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Abstract—Component-based and model-driven engineering are
key paradigms for handling the ever-increasing complexity of
technical systems. Surprisingly few component models consider
extra-functional properties as first class entities.

Contract-based design is a promising paradigm, which has
the potential to fill this shortage of methods for dealing with
extra-functional properties. By defining the concept of using
assumptions in order to determine the environment, and by using
the concept of guarantees to state what a component provides to
the environment, it enables the analyzability of components and
compositions in advance and during system execution.

With this work, we aim to create the base for a pragmatic
model-driven method that provides reusable modeling concepts
for contracts targeting arbitrary extra-functional properties.
Furthermore, we expand the current state-of-the-art of contract-
based design by introducing the concept of a finite state machine,
where single states consist of several valid contracts. It is also
assumed that these modeling language features will ease the
use of contract-based design. Additionally, we demonstrate the
applicability of the presented modeling concepts on an exemplary
use case from the automotive domain.

Index Terms—Metamodeling, contract-based design, extra-
functional properties, component models

I. INTRODUCTION

Numerous industrial sectors are currently confronted with
massive difficulties originating from managing the increasing
complexity of systems. The automotive industry, for instance,
has an annual increase rate of software-implemented functions
of about 30% [1]. This rate is even higher for avionics
systems [2]. Additionally, this development of systems is not
restricted to software, as we are facing a so-called Internet of
Things, where the number of physical devices is expected to
expansively explode [3]. New challenges regarding complexity
of systems emerge caused by this dramatic increase of diverse
hardware/software, possible interactions and distributed intel-
ligences [4].

Component-based engineering is today a widely recognized
and well-established paradigm for tackling complexity of
systems [5]. Together with model-driven engineering, it forms
a potentially powerful union to construct, analyze, and deploy
systems.

But still, modern component models are flawed. As shown
by Crnković et al. [5], astonishingly few (software) compo-
nent models are addressing extra-functional properties (e.g.
timing, safety, memory consumption, etc.) as first class enti-
ties. However, these properties are essential for composing a

component-based system predictable and safe. Management
of extra-functional properties is thus still one of the core
challenges faced by component-based design [6].

Contract-based design is a promising paradigm for filling or
narrowing this gap, [7]. It captures the behavior of a specific
functional or extra-functional property in relationship with
the environment of a component. Despite the existence of a
mathematical groundwork [7] [8] and exemplary applications,
a standard and generic metamodel for contract-based design
does not yet exist.

With this work, we provide pragmatic modeling concepts
that pave the way for integrating contract-based design into
component models of systems. We present a metamodel
fragment for contracts which target arbitrary single extra-
functional properties. Furthermore, we introduce the concept
of a finite state machine, where single states constitute valid
contracts. This concept extends the current state-of-the-art
regarding contract-based design. We show the applicability
of these modeling concepts by using an example from the
automotive domain. The target component of the use case
is a simplified electronic steering column lock, which we
examine with respect to the extra-functional properties safety
and timing.

The remainder of this paper is structured as follows: the
next Section provides a brief overview of the background
to this work. In Section III the proposed modeling concepts
are introduced. Subsequently, a use case demonstrating the
applicability of these concepts is described in Section IV.
Finally, concluding remarks and future research opportunities
are given in Section V.

II. BACKGROUND AND RELATED WORK

Here, we give an overview of system abstractions and
properties. After this, we briefly explain contract-based design.
Finally, we summarize the related work concerning contract-
based design, which is also the motivation setting for this
work.

A. System Abstractions and Properties

According to Jantsch [9], there are four main different
abstraction models or views concerning embedded system
engineering. First is the computational model, which describes
the observable behavior of a system or of its single parts



(hardware, software components), i.e. the relationship between
inputs and outputs [10]. Second, a data model exists that
provides notations for information (e.g. integer, boolean).
Third, a time model is needed to constitute the causality
of events. Fourth, a communication model is established to
specify how components interact. This model forms the top-
level system behavior.

