
Integrating Ontology Debugging and Matching
into the eXtreme Design Methodology

Zlatan Dragisic1,2, Patrick Lambrix1,2, Eva Blomqvist1

(1) Department of Computer and Information Science,
(2) Swedish e-Science Research Centre

Linköping University, 581 83 Linköping, Sweden

Abstract. Ontology design patterns (ODPs) and related ontology de-
velopment methodologies were designed as ways of sharing and reusing
best practices in ontology engineering. However, while the use of these
reduces the number of issues in the resulting ontologies defects can still
be introduced into the ontology due to improper use or misinterpreta-
tion of the patterns. Thus, the quality of the developed ontologies is still
a major concern. In this paper we address this issue by describing how
ontology debugging and matching can be integrated in a state-of-the-art
ontology development methodology based on ontology design patterns
- the eXtreme Design methodology, and show the advantages in a case
study based on a real world ontology.

1 Introduction

Ontology engineering deals with the ontology development process, the ontology
life cycle, and the methodologies, tools and languages for building ontologies.
While most of the ontology engineering methodologies define a step that concerns
quality assurance of the developed ontologies, the description of how to do this
is usually in the form of high-level tasks that need to be executed, or checklists
that have to be manually ticked off. The tasks usually lack specific details on
how to execute them, and require considerable user intervention, i.e., there is
usually only limited tools support.

Ontology Design Patterns (ODPs) have emerged as a way to share and reuse
best practices in ontology engineering, hence, ODPs could be viewed as one way
of reducing quality issues in ontologies already at the design stage. However,
previous studies, e.g. [1], have shown that although the use of ODPs (and related
methodologies, such as eXtreme Design(XD)) significantly reduces the number
of issues in the resulting ontologies, alone they cannot solve all the problems.
ODPs can be misinterpreted, applied in an inappropriate way, or integrated into
the overall ontology in an inappropriate manner, or the ontology engineer may
simply make mistakes in modelling the parts not covered by an ODP.

During the recent years the detection and repair of defects in ontologies has
been an active research area and a number of methods and tools were developed
for dealing with different types of defects. We argue that these methods and
tools should be a part of ontology engineering methodologies, thus aiding the



ontology quality assurance process, which in turn may result in major efficiency
and effectiveness gains. Therefore the aim of this paper is to show how such
methods can improve upon the results of a pattern-based methodology, such as
XD, although the results are also transferable to other methodologies.

The paper is organized as follows: Section 2 gives an overview of state-of-the-
art in ontology engineering and ontology debugging and matching. In Section 3
we describe the XD methodology while Section 4 discusses how ontology debug-
ging and matching can be integrated into the methodology. In Section 5 we show
the advantages of this approach in a case study based on a real world example.
Finally, Section 6 gives concluding remarks and some ideas for future work.

2 Related work

Ontology engineering methodologies have been developed based on experiences
in different areas, and adopt different strategies for addressing the ontology en-
gineering process [3, 29]. Some of the more recent methodologies have focused
particularly on iterative and collaborative development, e.g., DILIGENT [23], or
unifying several different potential development strategies, such as the NeOn on-
tology engineering framework [30]. There are also methodologies that specifically
target modular ontology development (e.g. [22], and XD [25]).

Semantically-enabled applications need high quality ontologies and one of the
basic requirements for high quality is the lack of defects. During the recent years,
in the ontology debugging and matching areas, the detection and repairing of
defects has received a lot of attention. Systems and approaches such as the ones
in [4, 14, 24] allow for detecting defects using different kinds of patterns. Defects
in ontologies can be divided into syntactic, semantic and modeling defects [13].
Syntactic defects represent syntactic errors such as incorrect format or missing
tags, semantic defects represent problems withing the logic in the ontology while
modelling defects are defects which are a result of modelling erros, such as wrong
and missing relations. There is a lot of work on resolving semantic defects, where
the focus has been on coherence and consistency of ontologies (e.g., [13, 26–
28]) and ontology networks (e.g., [8, 10, 12, 21, 31]). Recent work on repairing
modelling defects has addressed the completion of the is-a structure of [15–17,
32] and the mappings between ontologies (e.g. overviews in [5]).

