
A Modular Reference Structure for
Component-based Architecture Description

Languages
Misha Strittmatter, Kiana Rostami, Robert Heinrich and Ralf Reussner

Chair for Software Design and Quality (SDQ)
Karlsruhe Institute of Technology

Karlsruhe, Germany
{strittmatter | rostami | heinrich | reussner}@kit.edu

Abstract—Metamodels are used to define languages, code gen-
eration and they serve as data structures for metamodel-centric
software systems. In software engineering, these metamodels are
crafted, evolved and extended, e.g., by further quality dimensions
or structural features. However, an ad-hoc modeling approach
does not properly support metamodel reuse by extension or
composition. Nor does it enforce a proper modularization which
helps with tackling complexity. We present an approach to
design and extend metamodels for component-based architecture
description languages in a modular way. The information which
is to be metamodeled is divided into paradigm, domain, quality
and analysis content. We constrain the usage of dependencies
and give instructions how to modularize in accordance to
concerns. Related approaches try to modularize and compose
transformations, generators, and tools in general. However, in
the field of metamodels, little support is given. Our approach
is applied to several concerns of the Palladio Component Model
and an extension thereof.

I. INTRODUCTION

In model-based software engineering (e.g., model-driven
software development or software performance engineering)
and in general in many fields of computer science, software
is described using models. These models capture different
aspects like the object-oriented design, more coarse-grained
architecture, deployment and so forth. Each discipline has its
own focus and may add more information to this founda-
tion. E.g., design decisions, implementation documentation,
requirements and quality related information like service level
agreements for performance or security.

A metamodel is a model which defines the structure of other
models. If a model conforms to a metamodel, the model is
considered an instance of the metamodel. Thus, metamodels
are similar to grammars, as they define languages. A prominent
example is the Unified Modeling Language (UML) meta-
model [12]. A sequence diagram (instance) is a model which
is an instance of the UML metamodel. Our approach primarily
targets MOF [13] (i.e., the meta-metamodel of UML) conform-
ing metamodels. However, we expect that it also directly appli-
cable to metamodels conforming to meta-metamodels which

This work was supported by the Helmholtz Association of German Research
Centers and the DFG (German Research Foundation) under the Priority
Programme SPP1593: Design For Future – Managed Software Evolution.

feature similar concepts to: classes, containment-, inheritance-
and association relations between classes.

There are multiple ways to found metamodel-based lan-
guages: 1) a new metamodel is developed. 2) an existing meta-
model (e.g., UML) is extended by annotations or stereotyping.
3) a variant or branch of an existing language is created. The
development of new metamodels is straightforward, if they do
not evolve and are isolated. However, this is seldom the case.
The major problem is that growing metamodels structurally
degrade over time. Extensions by annotation or stereotyping
are problematic as they may result in a flat, unstructured
organization of information. Branches and variants are prob-
lematic, because duplicated parts have to be maintained when
the original language evolves.

An example of this is the Palladio Component Model
(PCM) [1]. It is a metamodel-based language which was
initially developed for the specification of component-based
software architectures and their resource demands to be able
to predict their performance. With time, the research focus
broadened and more structural features and quality dimensions
were incorporated. Some of this information was directly
built into the language [2]. Other aspects were specified as
extensions or wound up in branches (e.g., the integration
of business processes modeling and analysis [3] as well as
modeling and analysis of maintainability [4]). This impedes
the structure and reuse potential of inner parts of the PCM.

There are approaches, which put forward modular, com-
posable or extensible concepts which are more or less related
to metamodels. These concepts include components [5], [6],
classes of object-oriented design [7], domain specific and
general purpose languages [8], transformations [9], genera-
tors [10] and simulators [11]. However, for metamodels, little
support is given.

Our approach aims to tackle these problems with a ref-
erence structure for metamodels for architecture description
languages. The reference structure proposes a modularization
of information into layers for paradigm, domain, quality and
analysis information. The layers can further be divided: e.g.,
for separate quality dimensions or different domains. This
leads to a modular, flexible and extensible structure, which

satisfies separation of concerns and thus is better understand-
able and maintainable. It also increases the potential for reuse
as a basis for new extensions. In addition, modularity leads
to localization of change impact in the case of metamodel
evolution. This does not only apply to the metamodel but to
everything which is dependent on the metamodel (e.g., editors,
analyzers, generators). The applicability of our reference
structure is demonstrated on an selection of basic concerns
and extensions of the PCM.