In the context of the properties of systems the literature
distinguishes between functional and extra-functional (also
known as non-functional) properties. Functional properties
describe the function of a system or component, i.e. behav-
ior, input or output data types. Extra-functional properties
provide additional information and give a better insight into
the behavior and capability of a system or component [6].
A wide range of such properties exists, e.g. safety, security,
portability, performance. Since these issue from humans, there
is no method to determine a priori which extra-functional
properties exist in a system [6] [11].

B. Contract-based Design

Contract-based design usually sees a component as an
abstraction, a hierarchical entity that represents a single unit
of design [8] [12]. Therefore in the context of contract-based
design a component can represent, for instance a module, a
composition, a complex system or even a physical device.

The essence of this paradigm is to decompose a component
into different independent views referred to as contracts, which
capture the behavior of a target functional or extra-functional
property under certain conditions [12] [13]. This approach
significantly reduces the complexity of design and verification,
because the single properties become manageable.

Informally, a contract is a set of assumptions and guarantees.
An assumption asserts what a contract expects from the

component environment (this can include interactions with
other components). Additionally, an assumption provides a
certain context for the guarantees. The condition contained
in an assumption can reference for instance input data, events
or system properties. In general, the available variables are set
or inferred by the analysis environment.

A guarantee describes what a component provides to the
environment if the corresponding assumptions become valid.
In the simplest case a guarantee states that a component just
works under the constrained context. More complex contracts
define limits for instance for output data, environment charac-
teristics or extra-functional properties such as timing.

Historically, contract-based design is influenced by Meyer’s
design-by-contract principle [14] for object-oriented software
[7]. The main difference is that contract-based design goes
much further and provides means to integrate components in
the design hierarchy [10]. This is achieved through capturing
the context by assumptions (which may include platforms,
other components, etc.), under which a component behaves
as specified by the guarantees. Furthermore, a system can be
viewed by selecting only appropriate contracts of interest.

Fig.1 illustrates that contract-based design not only allows
the analyzing of components on a horizontal design level (e.g.
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Fig. 1. Contract assumptions and guarantees for a component (Adapted from
[15])

interaction between software modules, hardware devices, etc.).
It also enables analyzing to take place on a vertical level
between different kinds of abstraction [7].

A solid mathematical groundwork already exists for this as
provided by several authors, including Benveniste et al. [7],
and Sangiovanni-Vincentelli et al. [8].

Promising applications of contract-based design have been
shown for several domains. For instance, this paradigm has
been demonstrated for smart integrated energy management
systems [16], aircraft electric power systems [12], mixed-
signal integrated circuits [17], and automotive [18] [7]. Despite
these examples, contract-based design is still at its infancy
[19].

Little work has been done towards establishing a generic
standard metamodel for contract-based design. Warg et al. [20]
presents a prototype modeling tool for contracts, but their work
solely focuses on safety integrity levels.

C. Summary of Contract-Based Design

There exist a few approaches for realizing contract-based
design, for instance the contract-based model developed in the
framework of the SPEEDS project [13]. The problem is that
state-of-the-art approaches either tackle single extra-functional
properties, or take a relatively theoretical approach without
concrete modeling examples or tool implementations. A sur-
vey concerning the certification of safety-relevant systems,
carried out by the SafeCer consortium [21], shows that only
a few companies are actually using contracts for components.
And where this is the case they are relying on Meyer’s design-
by-contract principle on a programming language level.

III. PROPOSED MODELING LANGUAGE CONCEPTS

In this section, we explain concepts which are necessary
for a pragmatic modeling language that targets contract-based
design.

A. Target System Abstractions and Properties

With the following concepts, we aim at enriching the
computational, time, and communication models of a system.
Furthermore, the data model plays an important role, as it
provides data types and notations, which could be used by
contracts.



In the context of properties, our intention is to capture extra-
functional properties and not necessarily functional behavior.
We take the view that functional behavior is better described
by other well-established methods than by the use of many
different contracts.