However, the areas mentioned above, i.e., ontology engineering methodologies
and ontology debugging and matching, have so far not been very well integrated,
although debugging could be viewed as an obvious activity in more or less any of
the above mentioned methodologies. For instance, the study in [29] found that
almost all the larger projects used a methodology, but that there was a lack of
tools support for many of the steps in the methodologies. Further, despite the
fact that quality of the developed ontologies is a major concern, most projects
only did minor testing, and tools for aiding in the ontology quality assurance
were commonly lacking. Most of the earlier ontology engineering methodologies
only describe quality assurance and evaluation of the resulting ontology as an
important aspect, without going into details on how this should be done. When



testing and quality assurance is mentioned it is often restricted to formal con-
sistency and coherence checking, using a reasoner, or manually going through
checklists for different aspects of the ontologies. In more recent methodologies,
such as XD [25], testing and debugging is discussed in more detail, however, still
only a few guidelines have been given [2], with basic tool support, and the repair
process is left completely up to the ontology engineer.

In summary, the main novelty and contribution of this paper compared to
related work is to showcase the integration of the ontology engineering and the
ontology debugging and matching fields by integrating debugging and matching
into a modern agile ontology engineering methodology. Although these may have
been implicitly used in many ontology engineering projects, to the best of our
knowledge this is the first attempt to explicitly specify how to perform ontol-
ogy debugging and matching as an integrated part of an ontology engineering
methodology.

3 The XD Methodology

In order to specifically support the use of ODPs in ontology engineering, pattern-
based methodologies have emerged. One such methodology is eXtreme Design
(XD) [25]. XD builds on the idea that ODPs, and in particular so-called Con-
tent ODPs, represent generalised use cases, which can be matched against the
concrete use cases that represent the requirements of the ontology to be built.
Content ODPs (CPs) [7] focus on concrete modelling issues and can be repre-
sented as small ontologies to be reused by importing them in the ontology under
development. Once matching CPs have been found, they can be specialised and
tailored for the specific case at hand. This CP specialisation process (including
also potential composition of several CPs, and extensions) results in a small part
of the ontology, i.e., what we here call an ontology module. A typical case of CP
specialisation would start by creating a new (empty) ontology, representing the
module to be built, import the reusable OWL building block that represents the
CP to be reused, then add subclasses and subproperties of the imported classes
and properties, which represent the specific pattern realisation for this partic-
ular use case. The module may also include additional classes, properties and
other axioms, i.e. extensions that go beyond the CP, since CP coverage is not
complete for all domains, but rather CPs only focus on the difficult modelling
issues. The result is a module, i.e., a small ontology, with a locally defined part
and one or more imported CPs. Such modules are then integrated to form the
overall ontology, hence, XD inherently produces modular ontologies.

The ontology engineering process suggested by the XD methodology as well
as the extensions proposed in this paper are depicted in Figure 1. The original
process consists of a project initiation phase, whereafter the ontology is built in-
crementally, by adding one module at a time, each solving a small set of the over-
all requirements. Verification and validation of the requirements through testing
is an important activity [2], but despite the fact that XD stresses testing and
evaluation as a core activity, this part of the methodology has not received much



Fig. 1. Illustration of the integration of the detailed debugging and matching methods
into XD. The rectangles represent activities already specified in the original version of
XD (darker) and detailed activities that are proposed in this paper (lighter).

attention previously. In [2] some support for formalising requirements into unit
tests, i.e., SPARQL queries, was discussed. Although such testing is important,
it only determines that it is actually possible to write a query corresponding to
the requirements, i.e., it does not, for instance, test whether this requires exten-
sive knowledge of the implicit assumptions behind the model, or if all relations
and axioms related to the requirements are actually made explicit in the model.
In this paper the focus is on precisely these aspects, i.e. to further debug the
ontology module, and the overall ontology, to find missing elements, elements
that are not made explicit in the model, and also further support for analysing
the axiomatic structure of the ontology.

