
ACM/IEEE 18th International Conference on
Model Driven Engineering Languages and Systems
September 28, 2015 ! Ottawa (Canada)

2nd International Workshop on Model-Driven
Engineering for Component-Based Software
Systems (ModComp) 2015

Workshop Proceedings
 Federico Ciccozzi, Patrizio Pelliccione, Etienne Borde (Editors)

Published in September 2015 v2.0

Copyright © 2015 for the individual papers by the papers’ authors. Copying permitted for private and
academic purposes. Re-publication of material from this volume requires permission by the copyright
owners.

Editors’ addresses:

Federico Ciccozzi
School of Innovation, Design and Engineering – Mälardalen University (Sweden)

Patrizio Pelliccione
Chalmers – Gothenburg University (Sweden)

Etienne Borde
Telecom ParisTech (France)

Organizers

Federico Ciccozzi (co-chair) Mälardalen University (Sweden)
Patrizio Pelliccione (co-chair) Chalmers – Gothenburg University (Sweden)
Etienne Borde (co-chair) Telecom ParisTech (France)

Program Committee

Marco Autili University of L’Aquila (Italy)
Steffen Becker University of Paderborn (Germany)
Jan Carlson Mälardalen University (Sweden)
Antonio Cicchetti Mälardalen University (Sweden)
Ivica Crnkovic Mälardalen University (Sweden)
Guglielmo De Angelis CNR IASI/ISTI (Italy)
David Garlan Carnegie Mellon University (USA)
Sebastién Gerard CEA List (France)
Jeff Gray University of Alabama (USA)
Lucia Happe Karlsruhe Institute of Technology (Germany)
Anne Koziolek Karlsruhe Institute of Technology (Germany)
Patricia López Martinez University of Cantabria (Spain)
Julio Luis Medina University of Cantabria (Spain)
Raffaela Mirandola Politecnino di Milano (Italy)
Marco Panunzio Thales Alenia Space (France)
Alfonso Pierantonio University of L’Aquila (Italy)
Pascal Poizat Universit Paris Ouest Nanterre la Defense (France)
Ansgar Radermacher CEA List (France)
Mehrdad Saadatmand SICS (Sweden)
Lionel Seinturier University of Lille/INRIA (France)
Severine Sentilles Mälardalen University (Sweden)
Massimo Tivoli University of L’Aquila (Italy)
Tullio Vardanega University of Padua (Italy)

Table of Contents

Preface . 1

Model-driven Analytics with Models@run.time: The Case of Cyber-Physical-
Systems .

4

Yves Le Traon

Challenges for Model-Integrating Components . 6
Mahdi Derakhshanmanesh, Jürgen Ebert and Marvin Grieger

Towards a deep metamodelling based formalization of component models 12
Antonio Cicchetti

Generating Domain-Specific Transformation Languages for Component & Con-
nector Architecture Descriptions .

18

Lars Hermerschmidt, Katrin Hölldobler, Bernhard Rumpe and Andreas Wort-
mann

Towards a Generic Modeling Language for Contract-Based Design 24
Johannes Iber, Andrea Höller, Tobias Rauter and Christian Kreiner

Transforming Platform-Independent to Platform-Specific Component and Con-
nector Software Architecture Models .

30

Jan Oliver Ringert, Bernhard Rumpe and Andreas Wortmann

A Modular Reference Structure for Component-based Architecture Description
Languages .

36

Misha Strittmatter, Kiana Rostami, Robert Heinrich and Ralf Reussner

Preface

The design of modern software systems requires support capable of properly dealing with
their ever-increasing complexity. In order to account for such a complexity, the whole
software engineering process needs to be rethought and, in particular, the traditional divi-
sion among development phases to be revisited, hence moving some activities from design
time to deployment and runtime. Model-Driven Engineering (MDE) and Component-
Based Software Engineering (CBSE) can be considered as two orthogonal ways of reduc-
ing development complexity: the former shifts the focus of application development from
source code to models in order to bring system reasoning closer to domain-specific con-
cepts; the latter aims to organize software into encapsulated independent components with
well-defined interfaces, from which complex applications can be built and incrementally
enhanced.

When exploiting these development approaches, numerous different modelling nota-
tions and consequently several software models are involved during the software life cycle.
On the one hand, effectively dealing with all the involved models and heterogeneous mod-
elling notations that describe software systems needs to bring component-based principles
at the level of the software model landscape hence supporting, e.g., the specification of
model interdependencies, and their retrieval, as well as enabling interoperability between
the different notations used for specifying the software. On the other hand, MDE tech-
niques must become part of the CBSE process to enable the effective reuse of third-party
software entities and their integration as well as, generally, to boost automation in the
development process.

An effective interplay of CBSE and MDE approaches could help in handling the in-
tricacy of modern software systems and thus reducing costs and risks by: (i) enabling
efficient modelling and analysis of extra-functional properties, (ii) improving reusability
through the definition and implementation of components loosely coupled into assemblies,
(iii) providing automation where applicable (and favourable) in the development process.
In the last fifteen years, such a cooperation has been recognized as extremely promising;
tools and frameworks have been developed for supporting this kind of integrated develop-
ment process. Nevertheless, when exploiting interplay of MDE and CBSE, clashes arise
due to misalignments in the related terminology but also, and more importantly, due to
differences in some of their basic assumptions and focal points.

The goal of the workshop on Model-Driven Engineering for Component-Based Soft-
ware Systems 2015 (ModComp’15) was to gather researchers and practitioners to share
opinions, propose solutions to open challenges and generally explore the frontiers of collab-
oration between MDE and CBSE. ModComp’15 aimed at attracting contributions related
to the subject at different levels, from modelling to analysis, from componentization to
composition, from consistency to versioning; foundational contributions as well as concrete
application experiments were sought.

The workshop was co-located with ACM/IEEE 18th International Conference on
Model Driven Engineering Languages & Systems, and represented a forum for practi-
tioners and researchers. We received twelve papers out of which six papers were selected
for inclusion in the proceedings. The accepted papers covers many different forms of
intertwining of MDE and CBSE including, but not limited to:

– model integration;
– model transformations for analysis and code generation;
– modeling component interaction and component behaviors;
– model interoperability;

1

– modeling languages for components.
This was the second edition of the workshop and the high attention received once again
in terms of submissions proves that the topics are relevant both in practice and in theory
of model-driven engineering of component-based software systems. Thus, we would like
to thank the authors – without them the workshop simply would not have taken place –
and the program committee for their hard and precious work.

September 2015 Federico Ciccozzi, Patrizio Pelliccione and Etienne Borde

2

Keynote

Model-driven Analytics with Models@run.time:
The Case of Cyber-Physical-Systems

Yves Le Traon

University of Luxembourg

Bits and bytes are governing an increasing number of areas in our lives and
businesses. The exploration and simulation of what might happen and which ac-
tion can be triggered is a fundamental part of intelligent systems such as smart
grids, smart buildings, smart homes and any cyber-physical system. This new
intelligence is supported by machine learning algorithms that, based on past
data and runtime data, model the behavior of the system to predict its evolu-
tion. Recommendation systems, autonomous decision-support, prescriptive sim-
ulations have to be both scalable and highly accurate at runtime. It is paramount
to develop new decision support services that should (at least partly) relieve the
users from the overwhelming load of information and the growing number of de-
cisions to be taken in time. In that perspective, model-driven engineering offers
a bridge between the knowledge of experts who best know which data are rele-
vant, and the monitoring and control of software components and sensors. The
presentation is about how MDE, and specifically models@run.time, may become
an enabler for designing and deploying easily domain-specific, scalable analytics
for heterogeneous sources of timed data. Some problems still have to be solved
and I will introduce some of them. Cyber-physical systems continuously analyze
their surrounding environment and internal state, which together we refer to as
the context of a system, in order to adapt itself to varying conditions. To yield
accurate predictions, such systems not only rely on single numerical values, but
also need structured data models aggregated from different sensors. Therefore,
building appropriate context representations is of key importance. Over the past
few years the models@run.time paradigm has shown the potential of models to
be used not only at design-time but also at runtime to represent the context
of cyber-physical systems, to monitor their runtime behavior and reason about
it, and to react to state changes. However, reasoning about such contexts is a
complex and time critical activity that needs to leverage near real-time analytics
together with big data methods to quickly process the massive amount of data
measured by these systems. Current modeling techniques do not allow to face all
needed features for reasoning, such as distribution, large-scale and near real-time
response time. In this talk I present two concepts that might push the limits of
models@run.time for near-real time analytics a little further: 1) stream-based,
distributed models and 2) historized models. I will present our results based on a
real application on a smart grid scenario in joined work with the main electrical
grid provider of Luxembourg.

4

Yves Le Traon is professor at University of Luxembourg, in the Faculty of Science,

Technology and Communication (FSTC). His domains of expertise are related software

engineering and software security, with a focus on software testing and model-driven

engineering. He received his engineering degree and his PhD in Computer Science at the

“Institut National Polytechnique” in Grenoble, France, in 1997. From 1998 to 2004, he

was an associate professor at the University of Rennes, in Brittany, France. During this

period, Professor Le Traon studied design for testability techniques, validation and diag-

nosis of object-oriented programs and component-based systems. From 2004 to 2006, he

was an expert in Model-Driven Architecture and Validation in the EXA team (Require-

ments Engineering and Applications) at “France Télécom R&D” company. In 2006,

he became professor at Telecom Bretagne (Ecole Nationale des Télécommunications

de Bretagne) where he pioneered the application of testing for security assessment of

web-applications, P2P systems and the promotion of intrusion detection systems using

contract-based techniques. He is currently the head of the Computer Science Research

Unit at University of Luxembourg. He is a member of the Interdisciplinary Centre

for Security, Reliability and Trust (SnT), where he leads the research group SERVAL

(SEcurity Reasoning and VALidation). His research interests include software testing,

model-driven engineering, model based testing, evolutionary algorithms, software se-

curity, security policies and Android security. The current key-topics he explores are

related to Internet of things (IoT) and Cyber-Physical Systems (CPS), Big Data (stress

testing, multi-objective optimization, analytics, models@run.time), and mobile security

and reliability. He is author of more than 140 publications in international peer-reviewed

conferences and journals.

5

Challenges for Model-Integrating Components
Mahdi Derakhshanmanesh

University of Koblenz-Landau
Institute for Software Technology

Koblenz, Germany
Email: manesh@uni-koblenz.de

Jürgen Ebert
University of Koblenz-Landau

Institute for Software Technology
Koblenz, Germany

Email: ebert@uni-koblenz.de

Marvin Grieger
University of Paderborn

Department of Computer Science
Paderborn, Germany

Email: marvin.grieger@uni-paderborn.de

Abstract—Model-Integrating Software Components (MoCos)
use models at runtime as first class entities within components
to build flexible and adaptive software systems. Building such
systems requires to design and implement the required domain-
specific modeling languages. Insufficient design and realization of
modeling languages raises the risk that they may not be optimized
for their later use. Although various works on the use of models at
runtime exist, they do not address the engineering of modeling
languages to be used in software components at runtime. In
this paper, we introduce the idea of Comprehensive Language
Models (CLMs) which explicitly considers modeling language
engineering as a part of the development of component based
software systems. This is achieved by extending the modeling
language specification, e.g., by a set of interfaces for models
which are used for accessing models at runtime. We illustrate an
initial solution concept along an insurance sales app case study
on Android based on which we derive a set of key challenges for
the community.

I. INTRODUCTION

Models are no longer just used to design software but can
become an integrated part of it, i.e., (executable) models and
code coexist at runtime with equal rights. In previous works
[1], [2], we proposed Model-Integrating Software Components
(MoCos) as a concept for the design and development of such
model-integrating software systems. Software engineers can
choose to realize some parts of a system programmatically
in code, while other parts are kept as models. No code is
generated from the models but they are used at runtime. This
concept yields flexible well-performing software that can be
easily and systematically monitored, analyzed and modified.

The MoCo-approach combines models described using arbi-
trary Domain-Specific Modeling Languages (DSMLs) and em-
beds them within software components following a tailorable
component design pattern that guides software engineers:
the MoCo Template. It is depicted in Figure 1 and briefly
introduced, next.

A. Model-Integrating Software Components

Each MoCo can have ports (PFunction, PManage) that
are wired to the internal implementation, which is either
encoded by a programming language (MoCoCode) or by a
modeling language (MoCoModel). Conceptually, there may
be sets of languages used on either side. In practice, a base
technology such as the Java Virtual Machine (JVM) and its
byte code format acts as a unifier. Programming languages

IModelState

ICodeState

IInterpret

IAction

IModelState

ICodeState

IInterpret

IAction

«module»
MoCoCode

«module»
MoCoModel

«m
od

ul
e»

M
ed

ia
to
r

«component»
MoCo

«p
or
t»

PF
un

ct
io
n

«p
or
t»

PM
an

ag
e

«delegate»

«delegate»

Fig. 1. Internal View on the MoCo Template (see [1])

are used on the code side, e.g., Java, and different – poten-
tially integrated – DSMLs are used on the model side. Both
constituents of a MoCo are encapsulated using interfaces.
Optionally, a smart Mediator can manage any redirection
from and to the MoCo’s ports as well as communication
between the model and code parts.

The expected advantages of the MoCo approach are: (i) en-
hanced flexibility because the system and its individual compo-
nents can be observed using model queries, can be modified by
adapting models using an editor or model transformations and
can be executed using model interpreters [3], (ii) support of
separation of concerns because each model targets a concern,
(iii) understandability and maintainability because models are
assumed to be easier to understand and easier to handle
than code, (iv) self-documentation because a well designed
modeling language is assumed to be a documentation and
(v) no synchronization problem because there is no redundancy
between model and code unless it is introduced willfully, e.g.,
to realize reflection.

B. Research Problem

An essential difference between component-based and
model-integrating software is the use of various models at
runtime (not just reflective models@run.time [4]). There-
fore, developing model-integrating software systems includes
choosing existing modeling languages or designing and im-
plementing adequate DSMLs. In fact, it must be possible to
introduce new DSMLs easily and quickly to realize certain
parts of a system as a model. In turn, the use of models of a

6

given DSML requires support for the following core activities:
(i) building models, e.g., using an application programming
interface or an editor, (ii) binding models into components
as building blocks, e.g., following the MoCo Template and
(iii) using models, e.g., querying, transforming and interpreting
them. These activities can only be supported if there is a
powerful technological space [5] for modeling languages and
models, which provides all relevant capabilities needed. In the
context of MoCos, such a technological space needs to work
together with the respective component execution platform [6]
or even be part of it.

There are examples for such technological spaces like the
Eclipse Modeling Framework (EMF) [7] or JGraLab [8] that
deliver acceptable support for language design, especially for
syntax and constraints. Additionally, many research works use
models at runtime in various ways and this specific topic is
still a very relevant research area [9].

While different approaches and solutions for modeling and
models at runtime already exist in isolation, we observe that
they do not comprehensively address the required capabilities
for designing new modeling languages that shall be an inte-
grated part of a software system. Moreover, the challenges
associated with designing DSMLs that support the symbiosis
of models at runtime and code within software components
have to be inspected.

This paper tackles the following research problems and their
associated challenges:
(Q1) How to specify modeling languages comprehensively for

generating adequate runtime support for them?
(Q2) What are challenges for modeling languages in the

context of MoCos?

C. Contributions

In answering Q1, we propose that the introduction of a new
DSML requires a Comprehensive Language Model (CLM),
i.e., a specification of a modeling language to such an extent
that all required activities on models are supported. We claim
that each CLM should at least specify the following parts of
DSML: (i) syntax (metamodel and constraints), (ii) semantics
(dynamic state, constraints, state transitions) and (iii) prag-
matics (at least facades [10]). We assume that a realization of
a modeling language Li will be derived from a CLMi.

In answering Q2, we provide a description of selected
challenges related to the seamless integration of models and
code in software components, based on the Insurance Sales
App (ISA) case study [1]. All in all, we aim to raise awareness
for this topic and to initiate a fruitful discussion.

II. RUNNING EXAMPLE: INSURANCE SALES APP

The Insurance Sales App (ISA) is a prototypical application
for Google’s Android mobile operating system. It has been
developed to evaluate the feasibility of MoCos [1], [2]. It
also serves as a running example throughout the rest of this
paper. From the user’s perspective, ISA’s primary purpose
is to support field staff in the insurance domain with their
daily sales tasks. The system is built with MoCos, thus it

«moco»

IsaConfig

«moco»

IsaCarProduct1

LFeatureTrees

LComputation LGUI

useuse

integrate

use

«moco»

IsaCarProduct1

Model-Integrating
Component

Modeling
Language use

integrate

LComputation

Fig. 2. MoCo-based ISA Client App and an Architecture Excerpt

is dynamically extensible at the component level and single
components’ internals can be also monitored and modified
at runtime. For example, insurance fee formulas are adapted,
based on the current physical location of a customer. A
screenshot of ISA is shown in Figure 2 (left), illustrating one
of the views of the Graphical User Interface (GUI) specific to
the car insurance product.

ISA’s architecture consists of a mix of pure Java libraries
and MoCos, i.e., a certain part of the running software is en-
coded in models that are used at runtime, e.g., by querying and
transforming them. An excerpt is depicted in Figure 2 (right).
The specific modeling languages used represent (i) feature
trees (Lf) for architectural reconfiguration, (ii) computation
(Lc) for insurance fee formulas and (iii) graphical user
interfaces (Lg) for data presentation and user input capturing.

Regarding implementation, all MoCos conform to the struc-
ture proposed by the MoCo Template. For components, we
used OSGi’s [11] dynamic component technology, code was
written in Java and models were developed in JGraLab [8].
The base execution platform is the Java Virtual Machine.

A. Comprehensive Language Model for Lc

As a clarification for what exactly a Comprehensive Lan-
guage Model (CLM) is, we give an example in the context of
the ISA case study. More concretely, we describe the CLM
for Lc in the following and sketch how it relates to Lg . This
background knowledge is required to understand some of the
challenges described later in this paper.

CLMc, i.e., the CLM that fully specifies the modeling
language Lc, is depicted in Figure 3. It consists of three major
parts: syntax, semantics and pragmatics.

1) Syntax Specification: Lc’s syntax is specified using a
UML-style metamodel and mostly represents the static struc-
ture. The language represents programs (Prog) consisting
of statements (Stmt). There are special statements such as
conditional (If), an assignment (Ass) and further specific

7

CLMComputation

ProgStmt

If Store Load

Syntax Semantics Pragmatics

{ordered}

Ass

val : Double

Expr

VarConst

op : Char

Bin

left
right

varvarleft

right

then

else

cond

class ComputationModel
{
 /∗ constructor that reads a
 formula from a file ∗/
 ComputationModel (String fileID);

 /∗ reads the value of a variable ∗/
 Double getVariable (String varID);

 /∗ sets the value of a variable ∗/
 void setVariable (String varID, Double val);

 /∗ evaluates an expression according to the
 current values of the variables ∗/
 Double evaluate (String progID);
}

A Note on Semantics, Version 0.1

Jürgen Ebert

[[Stmt]] : (Var !Double) ! (Var ! Double)
8 a : Ass [[a]](s) = s � {a.left 7! a.right .val}
8 i : If [[i]](s) = if isTrue(i .cond .val) then [[i .then]](s) else [[i .else]](s) end

[[Expr]] : Expr ! Double
8 c : Const [[c]] = c.val
8 v : Var [[v]] = v .val
8 b : Bin [[b]] = case b.op of

’+’: b.left .val + b.right .val ;
’-’: b.left .val � b.right .val ;
’*’: b.left .val ⇤ b.right .val ;
’/’: b.left .val/b.right .val ;
end

8 l : Load
[[l]](sc ,sg) : (sc � {l .var !l .loadValFrom.value}, sg)

8 st : Store
[[st]](sc ,sg) : (sc , sg � {st .storeValIn !st .var .val})

Fig. 3. CLMc Comprising the Specification of Syntax (Dynamic Metamodel), Semantics (Dynamic Metamodel + State Transitions) and Pragmatics (Facade)

statements for loading (Load) and saving (Store) vari-
ables (Var). Variables and constants (Const) are expressions
(Expr). Expressions have a value (val) as well as a left and
right side of a specified binary operator (Bin).

2) Semantics Specification: Lc’s semantics is specified
(i) by extending the metamodel with information about the
dynamic state and (ii) by adding a description of state transi-
tions by following Plotkin’s Structured Operational Semantics
(SOS) approach [12]. This was an ad-hoc, pragmatic choice.

Like in Dynamic Metamodeling [13], Lc’s metamodel ele-
ments depicted in Figure 3 also cover the dynamic state of its
set of conforming models. The dynamic state is part of the
semantics specification of Lc which is an essential part of any
CLM. The attribute val belonging to the dynamic state can
be changed during model execution.

In terms of encoding the allowed state transitions in the
dynamic state, we chose Plotkin’s approach as a technology-
independent precise and comprehensible formalism. For ex-
ample, as shown in Figure 3, the semantics of a Stmt in
Lc is that a given variable’s value is replaced with another
(potentially the same) value.

3) Pragmatics Specification: Lc’s pragmatics is specified
using a facade, e.g., using a notation similar to Java classes
as illustrated in Figure 3. This approach facilitates the use of
models similar to code objects. Moreover, the specification of
available services on models of a given language, here Lc, sup-
ports communication between modeling language designers,
software architects and software engineers. We use the term
services on models to denote capabilities and functionalities
specific to a modeling language that facilitate the use of
models. These services are realized as facades.

For example, the ComputationModel facade allows to
load a model from a file, to get and set a value for a variable
and, importantly, to evaluate a model (e.g., representing an
insurance fee formula in ISA) by starting model execution at
a certain Prog element.

B. Integration of Lc and Lg

Besides the use of single modeling languages, it is particu-
larly interesting when multiple languages are used together.1 In
the context of ISA, each insurance product MoCo carries the
insurance fee formula (an instance of Lc) and its correspond-
ing representation of the graphical user interface (an instance
of Lg). The two modeling languages had to be integrated.
For this purpose, additional associations (loadValFrom and
storeValIn roles) were introduced and the specification
of state transitions in CLMc was extended to encode the
semantics of loading values from the GUI (Load) and storing
values from a formula in the GUI’s TextView (Load). In
Figure 4, the corresponding integration via additive extension
of two CLMs is given.