Our approach aims at the structuring of metamodels for the
description of component-based software architecture and their
qualities. However, we expect that it can also be applied to an
even broader spectrum of metamodels, where the proposed
decomposition is meaningful. These may be architecture de-
scription languages (ADLs) or even description languages of
software-intensive systems in general.

This paper is outlined as follows: Section II describes the
example scenario. Section III presents the reference structure
and its concepts. Section IV applies the reference structure
onto the example scenario. Section V presents related work.
Section VI concludes the paper.

II. PROBLEM SCENARIO

The scenario for our motivating example is the PCM. The
PCM (i.e., a metamodel) is used for several analyses and
simulations (see Figure 1). At the core of the PCM is a well
formed construct to specify components, interfaces, and their
composition. In the past, this part of the metamodel has served
as a basis for new metamodel content which was emerging
from new research. Initially this content was added directly
to the PCM [14]. Examples of such intrusive extensions are
reliability [15], event communication [16] and infrastructure
components [17]. Later, as their number and diversity grew,
extensions were no longer included directly in the PCM. They
either came in the form of branches of the metamodel or
metamodels which referenced into the PCM. Examples of such
extensions are KAMP (Karlsruhe Architectural Maintainability
Prediction) [4] and support for modeling business processes
that interface with system services [3].

Composition
Java Code

Skeletons

Instance

Palladio

Component

Model

Components,

Interfaces

Performance

Characteristics

Maintain-

ability

Pa
rt
 o

f

Part of

Part of

Part
 of

Performance

Prototype

Simulation

Code

Transformation

Transformation

Transfo
rm

atio
n

Execution +

Measurement

Simulation

Maintainability Analysis

Completion

∙ ∙ ∙
Part of

€
Effort

#include <nothing>

unsigned main()

{

 dummy code;

 code dummy = writes

 some dummy code;

 writing dummy(code is)

 boring;

 immitate an if?

 if(immitate) {

 do immitate;

 }

 return 42;

}

Performance

Performance

∙ ∙ ∙ ∙ ∙ ∙

Fig. 1. Excerpt of Concerns and Capabilities of the PCM

Branches as well as intrusive extensions are problematic
and have negative implication on users, developers, and re-
searchers. Developers and researchers should have a clean base
upon which they can build their extensions. If the metamodel is
not modularized, it often contains content, which is irrelevant

to the extension being made. This unnecessary complexity
leads to a decline in understandability and may even lead to
metamodeling mistakes. Further, both extension approaches
are adverse to the maintainability of the metamodel. Intrusive
extensions increase the complexity and external extensions
often lack extension points in the base metamodel. Extension
over time, regardless of intrusive or non-intrusive, increases
either complexity or the amount of software artifacts that are
dependent on the core metamodel. Thus, if the base metamodel
is in need of restructuring but the restructuring is postponed,
the cost of the refactoring will increase. This is especially
critical in metamodel centric applications and can be called
metamodel debt (cf. technical debt).

Negative effects of unstructured extensions on users are
twofold. Users have specific needs with regards to the features
of the program. They may be confused or overwhelmed
when confronted with too much content irrelevant to them.
Further, to support the additional metamodel content, the code
of all extensions has to be shipped. For these issues, there
are technical workarounds to minimize their negative impact.
Shipped code of extensions may be reduced to a minimum
by only including the model code. Tools and editors may be
configurable to hide content which is not wanted by the user.
However, this is only a workaround, as each extension needs
to intrusively modify the tool in question.

For the means of the running example, the relevant concepts
of the PCM will be explained in a condensed way (illustrated
in Figure 2). For a complete and detailed description of the
PCM, please consult the technical report [18]. At the core of
the PCM are components and interfaces (I). Both are first class
entities and a components may implement or require interfaces
(II). Components can be placed within an architecture by creat-
ing an assembly context (III). The interfaces of these assembly
contexts can be linked by connectors (IV). A component may
be either atomic or composite (V). Composite components
contain further assembly contexts and connectors. For the
modeling of performance and reliability, atomic components
contain abstractions of control flow (VI) (similar to activity
diagrams or flow charts). These control flow specifications
carry resource demands and failure probabilities in some of
their states. To conduct performance simulation [19] of such a
model, there is further information needed like the maximum
simulation time or the maximum measure count.