The motivation behind focusing on the XD methodology for our study re-
ported in this paper is that it has an obvious point of integration, since it already
clearly specifies testing and evaluation activities.

4 Integrating Ontology Debugging and Matching into XD

Ontology debugging and matching techniques can be used to facilitate the pro-
cess of constructing and integrating modules using the XD methodology. We
integrate the debugging process in the “Test and revise” and the “Evaluate and
revise” steps and the matching process in the “Integrate” step (Figure 1).
Modifying the “Test and revise” activity. The first step after developing
a module and applying any unit tests, i.e., SPARQL queries over example data
(c.f. [2]), is to deal with syntactic defects. These are the simplest type of
defects and are easy to detect and resolve. They can usually be avoided by using
ontology modelling tools. However, manual interventions can introduce syntactic
errors into the modules. Repairing can be done using validators or spell checkers.



As identified in [20] the next step is to consider semantic defects. In this
case, the aim is to acquire a consistent and a coherent module. These kinds of
defects can be detected using reasoners. One possible reason for inconsistency
is the instantiation of an unsatisfiable class. In the case of incoherence, we need
to deal with unsatisfiable classes which requires removal or redefining of some
of the axioms in the module. There exist a number of tools for dealing with
semantic defects, such as RaDON [10], Swoop [13] and MUPSter [27].

The third phase deals with modelling defects. These kinds of defects re-
quire domain knowledge to detect and resolve. Two examples of modelling de-
fects are wrong and missing relations. Wrong relations are relations which are
not correct according to the domain. One way of detecting these relations is by
detecting semantic defects. Other ways include using external knowledge sources
or through manual inspection. In order to deal with wrong relations, we need
to remove parts of the justifications of the relation so that it is no longer possi-
ble to derive the relation. Missing relations represent knowledge that is correct
according to the domain but is not derivable in the module. Repairing missing
relations requires adding or modifying axioms so that the detected relation be-
comes derivable in the module. The simplest approach is just to add the detected
relation to the module, however, in [15–17, 32] it was shown that the repairing
process for completing ontologies can add new knowledge which was not detected
before. One of the tools for dealing with modelling defects is RepOSE (e.g. [8,
15, 19]).

Another tool for detecting semantic and modelling defects is OOPS! [24]
which contains a catalogue of patterns which correspond to common pitfalls in
ontology development. The tool is semi-automatic and for each detected pitfall
the tool gives an explanation and a suggestion how to resolve it.

After dealing with modelling defects it is necessary to run the unit tests once
more, and then check again for syntactic, semantic and modelling defects. This
iterative approach is necessary as relations added in the repairing process could
have introduced new defects. Therefore, the debugging process in “Test and
revise” is iterative and should be repeated until no new defects are identified.

Modifying the “Integrate” activity. After developing and releasing modules,
the next step in XD is to integrate the newly developed partial solution into the
overall ontology. This step can be supported by ontology matching techniques
(debugging through completing). Since the overall ontology is inherently modu-
lar, we should consider which modules to actually integrate, in order to achieve
an appropriate level of coupling. Hence, we run ontology matching systems on
pairs of modules. This can either be done on all or on selected pairs, depending
on the desired coupling. After collecting the result from the ontology matching
system(s), the suggestions need to be validated to see if they are correct accord-
ing to the domain and if they match the intended semantics of the integrated
ontology. After validating the output from the ontology matching process the
ontology integration team should consider which of these potential integration
points to include in the integrated ontology. There is a trade-off between keeping
a loose coupling of modules, but still supporting the requirements of the overall



ontology, e.g., reasoning requirements, and supporting certain queries. Hence,
not all of the found mappings, although found to be correct, may be chosen for
inclusion in the overall integrated ontology. The integration team can also extend
the set with additional relations which were identified by other means. The next
step in the integration process is to create an integrated ontology containing all
the modules, as well as the set of validated integrating relations.