CLMComputationCLMGUI

Load

Store

value : String

Textview

Syntax Syntax Semantics

storeValIn

loadValFrom

A Note on Semantics, Version 0.1

Jürgen Ebert

[[Stmt]] : (Var !Double) ! (Var ! Double)
8 a : Ass [[a]](s) = s � {a.left 7! a.right .val}
8 i : If [[i]](s) = if isTrue(i .cond .val) then [[i .then]](s) else [[i .else]](s) end

[[Expr]] : Expr ! Double
8 c : Const [[c]] = c.val
8 v : Var [[v]] = v .val
8 b : Bin [[b]] = case b.op of

’+’: b.left .val + b.right .val ;
’-’: b.left .val � b.right .val ;
’*’: b.left .val ⇤ b.right .val ;
’/’: b.left .val/b.right .val ;
end

8 l : Load
[[l]](sc ,sg) : (sc � {l .var !l .loadValFrom.value}, sg)

8 st : Store
[[st]](sc ,sg) : (sc , sg � {st .storeValIn !st .var .val})

Fig. 4. Integration of two Comprehensive Language Models

CLMs support the specification and design of modeling
languages to be used within model-integrating software com-
ponents as described. However, there are still many open
challenges that need to be tackled.

1The GEMOC initiative (http://gemoc.org/) provides related work on the
coordinated use of heterogeneous modeling languages.

8

TABLE I
INITIAL LIST OF CHALLENGES FOR MODELING LANGUAGES IN MOCOS

ID Challenge Description

Syntax
C1 How to modularize metamodels?
C2 How to integrate two metamodels?
C3 How to establish links between different models?
C4 How to provide a context-dependent view on sets of models?

Semantics
C5 How to specify model semantics?
C6 How to realize model execution?
C6.1 How to manage the dynamic state of a model?
C6.2 How to reuse model interpreters?
C6.3 How to support the interplay of different model interpreters?

C7 How to support variants of semantics for the same modeling
language?

Pragmatics
C8 How to establish control and data flow between models and code?
C9 How to design language-specific and usage-specific services on

models?
C10 How to control access to models?

III. CHALLENGES

Building on the use of CLMs, we elaborate on an initial list
of challenges for modeling languages in the context of MoCos
using the ISA running example. For readability, we formulate
each challenge as a question and cluster them according to
(i) syntax, (ii) semantics and (iii) pragmatics as summarized
in Table I. A detailed description follows subsequently.

A. Syntax Challenges

1) Modularization of Metamodels: Software architects fol-
low a divide-and-conquer approach and split larger systems
in smaller pieces, e.g., into software components and con-
nectors. A standardized approach for the modularization of
modeling languages is missing, though. A main part of any
DSML’s definition is the specification of its syntax with a
metamodel. While package-structures and import mechanisms
are available, depending on the concrete modeling technology,
the modeling language designer cannot orchestrate modeling
languages and their metamodels in a black-box fashion (C1).
In ISA for example, feature models (Lf) are managed and used
by a MoCo called IsaConfig and insurance fees models
(Lc) as well as GUI models (Lg) are managed and used by
insurance products like the IsaCarProduct1 MoCo.

2) Integration of Metamodels: Integration means that at
least two existing modeling languages shall be merged. In
contrast to distributed, potentially not connected models con-
forming to different metamodels, this approach conveniently
enables full access, e.g., via model queries, to the conforming
models of this integrated modeling language (C2). In ISA
for example, insurance fee models and GUI models are
used tightly together within the IsaCarProduct1 MoCo,
e.g., values from computed fees are directly associated with
elements of the user interface.

3) Links between Different Models: In a MoCo-based
software system, the architectural decomposition based on

functionality dictates a clean separation of concerns between
the various MoCos. As in any other component-based software
systems, MoCos are connected with each other via provided
and required interfaces. While separation of concerns has
many well-known advantages, it has one major disadvantage
in the context of MoCos: the flexibility that comes with
the ability to query and transform a single (possibly large)
interconnected model can no longer be leveraged if single
models are distributed and encapsulated across individual
MoCos (C3). There are no associations between them on the
model-level. The ability to establish links and to access these
distributed models is especially helpful to debug MoCos and
their interdependencies. In ISA for example, it is interesting
to know the available insurance fee formulas (contained in
IsaCarProduct1) for a specific feature configuration (con-
tained in IsaConfig).

4) Context-Dependent Views on Models: Modeling lan-
guages and their metamodels are only partly used, i.e., the
available expressiveness is not required and a restricted meta-
model will be sufficient. Moreover, only some data may be
relevant for a certain use case and MoCo. The ability to
define an adequate and context-specific view on sets of models
(C4) helps to reduce complexity and supports ease of use of
DSMLs. In fact, a view can be seen as a specification for the
model parts that can be used by another MoCo. In ISA for
example, an adaptation manager MoCo may need to control
certain location-dependent variables of the insurance fees and
their associated GUI elements. These parts could be encoded
by a special adaptation view.

B. Semantics Challenges

1) Specification of Model Semantics: The models in MoCos
are not only used as pure data (similar to databases) but
some are also executed. Therefore, the semantics of modeling
languages needs to be precisely specified (C5). There is a
multitude of options available and one can choose between a
spectrum of rather informal and very formal approaches [14].
It is important to choose a formalism that is both sufficiently
formal but also adequately practical for software engineers
and modeling language designers. In ISA for example, all
three modeling languages are executable: Lf is interpreted for
architectural reconfiguration, Lc is interpreted to compute an
insurance fee and Lg is interpreted to create and synchronize
an Android-specific graphical user interface for each insurance
product represented by a single MoCo.

2) Realization of Model Execution: Given a specification of
semantics for a modeling language, this specification needs to
be implemented (C6) and related decisions need to be taken
carefully. In general, there has been no commonly accepted
proposal for the realization of model semantics/model inter-
preters, yet. Besides the development of stand-alone inter-
preters and model interpreters embedded into the metamodel,
code generation is another option. Each approach has its ad-
vantages and disadvantages, e.g., with regards to performance,
complexity and reusability. In ISA for example, there is at least
one model interpreter for each modeling language.

9

One sub-challenge that is critical in the case of interpretation
is the way to deal with the parts of a model that may change
during interpretation (C6.1). We refer to them as the model’s
dynamic state, in contrast to the rest of the model, the static
structure. While these parts can be regarded as the execution
context of a stand-alone model interpreter, it can be also seen
as a part of the actual model. In ISA for example, models
of the kind of Lf , i.e., feature configurations, are used for
runtime reconfiguration. This implies that the state of a feature
(selected or not selected) varies. This information can be
stored separately by the model interpreter (e.g., technically as a
hashmap) or it can be a Boolean attribute in the Lf metamodel.

A second sub-challenge is related to the reuse of model in-
terpreters (C6.2). In this specific case, one needs to distinguish
between (i) reuse of model interpreter implementations and
(ii) their instances at runtime. Depending on the chosen type of
implementation, the reuse potential varies. In ISA for example,
the same feature model can be interpreted by different model
interpreters concurrently if the dynamic state, i.e., the feature
selection flag, is stored by the model interpreters themselves.
On the contrary, if the dynamic state is part of each model
but needs to be different per semantics, then the model needs
to be duplicated or an embedded model interpreter needs to
instantiate the dynamic state multiple times.

A third sub-challenge is related to the interdependencies
of semantics and, hence, the interplay of model interpreters
(C6.3). Ideally, each modeling language comes with its own
set of model interpreters. In case that two modeling languages
need to be used together, it is required that not only their
metamodels are integrated (see C2) but it is also necessary
that their semantics fit. In the simplest form, one model
interpreter invokes another model interpreter, which asks for a
more sophisticated management of dependencies – especially
if these shall be dynamic. In ISA for example, each insurance
product MoCo encapsulates an insurance fee formula model
and a GUI model. Given that their metamodels were previously
integrated, the model interpreter of Lc (i) may access meta-
classes of Lg and operate on them (e.g., store a computed
insurance fee in a text field), or (ii) may invoke the model
interpreter of Lg to perform the task.

3) Variants of Semantics: We experienced that while for
some modeling language (especially general-purpose model-
ing languages) a single semantics specification is sufficient,
in the case of DSMLs, multiple semantics for the same
modeling language need to be supported (C7). Therefore, in
this context, a modeling language becomes a software product
line. Reuse is critical to deal with complexity and to avoid
redundancy and duplication. In ISA for example, there may
be behavioral semantics (dynamic reconfiguration), constraint
checking semantics and visualization semantics for Lf .

C. Pragmatics Challenges

1) Data and Control Flow between Model and Code: In
MoCos, models and code coexist and realize the functionality
of the component together. It is important to be able to
invoke models from code and vice versa (C8). The MoCo

Template already defines a pattern with its Mediator and
sketched interfaces. We deem it important to further stan-
dardize these interfaces and to provide realization guidelines,
e.g., in the scope of our reference implementation (MoCo
API) [1]. The design and development of language-specific
facades encapsulating required services as a part of a CLM
needs to be researched. In ISA for example, there is code
for sending an email report in the MoCoCode module of
the IsaCarProduct1 MoCo that receives data from the
MoCoModel module (insurance fee model, GUI model).

2) Services on Models: When talking about services on
models, two categories need to be distinguished: (i) foreseen
services that are provided by the modeling language designer
and (ii) unforeseen services that are specific to a certain
user of a modeling language (e.g., a system or a compo-
nent). Moreover, modeling languages – especially DSMLs
as primarily used in MoCos – need to be compact and
adequately expressive. A strategy and a set of mechanisms is
required to specify context-specific services, realize them and
to manage the resulting variability (C9). In ISA for example,
different insurance products, i.e., different MoCos, require
similar special services, like email reporting. This particular
service was not initially foreseen when developing Lc and Lg .
Therefore, it was first developed as a part of the respective
MoCoCode module, resulting in clones across the different
insurance product MoCos. To solve such issues, often required
and DSML-specific services need to be offered by a facade as
a part of the CLM.

3) Access Control for Models: Given the power of models
in the MoCo concept, any kind of analysis or manipulation
needs to be controlled (C10). Models need to be accessible
only in predefined authorized, i.e., safe and secure, ways. It
needs to be decided whether models can be accessed using the
MoCos’ interfaces only or if there is a more powerful role that
can inspect everything, i.e., all models within all MoCos across
the system architecture. Indeed, there is a tradeoff between
flexibility and encapsulation. In ISA for example, obviously
insurance fee formulas should not be editable by anyone, even
though this is technically possible at any time using model
transformations. An adaptation manager MoCo that adjusts the
fee formulas according to the geolocation of the sales person
and potential customer requires exactly this ability, though.

IV. RELATED WORK

While there are works that deal with individual challenges
described in this paper, we observe that a comprehensive
solution approach is missing. The work on Model-Integrated
Computing, initiated by Sztipanovits and Karsai [15], targets
similar issues but lacks the runtime aspect. Due to limited
space, we can only hint at an excerpt of related work here.

Regarding the topic of syntax, Heidenreich et al. [16]
present a generic approach for the composition of models that
is based on invasive software composition and the Reuseware
Composition Framework. Krahn et al. [17] use an extended
grammar format that supports language inheritance and em-
bedding for the modular development of textual domain-

10

specific languages. Bae et al. [18] propose to modularize a
large metamodel into a set of small metamodels and present
their idea of model slicing along the UML. In contrast to
modularization approaches, Atkinson et al. propose a Single-
Underlying-Model (SUM) [19] that serves all users.

Regarding the topic of semantics, Plotkin [12] proposes a
structural approach to operational semantics. Engels et al. [13]
describe dynamic metamodeling as a graph-based approach to
the specification of semantics for (behavioral) modeling lan-
guages. The Object Management Group (OMG) [20] provides
a specification of the semantics of a foundational subset for
executable UML models (fUML) using activity diagrams and a
dedicated action language. Mayerhofer [14] comprehensively
describes the state of the art in model execution.

Regarding the topic of pragmatics, Balz et al. [21] discuss
the embedding of behavioral models (state machines) into
object-oriented source code. Ecore Facade [22] is a textual
domain-specific language for annotating existing Ecore meta-
models. This mechanism can be used to define multiple views
for a single metamodel via Ecore facade models. The survey
by Szvetit and Zdun [23] covers existing research on models
at runtime and software architecture in detail.

V. CONCLUDING REMARKS

In this paper, we introduced comprehensive language mod-
els as a way to specify modeling languages in the context of
model-integrating software components. Moreover, we gave
concrete examples along the insurance sales app study and
elaborated on a first set of challenges.

We conclude that an infrastructure is needed that provides
all model-specific services in a light-weight, homogeneous,
formally founded, easily understandable, and efficient manner
using a comprehensive technological modeling space supply-
ing full modeling and metamodeling support, and coherent
interoperable services based on a powerful data structure.

Regarding future work, we plan to carry out additional case
studies to identify further challenges for the infrastructure
needed to support model-integrating software components. In
the long run, we aim to manifest our lessons learned in a
systematically derived engineering method [24].

ACKNOWLEDGMENT

This work is supported by the Deutsche Forschungsgemein-
schaft (DFG) under grants EB 119/11-1 and EN 184/6-1. The
authors would like to thank Gregor Engels for his valuable
feedback and Thomas Iguchi for his implementation support.

REFERENCES

[1] M. Derakhshanmanesh, J. Ebert, T. Iguchi, and G. Engels, “Model-
Integrating Software Components,” in Model-Driven Engineering Lan-
guages and Systems - 17th International Conference, MODELS 2014,
Valencia, Spain, September 28 - October 3, 2014. Proceedings, ser.
Lecture Notes in Computer Science, J. Dingel, W. Schulte, I. Ramos,
S. Abrahão, and E. Insfrán, Eds., vol. 8767. Springer, 2014, pp. 386–
402.

[2] M. Derakhshanmanesh, Model-Integrating Software Components - En-
gineering Flexible Software Systems. Springer, 2015.

[3] M. Derakhshanmanesh, M. Amoui, G. O’Grady, J. Ebert, and L. Tahvil-
dari, “GRAF: Graph-based Runtime Adaptation Framework,” in Pro-
ceeding of the 6th international symposium on Software engineering for
adaptive and self-managing systems - SEAMS ’11. New York, NY,
USA: ACM Press, May 2011, pp. 128–137.

[4] G. Blair, N. Bencomo, and R. B. France, “Models@run.time,” Computer,
vol. 42, no. 10, pp. 22–27, 2009.

[5] I. Kurtev, J. Bézivin, and M. Aksit, “Technological Spaces: An Initial
Appraisal,” in International Symposium on Distributed Objects and
Applications, DOA 2002, 2002.

[6] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. R. V. Chaudron,
“A Classification Framework for Software Component Models,” IEEE
Transactions on Software Engineering, vol. 37, no. 5, pp. 593–615, 2011.

[7] “Eclipse Modeling Framework Hompage,” https://eclipse.org/modeling/
emf/ (accessed July 16th, 2015).

[8] “JGraLab Hompage,” http://jgralab.uni-koblenz.de (accessed July 15th,
2015).

[9] S. Götz, N. Bencomo, and R. France, “Devising the Future of the
Models@Run.Time Workshop,” SIGSOFT Softw. Eng. Notes, vol. 40,
no. 1, pp. 26–29, Feb. 2015.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995.

[11] The OSGi Alliance, “OSGi Core Release 5,” The OSGi Alliance, Tech.
Rep. March, 2012, http://www.osgi.org/Download/File?url=/download/
r5/osgi.core-5.0.0.pdf (accessed July 15th, 2015).

[12] G. D. Plotkin, “A Structural Approach to Operational Semantics,” 1981.
[Online]. Available: http://homepages.inf.ed.ac.uk/gdp/publications/

[13] G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer, “Dynamic Meta-
Modeling: A Graphical Approach to the Operational Semantics of
Behavioral Diagrams in UML,” in Proceedings of the 3rd international
conference on the Unified Modeling Language (UML 2000), York (UK),
ser. LNCS, B. S. A. Evans, S. Kent, Ed., vol. 1939. Berlin/Heidelberg:
Springer, 2000, pp. 323–337, third International Conference.

[14] T. Mayerhofer, “Defining Executable Modeling Languages with fUML,”
Ph.D. dissertation, Institute of Software Technology and Interactive
Systems, 2014.

[15] J. Sztipanovits and G. Karsai, “Model-Integrated Computing,” Com-
puter, vol. 30, no. 4, pp. 110–111, Apr. 1997.

[16] F. Heidenreich, J. Henriksson, J. Johannes, and S. Zschaler, “On
Language-Independent Model Modularisation,” in Transactions on
Aspect-Oriented Software Development VI, ser. Lecture Notes in Com-
puter Science, S. Katz, H. Ossher, R. France, and J.-M. Jézéquel, Eds.
Springer Berlin Heidelberg, 2009, vol. 5560, pp. 39–82.

[17] H. Krahn, B. Rumpe, and S. Völkel, “MontiCore: Modular Development
of Textual Domain Specific Languages,” in Objects, Components, Mod-
els and Patterns, ser. Lecture Notes in Business Information Processing,
R. Paige and B. Meyer, Eds. Springer Berlin Heidelberg, 2008, vol. 11,
pp. 297–315.

[18] J. H. Bae, K. Lee, and H. S. Chae, “Modularization of the UML
Metamodel Using Model Slicing,” in Information Technology: New
Generations, 2008. ITNG 2008. Fifth International Conference on, April
2008, pp. 1253–1254.

[19] C. Atkinson, R. Gerbig, and C. Tunjic, “A Multi-level Modeling
Environment for SUM-based Software Engineering,” in Proceedings of
the 1st Workshop on View-Based, Aspect-Oriented and Orthographic
Software Modelling, ser. VAO ’13. New York, NY, USA: ACM, 2013,
pp. 2:1—-2:9.

[20] The Object Management Group, “Semantics of a Foundational Subset
for Executable UML Models (fUML),” p. 441, 2012. [Online].
Available: http://www.omg.org/spec/FUML/

[21] M. Balz, M. Striewe, and M. Goedicke, “Embedding Behavioral Models
into Object-Oriented Source Code,” Proceedings of ”Software Engineer-
ing 2009”, 2009.

[22] “Ecore Facade,” 2015. [Online]. Available: http://www.emftext.org/
index.php/EMFText Concrete Syntax Zoo Ecore Facade

[23] M. Szvetits and U. Zdun, “Systematic literature review of the objectives,
techniques, kinds, and architectures of models at runtime,” Software &
Systems Modeling, pp. 1–39, 2013.

[24] G. Engels and S. Sauer, “A Meta-Method for Defining Software
Engineering Methods,” in Graph Transformations and Model-Driven
Engineering, ser. Lecture Notes in Computer Science, G. Engels,
C. Lewerentz, W. Schäfer, A. Schürr, and B. Westfechtel, Eds. Springer
Berlin Heidelberg, 2010, vol. 5765, pp. 411–440.

11

Towards a deep metamodelling based formalization
of component models

Antonio Cicchetti
School of Innovation, Design and Engineering (IDT)

Mälardalen University, Västerås, Sweden
email: antonio.cicchetti@mdh.se

Abstract—Component-based software engineering (CBSE) is
based on the fundamental concepts of components and bindings,
i.e. units of decomposition and their interconnections. By adopt-
ing CBSE, a system is built-up by means of a set of re-usable
parts. This entails that system’s functionalities are appropriately
identified so that implementing components can be accordingly
selected. In turn, this means that each component-based design
is at least made-up of two different instantiation levels, i) one
for designing the system in terms of components and their
interconnections, ii) and one for linking possible implementation
alternatives for each of the existing components. In general, this
twofold instantiation is managed at the same metamodelling
level through the use of relationships. Despite such solutions
are expressive enough to model a component-based system, they
cannot represent the instantiation relationship between, e.g., a
component and its implementations. As a consequence, validity
checks have to be hard-coded in a tool, while the interconnection
between component and implementation have to be managed by
the user.

In this paper we propose to exploit deep metamodelling tech-
niques for implementing CBSE mechanisms. We revisit CBSE
main concepts through this new vision by showing their counter-
parts in a deep metamodelling based environment. Interestingly,
multiple instantiation levels enhance the expressive power of
CBSE approaches, thus enabling a more precise system design.

Index Terms—model-driven engineering; component-based
software engineering; component models; deep metamodeling;
instantiation level;

I. INTRODUCTION

The increasing complexity of contemporary software sys-
tems and the growing pressures to deliver products faster while
still keeping high quality attributes demands appropriate de-
velopment solutions. Component-based software engineering
CBSE [1] is a well-established methodology that proposes
to alleviate software development intricacy by studying the
target application as an assembly of composable units (indeed,
software components), each one addressing a particular aspect
of the system. In this way, the complexity of the initial problem
can be reduced through its partitioning into smaller sub-
problems. Moreover, time devoted to development and testing
can be narrowed by promoting the reuse of already existing
components across several software development projects [2].

Component-based system (CBS) specifications are intrinsi-
cally hierarchical: i) on the one hand, a component might be
realised as the composition of several nested components; ii)
on the other hand, a component might have multiple imple-
mentations distinguished by quality attributes, target platform,

and so forth. Usually, modelling languages support such hierar-
chical structure in terms of relationships between a component
and its sub-components, or between a component and its
realisations, respectively. Despite this approach is powerful
enough to represent complex CBSs from the expressiveness
point-of-view, it requires a careful management of system
validation. Notably, type correctness checking, that is verifying
whether a component realisation is a valid instance of the
component specification, has to be hard-coded in the tool.
Moreover, this check should be re-executed each time changes
were performed in the component specification and/or in its
realisation. Besides, the relationship solution becomes quickly
intricate with the growth of hierarchical decomposition levels.
Practically, supporting more than two levels of component
nesting poses relevant representation issues, as distinguishing
the quality attributes of a parent component from the ones of
its nested children.

Deep metamodelling [3] is a recent technique introduced in
the model-driven engineering (MDE) research field to cope
with multiple instantiation levels. It enhances the usual 4-
layered metamodelling architecture [4] (also known as two-
level metamodelling) by providing a recursive language ex-
tension/instantiation structure. In this respect, the deep meta-
modelling vision fits perfectly with CBSE methodology and
its hierarchical decomposition of software systems [3]. In
fact, deep metamodelling allows to represent a system and its
components by means of arbitrary decomposition/instantiation
levels.

This paper investigates the implementation of a component
model by means of deep metamodelling mechanisms with
the aim of verifying the feasibility of such a solution. The
initial results illustrated in this work confirm the feasibility
of the approach and meet the expectations of exploiting deep
metamodelling mechanisms. Notably, hierarchical component
structures can be represented in an easier way, while the
conformance check of a component instance against a com-
ponent specification is obtained by-construction. Despite both
the component model and the deep metamodelling solution
are specific, the discussion is kept generic enough to be repro-
ducible with other component models and deep metamodelling
approaches.