The issue of what extra-functional properties we are aiming
at, is dependents on the specific use case or context under
which the following language features are used. These con-
cepts may be applied for a wide range of different extra-
functional properties (e.g. security, safety, timing, expected
hardware/platform, memory consumption, many-core environ-
ment, etc.). But certainly not for all of them, since no silver
bullet exists for dealing with every extra-functional property
[11].

B. Pragmatic Modeling Langugage Features

In the following, we present a modeling concept for con-
tracts. Additionally, we introduce the concept of a finite state
machine for contracts.

1) Contract: Fig.2 illustrates our proposed metamodel for
contracts. We separate a contract into two parts. A Contract
Declaration represents a type for Contract Definitions. It
states the available parameters, assumptions and guarantees.
Furthermore, it represents the target extra-functional property.
A Contract Definition captures the unique behavior concerning
the target extra-functional property of a component in relation-
ship to its environment.

Parameters can represent properties of the execution envi-
ronment, data ports or events. They can be used by Constraint
Definitions in order to set the specific assumption or guarantee.
Parameter Declarations are used to specify that a variable of
a specific data type may exist, but the concrete value has to be
defined by the realizing Contract Definition. This can be useful
for data arrays where the data points contained are individual
for each component.

In the context of assumptions and guarantees, it is possible
for a Constraint Declaration to set expected data types. The
associated Constraint Definition must provide an expression
where the resulting data type equals one of the expected types.

As we can see in Fig.2, we use the placeholders Variable
for parameters, DataType for data types, and Expression for
constraint expressions. These elements should be provided by
a suitable constraint language or referable by the language that
is used for the Constraint Definition expressions.

2) Finite State Machine for Contracts: Single contracts are
sometimes not adequate for representing extra-functional prop-
erties. As we explain with our presentation in the following
Section IV, cases exist where the behavior of a component -
including extra-functional properties - changes over time or
as a result of specific events. We thus expand the theory of
contract-based design and capture such differences concerning
contracts by applying the concept of a finite state machine.
The idea is to have a finite state machine, where the single
states may contain several currently valid contracts. The state
machine itself operates on parameters provided by the envi-
ronment or the internal states of a component.

Fig.3 illustrates our proposed metamodel for such a state
machine. We again use the concept of declaration and defini-
tion in order to separate the specification and actual instance
of a so-called contract state machine.

A Contract State Machine Declaration constitutes allowed
Contract Declarations, concrete parameters and declarations
of parameters which need to be defined by corresponding
Contract State Machine Definitions.

Parameters are supposed to be used by Contract State
Machine Events within constraint expressions, which trigger
transitions to other Contract State Machine States. Such a state
contains zero to infinite Contract Definitions.

Again, the metamodel elements Variable, DataType and
Expression, refer to an arbitrary constraint language.

The actual semantics of a contract state machine depends
on the target extra-functional properties and is determined by
convention. It may be that entering a state implies that only
those Contract Definitions it contains are valid. An alternative
convention would be, that all visited Contract Definitions are
valid except that a current Contract Definition overrides a
former visited one by using the same Contract Declaration.

IV. USE CASE

In this Section we show the application of our modeling
concepts as presented on an exemplary use case from the
automotive domain. First we give an overview of the target
component and system. After that, we apply contracts together
with a contract state machine. Finally, we discuss the use case
presented.

A. Example - Electronic Steering Column Lock

Fig.4 illustrates a simplified electronic steering column lock
(ESCL). Such locks are mandatory for cars in many countries.
The Electronic Control Unit (ECU) decides whether to lock
the steering column based on the input signals Key State and
Velocity. These signals may be transmitted by a CAN bus or
separate connections. If the ECU decides to lock the steering
column, an actuator is activated which inserts the bolt into the
steering column. Otherwise, the ECU decides to hold or eject
the bolt.

There are several extra-functional properties which are
worth considering in a system of this kind. In the following, we
apply the modeling concepts presented for the extra-functional
properties safety and timing. In the safety context we capture
the data on whether the component ESCL is performing
normally, is in a failure state, or recovering from a failure
state. A failure state can be induced for instance by faulty
transmitted data or other misbehaving components. Further to
this we capture the data on how long it takes to execute the
lock or unlock mechanism in two separate contract definitions.