Modifying the “Evaluate and revise” activity. The debugging process
that follows integration is very similar to the one for individual modules. First,
the integrated ontology needs to be tested for syntactic defects which in this
phase can be a result of the ontology matching process. Then, the integrated
ontology needs to be tested for consistency and coherence, given that some new
semantic defects could have been introduced by integrating different modules.
If inconsistencies are detected we either need to deal with unsatisfiable classes
or class/property instantiations. In the case of unsatisfiable classes, axioms in
certain modules should be modified or removed.

Finally, we need to deal with modelling defects as the integrated ontology
might pinpoint some additional modelling defects, e.g. missing relations which
could not be detected when considering modules on their own. We note that
by repairing modelling defects only in the integrated ontology it could happen
that defects are left in individual modules, which limits their re-usability. For
example, let us consider Case 1 in Figure 2(a). In this case, we have two modules,
O1 and O2, containing concepts A1, B1 and A2, B2, respectively. The integration
of these modules is done through relations B2 v B1 and A1 v A2. The module
O1 lacks the missing relation A1 v B1. Now, if we were to repair the integrated
ontology first, the missing is-a relation could be made derivable if we add relation
A2 v B2. However, this would also mean that the missing is-a relation is not
made derivable in the O1 module and therefore is still missing in the module
itself. If we repair the module first, then relation A2 v B2 could be identified in
the integration phase as another way of deriving A1 v B1.

In addition, repairing defects in individual modules can also contribute to
the integration process, hence, the two activities (i.e., “integrate” and “evaluate
and revise”) are inherently coupled and may be run partly in parallel. For ex-
ample, let us consider Case 2 in Figure 2(b). In this case A1 v B1 is present in
module O1 but is wrong according to the domain and should be removed. This
knowledge could be used in the integration phase which in this case means that
B2 v B1 and A1 v A2 should not both be added in the module integration, or
this could also imply that A2 v B2 is wrong. This is especially valuable in cases
where the module development and the module integration are done by different
teams. By documenting these kinds of cases, the module developers would help
the integration team and lower the necessity for their involvement in the inte-
gration. Moreover, debugging individual modules might lower the effort needed
for debugging the integrated ontology as the modules are smaller and therefore
defects related to the modules are easier to detect and resolve.

As in the module development phase, the debugging process should be rerun
iteratively, as some of the repairs might have introduced new defects.



O1
 O2


B1


A1
 A2


B2


(a) Case 1.

w 

O1
 O2


B1


A1
 A2


B2


(b) Case 2.

Fig. 2. Cases exemplifying the need for debugging both individual modules as well as
the integrated ontology.

5 Case study

The XD methodology has been used in several real-world ontology engineering
efforts, as well as research projects. For experimenting with our proposed ap-
proach we reused a set of ontology modules and their integration, which were
produced by applying the XD methodology in a previous research project.

The ontologies were created in the context of the IKS project1, for supporting
one of the project use cases, which was a showcase of an intelligent bathroom
environment [9]. The ontologies were intended to support seamless information
integration and access to diverse information sources, for providing the bathroom
environment with personalised and contextualised information served to the end
user through various devices, such as screens integrated in mirrors and shower
walls, audio interfaces etc. The specific showcase scenario involved a person en-
tering the bathroom in the morning, receiving site-specific weather information,
and event suggestions based on his calendar and personal preferences. The use
case contains 51 modules as well as the resulting integrated ontology.2

Debugging individual modules. In the first phase of the debugging process
we consider individual modules. The first step in debugging individual modules
is to consider syntactic defects. We have identified in total 4 such defects in
3 modules (DeviceContentCapabilities, mpeg7, and SPDO). The detection was
done by loading the ontologies using OWL API. If the API failed to load an
ontology, defects were returned in the exception description. In our case, these
defects were incorrect datatype definitions, i.e. the defined datatypes were not a
part of OWL 2 built-in datatypes nor were they custom defined. The next step in
the debugging process is to deal with semantic defects in modules. To identify
such defects, we used the Hermit reasoner3 to detect incoherent and inconsis-
tent modules. In the use case, 9 modules where incoherent, while one module
was inconsistent. Four out of 9 incoherent module classes contained the same