The paper is organised as follows: next section introduces
CBSE together with a running example, which will be ex-
ploited in Section III to clarify the issues raising in considering

12

multiple instantiation levels. Section IV discusses the proposed
formalisation of CBSE concepts through a deep metamod-
elling framework. Eventually, related works are discussed and
conclusions are drawn in Sections VI and VII, respectively.

II. INSTANTIATION RELATIONSHIPS IN CBSE

CBSE methodology relies on the notion of component, that
is “a unit of composition with contractually specified interfaces
and explicit context dependencies only. A software component
can be deployed independently and is subject to composition
by third party.” [5]. Depending on the application domain,
technological platform, and so on, the concept of component
might include disparate characteristics, which are typically
defined in a corresponding component model [6]. Therefore,
a CBS is specified by adhering to a well-defined component
model, that prescribes how components, their interconnections,
and their deployment, look like.

For example, let us consider a simple Personal Navigation
Assistant (PNA)1 CBS as depicted in Figure 1: it includes
GPS Receiver, Power Management, Navigation
System, and UI components (represented as boxes with
names). For the purpose of this paper, it is sufficient to know
that the Navigation System retrieves geo-positioning
information from a GPS Receiver and delivers naviga-
tion data to a user interface (UI component). These inter-
connections are represented by means of named relation-
ships linking component ports. More precisely, a triangle
shaped port represents an (provided) output of a certain
component, while a square represents an (required) input.
Therefore, Navigation System gets Position infor-
mation from GPS Receiver and, after computing relevant
Navigation Data, it delivers them to the UI.

1The example has been taken from [7] and readapted for the purpose of
this paper.

Fig. 1. A simple Personal Navigation System.

Fig. 2. A simple GPS receiver component.

Fig. 3. Two (excerpts of) possible implementations for the PNA system.

In general, a component can include nested sub-
components, referred to as composite components [6]. This
is the case of the GPS Receiver, which has a complex
internal structure. As shown in Figure 2, GPS antennas
(Parallel Receiver) have to coordinate their tasks with
Clock and Almanac Store. In particular, satellite avail-
abilities depend on the current time and are stored in an
almanac.

Eventually, components are attached with one or more
implementations, which can be distinguished by quality at-
tributes, supported platforms, and so forth. Notably, for the
PNA one might want to prioritise power consumption versus
precision in a mobile phone while doing the opposite for a
rescue device. Figure 3 illustrates two implementation alter-
natives for the PNA system: in the one shown on the top
half of the picture, a single Database is shared between the
implementations of Almanac and UI components, whereas
the realisation shown on the bottom half exploits separate
databases.

It becomes quickly evident that CBSE methodologies are
intrinsically hierarchical: the generic notion of component
assembly is instantiated by means of a specific component
model (e.g., the simple one used in the example), which in
turn is instantiated into a particular CBS (the PNA system).
Even further, components can be realised in terms of other
components and/or through implementations (as shown in
Figure 2 and 3, respectively). In this respect, it is expectable
that each CBS specification is made-up of only valid in-
stances for the component model, the components defined
in the system together with their implementations. Some of
these instantiation relationships are managed by-construction:
notably, a CBSE tool is built-up on a well-defined component
model, hence the tool will support the design of CBSs by
means of all and only the concepts offered by the selected
component model (i.e. there is no need to verify that a CBS
specification conforms to the component model).

A number of instantiation relationships however have to be
checked case-by-case, and this validation step has to be ad-
dressed either by the designer, through appropriate constraints
at modelling level (e.g. by means of OCL [8]), or hardcoded

13

Fig. 4. A comparison between 4-layered and deep metamodelling architec-
tures.

into the tool. For example, when specifying that the GPS
Receiver composite component in Figure 1 is decomposed
as in Figure 2, the tool should at least verify that input and out-
put ports of the latter component specification are compatible
with input and output ports of the former composite compo-
nent (e.g., matching types). A similar reasoning has to be done
when considering the interconnection between components
and corresponding implementations. More specifically, every
implementation of GPS Receiver should be compatible
with every implementation of Navigation System when
considering the exchange of Position and Output Mode
data (e.g., the implemented setter and getter methods should
match with their types). Regardless whether specified by the
designer or if hardcoded in the tool, keeping consistent and
up-to-date validity checks can be time-consuming and error-
prone, especially when considering complex CBSs. Notably,
if the system needed a more precise tracking of power status,
the Power Management component could be refined as
providing more details. In turn, these refinements should be
propagated at implementation level by choosing appropriate
component implementations for both Power Management
and Navigation System.

III. ON THE NEED OF A DEEP METAMODELLING SOLUTION

Current modelling techniques are usually based on a 4-
layered metamodelling architecture [4]: a software system is
represented by means of a model, that is an abstraction of
reality for a given purpose. The model is created by following
a set of well-formedness rules stated in a language definition,
referred to as the metamodel. In other words, a metamodel
defines the set of legal abstractions for a certain system. A
model is said to conform to a metamodel if it adheres to
the defined well-formedness rules. At the top of the 4-layered
architecture there is the meta-metamodel, i.e. a unique minimal
set of concepts needed to create all the possible languages. In
this respect, the specification for the example introduced in
Section II would be supported as shown on the left side of
Figure 4: the MMM layer would be exploited to define a CBSE
language based on a specific component model (at level MM),
while the PNA system, its (sub-)components, bindings, and

component implementations, would all be represented at the
modelling level (i.e., M).

The conformance validity issues mentioned in Section II
are due to the fact that a certain entity either pertains to the
metamodel or to one of the models conforming to it. Moreover,
at language level, realisation links defined between composite
components and sub-components, and analogously between
components and implementations, cannot guarantee confor-
mance (i.e., they cannot impose type instantiation constraints).
Technically, these relationships link concepts pertaining to
different metamodelling layers that however cannot be repre-
sented in the typical 4-layered metamodelling architecture [3].
More specifically, the PNA system in Figure 1 is an instance
of a certain component model, and at the same time the
implementations in Figure 3 are instances of PNA components.
In other words, a certain entity should play the role of a
concept definition (MM level in Figure 4) and instance (M level
in Figure 4) at the same time.

Multiple metamodelling layers allow to appropriately rep-
resent instantiation hierarchies, as depicted on the right side
of Figure 4: a model can be equally considered as an instance
conforming to the metamodel on the layer above and as
a language definition (i.e. as a metamodel itself), for the
layer below. In this way, it is be possible to define a com-
ponent model as a metamodel a certain CBS specification
conforms to, like it happens for CM and ProCom levels. In
turn, the CBS specification would constitute a metamodel
for which (sub-)component instances could be created (see
ProCom and PNASystem levels, respectively). Eventually,
implementations would be represented in a model conforming
to a metamodel including simple component definitions (i.e.,
PNAImpl).

IV. A DEEP METAMODELLING FORMALISATION FOR CBSE

This section illustrates the proposed formalisation of CBSE
methodologies into a deep metamodelling framework. The for-
malisation proceeds step-by-step, from higher abstraction level
concepts towards more and more concrete instantiations of
them. In particular, we leverage a specific component model,
namely ProCom [9], to implement the example presented in
Section II. Moreover, we exploit MetaDepth [10] as support
for concretising the formalisation proposal on a specific deep
metamodelling environment. It is worth noting that, despite
the component model and deep metamodelling solution are
specific, the discussion is kept generic to be extensible to
arbitrary component models and other deep metamodelling
solutions.

In order to develop a system through CBSE methodologies,
it is necessary to preliminarily adopt a specific component
model [6]. In the most generic terms, a component model is
made-up of components, bindings, and a platform. By adopting
MetaDepth syntax, these concepts are specified as shown in
Listing 1. In particular, Component nodes are bound by
means of directional Binding edges (the direction is iden-
tified through attributes bindingOut, bindingIn, respec-

14

tively). A similar reasoning can be done for the Deployment
relationship between Component and Platform nodes.

It is worth noting that, already at this stage it is possible to
put modelling constraints: the noSelfBinding expression
at line 18 prescribes that a component cannot be bound to
itself. Moreover, child multiplicity at line 9 establishes that
a Composite must have at list one nested component.

1Model ComponentModel@*{
2 ext Node Component@*{
3 bindingIn: Component[*];
4 bindingOut: Component[*];
5 deployment: Platform[0..1];
6 }
7
8 ext Node Composite@*: Component{
9 child: Component[1..*];

10 }
11
12 ext Node Platform{
13 in: Component[*];
14 }
15
16 Edge Binding(Component.bindingOut,Component.bindingIn) {}
17 Edge Deployment(Component.deployment,Platform.in) {}
18 noSelfBinding@* : $Component.allInstances()->forAll(src,tgt

| Binding(src.bindingOut,tgt.bindingIn) implies src!=
tgt)$

19}

Listing 1. Encoding of a generic component model.

The generic definition given in Listing 1 introduces the nec-
essary CBSE concepts to create a specific component model.
Notably, if we would like to define the ProCom component
model, we would need to refine the generic bindings as
ports, since ProCom adopts port-based interfaces. In particular,
we introduce data ports and trigger ports, as illustrated in
Listing 2, lines 4–7. Moreover, bindings have to be refined
correspondingly (lines 18–19). It is important to notice that
ProCom component model is defined in terms of, or better
instantiates, the generic component model defined in List-
ing 1. This ensures, for instance, that DataConnection
correctly binds a pair of ProComComponents through their
in_dataPort and out_dataPort, respectively. Other
alternatives, e.g. connecting a port with a child, would have
raised type mismatch issues at validation time due to the type
relationships defined before.

1ComponentModel ProCom{
2 Component ProComComponent{
3 name: String {id};
4 in_dataPort: ProComComponent[*] {bindingIn};
5 out_dataPort: ProComComponent[*] {bindingOut};
6 in_triggerPort: ProComComponent[*] {bindingIn};
7 out_triggerPort: ProComComponent[*] {bindingOut};
8 parent: ProComComposite[0..1];
9 }

10
11 Composite ProComComposite: ProComComponent{
12 child: ProComComponent[1..*];
13 }
14
15 Platform ProComPlatform{
16 }
17
18 Binding DataConnection(ProComComponent.out_dataPort,

ProComComponent.in_dataPort) { name: String {id}; }
19 Binding TriggerConnection(ProComComponent.out_triggerPort,

ProComComponent.in_triggerPort) { name: String {id};
}

20 Edge isChildOf(ProComComponent.parent, ProComComposite.
child) {}

21 Deployment ProComDeployment(ProComComponent.deployment,
ProComPlatform.in) {}

22}

Listing 2. Encoding of (a subset of) the ProCom component model.

Once the component model has been defined, it is possi-
ble to model a CBS. In our case, we specify the PNA
system introduced in Section II through ProCom, as shown
in Listing 32. In particular, the Navigation System, Power
Management, and UI components in Figure 1 are mod-
elled as ProComComponents, while the GPS receiver
as a ProComComposite (see lines 2–13). Moreover,
DataConnections are specified to bind the components
appropriately, and implicitly define data ports for the corre-
sponding components (lines 16–21).

Since GPS is defined as a composite, it is possible to define
it as an assembly of sub-components. In this respect, Listing 3
shows the definition of Almanac Store at lines 23–25
according to the description of the GPS receiver depicted
in Figure 2. Furthermore, by choosing the implementation
alternative at the bottom of Figure 3, the almanac is defined as
composite, thus allowing the introduction of a nested database
component together with its quality attributes (lines 29–34).
The nesting specification is completed with the definition
of isChildOf relationships, as visualised at lines 36–38.
Eventually, a platform is introduced to allow the deployment
of the PNA system, and component deployments are specified
accordingly (lines 41–47).

1ProCom PNAModel{
2 ProComComposite GPS{
3 name = "GPS Receiver";
4 }
5
6 ProComComponent NS{
7 name = "Navigation System";
8 }
9 ProComComponent UI{

10 name = "UI";
11 }
12 ProComComponent PM{
13 name = "Power Management";
14 }
15
16 DataConnection(GPS.out_dataPort,NS.in_dataPort){name="

Position";}
17 DataConnection(NS.out_dataPort,GPS.in_dataPort){name="

OutputMode";}
18 DataConnection(PM.out_dataPort,NS.in_dataPort){name="

PowerStatus";}
19 DataConnection(UI.out_dataPort,NS.in_dataPort){name="

UserInputs";}
20 DataConnection(NS.out_dataPort,UI.in_dataPort){name="

NavigationData";}
21 DataConnection(NS.out_dataPort,UI.in_dataPort){name="

Tracks";}
22
23 ProComComposite AS{
24 name = "Almanac Store";
25 }
26
27 ...
28
29 ProComComponent DB{
30 name = "DB";
31 encryption: String = "NotDefined";
32 queryLanguage: String = SQL;

2Due to space limitations, some portions of the specification are omitted.
The interested reader can download the full specification at http://www.es.
mdh.se/∼acicchetti/PNASystem.php .

15

33 WCET: int = 22;
34 }
35
36 isChildOf innerASDB(DB.parent,AS.child);
37 isChildOf innerAlmanac(AS.parent,GPS.child);
38 isChildOf innerUIDB(DB.parent,UI.child);
39 ...
40
41 ProComPlatform PNAPlatform{
42 name: String = "PNAPlatform";
43 CPU: String = "FPGA";
44 BUS: String = "EtherNet";
45 }
46
47 ProComDeployment GPSDeployment(GPS.deployment, PNAPlatform

.in) {}
48 ...
49}

Listing 3. Specification of the PNA system through ProCom.

An excerpt of the implementation of the PNA system is
specified as shown in Listing 4. In particular, it illustrates the
details for GPS, almanac, and database components (lines 2–
18), together with the ones for UI and its nested database (lines
20–21), consistently to the implementation choice depicted at
the bottom of Figure 3. Moreover, it shows the declaration of
a platform and corresponding deployments at lines 33–34.

1PNAModel pna{
2 GPS gpsImplementation{
3 name = "GPS1";
4 }
5
6 AS asImplementation{
7 name = "AS1";
8 }
9

10 DB dbImplementation1{
11 name = "DB1";
12 encryption = "none";
13 queryLanguage = "SQL";
14 WCET = 13;
15 }
16
17 innerDBAS(dbImplementation1,asImplementation);
18 innerAlmanac(asImplementation,gpsImplementation);
19
20 UI uiImplementation{
21 name = "UI1";
22 }
23
24 DB dbImplementation2{
25 name = "DB2";
26 encryption = "none";
27 queryLanguage = "SQL";
28 WCET = 22;
29 }
30
31 innerDBUI(dbImplementation2,uiImplementation);
32
33 PNAPlatform platform {}
34 GPSDeployment(gpsImplementation.deployment, platform.in);
35 ...
36}

Listing 4. An excerpt of the specification of the PNA system implementation.

V. DISCUSSION

At this point it is important to remark several relevant
aspects related to the PNA system specification. From an
instantiation procedure point-of-view, the deep metamodelling
framework introduces correctness by-construction. Notably,
once a system is defined as shown in Listing 3, it will
be only possible to introduce component implementations as
instances of the defined types (as in Listing 4). Even more

important, the implementations have to obey the constraints
set in the specification: innerAlmanac can only connect
an implementation for the almanac with an implementation of
a GPS (see line 18), while GPSDeployment can only be
instantiated with an implementation for the GPS (see line 34).
The check of such constraints comes “for free” by the system
specification itself, which acts as a metamodel for the system
implementation; on the contrary, the 4-layered metamodelling
techniques would require additional coding and/or correctness
rule definitions to check relationships consistency.

Another relevant aspect to notice is the ease of identifi-
cation of type instances, which allows to set properties by
component implementation, and link each of them to the
appropriate component types. In particular, the two different
implementations for the database are equipped with different
quality attributes and can be included into different composites
accordingly. Moreover, the deep metamodelling framework
naturally supports the extension of attributes, making it possi-
ble to provide additional implementation details for component
implementations (e.g. cost, size, and so forth) depending on
target platform sensitiveness.

From a higher level of abstraction perspective, the deep
metamodelling approach enables the definition of advanced
modelling constraints. Notably, the component model might
define modelling patterns/styles that later on will have to be
preserved by system specifications in order to be successfully
validated. This could include the number of components,
the kind/number of allowed bindings, and so on. It is im-
portant to notice, once again, that similar constraints could
be implemented also in the usual 4-layered metamodelling
architectures. However, such a need would require implicit
checks that in the long run can become time-consuming and
error-prone.

As a drawback, the hierarchical arrangement of CBSs
specification over multiple metamodelling levels could result
as less intuitive and become less usable when dealing with
complex systems. In this respect, it is very important to notice
that the formalisation is intended to be transparent to the
CBS designer, and should be considered as the underlying
infrastructure over which a CBS tool would be implemented.
MetaDepth is a text-based deep metamodelling environment,
and as a consequence this work adopts the same approach.
Nonetheless, other existing deep metamodelling tools have
already demonstrated the implementability of diagrammatic
layers over a base deep metamodelling technology (notably
Melanee [11] and the DPF [12]).

The current description of this formalisation in inherently
top-down, whereas an ideal CBSE approach would promote
a bottom-up development, where useful pre-existing compo-
nents are identified and picked-up from a repository [13]. In
this respect, the component model can be still described as
including a repository, and a valid CBS as being a collection of
component repository elements. In this case, it would be up to
the CBSE tool to create an appropriate instantiation hierarchy
based on the selected components.

16

VI. RELATED WORKS

A preliminary choice in adopting a modelling language is
deciding whether opting for a general purpose or a domain-
specific language [14]. In general, the former solutions have
embedded extension mechanisms (like the prototyping mech-
anisms for the UML [15]), while the latter demand proper
language extensions through metamodelling activities. With
respect to this paper, the former mechanisms provide more
expressiveness through model instances (by inheritance), while
the latter ones act on the metamodel to provide appropriate
refinements. In both cases, the extensions are limited to the
4-layered metamodelling architecture that does not allow to
introduce multiple instantiation levels.

The general need for better addressing multiple instan-
tiation levels has been recognised in the last decade and
corresponding solutions have been identified under the name
of multilevel (or deep) modelling [10], [12], [16], [17]. In
some cases, multilevel modelling techniques have been even
used to implement domain-specific component-based systems,
notably robots [18] and cloud services [19]. Nonetheless, to
the best of our knowledge this is the first work that proposes a
general formalisation of CBSE concepts, and in particular of
component models, with the aim of enhancing current CBSE
techniques.

The problem of managing multiple instantiation levels in
CBSE has been already tackled by several works, as [7], [20],
[21]. In general these works adopt a 4-layered metamodelling
solution, that is, they typically exploit inheritance or other
recursive relationships to provide support for containmen-
t/refinement modelling [7]. Therefore, they leave open the
instantiation problems described throughout the paper.

VII. CONCLUSION AND FUTURE WORKS

This paper presents the first steps towards the formalisa-
tion of CBSE concepts in a deep metamodelling framework.
Component-based systems have an intrinsic hierarchical struc-
ture and frequently exploit the “type-instance” pattern [3].
These characteristics have been identified as problematic to
be implemented in the usual 4-layered metamodelling archi-
tecture and require better support. In this respect, the formali-
sation illustrated in this work shows promising improvements
and gains with regard to both expressiveness and correctness
checking.

Future investigation directions will include a more extensive
experimentation of deep metamodelling techniques, especially
focusing on the adoption of different component models, in
order to verify the malleability of deep metamodelling in com-
ponent adaptation/reconfiguration scenarios [13]. Moreover,
the formalisation will have to be embedded in a CBSE tool to
better evaluate the usability/scalability aspects related to both
modelling and analysis tasks.

ACKNOWLEDGEMENTS

The author would like to thank Jan Carlson and Severine
Sentilles for the interesting preliminary discussions around the
topic covered in this paper.

REFERENCES

[1] I. Crnkovic, “Component-Based Software Engineering for Embedded
Systems,” in LMO, 2006, p. 13.

[2] I. Crnkovic and M. Larsson, Building Reliable Component-Based Soft-
ware Systems. Artech House, Inc., 2002.

[3] J. D. Lara, E. Guerra, and J. S. Cuadrado, “When and how to use
multilevel modelling,” ACM Trans. Softw. Eng. Methodol., vol. 24, no. 2,
pp. 12:1–12:46, Dec. 2014.

[4] J. Bézivin, “On the Unification Power of Models,” Software and System
Modeling, vol. 4, pp. 171–188, 2005.

[5] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming, 2nd ed. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2002.

[6] I. Crnkovic, S. Sentilles, V. Aneta, and M. R. V. Chaudron, “A classifi-
cation framework for software component models,” IEEE Trans. Softw.
Eng., vol. 37, no. 5, pp. 593–615, Sep. 2011.

[7] T. Lévêque and S. Sentilles, “Refining extra-functional property val-
ues in hierarchical component models,” in Proceedings of the 14th
International ACM Sigsoft Symposium on Component Based Software
Engineering, ser. CBSE ’11. New York, NY, USA: ACM, 2011, pp.
83–92.

[8] Object Management Group (OMG), http://www.omg.org/spec/OCL/2.0/
PDF.

[9] S. Sentilles, A. Vulgarakis, T. Bureš, J. Carlson, and I. Crnković, “A
Component Model for Control-Intensive Distributed Embedded Sys-
tems,” in Proceedings of CBSE. Springer Berlin, 2008, pp. 310–317.

[10] J. de Lara and E. Guerra, “Deep meta-modelling with metadepth,” in
Proceedings of the 48th International Conference on Objects, Models,
Components, Patterns, ser. TOOLS’10. Berlin, Heidelberg: Springer-
Verlag, 2010, pp. 1–20.

[11] C. Atkinson and R. Gerbig, “Melanie: Multi-level modeling and ontol-
ogy engineering environment,” in Proceedings of the 2Nd International
Master Class on Model-Driven Engineering: Modeling Wizards, ser.
MW ’12. New York, NY, USA: ACM, 2012, pp. 7:1–7:2.

[12] Y. Lamo, X. Wang, F. Mantz, W. MacCaull, and A. Rutle, “Dpf work-
bench: A diagrammatic multi-layer domain specific (meta-)modelling
environment,” in Computer and Information Science 2012, ser. Studies
in Computational Intelligence, R. Lee, Ed. Springer Berlin Heidelberg,
2012, vol. 429, pp. 37–52.

[13] S. Becker, H. Koziolek, and R. Reussner, “The palladio component
model for model-driven performance prediction,” J. Syst. Softw., vol. 82,
no. 1, pp. 3–22, Jan. 2009.