B. Declarations

According to our metamodel concepts, the first step is to
specify general declarations for components. Such declara-
tions are known to contract checkers, interpreters or model
transformers in advance. Fig.5 illustrates declarations for a



Fig. 2. Proposed Metamodel for Contract Declarations and Definitions

Fig. 3. Proposed Metamodel for Contract State Machine Declarations and Definitions
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Fig. 4. Example Component - Electronic Steering Column Lock

component’s safety status and timing. Additionally, we specify
a contract state machine declaration that is used to capture the
behavior of a component in order to set valid contracts.

The contract declaration Component Safety Status assumes
whether the component of interest is enabled and guarantees

Contract Declaration "Component 
Safety Status"

Assumption Enabled  : Boolean

Guarantee State : SafetyStateEnum

Contract State Machine Declaration
"Component Contract Behavior"

Uses contract declaration "Component Safety 
Status“
Uses contract declaration "Component Timing“

Parameter declaration key_state : Boolean
Parameter declaration velocity : Float
Parameter component_restart : Boolean = false
...

Contract Declaration "Component 
Timing"

Parameter key_state : Boolean = false
Parameter velocity : Float = 0.0
...

Assumption Environment  : Boolean

Guarantee Execution Time : Time

Fig. 5. Use Case Declarations for the target extra-functional properties

a certain safety state to the environment. The available types
for this guarantee are restricted by the data type SafetySta-
teEnum, which contains the literals NORMAL, FAILURE, and
RECOVER (not shown in Figure 5).

The contract declaration Component Timing is used to



guarantee a specific execution time for certain assumed envi-
ronments. The parameters key state and velocity are provided
by the analysis environment. The boolean parameter key state
indicates whether the ignition system is activated (boolean
value true), while the parameter velocity states the current
speed of the car. A comprehensive contract declaration would
provide several other parameters, which may be obtained
for instance by a CAN bus or observed from the condition
of a system. The issue of which of these parameters are
actually used by the assumption Environment depends on the
component. When this assumption results in a boolean true,
the guarantee Execution Time becomes valid.

Furthermore, contract definitions of these declarations can
be used by the single states of the contract state machine
Component Contract Behavior. Here again the parameters con-
tained are obtained by the analysis environment or transmitted
by the available connections. For instance, the parameter
component restart must be set by the analysis environment
or by the described component. These parameters are used
by a contract state machine definition in order to specify the
events for state transitions.

C. Definitions

We now present how the declarations from above are used.

Contract  "ESCL Normal" :
"Component Safety Status"

Assumption Enabled = true

Guarantee State = NORMAL

Contract "ESCL Safe State" :
"Component Safety Status"

Assumption Enabled = true

Guarantee State = FAILURE

Contract "ESCL Recover"  :
"Component Safety Status"

Assumption Enabled = true

Guarantee State = RECOVER

Contract State Machine "Component ESCL Contract Behavior" : "Component Contract Behavior"
Parameter key_state = false
Parameter velocity = 0.0

Event: not key_state  && velocity > 0.0

Event: component_restart

Event: not key_state  && velocity > 0.0

Event: (key_state && velocity >= 0.0) || 
(not key_state && velocity == 0.0)

Normal

Contract "ESCL Normal"
Contract "ESCL Lock"
Contract "ESCL Unlock"

Failure

Contract "ESCL Safe State"

Repair

Contract "ESCL Recover"

Contract  "ESCL Lock" : "Component Timing"

Assumption Environment = not key_state && velocity == 0.0

Guarantee Execution Time = 100 ms

Contract "ESCL Unlock" : "Component 
Timing"

Assumption Environment = key_state

Guarantee Execution Time = 80 ms

Fig. 6. Contract State Machine and Contract Definitions of the ESCL Example

Fig.6 illustrates a contract state machine definition which
sets the valid contract definitions according to the current state.
The parameters are realizations of the parameter declarations
declared by the contract state machine declaration Component
Contract Behavior and are initialized to default values.