1 EU FP-7 integrating project, targeting the integration of semantic technologies into
content management systems. http://www.iks-project.eu/

2 The original modules developed within the project use case are available from
the following repository: http://www.ontologydesignpatterns.org/iks/ami/2011/02/
while the debugged modules and integrated ontology can be found at
http://www.ida.liu.se/∼zladr41/AMI.zip.

3 http://hermit-reasoner.com/



error, corresponding to the following case: A ≡ ∀r.B, A v C, Domain r is C,
BuC v ⊥. From the first three axioms, it follows that C is equivalent to the top
class. Given this and the fourth axiom, B is unsatisfiable. These four situations
were repaired by replacing the corresponding equivalence axioms with subsump-
tion axioms. Repairing the unsatisfiable classes in these 4 modules also repaired
additional 2 modules which imported the incoherent modules. Finally, the re-
maining 3 incoherent modules were repaired by removing a single subsumption
in one of the modules. The inconsistent module (Users) was caused by three
data property assertions, which specified literals with a datatype outside of the
range of the data property. This was repaired by specifying a correct datatype.
Further, we used OOPS! on the modules. The tool did not detect any pitfalls
which could lead to inconsistencies.

The next step is to consider modelling defects. In this study, we only con-
sidered one type of modelling defects, i.e., missing is-a relations between named
classes. In [19] it was shown that RepOSE can be used both for the detection
and repairing of missing is-a structure. RepOSE accepts as input a set of existing
or missing is-a relations and suggests (new) ways of deriving these is-a relations
and thus possible new knowledge to add to an ontology. A domain expert needs
to validate the suggestions. In this study, we have run RepOSE on every indi-
vidual module where all is-a relations between named classes in a module were
used as an input set. This identified additional ways of deriving existing is-a
relations in 5 modules. In total, 8 new is-a relations were added. For example,
in the mpeg7 module, we have added 3 new relations. Adding TemporalLocator
v Locator and RegionLocator v Locator would make it possible to derive exist-
ing is-a relations TemporalLocator v Resource and RegionLocator v Resource,
respectively, given that the module already contains the is-a relation Locator v
Resource. These relations were not derivable and represent new knowledge. Fur-
ther, OOPS! detected issues related to missing annotations, missing domain and
range for properties as well as recursive definitions. Missing domain and range
issues were related to properties in design patterns and therefore were not added
to avoid overcommitment. Further inspection of recursive definitions has shown
that these definitions are necessary. For example, property overlappingTopic is
recursive as concept Topic is both domain and range. However, this is correct
according to the domain. Another iteration of the debugging process did not
detect additional defects.

In summary, our added debugging steps were able to detect and in some cases
suggest repair actions for several defects in investigated modules. This shows
two important things; (i) since ontologies, and even small ontology modules,
are complex artefacts they usually contain defects, even if they were carefully
designed by expert ontology engineers, and using ODPs, hence, performing this
kind of debugging is essential for producing high-quality ontologies, and (ii) the
suggested debugging methods are able to detect a wide variety of defects, ranging
from incorrect datatypes to missing is-a relations, hence, by using the spectrum
of existing methods we most likely cover a large part of the potential defect
types.



Integration. After debugging all modules we proceeded to integrate the mod-
ules. The integration is done by running ontology matching on each pair of
modules. The mappings from each of the ontology pairs are then collected and
presented to the user for validation. In our experiment we have used 3 different
ontology matching systems, i.e., AML [6], LogMap [11] and SAMBO [18].