[14] T. Kosar, N. Oliveira, M. Mernik, J. M. Pereira Varanda, M. Črepinšek,
D. Da Cruz, and P. Henriques Rangel, “Comparing general-purpose and
domain-specific languages: An empirical study,” Computer Science and
Information Systems, vol. 7, pp. 247–264, 2010.

[15] Object Management Group (OMG), “UML Superstructure Specifi-
cation V2.3,” http://www.omg.org/spec/UML/2.3/Superstructure/PDF/,
2011, [Online. Last access: 11/04/2012].

[16] C. Atkinson, M. Gutheil, and B. Kennel, “A flexible infrastructure for
multilevel language engineering,” IEEE Trans. Softw. Eng., vol. 35, no. 6,
pp. 742–755, Nov. 2009.

[17] B. Neumayr, K. Grün, and M. Schrefl, “Multi-level domain modeling
with m-objects and m-relationships,” in Proceedings of the Sixth Asia-
Pacific Conference on Conceptual Modeling - Volume 96, ser. APCCM
’09. Darlinghurst, Australia, Australia: Australian Computer Society,
Inc., 2009, pp. 107–116.

[18] C. Atkinson, R. Gerbig, K. Markert, M. Zrianina, A. Egurnov, and
F. Kajzar, “Towards a deep, domain specific modeling framework
for robot applications,” in Proceedings of the First Workshop on
Model-Driven Robot Software Engineering (MORSE). CEUR-WS,
2014. [Online]. Available: http://ceur-ws.org/Vol-1319/

[19] A. Rossini, J. de Lara, E. Guerra, and N. Nikolov, “A comparison of two-
level and multi-level modelling for cloud-based applications,” in Mod-
elling Foundations and Applications, ser. Lecture Notes in Computer
Science, G. Taentzer and F. Bordeleau, Eds. Springer International
Publishing, 2015, vol. 9153, pp. 18–32.

[20] J. Odell, “Power types,” JOOP, vol. 7, no. 2, pp. 8–12, 1994.
[21] R. C. Goldstein and V. C. Storey, “Materialization,” IEEE Trans. on

Knowl. and Data Eng., vol. 6, no. 5, pp. 835–842, Oct. 1994.

17

Generating Domain-Specific Transformation
Languages for Component & Connector

Architecture Descriptions
Lars Hermerschmidt, Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann

Software Engineering, RWTH Aachen University, http://www.se-rwth.de/

Abstract—Component-based software engineering (CBSE)
decomposes complex systems into reusable components.
Model-driven engineering (MDE) aims to abstract from
complexities by lifting abstract models to primary development
artifacts. Component and connector architecture description
languages (ADLs) combine CBSE and MDE to describe
software systems as hierarchies of component models. Using
models as development artifacts is accompanied with the
need to evolve, maintain and refactor those models, which
can be achieved by model transformations. Domain-specific
transformation languages (DSTLs) are tailored to a specific
modeling language as the modeling language’s concrete syntax is
used to describe transformations. To automate the development
of DSTLs for ADLs, we present a framework to systematically
derive such languages from domain-specific C&C language
grammars. These DSTLs enable to describe such model
transformations concisely in vocabulary of the underlying ADL.
These domain-specific transformations are better comprehensible
to ADL experts than generic transformations.

I. MOTIVATION AND PROBLEM STATEMENT

Engineering non-trivial software systems demands
techniques to reduce development effort. Component-based
software engineering (CBSE) aims to reduce complexity
by composing systems from reusable components. Ideally,
these components can be developed independently by domain
experts and reused off-the-shelf - increasing component
maturity along the way. Components of CBSE usually
are source code artifacts, which gives rise to “accidental
complexities” [1] (dealing with programming instead of
domain issues). Model-driven engineering (MDE) aims to
abstract from these by lifting abstract models to primary
development artifacts. Such models are typically formulated
in terms of a domain-specific language (DSL) that reduces
noise and trades expressiveness for comprehensibility. In
addition, such models can be better reusable, analyzable,
and automatically transformable into executable systems.
Component and connector (C&C) architecture description
languages (ADLs) [2] combine CBSE and MDE to model
systems as hierarchies of components.

Using ADLs in MDE gives rise to needs for multiple
types of model transformations, such as: i) preprocessing:
translate ADL keywords into equivalent component structures
or flatten the component hierarchy prior to code generation,
rearrange the subcomponent hierarchy for deployment.

K. Hölldobler is supported by the DFG GK/1298 AlgoSyn.

ii) refactoring: find architectural anti patterns and replace
these with established solutions. iii) refinement: replace
platform-independent with platform-specific components.

Describing transformations either requires handcrafting
code to transform a model based on its representation,
such as an abstract syntax tree (AST), in a general
purpose programming language or modeling with a generic
transformation language such as ATL [3]. The former is
tedious and error prone. The latter requires learning a new
language, which might provide adequate transformation
descriptions, but cannot rely on the original DSL’s notations.

Domain-specific transformation languages (DSTLs) also
called “transformations in concrete syntax” [4]–[7] reduce
the effort of learning a transformation language as they
employ the familiar DSL’s syntax. In addition they allow
a more concise definition of transformations as the AST
is not involved. Producing such DSTLs however requires
the same effort as developing a DSL. To approach this,
we have developed a framework to generate DSTLs from
DSLs while retaining their vocabulary. With this framework,
developers can efficiently describe model transformations in
well-known form and the overhead of learning additional
modeling elements is minimized.

In the following, Sect. II presents the language workbench
MontiCore on which our framework, and the ADLs we
generate DSTLs for, build. Afterwards, Sect. III describes
the framework before Sect. IV illustrates the resulting DSTLs
and their application. Sect. V presents related work. Finally,
Sect. VI discusses the approach and Sect. VII concludes.

II. PRELIMINARIES

The DSTL generation framework relies on the language
development and integration mechanisms of the language
workbench MontiCore [8]. With this, it parses the
grammars of MontiCore DSLs and generates domain-specific
transformation languages. MontiCore provides a language to
describe the integrated concrete and abstract syntax of DSLs
in terms of context-free grammars and means to generate
model processing infrastructure, such as tools to parse textual
models into an abstract syntax tree (AST), frameworks for
language integration and well-formedness checking [9], as
well as code generation [10]. Language integration enables
aggregation, inheritance, and embedding between DSLs. For

18

the latter, the host DSL provides extension points filled by
modeling elements of the embedded DSL.

We apply our approach to MontiArc [11], a C&C
ADL build with MonitCore and its extension MontiSecArc.
Both describe logically distributed software architectures
as hierarchies of connected components. Components are
black-boxes with interfaces of typed, directed ports. The
behavior of atomic components is defined by source code
artifacts and the behavior of composed components emerges
from their subcomponents. MontiSecArc introduces the trust
level to distinguish components that might be influenced by
an adversary from those which are not that easy to reach.
qAs modeling something unknown like an adversary is hard,
the trust level describes (physical) protection measures which
hinder an adversary to compromise a component. The trust
level abstracts from individual measures like locked doors,
fences, and video surveillance to focus the model on IT
security. A subcomponent’s trust level is denoted relative to
its containing component and the surrounding of a system is
assumed as insecure and hence has the trust level −1.

A classical measure to hinder adversaries to access a
resource is access control, such as role based access control,
or access control lists (ACLs) [12], which is noted by the
keyword access in MontiSecArc. Access is limited to certain
policies, such as roles or ACLs, for specific incoming ports or
complete components, where the later is equivalent to access
control for all incoming ports of the component. Assigning
users to roles or ACLs is left to run-time, such that new users’
access rights are defined by the access policy.

To avoid naming problems with policies when composing
components, policies of different components are independent,
even if they have the same name. When interconnecting
components, e.g., client and server as depicted in Fig. 4, where
one role has access to different components an identity link
connects these components. When interconnecting identities,
the process of authentication, where a user from a proving
component claims to have a role at the verifying component,
ensures that only users, which possess this role are able to
claim it. In Fig. 4 Client’ is the proving component and
Server’ the verifying one. To specify proving and verifying
component, the identity link is directed from the former to
the latter.

III. DSTL GENERATION FRAMEWORK

The DSTL generation framework is able to create DSTLs
that, in conjunction with additional generated and provided
parts of the framework, realizes a graph transformation
approach. In such approaches, complex transformations are
composed of small transformation rules where transformation
rules usually are described by a left-hand side (LHS) - the
model part before applying the rule - and a right-hand side
(RHS) - the same model part after being transformed [13].
The following sections explain the framework to automatically
derive DSTLs from the grammar of a modeling language
as well as the resulting DSTL and the application of
domain-specific transformations.

TM2J-Gen
«gen» «provided»

«provided»

«gen»

«gen»

«provided»

DSTL-

Gen

parses creates

creates

OD-Gen OD2J-Gen

CF2J-Gen

DSL

Grammar

DSTL

Grammar

Fig. 1. Overview of the generation of a DSTL including provided and
generated generators.

A. From DSL to DSTL

The automatic derivation of DSTL is solely based on
the grammar of the DSL. Thus, by taking the modeling
language’s grammar as input the DSTL generator produces
the grammar for describing transformation rules following the
derivation rules described in [14] and a generator (OD-Gen,
Fig. 1) to translate those transformation rules to a LHS and
a RHS of a transformation in form of object diagrams (OD
notation). Furthermore, the framework provides a generator to
translate this OD notation to Java (OD2J-Gen), a control flow
language to control the application of transformation rules and
a generator (CF2J-Gen) to translate the control flow to Java.

As complex transformations usually are decomposed
to transformation rules combined by some kind of
application strategy ([15]), the control flow language uses the
transformation rule language via language embedding to allow
the description of complex transformations in form of so called
transformation modules (Sect. III-B4). Finally, to ease the use
of the generators (OD-, CF2J-, and OD2J-Gen) the DSTL
generator creates glue code that combines those generators to a
single generator (TM2J-Gen) able to translate transformation
modules to executable Java transformations.

B. Generated DSTLs

A DSTL created by the generator described above reuses the
concrete syntax of the DSL to describe patterns. In addition,
the DSTL provides a replacement operator for modifications,
allows to bind elements to variables, and to specify negative
elements and application constraints. With this, the DSTL is
able to describe endogenous in-place transformations [15],
[16]. In contrast to the typical transformation form consisting
of LHS and RHS, we use an integrated notation of LHS and
RHS. Combining these in a single model avoids repeating
unchanged model parts on the RHS. The transformation
operators, such as the replacement operator or negative
elements, are provided for every model element defined by
a nonterminal such as components and ports. The following
explains those operators.

1) Pattern and Schema Variables: The DSTL uses concrete
DSL syntax to describe patterns, thus, a pattern resembles the
model part it describes and omits parts that do not constrain
the pattern. For example, the model in Lst. 1 could also serve
as a pattern. However, every component that has the depicted

19

structure and arbitrary additional structures, such as additional
ports or subcomponents, would be a suitable match for this
pattern. There also is no need to start a pattern at the top-level
element of a model. Instead, all elements can be top-level
elements in a pattern. For instance, if a transformation is
defined for a port and the containing component is irrelevant,
the pattern may only define the port and its modification.

In many cases transformations need to be more general,
thus, for abstraction purposes as well as binding model
elements to variables (for instance to move them), the
generated DSTL provides a concept called schema variables.
Those variables consist of a type, i.e., the name of the
nonterminal that defines the model element and a name
starting with a $-sign. There are black box and a white box
schema variables: Black box variables end with a semicolon
(“ElementType SchemaV ar ;”), while white box variables
allow to define the element’s structure within double square
brackets (“ElementType SchemaV ar [[Element]]”). An
example black box variable is depicted in line 6 of Lst. 3 for
an access definition. Line 9-12 of Lst. 3 show a white box
variable for a component.

To ease the use of variables for names the type Name can
be omitted. A schema variable for a name is displayed in
Lst. 2 ($name in l. 7, $sp in l. 8). If a schema variable is
used for a model element the corresponding element is bound
to this variable during pattern matching. Thus, using the same
variable twice refers to the same model element in both cases.
However, for names we relaxed this such that two occurrences
of a schema variable for a name require equality instead of
identity. When using variables for abstraction, without the need
for referencing them later, the anonymous $_ variable may be
employed. It does not bind the model element and, hence, two
occurrences neither require identity nor equality (Lst. 2, l. 9).

2) Modifications: The generated DSTL uses an integrated
notation of the LHS and RHS of a transformation rule. To
achieve this the DSTL provides the replacement operator :-
that acts on element level (“[[Element? :- Element?]]”).
The element left of :- is replaced by the one right of it. If the
LHS is left blank an element is created and added. Leaving the
RHS blank deletes an element. A modification is illustrated in
line 6 of Lst. 2.

3) Negative Elements, Application Constraints and
Assignments: Negative application conditions [17] are
provided in form of negative elements with the following
syntax: not [[Element]]. A negative element is an
element that must not occur in the model. Furthermore,
a where-block is provided that allows formulating
application constraints and assignments of schema
variables. The where-block is structured as follows:

where { Assignment∗ BooleanExpression? }
It starts with the assignment of schema variables that are
not assigned during pattern matching (i.e., parts of the RHS
of a transformation). Within the BooleanExpression the
elements of the transformation bound to schema variables can
be used to formulate the constraint. Thereby, the signature
of the abstract syntax of the model elements can be used as

well as any static Java method. Listing 2 shows a negative
element (l. 9) and a where-block (l. 11). An example of
an application constraint is shown in line 14 of Lst. 3. A
transformation will only be applied if all positive elements
are found, no match for the negative elements is possible and
the application constraint holds.

4) Transformation Modules: To control and combine the
transformation rules to transformation modules, the generated
DSTL is combined with a generic control flow language via
language embedding.

A transformation module, as shown in Lst. 2, consists of
instructions and transformation methods (introduced by the
keyword transformation) where the body of a transformation
method is a transformation rule. The instruction methods
define the application order of transformation methods.
The instruction method main() is the starting point of
a transformation module. Within instructions, Java syntax
extended by a special loop statement can be used to specify
the control flow in an imperative manner. The loop statement
applies the following transformation rule until no further
match for the pattern can be found.

C. Translation and Application of a Transformation

A transformation module is defined using the control flow
language and its embedded transformation rule language (
Fig. 2), which have to be translated to Java code for execution.
This translation is performed by the composed and generated
generator TM2J-Gen (Fig. 1 and Fig. 2). TM2J-Gen takes
a transformation module as input and internally uses its
three subgenerators to translate it to an executable Java
transformation. The latter reads a model and applies the
transformation described by the transformation module.

«gen»«provided»

«gen»

Transformed

Model
Model

DSTL

Grammar

Control Flow

Language

conforms creates

parses Java

Transformation

DSL

Grammar

creates

TM2J-Gen

Transformation

Module

embeds

parses

conforms

Fig. 2. Overview of the translation and application of a transformation.

IV. APPLYING THE TRANSFORMATION LANGUAGE

With the DSTL derived from the DSL’s grammar, the
description of model transformations is greatly facilitated as
the transformation developers are familiar with the DSLTs
vocabulary. The following sections illustrate application of
model transformations to MontiArc and MontiSecArc with the
DSTLs generated for each.

A. Preprocessing: Adding Structural C&C Elements

A common challenge for the development of distributed
systems is dealing with the unforeseeable run-time issues.

20

RemoteNode

effort

MA

Actuator

left

RemoteNode‘

Actuator‘

left
int

effort

int

effort

Actuator

right
int Actuator‘

right
effort

int

RemoteNode

Monitor

monitor

composed
component

incoming port effort
of type int

el

er

subcomponent
transformed
component

new state
ports

new sub-
component

new
connectors

Remote

Node

State

Actuator

State

Actuator

State

el

er

Fig. 3. Applying the monitoring transformation to a composed component
RemoteNode with a single subcomponent.

MA1 component RemoteNode {
2 port in i n t e l , in i n t er ;
3 component Actuator l e f t , r i g h t ;
4 connect e l - > l e f t . e f f o r t ;
5 connect er - > r i g h t . e f f o r t ;
6 }

Listing 1. Textual syntax of composed component RemoteNode with
subcomponent Actuator.

To this effect, MontiArc introduces component monitoring.
Every component of the architecture is monitored by a specific
monitor per composed component. Instead of handcrafting
the monitoring infrastructure for each component, it is
conveniently integrated via model transformations. These
transformations introduce new subcomponents, ports, and
connectors, such that all composed components and their direct
subcomponents are observed by a new subcomponent. That
subcomponent receives status messages from its neighboring
subcomponents, calculates an overall component status,
and emits this via a new outgoing port. Applying this
transformation to a composed component RemoteNode
(Fig. 3) requires that (a) RemoteNode and all its
subcomponents receive a new port to emit status messages,
(b) RemoteNode receives a new subcomponent of type
RemoteNodeMonitor that provides appropriate input ports
for all new state ports and emits messages on the
overall state of RemoteNode, and (c) the state ports
of the subcomponents of RemoteNode are connected to
RemoteNodeMonitor, which itself is connected to the new
state port of RemoteNode.

As the DSTL’s syntax is derived from the DSL, Lst. 1
describes the textual syntax of the untransformed MontiArc
component RemoteNode for comprehension. The keyword
component (l. 1), followed by a name and curly brackets
declares a component definition (ll. 1-6). The components
interface is defined by the keyword port and a list of directed,
typed ports (l. 2). Furthermore, a composed component
contains a set of subcomponents (l. 3), each starting with
the keyword component, followed by its type and name.
The ports of subcomponents are connected via unidirectional
connectors (ll. 4-5).

Handcrafting these transformations in terms of AST
API calls requires considerable effort. Instead, the
three transformation rules given in Lst. 2 describe this

MTF1 module AddMonitoring {
2 main () { loop addPorts () ;
3 loop addMonitor () ;
4 loop connect () ; }
5

6 t rans fo rmat ion addPorts () {
7 component $name {
8 port [[: - out $sp s t a t e]] ;
9 not [[out $_ s t a t e]]

10 }
11 where { $sp = $name . concat (" State ") ; }
12 }
13

14 t rans fo rmat ion addMonitor () {
15 component $name {
16 [[: - component $type monitor ;]]
17 not [[component $_ monitor ;]]
18 [[: - connect monitor . s t a t e - > s t a t e ;]] ;
19 component $_ {}
20 }
21 where { $type = $name . concat (" Monitor ") }
22 }
23

24 t rans fo rmat ion connect () {
25 component $_ {
26 component $type $name ;
27 [[: - connect $name . s t a t e - > monitor . $sp ;]] ;
28 not [[connect $name . s t a t e - > monitor . $_ ;]]
29 }
30 where { $sp = $name . concat (" State ") ; }
31 }
32 }

Listing 2. The transformations required to add a monitor, related ports,
and connectors to a software architecture.

transformation. The main block (ll. 2-4) invokes the three
transformations addPorts(), addMonitor(), and connect(),
where addPorts() (ll. 6-12) adds state ports to all components
of the software architecture. To this effect, it iterates over
all components (denoted by concrete MontiArc syntax
component followed by a name $name) and adds a new
outgoing port state to each of the component’s ports rule
(l. 8), where no such port already exists (l. 9). The port’s
type is defined by $sp as calculated by the where-block
(l. 11). The transformation addMonitor() (ll. 14-22) adds
a new subcomponent monitor (l. 16) to each composed
component - enforced by requiring that the component
contains a subcomponent (l. 19) - that does not already
contain a monitor (l. 17). The type of monitor is calculated
via $type (l. 21). Finally, the transformation connect()
(ll. 24-31) adds new connectors to each composed component
to connect its subcomponents to its new monitor. This is
better comprehensible than a lengthy program exploiting
the AST API and less susceptible to errors arising from
accidental complexities of AST programming.

B. Refactoring: Resolving Anti-Patterns

Architects need to consider security as one out of many
nonfunctional requirements. There are numerous commonly
known anti-patterns and design flaws [18]. We consider the
anti-pattern of client-side authentication [19, p. 687], which
is depicted in Fig. 4 using the MontiSecArc language. In this
case a client with low trust level enforces access control and
a server which has a higher trust level relies on that client.
Hence, an attacker able to impersonate the client can bypass
access control and compromise the server, as it relies on the
client.

21

Client

trust
level

Server TL: +2TL: -1

limit access
to policy user

Client‘ Server‘ TL: +2TL: -1

identity
link

MSA

access: user

access: user access: user

Fig. 4. Applying the transformation to an insecure client server setup
introduces access control to the server to make it secure.

MTF1 module ClientAuth {
2 main () { loop acce s sPor t () ; }
3

4 t rans fo rmat ion acce s sPor t () {
5 SecArcComponent $C [[component $ c l i e n t {
6 Access $A ;
7 }]]
8 connect $ c l i e n t . $_ - > $ s e r v e r . $someInPort ;
9 SecArcComponent $S [[component $ s e r v e r {

10 port in $someInPort ;
11 [[: - a c c e s s $someInPort ($ p o l i c y)]] ;
12 }]]
13 where { $ p o l i c y = $A . g e t P o l i c y () ;
14 $C . g e t T r u s t l e v e l () < $S . g e t T r u s t l e v e l () }
15 }
16 }

Listing 3. The transformation moves access control enforcement from
client to server components.

We use the transformation depicted in Lst. 3 to identify
client components which have this anti-pattern (ll. 5-7) and
add access control to the server (ll. 9-12). Client components
within this anti-pattern have one of the statement starting with
access, so we use a black box schema variable $A for the
common super type Access to match both (l. 6). Furthermore,
there is a connection (l. 8) to a more trustworthy server
(l. 9-12). We use the white box variant of schema variables
for the client ($C in l. 5) and the server ($S in l. 9). In
the where-block we first retrieve the access policy from the
client by utilizing the method getPolicy() from $A and assign
it to the $policy variable (l. 13). Finally, to ensure that the
client has a lower trust level then the server, we use another
method getTrustlevel() accessible via the variables $C and
$S (l. 14). Using a combination of keywords and abstract
syntax of MontiSecArc in the DSTL makes the patterns precise
and comprehensible to domain experts.

