM lattice by a color which
for our purposes is a gray-scale. Nodes with lower valued U-Matrix components
(i.e. higher values of px) have a darker color relative to the nodes with higher
valued (i.e. lower values of px) U-Matrix components. Darker colored regions
represent peaks of px and hence cluster centers while lighter colored regions rep-
resent valleys of px and hence boundaries between clusters. A Matlab toolbox
for implementing the SOM and different U-Matrix visualization functions can
be found at http://www.cis.hut.fi/projects/somtoolbox/.

Figure 2 (a) shows the U-Matrix of an SOM trained with data from all the 12
sessions. Despite the limitations of the gray-scale coloring it is possible to visually
distinguish a certain cluster structure. Figure 2 (b) shows the same U-Matrix
as Fig. 2 (a) but with highlighted nodes connected by trajectories, indicating
winning nodes and frequencies, for data samples taken from session 35. In the
first case consecutive data samples x from context 4, in the time interval 16–
22 minutes (i.e. walking outside context) were each classified in the SOM to
determine the winning node for each x. The winning nodes are denoted by •
and the size of the • indicates the number of samples classified to that node.
The trajectories connect the winning nodes of consecutive data samples, the
width of a trajectory line indicating how many times the winner node changed
between the node at each end of the line. In context 4 the winning nodes are
confined to clusters in the top right and top left of the lattice with one trajectory
going to the lower left. In the second case consecutive samples from context 5 in
the time interval 30–40 minutes (i.e. travelling in the bus context) are classified
and the winning nodes denoted by �. In this case the winning nodes are confined
to the bottom right hand corner of the lattice. Finally for consecutive samples in
context 7 in the time interval 80–90 minutes (i.e. at home context) the winning
nodes are denoted by � and they are mainly confined to the center of the lattice.
Hence the data samples representing each context are classified to different nodes
in the SOM and to different clusters. It is clear also that different clusters are very
much confined to defining data samples from a single context with no samples
from context 5 classified to the same cluster as samples from contexts 4 or 7.
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(a) (b)

Fig. 2. U-Matrix for a SOM trained with data from 12 sessions in the Nokia context
dataset indicating the cluster structure of the data. (a) shows the U-Matrix. (b) shows
the same U-Matrix along with the trajectories of the winner nodes for consecutive data
samples from 3 different time segments of session 35 (i.e. • = 16–22 mins, � = 30–40
mins, � = 80–90 mins), illustrated in Fig. 1.
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5 Mixture Models for Modelling Context Data

Having analyzed some of the properties of the signals from individual sensors as
well as their cross correlation in different user contexts, it is now interesting to
consider how it is possible to model these signals. The ability to model a signal
or a set of correlated signals provides insight to the nature and characteristics of
the signals and it can also prove useful for providing simulated input for testing
context recognition systems in the case where real measured data is difficult to
access. Even more important is to gain insight into the characteristics a clustering
algorithm applied to the context recognition algorithm should have in order to
be useful.

In the previous sections where we looked at individual sensors and sets of
sensors, we mainly looked at the statistical properties of the signals the mean,
variance, cross correlations and cluster structure as determined from the vector
quantization abilities of the SOM. Our approach to modelling the signals is then
mostly based on modelling the probability distribution px of the signals. We
use a very basic and general probability model which is based on mixtures of
probability distributions, referred to as mixture modelling [13]. A mixture model
is of the form,

px(x) =
K∑

j=1

p(x|θj)πj (1)

Where πj are the mixture probabilities and the p(x|θj) are the uni-modal com-
ponent distributions with parameters θj . The distribution px(x) is assumed to
be a K-modal probability distribution and describes a cluster structure with K
clusters and πj are such that

∑K
j=1 πj = 1.

The assumption we use is that each cluster corresponds to some user context.
When working with context data it is assumed that at any given time a user is
in a context/cluster and remains there for a finite period of time. However the
formulation of the mixture model in (1) does not reflect this assumption, as the
value of each πj is the probability that at a given time a data sample x is sampled
from cluster/context j. In order to adapt (1), which we call a static model, to our
understanding of context we allow the πj to vary with time. Figure 3 illustrates
how this variation might occur for K = 3, where for example when the user is
in context 1 then π1 ≈ 1 and π2, π3 ≈ 0. This situation lasts for a finite time
period and then the values of the πj change again. The static mixture model of
(1) becomes dynamic and expressed as,

px(x) =
K∑

j=1

p(x|θj)πj(t), (2)

where now the πj vary over time and we interpret the variations in the πj as
variations in context.

The dynamic nature of the mixture model has an important implication when
applying classic clustering algorithms to the context recognition problem. For
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example if the SOM algorithm is applied to clustering context data in a serial
on-line manner the choice of learning parameters becomes very difficult when
the probability distribution of the input data is described by the model in (2),
which in effect means that data samples are not independent and identically
distributed. This is related to the fact that the robust convergence and self-
organizing properties of the SOM, in serial mode operation, are dependent on
the independent and identically distributed nature of the input data samples.

6 Conclusion

In order to understand context and develop applications that can be used for
context recognition the first most important step is to define context. Dey has
formulated an intuitive understanding of context in terms of information. This
intuitive definition does not indicate how to determine which information is
relevant or how to extract his information in the case of multiple sources of in-
formation. We make the proposal that the high level context information can be
extracted from multiple information sources by clustering data from the infor-
mation sources. The clusters in the data are contexts. First by analyzing a set of
measured data, different correlations between the information sources are found
in different contexts. These correlations indicate the existence of clusters in the
data which are visualized using the SOM and a U-Matrix representation. Fur-
thermore it is shown that sequences of data sampled from the same user context
are classified to the same cluster, with sequences of data sampled from another
user context classified to a different cluster. This analysis supports our proposal
to define high level contexts as clusters in data generated from the fusion of
multiple information sources.

Based on this analysis the obvious conclusion is that clustering algorithms
could be used as context recognition algorithms. The probability distribution
of a set of data with a cluster structure can be modelled using a mixture of
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probability distributions. In the case of context data this model needs to be
dynamic in nature. Classic clustering algorithms such as the SOM, used in serial
mode, are limited in the case of data which is modelled by a dynamic probability
mixture model. The implication is that context recognition based on clustering
requires some adaptation of classic clustering algorithms.
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