For evaluating the detection of mappings, we used the actual integrated on-
tology from the project to compare against. Out of the validated relations, 12 of
them (7 equivalence and 5 is-a relations) were already present in the integrated
ontology, while 14 (6 equivalence and 8 is-a relations) represent new knowledge
not present in the integrated ontology we compared against. This does not nec-
essarily mean that all 14 should be included, some may have been intentionally
left out, however, at least it shows that this approach has the potential of point-
ing the user towards additional options that should be considered, in order not
to overlook important mappings.

Debugging the integrated ontology. We proceeded with debugging syntac-
tic and semantic defects in the integrated ontology. One additional semantic
defect was detected concerning MusicCollection in the MusicCollection mod-
ule. This defect corresponded to the described case of unsatisfiable classes when
debugging individual modules, and was repaired by replacing the equivalence
axiom with a subsumption axiom. Further, OOPS! did not detect any additional
pitfalls which could lead to an inconsistent ontology.

Next, we proceeded with modelling defects. The detected integrating re-
lations were used as input to the process of completing the is-a structure with
RepOSE. In addition, the input also included other is-a relations between named
classes from the integrated ontology. In the general case where the ontology de-
bugging is integrated into the development process it may not be necessary to
consider all is-a relations but only the relations which were identified by ontol-
ogy matching systems and by the ontology developers in the integration step.
The input to RepOSE consisted of the integrated ontology and a set of 214 is-a
relations (194 from the ontology and 20 acquired from ontology matching). In
the completion process, we identified additional ways of deriving is-a relations
in 8 modules. In total 10 new is-a relations were added. For example, using Re-
pOSE we identified another way of deriving Movie v ContentItem where classes
Movie and ContentItem are from the EntertainmentContent and Content mod-
ules respectively. In this case adding Movie v MultimediaContent where Multi-
mediaContent is in the mpeg7 module would provide another way of deriving the
relation. This is possible due to the fact that MultimediaContent v ContentItem
exists in the mpeg7 module. By adding Movie v MultimediaContent we have
also integrated the mpeg7 and EntertainmentContent modules which were not
related before. OOPS! did not detect any new issues. Another iteration of the
debugging process did not detect additional defects.

In summary, this shows that testing and evaluating only the individual mod-
ules of a modular ontology is not enough, hence, we need to additionally im-
plement a similar debugging step before the release of the integrated ontology.
However, it should also be noted that some defects detected after integration,



may actually depend on modelling choices made already in the module develop-
ment, hence, iteratively revising the modules is inevitable.
Impact of debugging We have evaluated the impact of our changes on three
levels: class level, instance level and query level.

On the class level, we identified concepts which were affected by the changes
in the ontology. We looked at named classes whose subclasses or superclasses
changed. For each is-a relation A v B that was added or removed during debug-
ging, the subclasses of A and the superclasses of B are affected. For equivalence
relations added during the debugging process, the super- and subclasses of both
A and B are affected. In our case, due to addition of is-a relations, out of 197
named concepts in the integrated ontology 56 got new subclasses and/or new
superclasses. Further, we have removed in total 3 is-a relations which account to
additional 16 affected classes. We note that for the impact we have only consid-
ered the is-a hierarchy. Therefore, the impact of our repairs can be even greater
given that we deal with expressive ontologies. For example, adding a subsump-
tion or equivalence axiom might change the range/domain of some property.

On the instance level, we were interested in identifying the affected instances,
i.e., those instances that obtained new or changed class memberships. We checked
the instances of subclasses of each named class involved in the is-a or equivalence
relation added or removed during the debugging process. In our case study, the
integrated ontology contains 88 instances. Out of these 88, 57 instances were
affected by our changes. Out of the 57 affected instances, 29 are affected by
removing relations when dealing with semantic defects.

Finally, on the query level, we have used logs from the system developed
during the project, which used these ontologies. The log files contain SPARQL
queries that were used by the system to extract instances from the ontology
during the test runs of the system in the bathroom environment. In order to
evaluate the impact of our changes to the integrated ontology, we consider the
number of affected queries, i.e., those queries which query for instances of affected
classes. These affected queries might produce different results4 if run over the new
version of the integrated ontology, i.e., the version produced after our debugging
was applied. In 1200 log files there were in total 10724 requests for data access
to the integrated ontology. Out of these, 5402 are affected by our changes, i.e.
they query for instances of affected classes.