V. RELATED WORK

Similar to PROGRES [20], Fujaba [21], eMoflon [22],
and Henshin [23], the transformations of our approach are
endogenous, and in-place [16]. However, these approaches
do not employ the concrete syntax of the underlying DSL.
There are approaches for transforming software architectures
[24]–[26], however, they either introduce their own notation,
operate on the abstract syntax or provides less functionality
e.g. do not allows to remove elements [25]. Existing
approaches to derive DSTLs from DSLs focus graphical
languages [6], [27] and do not provide the concrete syntax of
the transformation language. Another approach to circumvent
generic transformation languages is to infer LHS and RHS of
model transformations from examples [28], [29]. To generalize

these examples, developers have to use abstract syntax. Term
rewriting [4] works on concrete syntax as well by applying
rewriting rules to manipulate rather small connected model
parts as compared to graph transformations. T-Core [30]
and others [31] introduce transformation primitives which,
similar to term rewriting, do not automate the process of
deriving an DSTL but are combined and configured to create
it. Thus, they do not propose a systematic and automated
way of deriving a DSTL, but provide building blocks to
create them. Our previous work on delta languages, which
describes small changes for models in concrete syntax of the
modeling language, shares the underlying generative approach
of deriving those languages we use here and we first applied
those deltas to architectural models [32].

VI. DISCUSSION

A generated DSTL relies on the concrete syntax of its base
DSL. However, for typing schema variables the nonterminal
names of the modeling language are used and, thus, this
abstract syntax information become part of the concrete syntax
of the DSTL. This cannot be avoided completely as for the
black box variant of schema variables the type cannot be
inferred whenever there is an alternative of nonterminals in
the base DSL. Furthermore, keywords such as not or where
and delimiters might conflict with the DSL’s concrete syntax.
However, these problems can be solved by using MontiCore’s
language inheritance to redefine the concrete syntax of the
DSTL. Allowing every model element of the base DSL as a
top level element in transformation rules leads to problems
if the model element does not have any mandatory concrete
syntax. Restructuring the DSL will solve this issue.

VII. SUMMARY

We presented a framework to generate DSTLs from the
grammars of DSLs. The resulting DSTLs consist of declarative
transformation rules that employ patterns based on the DSL’s
concrete syntax to describe both what is to be replaced and
how it is to be replaced. These transformation rules are
embedded into a control flow language to describe complex,
imperative transformation modules. As such DSTLs reuse
the well-know vocabulary of the underlying DSL, modeling
individual transformations require less effort from domain
experts. The control flow language is very compact and
learning their combination is less complex than learning a
general transformation language. The framework has been
applied to the C&C ADLs MontiArc and its descendant
MontiSecArc. We currently examine the application of the
DSTL generation framework to other ADLs in ongoing case
studies.

REFERENCES

[1] R. France and B. Rumpe, “Model-Driven Development
of Complex Software: A Research Roadmap,” in Future
of Software Engineering 2007 at ICSE., 2007.

22

[2] N. Medvidovic and R. N. Taylor, “A Classification
and Comparison Framework for Software Architecture
Description Languages,” IEEE Trans. Software Eng.,
2000.

[3] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL:
A model transformation tool,” Science of Computer
Programming, 2008.

[4] E. Visser, “Meta-programming with Concrete Object
Syntax,” in Generative Programming and Component
Engineering, 2002.

[5] T. Baar and J. Whittle, “On the Usage of Concrete
Syntax in Model Transformation Rules,” in
International Andrei Ershov memorial conference
on Perspectives of systems informatics (PSI), 2007.

[6] R. Grønmo, “Using Concrete Syntax in Graph-based
Model Transformations,” PhD thesis, University of
Oslo, 2009.

[7] E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen,
S. V. Mierlo, and H. Ergin, “AToMPM: A Web-based
Modeling Environment,” in MODELS’13: Invited Talks,
Demos, Posters, and ACM SRC., 2013.

[8] H. Krahn, B. Rumpe, and S. Völkel, “MontiCore: a
framework for compositional development of domain
specific languages,” International Journal on Software
Tools for Technology Transfer (STTT), 2010.

[9] A. Haber, M. Look, P. Mir Seyed Nazari, A. Navarro
Perez, B. Rumpe, S. Voelkel, and A. Wortmann,
“Integration of Heterogeneous Modeling Languages via
Extensible and Composable Language Components,”
in Proceedings of the 3rd International Conference on
Model-Driven Engineering and Software Development,
2015.

[10] M. Schindler, Eine Werkzeuginfrastruktur zur agilen
Entwicklung mit der UML/P. Shaker Verlag, 2012.

[11] A. Haber, J. O. Ringert, and B. Rumpe, “MontiArc –
Architectural Modeling of Interactive Distributed and
Cyber-Physical Systems,” RWTH Aachen, Tech. Rep.,
2012.

[12] R. Sandhu and P. Samarati, “Access control: principle
and practice,” Communications Magazine, IEEE, 1994.

[13] M. Nagl, Graph-Grammatiken: Theorie, Anwendungen,
Implementierung. Vieweg, 1979.

[14] K. Hölldobler, B. Rumpe, and I. Weisemöller,
“Systematically Deriving Domain-Specific
Transformation Languages,” in International conference
on Model Driven Engineering Languages and Systems
(MoDELS), 2015.

[15] T. Mens and P. V. Gorp, “A Taxonomy of Model
Transformation,” Electronic Notes in Theoretical
Computer Science, 2006.

[16] K. Czarnecki and S. Helsen, “Feature-based Survey
of Model Transformation Approaches,” IBM Systems
Journal, 2006.

[17] A. Habel, R. Heckel, and G. Taentzer, “Graph grammars
with negative application conditions,” Fundamenta
Informaticae, 1996.

[18] IEEE Computer Society Center for Secure Design,
“Avoiding the top 10 software security design flaws,”
2014.

[19] M. Howard and D. E. Leblanc, Writing Secure Code,
2nd. Microsoft Press, 2002.

[20] A. Schürr, Operationales Spezifizieren mit
Programmierten Graphersetzungssystemen:
Formale Definitionen Anwendungsbeispiele and
Werkzeugunterstützung. Wiesbaden: Deutscher
Universitäts-Verlag, 1991.

[21] T. Fischer, J. Niere, L. Torunski, and A. Zündorf, “Story
Diagrams: A New Graph Rewrite Language Based on
the Unified Modeling Language and Java,” in Theory
and Application of Graph Transformations, 2000.

[22] E. Leblebici, A. Anjorin, and A. Schürr, “Developing
eMoflon with eMoflon,” in Theory and Practice of
Model Transformations, 2014.

[23] T. Arendt, E. Biermann, S. Jurack, C. Krause, and
G. Taentzer, “Henshin: Advanced Concepts and Tools
for In-Place EMF Model Transformations,” in Model
Driven Engineering Languages and Systems, 2010.

[24] J. M. Barnes, D. Garlan, and B. Schmerl, “Evolution
styles: foundations and models for software architecture
evolution,” Software & Systems Modeling, 2014.

[25] O. Barais, A. F. Le Meur, L. Duchien, and J.
Lawall, “Software Architecture Evolution,” in Software
Evolution, 2008.

[26] L. Grunske, “Formalizing Architectural Refactorings
as Graph Transformation Systems,” SNPD/SAWN ’05,
2005.

[27] T. Kühne, G. Mezei, E. Syriani, H. Vangheluwe, and
M. Wimmer, “Explicit Transformation Modeling,” in
Models in Software Engineering, 2010.

[28] E. Kindler and R. Wagner, “Triple Graph Grammars:
Concepts, Extensions, Implementations, and
Application Scenarios,” Software Engineering Group,
Department of Computer Science, University of
Paderborn, Tech. Rep., 2007.

[29] P. Brosch, P. Langer, M. Seidl, K. Wieland, M. Wimmer,
G. Kappel, W. Retschitzegger, and W. Schwinger,
“An Example Is Worth a Thousand Words: Composite
Operation Modeling By-Example,” in Model Driven
Engineering Languages and Systems, 2009.

[30] E. Syriani, H. Vangheluwe, and B. LaShomb, “T-Core:
a framework for custom-built model transformation
engines,” Software & Systems Modeling, 2013.

[31] J. Sánchez Cuadrado, E. Guerra, and J. de Lara,
“Towards the Systematic Construction of
Domain-Specific Transformation Languages,” in
Modelling Foundations and Applications, 2014.

[32] A. Haber, K. Hölldobler, C. Kolassa, M. Look, K.
Müller, B. Rumpe, and I. Schaefer, “Engineering
Delta Modeling Languages,” in Proceedings of the
17th International Software Product Line Conference
(SPLC’13), 2013.

23

Towards a Generic Modeling Language for
Contract-Based Design

Johannes Iber, Andrea Höller, Tobias Rauter, and Christian Kreiner
Institute for Technical Informatics

Graz University of Technology
Inffeldgasse 16, Graz, Austria

{johannes.iber, andrea.hoeller, tobias.rauter, christian.kreiner}@tugraz.at

Abstract—Component-based and model-driven engineering are
key paradigms for handling the ever-increasing complexity of
technical systems. Surprisingly few component models consider
extra-functional properties as first class entities.

Contract-based design is a promising paradigm, which has
the potential to fill this shortage of methods for dealing with
extra-functional properties. By defining the concept of using
assumptions in order to determine the environment, and by using
the concept of guarantees to state what a component provides to
the environment, it enables the analyzability of components and
compositions in advance and during system execution.

With this work, we aim to create the base for a pragmatic
model-driven method that provides reusable modeling concepts
for contracts targeting arbitrary extra-functional properties.
Furthermore, we expand the current state-of-the-art of contract-
based design by introducing the concept of a finite state machine,
where single states consist of several valid contracts. It is also
assumed that these modeling language features will ease the
use of contract-based design. Additionally, we demonstrate the
applicability of the presented modeling concepts on an exemplary
use case from the automotive domain.

Index Terms—Metamodeling, contract-based design, extra-
functional properties, component models

I. INTRODUCTION

Numerous industrial sectors are currently confronted with
massive difficulties originating from managing the increasing
complexity of systems. The automotive industry, for instance,
has an annual increase rate of software-implemented functions
of about 30% [1]. This rate is even higher for avionics
systems [2]. Additionally, this development of systems is not
restricted to software, as we are facing a so-called Internet of
Things, where the number of physical devices is expected to
expansively explode [3]. New challenges regarding complexity
of systems emerge caused by this dramatic increase of diverse
hardware/software, possible interactions and distributed intel-
ligences [4].

Component-based engineering is today a widely recognized
and well-established paradigm for tackling complexity of
systems [5]. Together with model-driven engineering, it forms
a potentially powerful union to construct, analyze, and deploy
systems.

But still, modern component models are flawed. As shown
by Crnković et al. [5], astonishingly few (software) compo-
nent models are addressing extra-functional properties (e.g.
timing, safety, memory consumption, etc.) as first class enti-
ties. However, these properties are essential for composing a

component-based system predictable and safe. Management
of extra-functional properties is thus still one of the core
challenges faced by component-based design [6].

Contract-based design is a promising paradigm for filling or
narrowing this gap, [7]. It captures the behavior of a specific
functional or extra-functional property in relationship with
the environment of a component. Despite the existence of a
mathematical groundwork [7] [8] and exemplary applications,
a standard and generic metamodel for contract-based design
does not yet exist.

With this work, we provide pragmatic modeling concepts
that pave the way for integrating contract-based design into
component models of systems. We present a metamodel
fragment for contracts which target arbitrary single extra-
functional properties. Furthermore, we introduce the concept
of a finite state machine, where single states constitute valid
contracts. This concept extends the current state-of-the-art
regarding contract-based design. We show the applicability
of these modeling concepts by using an example from the
automotive domain. The target component of the use case
is a simplified electronic steering column lock, which we
examine with respect to the extra-functional properties safety
and timing.

The remainder of this paper is structured as follows: the
next Section provides a brief overview of the background
to this work. In Section III the proposed modeling concepts
are introduced. Subsequently, a use case demonstrating the
applicability of these concepts is described in Section IV.
Finally, concluding remarks and future research opportunities
are given in Section V.

II. BACKGROUND AND RELATED WORK

Here, we give an overview of system abstractions and
properties. After this, we briefly explain contract-based design.
Finally, we summarize the related work concerning contract-
based design, which is also the motivation setting for this
work.

A. System Abstractions and Properties

According to Jantsch [9], there are four main different
abstraction models or views concerning embedded system
engineering. First is the computational model, which describes
the observable behavior of a system or of its single parts

24

(hardware, software components), i.e. the relationship between
inputs and outputs [10]. Second, a data model exists that
provides notations for information (e.g. integer, boolean).
Third, a time model is needed to constitute the causality
of events. Fourth, a communication model is established to
specify how components interact. This model forms the top-
level system behavior.

In the context of the properties of systems the literature
distinguishes between functional and extra-functional (also
known as non-functional) properties. Functional properties
describe the function of a system or component, i.e. behav-
ior, input or output data types. Extra-functional properties
provide additional information and give a better insight into
the behavior and capability of a system or component [6].
A wide range of such properties exists, e.g. safety, security,
portability, performance. Since these issue from humans, there
is no method to determine a priori which extra-functional
properties exist in a system [6] [11].

B. Contract-based Design

Contract-based design usually sees a component as an
abstraction, a hierarchical entity that represents a single unit
of design [8] [12]. Therefore in the context of contract-based
design a component can represent, for instance a module, a
composition, a complex system or even a physical device.

The essence of this paradigm is to decompose a component
into different independent views referred to as contracts, which
capture the behavior of a target functional or extra-functional
property under certain conditions [12] [13]. This approach
significantly reduces the complexity of design and verification,
because the single properties become manageable.

Informally, a contract is a set of assumptions and guarantees.
An assumption asserts what a contract expects from the

component environment (this can include interactions with
other components). Additionally, an assumption provides a
certain context for the guarantees. The condition contained
in an assumption can reference for instance input data, events
or system properties. In general, the available variables are set
or inferred by the analysis environment.

A guarantee describes what a component provides to the
environment if the corresponding assumptions become valid.
In the simplest case a guarantee states that a component just
works under the constrained context. More complex contracts
define limits for instance for output data, environment charac-
teristics or extra-functional properties such as timing.

Historically, contract-based design is influenced by Meyer’s
design-by-contract principle [14] for object-oriented software
[7]. The main difference is that contract-based design goes
much further and provides means to integrate components in
the design hierarchy [10]. This is achieved through capturing
the context by assumptions (which may include platforms,
other components, etc.), under which a component behaves
as specified by the guarantees. Furthermore, a system can be
viewed by selecting only appropriate contracts of interest.

Fig.1 illustrates that contract-based design not only allows
the analyzing of components on a horizontal design level (e.g.

Component

Design level n-1

Design level n

Design level n+1

Assumed

from neighbours

Guaranteed

From/by higher design levels

From/by lower design levels

Fig. 1. Contract assumptions and guarantees for a component (Adapted from
[15])

interaction between software modules, hardware devices, etc.).
It also enables analyzing to take place on a vertical level
between different kinds of abstraction [7].

A solid mathematical groundwork already exists for this as
provided by several authors, including Benveniste et al. [7],
and Sangiovanni-Vincentelli et al. [8].

Promising applications of contract-based design have been
shown for several domains. For instance, this paradigm has
been demonstrated for smart integrated energy management
systems [16], aircraft electric power systems [12], mixed-
signal integrated circuits [17], and automotive [18] [7]. Despite
these examples, contract-based design is still at its infancy
[19].

Little work has been done towards establishing a generic
standard metamodel for contract-based design. Warg et al. [20]
presents a prototype modeling tool for contracts, but their work
solely focuses on safety integrity levels.

C. Summary of Contract-Based Design

There exist a few approaches for realizing contract-based
design, for instance the contract-based model developed in the
framework of the SPEEDS project [13]. The problem is that
state-of-the-art approaches either tackle single extra-functional
properties, or take a relatively theoretical approach without
concrete modeling examples or tool implementations. A sur-
vey concerning the certification of safety-relevant systems,
carried out by the SafeCer consortium [21], shows that only
a few companies are actually using contracts for components.
And where this is the case they are relying on Meyer’s design-
by-contract principle on a programming language level.

III. PROPOSED MODELING LANGUAGE CONCEPTS

In this section, we explain concepts which are necessary
for a pragmatic modeling language that targets contract-based
design.

A. Target System Abstractions and Properties

With the following concepts, we aim at enriching the
computational, time, and communication models of a system.
Furthermore, the data model plays an important role, as it
provides data types and notations, which could be used by
contracts.

25

In the context of properties, our intention is to capture extra-
functional properties and not necessarily functional behavior.
We take the view that functional behavior is better described
by other well-established methods than by the use of many
different contracts.

The issue of what extra-functional properties we are aiming
at, is dependents on the specific use case or context under
which the following language features are used. These con-
cepts may be applied for a wide range of different extra-
functional properties (e.g. security, safety, timing, expected
hardware/platform, memory consumption, many-core environ-
ment, etc.). But certainly not for all of them, since no silver
bullet exists for dealing with every extra-functional property
[11].

B. Pragmatic Modeling Langugage Features

In the following, we present a modeling concept for con-
tracts. Additionally, we introduce the concept of a finite state
machine for contracts.

1) Contract: Fig.2 illustrates our proposed metamodel for
contracts. We separate a contract into two parts. A Contract
Declaration represents a type for Contract Definitions. It
states the available parameters, assumptions and guarantees.
Furthermore, it represents the target extra-functional property.
A Contract Definition captures the unique behavior concerning
the target extra-functional property of a component in relation-
ship to its environment.

Parameters can represent properties of the execution envi-
ronment, data ports or events. They can be used by Constraint
Definitions in order to set the specific assumption or guarantee.
Parameter Declarations are used to specify that a variable of
a specific data type may exist, but the concrete value has to be
defined by the realizing Contract Definition. This can be useful
for data arrays where the data points contained are individual
for each component.

In the context of assumptions and guarantees, it is possible
for a Constraint Declaration to set expected data types. The
associated Constraint Definition must provide an expression
where the resulting data type equals one of the expected types.

As we can see in Fig.2, we use the placeholders Variable
for parameters, DataType for data types, and Expression for
constraint expressions. These elements should be provided by
a suitable constraint language or referable by the language that
is used for the Constraint Definition expressions.

2) Finite State Machine for Contracts: Single contracts are
sometimes not adequate for representing extra-functional prop-
erties. As we explain with our presentation in the following
Section IV, cases exist where the behavior of a component -
including extra-functional properties - changes over time or
as a result of specific events. We thus expand the theory of
contract-based design and capture such differences concerning
contracts by applying the concept of a finite state machine.
The idea is to have a finite state machine, where the single
states may contain several currently valid contracts. The state
machine itself operates on parameters provided by the envi-
ronment or the internal states of a component.

Fig.3 illustrates our proposed metamodel for such a state
machine. We again use the concept of declaration and defini-
tion in order to separate the specification and actual instance
of a so-called contract state machine.

A Contract State Machine Declaration constitutes allowed
Contract Declarations, concrete parameters and declarations
of parameters which need to be defined by corresponding
Contract State Machine Definitions.

Parameters are supposed to be used by Contract State
Machine Events within constraint expressions, which trigger
transitions to other Contract State Machine States. Such a state
contains zero to infinite Contract Definitions.

Again, the metamodel elements Variable, DataType and
Expression, refer to an arbitrary constraint language.

The actual semantics of a contract state machine depends
on the target extra-functional properties and is determined by
convention. It may be that entering a state implies that only
those Contract Definitions it contains are valid. An alternative
convention would be, that all visited Contract Definitions are
valid except that a current Contract Definition overrides a
former visited one by using the same Contract Declaration.

IV. USE CASE

In this Section we show the application of our modeling
concepts as presented on an exemplary use case from the
automotive domain. First we give an overview of the target
component and system. After that, we apply contracts together
with a contract state machine. Finally, we discuss the use case
presented.

A. Example - Electronic Steering Column Lock

Fig.4 illustrates a simplified electronic steering column lock
(ESCL). Such locks are mandatory for cars in many countries.
The Electronic Control Unit (ECU) decides whether to lock
the steering column based on the input signals Key State and
Velocity. These signals may be transmitted by a CAN bus or
separate connections. If the ECU decides to lock the steering
column, an actuator is activated which inserts the bolt into the
steering column. Otherwise, the ECU decides to hold or eject
the bolt.

There are several extra-functional properties which are
worth considering in a system of this kind. In the following, we
apply the modeling concepts presented for the extra-functional
properties safety and timing. In the safety context we capture
the data on whether the component ESCL is performing
normally, is in a failure state, or recovering from a failure
state. A failure state can be induced for instance by faulty
transmitted data or other misbehaving components. Further to
this we capture the data on how long it takes to execute the
lock or unlock mechanism in two separate contract definitions.

B. Declarations

According to our metamodel concepts, the first step is to
specify general declarations for components. Such declara-
tions are known to contract checkers, interpreters or model
transformers in advance. Fig.5 illustrates declarations for a

26

Fig. 2. Proposed Metamodel for Contract Declarations and Definitions

Fig. 3. Proposed Metamodel for Contract State Machine Declarations and Definitions

Component
Electronic Steering Column Lock

Actuator ECU

Key State

Velocity

Steering
Wheel

Fig. 4. Example Component - Electronic Steering Column Lock

component’s safety status and timing. Additionally, we specify
a contract state machine declaration that is used to capture the
behavior of a component in order to set valid contracts.

The contract declaration Component Safety Status assumes
whether the component of interest is enabled and guarantees

Contract Declaration "Component
Safety Status"

Assumption Enabled : Boolean

Guarantee State : SafetyStateEnum

Contract State Machine Declaration
"Component Contract Behavior"

Uses contract declaration "Component Safety
Status“
Uses contract declaration "Component Timing“

Parameter declaration key_state : Boolean
Parameter declaration velocity : Float
Parameter component_restart : Boolean = false
...

Contract Declaration "Component
Timing"

Parameter key_state : Boolean = false
Parameter velocity : Float = 0.0
...

Assumption Environment : Boolean

Guarantee Execution Time : Time

Fig. 5. Use Case Declarations for the target extra-functional properties

a certain safety state to the environment. The available types
for this guarantee are restricted by the data type SafetySta-
teEnum, which contains the literals NORMAL, FAILURE, and
RECOVER (not shown in Figure 5).

The contract declaration Component Timing is used to

27

guarantee a specific execution time for certain assumed envi-
ronments. The parameters key state and velocity are provided
by the analysis environment. The boolean parameter key state
indicates whether the ignition system is activated (boolean
value true), while the parameter velocity states the current
speed of the car. A comprehensive contract declaration would
provide several other parameters, which may be obtained
for instance by a CAN bus or observed from the condition
of a system. The issue of which of these parameters are
actually used by the assumption Environment depends on the
component. When this assumption results in a boolean true,
the guarantee Execution Time becomes valid.