The initial state of this example is state Normal. Within this
state, we can guarantee the execution time in respect to the
locking and releasing mechanism. Furthermore, the contract
ESCL Normal determines the safety state NORMAL to the
environment. Whenever an abnormal event occurs such as
there is no key but the car is moving, the contract state machine
changes to the state Failure. In this state we cannot constitute
the execution time of the ECSL and the contract ESCL Safe
State becomes valid. After the component ESCL restarts, the
state machine changes to the state Repair, which is reflected
by the contract ESCL Recover. When the recover procedure
was successful, the state machine changes to the state Normal,
where the contained contracts become valid again, otherwise
the state machine switches back to state Failure.

D. Discussion of the Use Case

We have shown how our contract modeling features can be
used as presented on a simplified use case. It is imaginable
that this example can be further advanced to capture the target
and other extra-functional properties in more detail.

Note that we do not capture the actual functional behavior
of the component ESCL. We rather use the functional behavior
of the environment in order to determine how the target extra-
functional properties timing and safety status of the component
are changing and what guarantees are valid in that state. The
semantics of the contract state machine we present is such
that a new state invalidates the former visited contracts. The
assumptions and guarantees of the Contract Definitions must
be either automatically gathered by a measurement software
or issued by humans.

Such a contract state machine can be used for two purposes.
One purpose is that a system becomes analyzable in ad-

vance, also with respect to composability. A model checker
could simulate such a system and calculate the different
expected safety states. Another model checker would be able
to estimate the overall timing of a system.

The second purpose would be that a detection mechanism
observes and constitutes the single states during runtime of a
system and takes appropriate action based on predetermined
contracts.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented concepts for modeling contracts
and showed in a use case how these concepts can be applied.

The vision is to have a generic modeling language for
specifying contract types and contract instances. By using the
term generic we mean contracts that are suitable for at least a
substantial number of extra-functional properties.

We introduced the concept of splitting a contract into a
declaration and a definition. For analysis purposes a specific
contract declaration would be known by a model checker or
code generator beforehand. It declares the available parame-
ters, assumptions and guarantees, while a contract definition
uses such a declaration to define the actual behavior of a target
extra-functional property.



Furthermore, we introduced the concept of a contract state
machine which is basically a finite state machine where the
single states represent different contract definitions. This con-
cept is necessary, because a component may behave in differ-
ent ways depending on the input data, environment properties
or specific events. For instance, the timing of a component
may be different depending on its previous processed data. It
may also be different if the environment has changed. Such
changes may require different valid contracts.

Concerning our future work, we are currently working
on a configurable constraint modeling language, inspired by
OCL [22], which we want to use for setting assumptions and
guarantees. The idea is to have a constraint language where
language elements, such as an if expression or a boolean
operation, can be disabled and is afterwards not usable by
an assumption or guarantee. This is useful, in our opinion, to
simplify the construction of contract checkers or interpreters,
because not all concepts of an expression language need to be
considered and handled properly. It would also provide a user
with direct feedback concerning what language elements are
allowed for use.

Additionally, the presented modeling features for contracts
do not consider composition, refinement, and conjunction of
contracts as described theoretical by Benveniste et al. [7]. We
are still working on finding pragmatic and usable metamodel
solutions for these concepts.

After building this in a form suited to our use case meta-
model for contract-based design, we are planning to develop a
thin generic UML profile [23] for contracts and contract state
machines.

This profile will be aligned with the existing OMG specifi-
cations MARTE [24] and SysML [25]. As mentioned by Selić
and Gérard [26], a natural complementarity exists between
these two profiles. We are of the view that a UML profile for
contract-based design would benefit from concepts such as the
physical types of MARTE or the constraint blocks of SysML.
Not using such existing and standardized modeling concepts
would be like reinventing the wheel.

The advantages of such a UML profile for contracts could
be manifold. The most important one is, that it would allow
the rise of specialized analyzing tools of different vendors
which target single extra-functional properties. The input of
such tools would depend, in such an ideal ecosystem, on the
same UML profile for contract-based design.
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