6 Conclusion and Future work

In this paper we have discussed how existing approaches for debugging and
matching ontologies can be used to improve the results of a pattern-based method-
ology. The proposed approach, specifically for integrating debugging into the XD
ontology development methodology was tested in a use case study with a real
world ontology. The case study has shown the usefulness of our approach, and

4 Unfortunately, as the project ended a few years ago, we were not able to evaluate
the correctness of these differences with respect to the actual results provided to the
users of the system, since neither the system nor the test users are available.



pointed out a number of important benefits of performing debugging. Addition-
ally, we have seen that there can be quite a number of defects still remaining in
ontologies, even after applying both ODPs and a proper methodology when cre-
ating them, performing appropriate unit tests, such as testing SPARQL queries,
and even after using the ontologies in test runs of the system itself.

There are a number of directions for future work. Rather than having to use
stand-alone tools as was done in our case study, one future direction would be
the integration of those tools into ontology development environments (e.g. as
plug-ins). In our use case analysis we only considered relations between concepts.
In the future, we will consider other existing approaches for ontology debugging
and how these can be integrated into the methodology, e.g. for debugging other
properties. It is also important to perform an evaluation of the added value of
the changes in terms of added value for users, such as the additional retrieved
(correct and relevant) data in response to a query.

Acknowledgements. We thank the Swedish e-Science Research Centre (SeRC), the

Swedish National Graduate School in Computer Science (CUGS) and the EU FP7

project VALCRI (FP7-IP-608142) for financial support.

References

1. E Blomqvist, V Presutti, E Daga, and A Gangemi. Experimenting with eXtreme
Design. In Proc. of the 17th EKAW, pages 120–134, 2010.

2. E Blomqvist, A Seil Sepour, and V Presutti. Ontology testing - methodology and
tool. In Proc. of the 18th EKAW, pages 216–226. 2012.

3. O Corcho, M Fernandez-Lopez, and A Gomez-Perez. Methodologies, tools and
languages for building ontologies. Where is their meeting point? Data & Knowledge
Engineering, 46:41–64, 2003.

4. O Corcho, C Roussey, L M Vilches, and I Pérez. Pattern-based OWL ontology
debugging guidelines. In Proc. of the 1st WOP, pages 68–82, 2009.

5. J Euzenat and P Shvaiko. Ontology Matching. Springer, 2007.
6. D Faria, C Pesquita, E Santos, M Palmonari, I F Cruz, and F M Couto. The

AgreementMakerLight ontology matching system. In On the Move to Meaningful
Internet Systems: OTM 2013 Confs, pages 527–541, 2013.

7. A Gangemi and V Presutti. Ontology Design Patterns. In Handbook on Ontologies.
2009.

8. V Ivanova and P Lambrix. A unified approach for aligning taxonomies and debug-
ging taxonomies and their alignments. In Proc. of the 10th ESWC, pages 1–15,
2013.

9. S Janzen, E Blomqvist, A Filler, S Gönül, T Kowatsch, A Adamou, S Germesin,
M Romanelli, V Presutti, C Cimen, W Maass, S Postaci, E Alpay, T Namli, and
G B L Erturkmen. IKS deliverable - d4.1 report: Ami case - design and implemen-
tation (public). Technical report, 2011.

10. Q Ji, P Haase, G Qi, P Hitzler, and S Stadtmuller. RaDON - repair and diagnosis
in ontology networks. In Proc. of the 6th ESWC, pages 863–867, 2009.

11. E Jiménez-Ruiz, B Cuenca Grau, Y Zhou, and I Horrocks. Large-scale interactive
ontology matching: Algorithms and implementation. In Proc. of the 20th ECAI,
pages 444–449, 2012.