Furthermore, contract definitions of these declarations can
be used by the single states of the contract state machine
Component Contract Behavior. Here again the parameters con-
tained are obtained by the analysis environment or transmitted
by the available connections. For instance, the parameter
component restart must be set by the analysis environment
or by the described component. These parameters are used
by a contract state machine definition in order to specify the
events for state transitions.

C. Definitions

We now present how the declarations from above are used.

Contract "ESCL Normal" :
"Component Safety Status"

Assumption Enabled = true

Guarantee State = NORMAL

Contract "ESCL Safe State" :
"Component Safety Status"

Assumption Enabled = true

Guarantee State = FAILURE

Contract "ESCL Recover" :
"Component Safety Status"

Assumption Enabled = true

Guarantee State = RECOVER

Contract State Machine "Component ESCL Contract Behavior" : "Component Contract Behavior"
Parameter key_state = false
Parameter velocity = 0.0

Event: not key_state && velocity > 0.0

Event: component_restart

Event: not key_state && velocity > 0.0

Event: (key_state && velocity >= 0.0) ||
(not key_state && velocity == 0.0)

Normal

Contract "ESCL Normal"
Contract "ESCL Lock"
Contract "ESCL Unlock"

Failure

Contract "ESCL Safe State"

Repair

Contract "ESCL Recover"

Contract "ESCL Lock" : "Component Timing"

Assumption Environment = not key_state && velocity == 0.0

Guarantee Execution Time = 100 ms

Contract "ESCL Unlock" : "Component
Timing"

Assumption Environment = key_state

Guarantee Execution Time = 80 ms

Fig. 6. Contract State Machine and Contract Definitions of the ESCL Example

Fig.6 illustrates a contract state machine definition which
sets the valid contract definitions according to the current state.
The parameters are realizations of the parameter declarations
declared by the contract state machine declaration Component
Contract Behavior and are initialized to default values.

The initial state of this example is state Normal. Within this
state, we can guarantee the execution time in respect to the
locking and releasing mechanism. Furthermore, the contract
ESCL Normal determines the safety state NORMAL to the
environment. Whenever an abnormal event occurs such as
there is no key but the car is moving, the contract state machine
changes to the state Failure. In this state we cannot constitute
the execution time of the ECSL and the contract ESCL Safe
State becomes valid. After the component ESCL restarts, the
state machine changes to the state Repair, which is reflected
by the contract ESCL Recover. When the recover procedure
was successful, the state machine changes to the state Normal,
where the contained contracts become valid again, otherwise
the state machine switches back to state Failure.

D. Discussion of the Use Case

We have shown how our contract modeling features can be
used as presented on a simplified use case. It is imaginable
that this example can be further advanced to capture the target
and other extra-functional properties in more detail.

Note that we do not capture the actual functional behavior
of the component ESCL. We rather use the functional behavior
of the environment in order to determine how the target extra-
functional properties timing and safety status of the component
are changing and what guarantees are valid in that state. The
semantics of the contract state machine we present is such
that a new state invalidates the former visited contracts. The
assumptions and guarantees of the Contract Definitions must
be either automatically gathered by a measurement software
or issued by humans.

Such a contract state machine can be used for two purposes.
One purpose is that a system becomes analyzable in ad-

vance, also with respect to composability. A model checker
could simulate such a system and calculate the different
expected safety states. Another model checker would be able
to estimate the overall timing of a system.

The second purpose would be that a detection mechanism
observes and constitutes the single states during runtime of a
system and takes appropriate action based on predetermined
contracts.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented concepts for modeling contracts
and showed in a use case how these concepts can be applied.

The vision is to have a generic modeling language for
specifying contract types and contract instances. By using the
term generic we mean contracts that are suitable for at least a
substantial number of extra-functional properties.

We introduced the concept of splitting a contract into a
declaration and a definition. For analysis purposes a specific
contract declaration would be known by a model checker or
code generator beforehand. It declares the available parame-
ters, assumptions and guarantees, while a contract definition
uses such a declaration to define the actual behavior of a target
extra-functional property.

28

Furthermore, we introduced the concept of a contract state
machine which is basically a finite state machine where the
single states represent different contract definitions. This con-
cept is necessary, because a component may behave in differ-
ent ways depending on the input data, environment properties
or specific events. For instance, the timing of a component
may be different depending on its previous processed data. It
may also be different if the environment has changed. Such
changes may require different valid contracts.

Concerning our future work, we are currently working
on a configurable constraint modeling language, inspired by
OCL [22], which we want to use for setting assumptions and
guarantees. The idea is to have a constraint language where
language elements, such as an if expression or a boolean
operation, can be disabled and is afterwards not usable by
an assumption or guarantee. This is useful, in our opinion, to
simplify the construction of contract checkers or interpreters,
because not all concepts of an expression language need to be
considered and handled properly. It would also provide a user
with direct feedback concerning what language elements are
allowed for use.

Additionally, the presented modeling features for contracts
do not consider composition, refinement, and conjunction of
contracts as described theoretical by Benveniste et al. [7]. We
are still working on finding pragmatic and usable metamodel
solutions for these concepts.

After building this in a form suited to our use case meta-
model for contract-based design, we are planning to develop a
thin generic UML profile [23] for contracts and contract state
machines.

This profile will be aligned with the existing OMG specifi-
cations MARTE [24] and SysML [25]. As mentioned by Selić
and Gérard [26], a natural complementarity exists between
these two profiles. We are of the view that a UML profile for
contract-based design would benefit from concepts such as the
physical types of MARTE or the constraint blocks of SysML.
Not using such existing and standardized modeling concepts
would be like reinventing the wheel.

The advantages of such a UML profile for contracts could
be manifold. The most important one is, that it would allow
the rise of specialized analyzing tools of different vendors
which target single extra-functional properties. The input of
such tools would depend, in such an ideal ecosystem, on the
same UML profile for contract-based design.

REFERENCES

[1] C. Ebert and C. Jones, “Embedded Software: Facts, Figures, and Future,”
Computer, vol. 42, no. 4, Apr. 2009.

[2] P. Feiler, J. Hansson, D. de Niz, and L. Wrage, “System Architecture
Virtual Integration: An Industrial Case Study,” Software Engineering In-
stitute, Carnegie Mellon University, Pittsburgh, Pennsylvania, CMU/SEI-
2009-TR-017, 2009.

[3] M. Miller, The Internet of Things: How Smart TVs, Smart Cars, Smart
Homes, and Smart Cities Are Changing the World. Pearson Education,
2015.

[4] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet of
things: Vision, applications and research challenges,” Ad Hoc Networks,
vol. 10, no. 7, Sep. 2012.

[5] I. Crnkovic, S. Sentilles, V. Aneta, and M. R. Chaudron, “A Classifica-
tion Framework for Software Component Models,” IEEE Transactions
on Software Engineering, vol. 37, no. 5, Sep. 2011.

[6] S. Sentilles, P. Štěpán, J. Carlson, and I. Crnković, “Integration of Extra-
Functional Properties in Component Models,” in Component-Based
Software Engineering. Springer Berlin Heidelberg, 2009.

[7] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,
P. Reinkemeier, A. L. Sangiovanni-Vincentelli, W. Damm, T. Henzinger,
and K. Larsen, “Contracts for Systems Design,” INRIA, Rennes, France,
Tech. Rep., 2012.

[8] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, “Taming
Dr. Frankenstein: Contract-Based Design for Cyber-Physical Systems,”
European Journal of Control, vol. 18, no. 3, Jan. 2012.

[9] A. Jantsch, Modeling Embedded Systems and SoCs: Concurrency and
Time in Models of Computation. San Francisco, Amsterdam: Morgan
Kaufmann, 2004.

[10] N. Kajtazovic, “A Component-based Approach for Managing Changes
in the Engineering of Safety-critical Embedded Systems,” Ph.D. disser-
tation, Graz University of Technology, 2014.

[11] I. Crnkovic, M. Larsson, and O. Preiss, “Concerning Predictability
in Dependable Component-Based Systems: Classification of Quality
Attributes,” in Architecting Dependable Systems III. Springer Berlin
Heidelberg, 2005.

[12] P. Nuzzo, Huan Xu, N. Ozay, J. B. Finn, A. L. Sangiovanni-Vincentelli,
R. M. Murray, A. Donze, and S. A. Seshia, “A Contract-Based Method-
ology for Aircraft Electric Power System Design,” IEEE Access, vol. 2,
2014.

[13] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone,
and C. Sofronis, “Multiple Viewpoint Contract-Based Specification and
Design,” 2008.

[14] B. Meyer, “Applying ’design by contract’,” Computer, vol. 25, no. 10,
Oct. 1992.

[15] A. Rajan and T. Wahl, Eds., CESAR - Cost-efficient Methods and
Processes for Safety-relevant Embedded Systems. Vienna: Springer
Vienna, 2013.

[16] M. Maasoumy, P. Nuzzo, and A. Sangiovanni-Vincentelli, “Smart Build-
ings in the Smart Grid: Contract-Based Design of an Integrated Energy
Management System,” 2015.

[17] P. Nuzzo, A. Sangiovanni-Vincentelli, Xuening Sun, and A. Puggelli,
“Methodology for the Design of Analog Integrated Interfaces Using
Contracts,” IEEE Sensors Journal, vol. 12, no. 12, Dec. 2012.

[18] N. Kajtazovic, C. Preschern, A. Höller, and C. Kreiner, “Constraint-
Based Verification of Compositions in Safety-Critical Component-Based
Systems,” in Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing, ser. Studies in Computational In-
telligence. Springer International Publishing, 2015.

[19] P. Nuzzo and A. Sangiovanni-Vincentelli, “Lets Get Physical: Computer
Science Meets Systems,” in From Programs to Systems. The Systems
perspective in Computing. Springer Berlin Heidelberg, 2014.

[20] F. Warg, B. Vedder, M. Skoglund, and A. Soderberg, “Safety ADD: A
Tool for Safety-Contract Based Design,” in 2014 IEEE International
Symposium on Software Reliability Engineering Workshops, Nov. 2014.

[21] O. Bridal, R. Mader, A. Geven, E. Schoitsch, H. Martin, M. Larramendi,
A. Aristimuno, A. Fritsch, E. Vaumorin, M. Bordin, A. Solinas,
A. Martelli, I. Korago, A. Levcenkovs, F. Joakim, R. Land,
A. Söderberg, P. Conmy, and M. Illarramendi, “State-of-practice
and state-of-the-art agreed over workgroup,” Tech. Rep., 2011.
[Online]. Available: http://www.safecer.eu/images/pdf/pSafeCer\ D1.0.
1StateOfThePracticeAndTheArt.pdf

[22] Object Management Group (OMG), “Object Constraint Language
Version 2.4,” 2014. [Online]. Available: http://www.omg.org/spec/OCL/
2.4/

[23] ——, “Unified Modeling Language (UML),” 2015. [Online]. Available:
http://www.omg.org/spec/UML/Current

[24] ——, “UML Profile for MARTE: Modeling and Analysis of Real-
Time Embedded Systems Version 1.1,” 2011. [Online]. Available:
http://www.omg.org/spec/MARTE/

[25] ——, “OMG Systems Modeling Language (OMG SysML) Version
1.3,” 2012. [Online]. Available: http://www.omg.org/spec/SysML/1.3/

[26] B. Selić and S. Gérard, Modeling and Analysis of Real-Time and
Embedded Systems with UML and MARTE, 2014.

29

Transforming Platform-Independent to Platform-Specific Component
and Connector Software Architecture Models

Jan Oliver Ringert2, Bernhard Rumpe1 and Andreas Wortmann1
1 Software Engineering, RWTH Aachen University, http://www.se-rwth.de/
2 School of Computer Science, Tel Aviv University, http://www.cs.tau.ac.il/

Abstract—Combining component & connector architecture de-
scription languages with component behavior modeling languages
enables modeling great parts of software architectures platform-
independently. Nontrivial systems typically contain components
with programming language behavior descriptions to interface
with APIs. These components tie the complete software architec-
ture to a specific platform and thus hamper reuse. Previous work
on software architecture reuse with multiple platforms either
requires platform-specific handcrafting or the effort of explicit
platform models. We present an automated approach to trans-
form platform-independent, logical software architectures into
architectures with platform-specific components. This approach
introduces abstract components to the platform-independent ar-
chitecture and refines these with components specific to the target
platform prior to code generation. Consequently, a single logical
software architecture model can be reused with multiple target
platforms, which increases architecture maturity and reduces the
maintenance effort of multiple similar software architectures.

I. INTRODUCTION

Component & connector (C&C) architecture description
languages (ADLs) [1] combine component-based software
engineering with model-driven engineering (MDE) to describe
complex software systems as interacting components. De-
scribing component behavior with modeling languages en-
ables to model great parts of software architectures platform-
independently. Complex systems, however, require compo-
nents that interface with APIs to access operating system
functions or hardware drivers. Describing the behavior of
such components with abstract modeling languages is hardly
feasible. Instead, their behavior usually is defined in terms of
general purpose programming languages (GPLs). Using GPL
components in an architecture ties it to these GPLs and the
interfaced APIs. This hampers reuse with different platforms.

Current approaches to generative MDE with C&C ADLs
either do not take multi-platform reuse into account [2]–[6]
or require explicit platform models [7]–[9]. The former re-
quires duplicating the software architecture and changing the
affected components manually, which introduces maintenance
and evolution efforts as the duplicated architectures need to be
fixed and progressed. The latter introduces complex notions
to describe models of the target platform and the mapping
of components to it. This introduces efforts in definition,
maintenance, and evolution of platform models.

We present an approach to transform platform-independent,
logical software architectures into platform-specific architec-
tures of the same modeling language prior to code generation.
With this, single logical software architectures can be reused
with similar target platforms easily. This approach exploits

the black-box nature of components by introducing abstract
components. These provide stable interfaces to the software
architecture, but omit behavior implementations to act as
extension points for platform-specific components. Hence,
generation of executable systems from such architectures is
impossible. Prior to code generation, the abstract components
are thus bound to compatible platform-specific components
and the software architecture is transformed accordingly. The
resulting platform-specific architecture is a well-formed, type-
safe model available to further analyses and existing code
generators can transform it into executable systems.

Our approach is implemented with the MontiArc-
Automaton [10]–[12] C&C ADL and introduces a modeling
language to describe bindings of software architecture models
as well as different library types. It builds upon previous work
presented in [13] and presents the following improvements:

• architectures and bindings are transformed to type-safe
architectures before code generation instead of relying
on special annotations of the abstract syntax,

• binding to platform-specific components may add
platform-specific parameters,

• code generators need not be aware of replacement of
implementations as we transform the architecture prior to
code generation (generators process plain architectures),

• code libraries and library models are replaced with im-
plementation libraries, which contribute platform-specific
components instead.

This contribution presents the new approach and explains
the model transformation to translate platform-independent
architectures into platform-specific architectures. To this end,
Sect. II describes the required preliminaries of MontiArc-
Automaton before Sect. III motivates multi-platform gener-
ative MDE by example. Afterwards, Sect. IV introduces the
new notions of bindings and libraries. Sect. V relies on these
to describe the transformation from platform-independent
to platform-specific software architecture models. Finally,
Sect. VI discusses related work, including differences to our
previous approach, and Sect. VIII concludes.

II. THE MONTIARCAUTOMATON C&C ARCHITECTURE
MODELING FRAMEWORK

MontiArcAutomaton is a modeling framework for C&C
software architectures with application-specific component
behavior languages that features a powerful code genera-
tion framework. The modeling language comprises a C&C

30

ADL [11], embeds a component behavior modeling lan-
guage based on I/Oω automata [11], and uses UML/P class
diagrams [14] to model data types. It describes logically
distributed software architectures in which components per-
form computations and connectors regulate communication.
Components are black-boxes with stable interfaces of typed,
directed ports and are either atomic or composed. Atomic
components contain a component behavior description, either
as a model of an embedded language [12], or as a reference to
a GPL artifact. Composed components contain a hierarchy of
subcomponents and their behavior emerges from subcompo-
nent interaction. Components do not reveal whether they are
composed or atomic or whether they feature a behavior model.

MontiArcAutomaton distinguishes component types from
their instantiation and supports component configuration pa-
rameters. Component types define the interface and sub-
components of all their instances. Configuration parameters
resemble constructors from object-oriented programming and
serve component instantiation. Their arguments are passed
by the containing component type. Component types may
extend other component types and inherit their interfaces
and component configuration parameters. Inheriting types may
introduce new ports and configuration parameters. Atomic
component types may extend composed component types and
vice versa. Each atomic component type without behavior
model is tied to a GPL behavior implementation - either
via naming convention or explicit reference. Architecture
models are parsed by MontiArcAutomaton, checked for well-
formedness, and transformed into executable systems using
generators for Java, Mona, and Python [10], [12].

III. EXAMPLE AND PROBLEM STATEMENT

Reusing the commonalities of C&C software architectures
for multiple similar systems facilitates efficient modeling.
Consider two robots for exploration of unknown areas: one
cheap and for indoor educational purposes, the other expensive
and rugged for outdoor missions. Both feature different sets
of sensors to detect obstacles, actuators to propel two parallel
motors, and a navigation to control the robot based on the
sensors’ inputs. The platform-independent base software ar-
chitecture for such a robot is depicted in Fig. 1. It comprises
a composed component type Explorer that declares three
subcomponents col, dist, and ui for sensors, a navigation
controller ctrl, and two subcomponents left and right
to access the parallel motors. The latter are of composed
component type ValidatedMotor which itself declares
two subcomponents val and motor to validate inputs and
access motor drivers. The subcomponent declarations (SCDs)
of left and right parametrize their respective motor
SCDs with argument 100 as the component type Motor
requires an integer as configuration parameter.

The behaviors of component types Controller and
Validator are modeled platform-independently with au-
tomata. Depending on the actual platform properties, the
GPL behavior implementations of component types Color,
Distance, HRI, and Motor differ. Therefore, they are

MAA

Controller

ctrl

«abstract»

Color

col

ValidatedMotor

left

ValidatedMotor

right

Explorer

«abstract»

Distance

dist

«abstract»

HRI

ui

Validator

val

Validator

val

«abstract»

Motor(100)

motor

«abstract»

Motor(100)

motor

SCDs of component types
with automata behavior descriptions

outgoing port
of component

type HRI

incoming port
of component

type Controller

connector between ports of sub-
component declarations „col“ and „ctrl“

SCD „left“ of composed
type ValidatedMotor

Fig. 1. C&C software architecture using abstract component types for
different realizations of exploration robots. Port names and types are omitted
for readability.

declared abstract which prevents ties to platform-specific GPL
behavior implementations. Reusing this software architecture
with both platforms demands for integration of proper behavior
implementations for subcomponent declarations of abstract
component types. To achieve this under reuse of the existing
code generators the following is required:
R1 Additional parametrization: platform-specific components

might require additional configuration, such as the hard-
ware port a sensor is connected to. Introducing this
information to the base software architecture would tie it
to specific platforms again. Hence, it may not be defined
within the platform-independent software architecture.

R2 Behavior decomposition: Realizations of platform-
specific components might be arbitrary complex and thus
their decomposition is desired.

R3 Architecture validity: The resulting platform-specific ar-
chitecture must be a valid MontiArcAutomaton model,
hence the platform-specific behavior implementations for
abstract component types must be compatible to the
abstract component types’ interfaces.

R4 Code generator compatibility: Retaining compatibility
with existing code generators [10], requires integration
to be performed completely prior to code generation and
may not rely on generator specifics.

Exploiting the black-box nature of components to conceive
subcomponent declarations of abstract component types as ar-
chitecture extension points allows to fulfill these requirements
with minor effort.

IV. BINDING PLATFORM-INDEPENDENT COMPONENTS

Our approach allows the development of logical, platform-
independent architectures and their transformation to platform-
specific ones by binding abstract SCDs to platform-specific
component types. To this effect, the architecture modeler
describes extension points for different platforms by using
abstract component types from respective model libraries.
Afterwards, she selects or develops proper implementation

31

SenseActModels

NXTLejos

PortPort

«abstract»

Motor(int max)
«abstract»

Color

PortNXTMotor

(int max, Port p)

NXTColor

(Port p)

component type
extension

CD describing data types required
by the libraries‘ component types

model library

implementation library

A

B

C

D

GPL artifacts required by
the library‘s component types

NXTHRI NXTUltraSonic

(Port p)

&

&

Fig. 2. Excerpt of the model library SenseActModels and the correspond-
ing implementation library NXTLejos for NXT robots.

libraries that provide platform-specific realizations of the
abstract component types. Modeling the application config-
uration, she defines how the SCDs of abstract types should be
bound. Finally, MontiArcAutomaton processes the platform-
independent software architecture, library components, ap-
plication configuration model, and transforms the software
architecture into a platform-specific model - without abstract
components - according to the bindings. From this model, an
executable system is generated.

Abstract component types are atomic and may not contain a
behavior description, i.e., they are component interfaces with
ports and configuration parameters. This follows the idea of
abstract classes in object-oriented software engineering: they
can be used during design time to describe properties expected
from possible implementations, but they need to be extended
and bound prior to code generation. To model a platform-
independent software architecture, the abstract component
types are imported from model libraries. Thus, a platform-
independent software architecture may contain composed com-
ponent types, atomic component types with behavior models,
and abstract component types - all of which may use platform-
independent data types only. Hence, the complete architecture
is independent of GPLs and platforms.

Similarly to software architectures, model libraries may only
contain composed component types, component types with
behavior model, abstract component types, and data types.
This ensures that model libraries are platform-independent and
consequently that the importing software architectures remain
platform-independent as well. Abstract component types of
model libraries are realized via extension by platform-specific
component types of implementation libraries, which may also
contain platform-specific data types. Fig. 2 illustrates the
relation between abstract and platform-specific component
types in the context of their libraries: The model library
SenseActModels contains abstract component types for
sensors and actuators as well as class diagrams describing the
required data types. The implementation library NXTLejos
contains the platform-specific component types NXTColor

and NXTMotor, which extend the abstract component types
Color and Motor, respectively. Similarly, NXTHRI and
NXTUltraSonic extend the component types HRI and
Distance of Fig. 1 assumed in SenseActModels. The
NXTMotor also introduces a new configuration parameter
of type Port that describes the physical port the motor’s
hardware is connected to. This type is specific to the NXT
platform and thus not part of the abstract Motor interface
but provided by NXTLejos instead. Component types for
different platforms might require other configuration and thus
extend Motor differently.

Implementation libraries are referenced by bindings defined
in application configuration models [13]. These models de-
scribe how abstract SCDs will be bound before code gener-
ation. Such models reference a single software architecture
and contain a set of bindings. These map the architecture’s
abstract SCDs to platform-specific, parametrized component
types, such that the bound component types inherit from the
SCD’s component type and that the arguments match the
bound component type’s parameters. Hence, platform-specific
parameters are part of the bound component type and the
application configuration, but not of the platform-independent
software architecture.

ApplicationConfiguration

1 import NXTLejosActuators.*;
2 application NXTExplorerApp for Explorer {
3 bind col to NXTColor(Port.A);
4 bind dist to NXTUltraSonic(Port.B);
5 bind ui to NXTHRI;
6 bind left.motor to NXTMotor(Port.C);
7 bind right.motor to NXTMotor(Port.D);
8 }

Listing 1. The application configuration NXTExplorerApp binds the
abstract SCDs of architecture Explorer (Fig. 1) to platform-specific,
parametrized types of NXTLejos.

Listing 1 illustrates the application configuration model
NXTExplorerApp. It imports the implementation library
NXTLejos (l. 1) before it declares its name and references the
platform-independent software architecture Explorer (l. 2).
Afterwards, it contains five bindings (l. 3-7) that describe how
the abstract SCDs of Explorer should be replaced. Please
note that the bindings for left.motor and right.motor
(ll. 6-7) do not repeat the argument 100 passed to both Motor
instances via their containing components (Fig. 1). Redefining
arguments of the software architecture is prohibited and appli-
cation configurations may define arguments for the platform-
specific, bound component types only. Missing arguments are
derived from the architecture and applied automatically.

With the libraries SenseActModels and NXTLejos and
application configuration NXTExplorerApp, the platform-
independent Explorer architecture can be transformed into
the platform-specific software architecture depicted in Fig. 3.
Here, the abstract component types used to describe the
sensors and actuators have been bound to their platform-
specific counterparts from the library NXTLejos and the

32

MAA

Controller

ctrl
ValidatedMotor

left

ValidatedMotor

right

NXTExplorer

Validator

val

Validator

val

NXTColor

(Port.A)

col

NXTUltraSonic

(PORT.B)

dist

NXTHRI

ui

NXTMotor

(100, PORT.C)

motor

NXTMotor

(100, PORT.D)

motor

sensor SCDs after binding to NXT types bound NXT-specific SCDs „motor“

NXT-specific arguments

Fig. 3. NXT-specific architecture NXTExplorer with bound SCDs using
platform-specific component arguments.

arguments defined in the application configuration model
have been applied. With different implementation libraries
and additional bindings, the Explorer software architecture
can be used with multiple target platforms. Mapping SCDs
to component types and with platform-specific configuration
parameters entails the following, updated, notion of bindings: a
binding is a mapping from an abstract SCD to a parametrized,
platform-specific component type such that this type and its
parameters are applied to the SCD. As such, it consists of a
source, which identifies a SCD in the architecture’s hierarchy
to be replaced, and of a target, which describes how it is to be
replaced. The latter consists of a platform-specific component
type and configuration arguments.

A binding for a MontiArcAutomaton software architecture
A is a tuple (s, T (a0, . . . , an)), where:

• s is a qualified name in A that identifies a subcomponent
declaration of abstract component type Ts with configu-
ration parameters p0, . . . , pk,

• T is a platform-specific MontiArcAutomaton component
type that inherits from Ts and possibly adds configuration
parameters pk+1 . . . , pn, and

• a0, . . . , an is a list of configuration arguments, such that
ai is of parameter type pi.

Each element of s = s0 . . . sm refers to a unique SCD name
starting from A (MontiArcAutomaton prohibits multiple SCDs
of the same name in the same composed component [15]).
Examples of valid names in the software architecture depicted
in Fig. 1 are col, left.val, and right.motor. We write
a binding (s, T (a0, . . . , an)) as s → T(a0, . . . , an).

This notion of bindings enables to add platform-specific
arguments to the resulting software architecture without tying
the platform-independent base architecture to target platform
properties (Req. R1). Furthermore, bindings may map ab-
stract SCDs to composed component types. Hence, complex
platform-specific behavior can be expressed by multiple inter-
acting components (Req. R2).

Given the software architecture depicted in
Fig. 1 and the libraries illustrated in Fig. 2, the
bindings col → NXTColor(), left.motor →

NXTMotor(10,Port.A), and right.motor →
NXTMotor(10,Port.B) are valid bindings: the SCDs
exist, the bound component types inherit from the SCDs
abstract component types, and the arguments match. The
following section describes how bindings are applied to a
software architecture.

V. BINDING TRANSFORMATION

Bindings are defined in application configuration models
(cf. Lst. 1) that are processed by MontiArcAutomaton prior
to code generation. These models are checked for well-
formedness to ensure each bound SCD is abstract, bound
exactly once, the component it is bound to extends the
SCD’s component type, and the passed arguments are valid.
Nevertheless, bindings bind abstract SCDs – not component
types – to platform-specific types and binding a SCD of a
specific type differently is desirable and supported. Naively,
this entails a component type with a single SCD of different
component types – which conflicts with the notion of types
in MontiArcAutomaton. Our binding transformation resolves
these conflicts.

MontiArcAutomaton requires that SCD motor of
component type ValidatedMotor has the same type
in each instance of ValidatedMotor. Fig. 4 illustrates
this with an excerpt of component type Explorer that
shows the subcomponent declaration left and right
of component type ValidatedMotor after applying the
bindings left.motor → NXTMotor(10,Port.A)
and right.motor → ROSMotor(10,Port.B), where
ROSMotor is a component type applicable to be bound
to right.motor. Afterwards, the component type
ValidatedMotor is supposed to have a SCD motor of
type NXTMotor (via ValidatedMotor left) and a SCD
motor of type ROSMotor (via ValidatedMotor
right). This naive transformation makes the type
ValidatedMotor and with it the complete architecture
invalid. We denote such type inconsistencies as clashes: There
is a clash between two bindings b0 . . . bn → Tb (ab1 , . . . , abx)
and c0 . . . cm → Tc

(
ac1 , . . . , acy

)
if they bind a SCD of

a common parent component type to different component
instantiations, i.e., SCDs bn−1 and cm−1 have the same type,
bn and cm have the same name but Tb 6= Tc.

Desired bindings might clash and resolution prior to apply-
ing bindings is crucial to the resulting software architecture’s
validity. The following procedure takes care of clashes by
replacing the types of all SCDs with new, unique types. To
apply bindings, it conducts a breadth-first search through the
component hierarchy defined by the root component type.
During this search, the types and arguments of bound SCDs
are replaced according to the bindings, i.e., bound. The types
of unbound SCDs are replaced by copies of their original
types with new and unique names to prohibit clashes. The
corresponding procedure is depicted in Lst. 2.

Given a root component and a set of bindings, the procedure
BIND visits all SCDs and either binds these according to the
bindings or replaces their type with a new, unique type based

33

MAA

Explorer

NXTMotor(100, Port.A)

motor

ValidatedMotor

left
Validator

val

ROSMotor(100, Port.B)

motor

ValidatedMotor

right
Validator

val

#

component type ValidatedMotor is inconsistent: its SCD
„motor“ must be of type NXTMotor or of type ROSMotor

Fig. 4. Example for a clash between the two bindings
left.motor → NXTMotor(10,Port.A) and right.motor
→ ROSMotor(10,Port.B), which our transformation resolves.

Pseudocode

1 BIND(ComponentType root, Bindings b)
2 Stack stack = new Stack()
3 newRoot = uniqueCopy(root)
4 stack.put("", newRoot)
5 while not s.isEmpty()
6 (pre, cmp) = stack.pop()
7 for each SCD (name,type(args)) of cmp
8 q = (pre==""?name:(pre+"."+name))
9 if b(q).exists()

10 type = b(q).type
11 args = append(args, b(q).args)
12 else
13 type = uniqueCopy(type)
14 stack.put(q, type)
15 return newRoot

Listing 2. The procedure BIND replaces the types of all SCDs with either
bound types or new, unambiguous types.

on the original one. To this effect, the procedure utilizes a
stack of tuples of names and component types. Initially the
stack contains only the empty qualified name and a copy of
the architecture’s root component (ll. 2-4). The copy’s type
name is ensured to be unique by function uniqueCopy().
Afterwards it iterates over the stack’s tuples and (ll. 5-14)
inspects every SCD of the currently visited component type
(such as ValidatedMotor). The qualified name q is up-
dated with the current prefix and concatenated with the actual
SCD’s name using a ternary operator (l. 8, for instance to
left.val) and it is checked whether a binding for the SCD
indicated by p exists (l. 9). If a binding exists, the type and the
arguments of the actual SCD are changed accordingly (ll. 10-
11). As the replaced SCD’s type must be abstract (and hence
atomic) and the replacing component type must be platform-
specific (it may be composed but not contain abstract SCDs),
visiting the bound new component type is not necessary. In
case there is no binding for the actual SCD, its type is set to a
unique (in terms of its name) copy of itself (ll. 13-14). Finally,
the currently updated hierarchy, as defined by newRoot, is
returned (l. 15) for further analyses and code generation.

This procedure can be performed prior to any code gener-
ation and returns a valid MontiArcAutomaton software archi-

tecture (Req. R3) that describes the platform-specific archi-
tecture completely. Hence, the architecture can be processed
by existing code generators without need for modifications
(Req. R4). The procedure prohibits clashes but produces new
component type definitions (l. 3 and l. 13) for each non-
abstract subcomponent declaration. The number of new com-
ponent types is thus bound by the number of subcomponent
declarations. Whether this influences the number of artifacts
in the generated system however depends on the employed
code generators and their translation from component types to
artifacts.

VI. RELATED WORK

The presented approach is related to our previously intro-
duced approach, deployment modeling, and other ADLs.

Our previous approach [13] relied on exchanging behavior
implementation GPL artifacts instead of component types.
Consequently, it could not produce software architecture
models employing with different platform-specific component
types. The architectures’ components referenced to different
behavior GPL artifacts instead. This prohibited to introduce
new arguments to SCDs. Exploiting the notion of component
inheritance lifts bindings completely to model level and en-
ables such arguments while retaining a type-safe architecture.
Handling references to different behavior GPL artifacts is no
concern for code generators anymore and with code libraries,
the library property models of [13] have become obsolete as
well. These models described which abstract component types
the contained behavior implementations belong to and identi-
fied the required run-time system (the GPL machinery required
to enable system execution [12]). Now both is made explicit
in the component types via inheritance and a new component
property. Hence, libraries can also contain platform-specific
component types for multiple run-time systems.

Bindings are related to deployment of C&C architectures
to specific platforms [9], [16], but differ in the level of
abstraction: deployment maps components to elements of the
participating platforms and thus requires explicit platform
models. Additionally, deployment may consider proper code
generation for specific target platform elements, proper realiza-
tion of connectors between physically distributed components,
or mechanical and electrical properties of the target platforms.
This imposes platform expertise on the application modeler.

The xADL [17] encourages including implementation de-
tails in component models. While omitting this allows describ-
ing platform-independent architectures, we are unaware of any
similar pre-generation transformation. Relations to other ADLs
and “abstract platforms” of MDA [7] are discussed in [13].

VII. DISCUSSION

Application configuration models specify single bindings
per SCD. For large architecture this is inconvenient, but can
easily be solved by binding abstract component types and
calculating the actually affected SCDs. This however is only
part of improving the application configuration modeling lan-
guage: additional features under consideration are conditional

34

expressions over architecture properties and rewiring con-
nectors for multiple interconnected bound component types.
Also, interfaces of abstract component types need to be broad
enough to support arbitrary platform-specific component types.
They are by design, as the software architecture defines what is
required. Furthermore, we do not bind non-abstract component
types. While possible with this approach, this allows changing
the architecture beyond recognition. This is not yet intended.
Furthermore, we currently do not allow to bind SCDs of
composed component types. While interesting, this leads to
issues for abstract composed component types that contain
abstract component types. The procedure BIND retains the
processed software architecture’s validity by introducing new
component types to avoid clashes. Consequently, the resulting
architecture contains redundant component types. We currently
investigate a less invasive procedure that iteratively detects
clashes and solves these introducing new components types
only where necessary.

VIII. CONCLUSION

We have presented an enhanced approach to transform
platform-independent into platform-specific software architec-
tures. This approach builds upon previous work [13] and
lifts it to model level completely. It applies bindings from
abstract SCDs to parametrized, platform-specific component
types of a software architecture and produces a valid soft-
ware architecture again. The presented procedure is type-safe,
allows to incorporate platform-specific configuration, reduces
the complexity of MontiArcAutomaton code generators, and
enforces a strict separation between platform-independent and
platform-specific constituents. We are currently investigating
the expressiveness of the new approach in further case studies.

REFERENCES

[1] N. Medvidovic and R. Taylor, “A Classification and
Comparison Framework for Software Architecture de-
scription languages,” IEEE Transactions on Software
Engineering, 2000.

[5] C. Schlegel, A. Steck, and A. Lotz, “Model-Driven
Software Development in Robotics : Communication
Patterns as Key for a Robotics Component Model,” in
Introduction to Modern Robotics, 2011.

[2] M. Geisinger, S. Barner, M. Wojtczyk, and A. Knoll, “A
Software Architecture for Model-Based Programming
of Robot Systems,” Advances in Robotics Research,
2009.

[3] R. Bischoff, T. Guhl, E. Prassler, W. Nowak, G. Kraet-
zschmar, H. Bruyninckx, P. Soetens, M. Haegele, A.
Pott, P. Breedveld, et al., “BRICS - Best practice in
robotics,” in Robotics (ISR), 2010 41st International
Symposium on and 2010 6th German Conference on
Robotics (ROBOTIK), VDE, 2010.

[4] D. Cassou, P. Koch, and S. Stinckwich, “Using the Di-
aSpec design language and compiler to develop robotics
systems,” in Proceedings of the Second International
Workshop on Domain-Specific Languages and Models
for Robotic Systems (DSLRob 2011), 2011.

[6] P. H. Feiler and D. P. Gluch, Model-Based Engineering
with AADL: An Introduction to the SAE Architecture
Analysis & Design Language. Addison-Wesley, 2012.

[7] J. P. Almeida, R. Dijkman, M. van Sinderen, and
L. F. Pires, “Platform-independent modelling in mda:
supporting abstract platforms,” in Model Driven Archi-
tecture, 2005.

[8] S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, and
M. Ziane, “RobotML, a Domain-Specific Language to
Design, Simulate and Deploy Robotic Applications,”
in Simulation, Modeling, and Programming for Au-
tonomous Robots, 2012.

[9] N. Hochgeschwender, L. Gherardi, A. Shakhirmar-
danov, G. K. Kraetzschmar, D. Brugali, and H. Bruyn-
inckx, “A Model-Dased Approach to Software Deploy-
ment in Robotics,” in Intelligent Robots and Systems
(IROS), 2013 IEEE/RSJ International Conference on,
IEEE, 2013.

[10] J. O. Ringert, B. Rumpe, and A. Wortmann, “From
Software Architecture Structure and Behavior Model-
ing to Implementations of Cyber-Physical Systems,” in
Software Engineering 2013 Workshopband, 2013.

[11] ——, Architecture and Behavior Modeling of Cyber-
Physical Systems with MontiArcAutomaton. Shaker Ver-
lag, 2014.

[12] J. O. Ringert, A. Roth, B. Rumpe, and A. Wortmann,
“Code Generator Composition for Model-Driven Engi-
neering of Robotics Component & Connector Systems,”
in 1st International Workshop on Model-Driven Robot
Software Engineering (MORSE 2014), 2014.

[13] J. O. Ringert, B. Rumpe, and A. Wortmann, “Multi-
Platform Generative Development of Component &
Connector Systems using Model and Code Libraries,” in
1st International Workshop on Model-Driven Engineer-
ing for Component-Based Systems (ModComp 2014),
2014.

[14] M. Schindler, Eine Werkzeuginfrastruktur zur agilen
Entwicklung mit der UML/P. Shaker Verlag, 2012.

[15] A. Haber, J. O. Ringert, and B. Rumpe, “MontiArc -
Architectural Modeling of Interactive Distributed and
Cyber-Physical Systems,” RWTH Aachen, Tech. Rep.,
2012.

[16] L. Lednicki, I. Crnkovic, and M. Zagar, “Towards
automatic synthesis of hardware-specific code in
component-based embedded systems,” in Software En-
gineering and Advanced Applications (SEAA), 2012
38th EUROMICRO Conference on, 2012.

[17] E. M. Dashofy, A. Van der Hoek, and R. N. Taylor, “A
highly-extensible, xml-based architecture description
language,” in Software Architecture, 2001. Proceedings.

Working IEEE/IFIP Conference on, IEEE, 2001.

35

A Modular Reference Structure for
Component-based Architecture Description

Languages
Misha Strittmatter, Kiana Rostami, Robert Heinrich and Ralf Reussner

Chair for Software Design and Quality (SDQ)
Karlsruhe Institute of Technology

Karlsruhe, Germany
{strittmatter | rostami | heinrich | reussner}@kit.edu

Abstract—Metamodels are used to define languages, code gen-
eration and they serve as data structures for metamodel-centric
software systems. In software engineering, these metamodels are
crafted, evolved and extended, e.g., by further quality dimensions
or structural features. However, an ad-hoc modeling approach
does not properly support metamodel reuse by extension or
composition. Nor does it enforce a proper modularization which
helps with tackling complexity. We present an approach to
design and extend metamodels for component-based architecture
description languages in a modular way. The information which
is to be metamodeled is divided into paradigm, domain, quality
and analysis content. We constrain the usage of dependencies
and give instructions how to modularize in accordance to
concerns. Related approaches try to modularize and compose
transformations, generators, and tools in general. However, in
the field of metamodels, little support is given. Our approach
is applied to several concerns of the Palladio Component Model
and an extension thereof.

I. INTRODUCTION

In model-based software engineering (e.g., model-driven
software development or software performance engineering)
and in general in many fields of computer science, software
is described using models. These models capture different
aspects like the object-oriented design, more coarse-grained
architecture, deployment and so forth. Each discipline has its
own focus and may add more information to this founda-
tion. E.g., design decisions, implementation documentation,
requirements and quality related information like service level
agreements for performance or security.

A metamodel is a model which defines the structure of other
models. If a model conforms to a metamodel, the model is
considered an instance of the metamodel. Thus, metamodels
are similar to grammars, as they define languages. A prominent
example is the Unified Modeling Language (UML) meta-
model [12]. A sequence diagram (instance) is a model which
is an instance of the UML metamodel. Our approach primarily
targets MOF [13] (i.e., the meta-metamodel of UML) conform-
ing metamodels. However, we expect that it also directly appli-
cable to metamodels conforming to meta-metamodels which

This work was supported by the Helmholtz Association of German Research
Centers and the DFG (German Research Foundation) under the Priority
Programme SPP1593: Design For Future – Managed Software Evolution.

feature similar concepts to: classes, containment-, inheritance-
and association relations between classes.

There are multiple ways to found metamodel-based lan-
guages: 1) a new metamodel is developed. 2) an existing meta-
model (e.g., UML) is extended by annotations or stereotyping.
3) a variant or branch of an existing language is created. The
development of new metamodels is straightforward, if they do
not evolve and are isolated. However, this is seldom the case.
The major problem is that growing metamodels structurally
degrade over time. Extensions by annotation or stereotyping
are problematic as they may result in a flat, unstructured
organization of information. Branches and variants are prob-
lematic, because duplicated parts have to be maintained when
the original language evolves.

An example of this is the Palladio Component Model
(PCM) [1]. It is a metamodel-based language which was
initially developed for the specification of component-based
software architectures and their resource demands to be able
to predict their performance. With time, the research focus
broadened and more structural features and quality dimensions
were incorporated. Some of this information was directly
built into the language [2]. Other aspects were specified as
extensions or wound up in branches (e.g., the integration
of business processes modeling and analysis [3] as well as
modeling and analysis of maintainability [4]). This impedes
the structure and reuse potential of inner parts of the PCM.

There are approaches, which put forward modular, com-
posable or extensible concepts which are more or less related
to metamodels. These concepts include components [5], [6],
classes of object-oriented design [7], domain specific and
general purpose languages [8], transformations [9], genera-
tors [10] and simulators [11]. However, for metamodels, little
support is given.

Our approach aims to tackle these problems with a ref-
erence structure for metamodels for architecture description
languages. The reference structure proposes a modularization
of information into layers for paradigm, domain, quality and
analysis information. The layers can further be divided: e.g.,
for separate quality dimensions or different domains. This
leads to a modular, flexible and extensible structure, which

36

satisfies separation of concerns and thus is better understand-
able and maintainable. It also increases the potential for reuse
as a basis for new extensions. In addition, modularity leads
to localization of change impact in the case of metamodel
evolution. This does not only apply to the metamodel but to
everything which is dependent on the metamodel (e.g., editors,
analyzers, generators). The applicability of our reference
structure is demonstrated on an selection of basic concerns
and extensions of the PCM.

Our approach aims at the structuring of metamodels for the
description of component-based software architecture and their
qualities. However, we expect that it can also be applied to an
even broader spectrum of metamodels, where the proposed
decomposition is meaningful. These may be architecture de-
scription languages (ADLs) or even description languages of
software-intensive systems in general.

This paper is outlined as follows: Section II describes the
example scenario. Section III presents the reference structure
and its concepts. Section IV applies the reference structure
onto the example scenario. Section V presents related work.
Section VI concludes the paper.

II. PROBLEM SCENARIO

The scenario for our motivating example is the PCM. The
PCM (i.e., a metamodel) is used for several analyses and
simulations (see Figure 1). At the core of the PCM is a well
formed construct to specify components, interfaces, and their
composition. In the past, this part of the metamodel has served
as a basis for new metamodel content which was emerging
from new research. Initially this content was added directly
to the PCM [14]. Examples of such intrusive extensions are
reliability [15], event communication [16] and infrastructure
components [17]. Later, as their number and diversity grew,
extensions were no longer included directly in the PCM. They
either came in the form of branches of the metamodel or
metamodels which referenced into the PCM. Examples of such
extensions are KAMP (Karlsruhe Architectural Maintainability
Prediction) [4] and support for modeling business processes
that interface with system services [3].