12. E Jiménez-Ruiz, B Cuenca Grau, I Horrocks, and R Berlanga. Ontology integration
using mappings: Towards getting the right logical consequences. In Proc. of the
6th ESWC, pages 173–187, 2009.

13. A Kalyanpur, B Parsia, E Sirin, and J Hendler. Debugging unsatisfiable classes in
OWL ontologies. Journal of Web Semantics, 3(4):268–293, 2006.

14. M Keet. Detecting and revising flaws in OWL object property expressions. In
Proc. of the 18th EKAW, pages 252–266, 2012.

15. P Lambrix and V Ivanova. A unified approach for debugging is-a structure and
mappings in networked taxonomies. Journal of Biomedical Semantics, 4:10, 2013.

16. P Lambrix and Q Liu. Debugging the missing is-a structure within taxonomies
networked by partial reference alignments. Data & Knowledge Engineering, 86:179–
205, 2013.

17. P Lambrix, Q Liu, and H Tan. Repairing the Missing is-a Structure of Ontologies.
In Proc. of the 4th ASWC, pages 76–90, 2009.

18. P Lambrix and H Tan. SAMBO - a system for aligning and merging biomedical
ontologies. Journal of Web Semantics, 4(3):196–206, 2006.

19. P Lambrix, F Wei-Kleiner, and Z Dragisic. Completing the is-a structure in light-
weight ontologies. Journal of biomedical semantics, 6(1):12, 2015.

20. P Lambrix, F Wei-Kleiner, Z Dragisic, and V Ivanova. Repairing missing is-a
structure in ontologies is an abductive reasoning problem. In Proc. of the 2nd
WoDOOM, pages 33–44, 2013.

21. C Meilicke, H Stuckenschmidt, and A Tamilin. Repairing ontology mappings. In
Proc. of the 20th AAAI, pages 1408–1413, 2007.

22. T Özacar, Ö Öztürk, and MO Ünalir. ANEMONE: An environment for modular
ontology development. Data & Knowledge Engineering, 70:504–526, 2011.

23. H S Pinto, C Tempich, and S Staab. Ontology engineering and evolution in a
distributed world using diligent. In Handbook on Ontologies, pages 153–176. 2009.

24. M Poveda-Villalón, A Gómez-Pérez, and M C Suárez-Figueroa. Oops! (ontology
pitfall scanner!): An on-line tool for ontology evaluation. International Journal on
Semantic Web & Information Systems, 10(2):7–34, 2014.

25. V Presutti, E Bomqvist, E Daga, and A Gangemi. Pattern-based ontology design.
In Ontology Engineering in a Networked World, pages 35–64. 2012.

26. G Qi, Q Ji, and P Haase. A Conflict-Based Operator for Mapping Revision. In
Proc. of the 8th ISWC, pages 521–536, 2009.

27. S Schlobach and C Ronald. Non-standard reasoning services for the debugging of
description logic terminologies. In Proc. of the 18th IJCAI, pages 355–360, 2003.

28. K Shchekotykhin, G Friedrich, Ph Fleiss, and P Rodler. Interactive ontology de-
bugging: Two query strategies for efficient fault localization. Journal of Web Se-
mantics, 12-13:88–103, 2012.

29. E Simperl, M Mochol, and T Bürger. Achieving maturity: the state of practice in
ontology engineering in 2009. Int Journal of Computer Science and Applications,
7:45–65, 2010.

30. M C Suárez-Figueroa, A Gómez-Pérez, E Motta, and A Gangemi, editors. Ontology
Engineering in a Networked World. Springer, 2012.

31. P Wang and B Xu. Debugging ontology mappings: a static approach. Computing
and Informatics, 27:21–36, 2008.

32. F Wei-Kleiner, Z Dragisic, and P Lambrix. Abduction framework for repairing
incomplete EL ontologies: Complexity results and algorithms. In Proc. of the 28th
AAAI, pages 1120–1127, 2014.