Composition
Java Code

Skeletons

Instance

Palladio

Component

Model

Components,

Interfaces

Performance

Characteristics

Maintain-

ability

Pa
rt
 o

f

Part of

Part of

Part
 of

Performance

Prototype

Simulation

Code

Transformation

Transformation

Transfo
rm

atio
n

Execution +

Measurement

Simulation

Maintainability Analysis

Completion

∙ ∙ ∙
Part of

€
Effort

#include <nothing>

unsigned main()

{

 dummy code;

 code dummy = writes

 some dummy code;

 writing dummy(code is)

 boring;

 immitate an if?

 if(immitate) {

 do immitate;

 }

 return 42;

}

Performance

Performance

∙ ∙ ∙ ∙ ∙ ∙

Fig. 1. Excerpt of Concerns and Capabilities of the PCM

Branches as well as intrusive extensions are problematic
and have negative implication on users, developers, and re-
searchers. Developers and researchers should have a clean base
upon which they can build their extensions. If the metamodel is
not modularized, it often contains content, which is irrelevant

to the extension being made. This unnecessary complexity
leads to a decline in understandability and may even lead to
metamodeling mistakes. Further, both extension approaches
are adverse to the maintainability of the metamodel. Intrusive
extensions increase the complexity and external extensions
often lack extension points in the base metamodel. Extension
over time, regardless of intrusive or non-intrusive, increases
either complexity or the amount of software artifacts that are
dependent on the core metamodel. Thus, if the base metamodel
is in need of restructuring but the restructuring is postponed,
the cost of the refactoring will increase. This is especially
critical in metamodel centric applications and can be called
metamodel debt (cf. technical debt).

Negative effects of unstructured extensions on users are
twofold. Users have specific needs with regards to the features
of the program. They may be confused or overwhelmed
when confronted with too much content irrelevant to them.
Further, to support the additional metamodel content, the code
of all extensions has to be shipped. For these issues, there
are technical workarounds to minimize their negative impact.
Shipped code of extensions may be reduced to a minimum
by only including the model code. Tools and editors may be
configurable to hide content which is not wanted by the user.
However, this is only a workaround, as each extension needs
to intrusively modify the tool in question.

For the means of the running example, the relevant concepts
of the PCM will be explained in a condensed way (illustrated
in Figure 2). For a complete and detailed description of the
PCM, please consult the technical report [18]. At the core of
the PCM are components and interfaces (I). Both are first class
entities and a components may implement or require interfaces
(II). Components can be placed within an architecture by creat-
ing an assembly context (III). The interfaces of these assembly
contexts can be linked by connectors (IV). A component may
be either atomic or composite (V). Composite components
contain further assembly contexts and connectors. For the
modeling of performance and reliability, atomic components
contain abstractions of control flow (VI) (similar to activity
diagrams or flow charts). These control flow specifications
carry resource demands and failure probabilities in some of
their states. To conduct performance simulation [19] of such a
model, there is further information needed like the maximum
simulation time or the maximum measure count.

Another part of the running example is KAMP [4]. It is
an extension for the PCM that deals with maintainability.
It is a tool-supported approach to semi-automatically predict
change propagation in a software system. In contrast to
other approaches, KAMP considers not only the architecture
of a software system, but also organizational aspects (e.g.,
management or various roles such as tester or deployer) as
well as technical artifacts (e.g., testing, build configurations,
or deployment). KAMP comprises two phases: 1) Preparation
Phase: After the user models a software architecture using
the PCM (e.g., Figure 2), she or he enriches the model with
context annotations such as test cases and build configuration.
2) Change Request Analysis Phase: After the user has modeled

37

Assembly

Context

Assembly

Context

Resource

Demand

(I) Interface2

Basic

Component2

Interface1

Composite

Component

Basic

Component1

∙ ∙ ∙

«provides»

«requires»

«instance»«instance»

(I)

(III)

(III)

(IV)

(V)
(V)

(VI)

Fig. 2. Simplified Concepts of the PCM

the change in the enriched architecture model, KAMP semi-
automatically calculates the change propagation and derives
a task list, which is composed of tasks needed to implement
the change request. This step calculates all affected artifacts
annotated in the model, too.

The overall scenario of the running example is illustrated
in Figure 3 and contains several main concerns: the PCM is
a language to specify component-based software architecture
as the common basis; performance characteristics, which are
included in the PCM and partly in external sources (con-
figurations of analysis launches); maintainability information,
which is contained within an external extension. The PCM is
internally structured. The primary decomposition runs along
its view types (submodels). However, here it is displayed as
one module with the exception of the performance results,
which are stored in a modular way. This stems from the fact
that due to dependency cycles within the PCM [2], it is only
possible to use it as a whole. Thus, all the problems from above
follow for developers and users: unnecessary complexity and
its implications.

PCM

Modifi-

cations

Artifacts

and Staff

Static

Dependencies

KAMP Maintainability

Prediction

Component Architecture,

Behavior, Performance,

Reliability, Infrastructure,

Events, Resources,

Deployment, Usage, ...

Performance

Results

Fig. 3. Status Quo of the Scenario: Metamodel Modules

These problems are tackled by our approach. By mod-
ularizing the meta content and structuring it according to
our reference structure, the concerns are separated and the
extensions have a clean base. In the following sections we will
present the layers of the reference structure, then build an ideal
and modular version of the scenario meta model according to
the reference structure.

III. REFERENCE STRUCTURE OVERVIEW

Within our reference structure, the metamodel is subdivided
into smaller parts which we call metamodel modules or just
modules. On the technical level, these modules may manifest
in their own metamodels, each of which is persisted in its own

file, or they may just manifest within the package structure or
comparable subdivisions within one metamodel. The contents
(e.g., classes) of one module may depend on the contents of
another module. This is either in the form of simple reference,
containment, inheritance, or stereotype application. If at least
one dependency from one module to another exists, we will
regard that as the one module being dependent on the other.

Our reference structure organizes modules into layers as the
topmost unit of decomposition. A layer is a set of modules.
The layers are ordered with regard to the dependencies of
their modules. The modules of a layer may only depend on
the modules of the same or more basic layers. More basic
here means, that they depend on fewer other layers. Within the
scope of this paper, basic layers will be illustrated at the top. If
a module of a layer depends on a module of another layer, we
will regard that as the one layer being dependent on the other
one. Layers may depend on all higher layers. However, it is
advisable to confine the dependencies on the next higher level
where possible. Circular dependencies between modules (as
well as between layers) are not allowed. A circular dependency
is either a result of a dependency which should be reversed,
or of a strong cohesion between the modules. These modules,
thus, should be considered for merging or restructuring.

A module encapsulates a set of concerns. When modulariz-
ing, two main rules should be applied. It should be meaningful
to use the basic module (or modules) with and without the
concerns which have been factored out. If this is not the
case, the modularization is still meaningful if the basic module
serves as a common foundation for multiple further modules.

The information which is formalized in metamodels can be
grouped into categories depending on the type of information.
Multiple decomposition dimensions exist and it not always
clear which decompositions to apply and in which order.
Intuitive design might modularize information in ways of
infrastructure (abstract class hierarchies) vs. concrete content,
views types or sub models, or semantic cohesion. With our
reference structure, we propose as the primary decomposition a
layering into: paradigm, domain, quality and analysis content.
Paradigm (π) is the most basic layer. It lays the the foundation
of the language by providing structure but without semantics.
The domain (∆) layer builds upon the paradigm and assigns
semantics to its abstract structure. The quality (Ω) layer adds
quality properties to the domain concepts. Lastly, the analysis
(Σ) layer provides modules for input-, output- and internal
state and configuration options for analyses. We settled for
these layers, because they provided an intuitive primary de-
composition in our research when inspecting metamodels for
component-based architecture description languages and their
intrusive and external extensions. The concern constellations
of these layers (whereas not as explicit as proposed by our
reference structure) can be found in metamodels like UML
MARTE, the Descartes Metamodel and the PCM.

IV. APPLYING THE REFERENCE STRUCTURE

In the following subsections, we will explain the layers
of the reference structure and gradually construct a modular

38

metamodel of our example (PCM extended by maintainability)
according to these layers. Please keep in mind, that this
is a simplification and a reconstruction of the PCM. Thus,
modeling of concepts and dependency directions partly do not
adhere to the current PCM.

A. Paradigm

The most basic layer is the paradigm layer (π). It defines
foundational structure but without semantics. Thus, it is not
directly usable. Not even for purposes which do not need
dynamic semantics (e.g., documentation and communication).
The minimal configuration of the metamodel which is mean-
ingfully instantiable is π and the domain layer put together.
First class entities in π should be abstract and no top level
container (root) should be provided to avoid instantiation.
Modules which cannot be instantiated directly, will be consid-
ered abstract modules. In our case π constitutes components,
interfaces and their composition. However, any π is possible.
It is dependent on the subject matter which is to be captured.
E.g., object oriented design and behavioral formalisms.

In our example, π encompasses the modules CoreEntities
and Composition. This is illustrated in Figure 4. Please keep
in mind that for the sake of presentation this is an extremely
simplified depiction. Wherein Composition is dependent on
CoreEntities. CoreEntities contains the abstract metaclasses
Component and Interface. Like in the standard UML notation,
abstract classes and abstract modules are indicated by a name
in italic letters. A Component may reference various Interfaces
in two ways: provide and require. The Composition module
defines ComposedStructures which contain AssemblyContexts
and Connectors. Connectors link Interfaces of two Assem-
blyContexts. An AssemblyContext represents an instance of a
Component.

Com-
ponent

Inter-
face * Composed

Structure

Composition
CoreEntities

Assembly
Context

Connector

*

*

21π

*

Fig. 4. The π (Paradigm) Layer

The ComposedStructure extends Component. In the illus-
tration, the UML notation for stereotype application (a filled
arrow) is used. However, the implementation of this relation
does not necessarily have to be stereotyping. A wide range
of different extension mechanisms is available with all their
pros and cons. Further ones are annotation, plain inheritance,
and the application of patterns like the decorator pattern or
aspect-oriented extension [20].

The π layer builds the foundation of the remainder of the
metamodel. It is important, that is has no outgoing dependen-
cies into other layers. This way, it can be reused on its own.

B. Domain

The domain layer (∆) extends π and assigns domain
semantics to its abstract first class entities. By doing so, new

information (i.e, attributes and relations) can be added to
the derived classes. New domain concepts may be created
as well. However, if these new domain concepts have an
overlap with classes of other modules in ∆, or even of π it
should be considered to factor that content out into a higher,
more general module or even a higher layer (i.e., in this
case π). In the scope of this paper, ∆ will capture software
systems. In general, any ∆ layer is possible. E.g., embedded
and mechatronic systems or cyber-physical systems. The ∆,
however, has to fit the underlying π layer.

The ∆ layer excerpt of the example scenario is illustrated
in Figure 5. It features the ComponentRepository module,
where the modeler can specify the Components and Interfaces
of an architecture. Please keep in mind that the relation
between Components and Interfaces is already defined in the
π layer. The ComponentRepository module assigns domain
semantics to the abstract CoreEntities module of the π layer
providing concrete subclasses for its abstract classes. This
separates the concerns of the structure of the paradigm (here
component architecture) from its domain semantics, enabling
the reuse of the paradigm structure. The Behavior module
extends SoftwareComponents by a behavior abstraction, which
is similar to a flowchart. The Behavior module is performance
agnostic and is later used as a foundation for performance
and reliability modeling. The Modification module is essential
to the maintainability analysis. It defines Modifications of the
architecture. Each concrete Modification references an element
of the architecture. It further defines Propagations, which
express how Modifications spread through an architecture.

∙ ∙ ∙

π

Δ

Com-
ponent

Behavior

Abstract
Action

Behavior

Internal
Action

External
Call

*

Start
Action

∙ ∙ ∙

Modification

Modification

Mod
Interface

ModComp

Mod
Connector

∙ ∙ ∙

Repository

Software
Component

Component
Repository

Business
Component

Infrastructure
Component

*

∙ ∙ ∙

Operation
Interface

Inter-
face

IntraComp
Propagation

Propagation

∙ ∙ ∙

0...1

Fig. 5. Excerpt of the ∆ (Domain) Layer

C. Quality

The quality layer (Ω) defines the inherent quality properties
of ∆ concepts. It contains primarily second class entities,
which enrich first class entities of ∆. In the scope of this
paper, the Ω layer constitutes performance and reliability
characteristics. Possible other Ω modules which fit the π and
∆ are: security and availability. Not in every circumstance a
Ω layer is needed. E.g., when the metamodel is only needed

39

for specification of software design or for static analysis. This
is the case for the KAMP maintainability analysis, which does
not require information in the Ω layer.

The quality properties have to be inherent and not de-
rived. Inherent with respect to the analyses which can be
performed on the model. E.g., when considering the PCM
and performance, the response time of an operation depends
on many things, like resource demands within the operation,
response time of external calls and so on. Thus, the response
time of an operation in this consideration is not an intrinsic
value, but a derived one. Therefore, the response time of
operations should be moved to a lower layer. There may be
quality concepts which are needed to model derived properties.
These should be specified in the Ω layer. However, their
instances should be contained in the Σ layer. On the other
side, the resource demand (not in terms of time but in load) is
independent. It may be derived from an estimate or a real
word software artifact, but with regards to the analyses it
cannot be derived. Therefore, it belongs in Ω and should be
contained and specified there. If a model is used for solving,
analysis or simulation, the model content from Ω should
remain static during execution. If that is not the case, the
information belongs to the analysis layer, as it is derived or
state information.

Figure 6 shows an excerpt of the exemplary Ω layer. It
contains the modules for Performance and Reliability. They
extend InternalAction, and therefore the internal behavior of
a Component, by ResourceDemand and FailureOccurence. A
FailureOccurence has a probability, as well as a type. Here,
an important advantage of the modularization shows. The
behavior metamodule is free of performance and reliability
data. As required, it can be extended by one of the two, or
even both. Tools and developers are not bothered by irrelevant
content. Potential future extensions can be created without the
need for prearrangement.

Δ

Ω

Internal
Action

Resource
Demand

Performance

Failure
Type

Reliability

FailureTypes

Hardware
Failure

Software
Failure ∙ ∙ ∙

Failure
Occurence

Failure
Probability

Fig. 6. Excerpt of the Ω (Quality) Layer

D. Analysis

The analysis layer (Σ) is only relevant, if models are used
as a basis for analysis, solving or simulation (hereafter only
referred to as analysis). Σ provides new views to specify
input state, configuration, run-time state and output of an
analysis. These are all possible views, but only a subset may
be required by an analysis. It is possible for multiple analyses
to be founded on the upper layers. Several analyses may share
modules, but also posses their own ones. In the focus of
this paper, the Σ layer is concerned with the performance
simulation and the change impact analysis KAMP.

In Figure 7 an excerpt of the Σ layer is shown. As a really
simplified version of the performance result, here, a set of
OperationResponseTimes is modeled. An OperationRespon-
seTime has a unit, which is specified in the Ω layer (the
corresponding module was not shown in Figure 6). It further
references the AssemblyContext and the Interface where the
response time was recorded.

Σ

Δ Ω
Evolution
Scenario

KAMP Input KAMP Result

Impact
Propagation

Modification

Propa-
gation

Development
Artifact

Staff
Specification

PerformanceResults

Performance
Results

Operation
ResponseTime

*

Unit

Operation
Interface

Assembly
Context

Fig. 7. Excerpt of the Σ (Analysis) Layer

The in- and output for the KAMP maintainability prediction
is on the left side of Figure 7. In this circumstance, the
quality layer is not needed. Both modules merely hold a
root container and reference directly into the ∆ layer. The
EvolutionScenario of KAMP Input contains everything the
analysis requires: seed Modifications, StaffSpecifications and
DevelopmentArtifacts that belong to the architecture’s ele-
ments. The ImpactPropagation contains the predicted extend
of the architecture change in the form of Propagations. The
ImpactPropagation further references the input of the scenario
to enable inference of affected artifacts and staff.

E. Overall Module Structure

For an overview of all the modules of the scenario and
their dependencies, see Figure 8. The modules which convey
specific concerns are indicated by different levels of gray
(maintainability is dark, performance is medium, reliability
is light). The remaining modules cover more fundamental
concerns: component-based architecture and behavior. They
are the intersecting set of the metamodel elements of these
analyzes. The illustration may seem much more complex,
than the initial illustration in Figure 3. This is because in
the initial figure, all the concerns of performance, reliability,
behavior, and component architecture are contained in the big
PCM module. The original structure cannot be subdivided into
modules. At least not into modules according to the definition
in this paper, as the subpackages of the PCM have cyclic
dependencies (see [2]).

This modular structure brings many benefits. External ex-
tensions now have a clean base to build on. E.g., a security
extension can now be developed without having to deal with
performance and reliability. In the modular structure, extension
developers have to only understand the modules they extend
and to some degree modules from which they are indirectly
dependent. This increases the potential of reuse of the more
basic (higher) modules. When evolving the metamodel, change
impact can be traced down the graph, following the depen-

40

Σ

Core

Entitiesπ
Δ

Ω

Compo-

sition

Software

Components

Static

Dependencies

Development

Artifacts
Behavior

Staff

Specification

Perfor-

mance

Performance

Results

Performance

Configuration

KAMP

Input

KAMP

Result

Modifi-

cations

Relia-

bility

Failure

Types

Performance

Metrics

Fig. 8. The Scenario Metamodel Restructured In Concordance to the
Reference Structure

dency relations. This way changes can be assessed much faster
and more accurately.

V. RELATED WORK

There are approaches, which deal with the modularization,
categorization or structuring of related concepts. Coad’s UML
archetypes [7] for object-oriented design are used to classify
classes into things, temporal concepts, roles and descriptions.
Atkinson et al. propose a view-based approach for software en-
gineering. The underlying model captures every concern into
orthogonal dimensions, which are assessed through views [5].
Further, with deep modeling [21] they propose to enable in-
stance relations within models. These deep models are layered
with regards to instance levels. JetBrains MPS [8] features
capabilities for the extension of DSLs. Siedersleben [6] pro-
posed a reference structure for software architectures, where
components are categorized into so-called blood types (tech-
nical, domain and library). Yet these approaches cannot be
transferred to work on metamodels or they do do not offer
support for metamodel extension and reuse.

There is also related work, which aims at modularizing
concepts which are in direct interplay with metamodels.
Jung [10] proposes a composition approach for generators.
Rentschler [9] developed an approach for modular transforma-
tions. Föhrdes [11] presents a modularization into components
of a performance simulator which operates on the PCM
(metamodel). These approaches are especially interesting, as
they deal with artifacts which are used in conjunction with
metamodels. However, theses approaches cannot be directly
transferred onto metamodels.

VI. CONCLUSION

In this paper, we proposed a reference structure for modu-
lar metamodels for component-based architecture description
languages. It proposes a layering of the information into
paradigm (π), domain (∆), quality (Ω) and analysis (Σ)
content. The reference structure is applied to the PCM [1] and
the KAMP [4] maintainability extension. However, a remake
of the PCM is not the contribution of this paper. These models

were chosen to demonstrate the applicability of the reference
structure. Our approach aims to be applicable to component-
based architecture description languages which also express
quality properties.

Our reference structure propose modularization into layers
and further into modules as well as making the dependencies
explicit. Dependencies are constrained to avoid dependency
cycles and improve modularization. Guidance for the modu-
larization with regards to concerns is given. The reward is
a more modular metamodel which allows for better compo-
sitionality of extensions. The improved modularity leads to a
reduced complexity and all its benefits: better understandabil-
ity, maintainability and reusability.

Future work include an in-detail examination of the possible
extension mechanisms which can be used for the extension
relation. Also, we plan to develop decision support for the
grouping of classes and modules into the layers. Further, an
extensive metamodel will be remade according to the reference
structure and its correctness and completeness proven (e.g.,
by finding an isomorphism). An interesting question worth
investigating is if different types of extension with regards to
the interplay of abstract and concrete module have implication
onto potential roots elements of view types.

REFERENCES

[1] S. Becker et al. “The palladio component model for model-driven
performance prediction,” JSS, Elsevier, 82(1):3–22, 2009.

[2] M. Strittmatter et al. “Identifying semantically cohesive modules within
the palladio meta-model,” SSP, 160–176, 2014.

[3] R. Heinrich et al. “Integrating business process simulation and
information system simulation for performance prediction,” DOI
10.1007/s10270-015-0457-1, SoSyM, Springer, 1–21, 2015.

[4] K. Rostami et al. “Architecture-based assessment and planning of change
requests,” QoSA, ACM, 21–30, 2015.

[5] C. Atkinson et al. “Orthographic software modeling: a practical approach
to view-based development,” ENASE, Springer, 69:206–219, 2010.

[6] J. Siedersleben Moderne Software-Architektur: Umsichtig planen, robust
bauen mit Quasar, dpunkt, 2004.

[7] P. Coad Java modeling in color with UML, Prentice Hall, 1999.
[8] M. Voelter et al. “Language modularity with the mps language work-

bench,” ICSE, IEEE, 1449–1450, 2012.
[9] A. Rentschler “Model Transformation Languages with Modular Infor-

mation Hiding,” Ph.D. thesis, Karlsruhe Institute of Technology, 2015.
[10] R. Jung “Geco: Generator composition for aspect-oriented generators,”

Doctoral Symposium - MODELS, 2014.
[11] C. Föhrdes “Simulation components for software quality simulation in

eclipse,” Master’s thesis, Karlsruhe Institute of Technology, 2014.
[12] OMG “UML Infrastructure Specification 2.4.1,” 2011.
[13] OMG “MOF Core Specification 2.4.2,” 2014.
[14] M. Strittmatter et al. “Towards a modular palladio component model,”

SSP, CEUR, 49–58, 2013.
[15] F. Brosch “Integrated software architecture-based reliability prediction

for it systems,” Ph.D. thesis, Karlsruhe Institute of Technology, 2012.
[16] C. Rathfelder “Modelling Event-Based Interactions in Component-

Based Architectures for Quantitative System Evaluation,” Ph.D. thesis,
Karlsruhe Institute of Technology, 2013.

[17] M. Hauck “Extending Performance-Oriented Resource Modelling in
the PCM,” Diploma thesis, University of Karlsruhe, 2009.

[18] R. Reussner et al. “The Palladio Component Model,” Tech. Rep.,
Karlsruhe Institute of Technology, 2011.

[19] M. Becker et al. “Performance analysis of self-adaptive systems for
requirements validation at design-time,” QoSA, ACM, 2013.

[20] R. Jung et al. “A method for aspect-oriented meta-model evolution,”
VAO, ACM, 19–22, 2014.

[21] C. Atkinson et al. “Melanie: Multi-level modeling and ontology
engineering environment,” MW, ACM, 7:1–7:2, 2012.

41