Another part of the running example is KAMP [4]. It is
an extension for the PCM that deals with maintainability.
It is a tool-supported approach to semi-automatically predict
change propagation in a software system. In contrast to
other approaches, KAMP considers not only the architecture
of a software system, but also organizational aspects (e.g.,
management or various roles such as tester or deployer) as
well as technical artifacts (e.g., testing, build configurations,
or deployment). KAMP comprises two phases: 1) Preparation
Phase: After the user models a software architecture using
the PCM (e.g., Figure 2), she or he enriches the model with
context annotations such as test cases and build configuration.
2) Change Request Analysis Phase: After the user has modeled

Assembly

Context

Assembly

Context

Resource

Demand

(I) Interface2

Basic

Component2

Interface1

Composite

Component

Basic

Component1

∙ ∙ ∙

«provides»

«requires»

«instance»«instance»

(I)

(III)

(III)

(IV)

(V)
(V)

(VI)

Fig. 2. Simplified Concepts of the PCM

the change in the enriched architecture model, KAMP semi-
automatically calculates the change propagation and derives
a task list, which is composed of tasks needed to implement
the change request. This step calculates all affected artifacts
annotated in the model, too.

The overall scenario of the running example is illustrated
in Figure 3 and contains several main concerns: the PCM is
a language to specify component-based software architecture
as the common basis; performance characteristics, which are
included in the PCM and partly in external sources (con-
figurations of analysis launches); maintainability information,
which is contained within an external extension. The PCM is
internally structured. The primary decomposition runs along
its view types (submodels). However, here it is displayed as
one module with the exception of the performance results,
which are stored in a modular way. This stems from the fact
that due to dependency cycles within the PCM [2], it is only
possible to use it as a whole. Thus, all the problems from above
follow for developers and users: unnecessary complexity and
its implications.

PCM

Modifi-

cations

Artifacts

and Staff

Static

Dependencies

KAMP Maintainability

Prediction

Component Architecture,

Behavior, Performance,

Reliability, Infrastructure,

Events, Resources,

Deployment, Usage, ...

Performance

Results

Fig. 3. Status Quo of the Scenario: Metamodel Modules

These problems are tackled by our approach. By mod-
ularizing the meta content and structuring it according to
our reference structure, the concerns are separated and the
extensions have a clean base. In the following sections we will
present the layers of the reference structure, then build an ideal
and modular version of the scenario meta model according to
the reference structure.

III. REFERENCE STRUCTURE OVERVIEW

Within our reference structure, the metamodel is subdivided
into smaller parts which we call metamodel modules or just
modules. On the technical level, these modules may manifest
in their own metamodels, each of which is persisted in its own

file, or they may just manifest within the package structure or
comparable subdivisions within one metamodel. The contents
(e.g., classes) of one module may depend on the contents of
another module. This is either in the form of simple reference,
containment, inheritance, or stereotype application. If at least
one dependency from one module to another exists, we will
regard that as the one module being dependent on the other.

Our reference structure organizes modules into layers as the
topmost unit of decomposition. A layer is a set of modules.
The layers are ordered with regard to the dependencies of
their modules. The modules of a layer may only depend on
the modules of the same or more basic layers. More basic
here means, that they depend on fewer other layers. Within the
scope of this paper, basic layers will be illustrated at the top. If
a module of a layer depends on a module of another layer, we
will regard that as the one layer being dependent on the other
one. Layers may depend on all higher layers. However, it is
advisable to confine the dependencies on the next higher level
where possible. Circular dependencies between modules (as
well as between layers) are not allowed. A circular dependency
is either a result of a dependency which should be reversed,
or of a strong cohesion between the modules. These modules,
thus, should be considered for merging or restructuring.

A module encapsulates a set of concerns. When modulariz-
ing, two main rules should be applied. It should be meaningful
to use the basic module (or modules) with and without the
concerns which have been factored out. If this is not the
case, the modularization is still meaningful if the basic module
serves as a common foundation for multiple further modules.

The information which is formalized in metamodels can be
grouped into categories depending on the type of information.
Multiple decomposition dimensions exist and it not always
clear which decompositions to apply and in which order.
Intuitive design might modularize information in ways of
infrastructure (abstract class hierarchies) vs. concrete content,
views types or sub models, or semantic cohesion. With our
reference structure, we propose as the primary decomposition a
layering into: paradigm, domain, quality and analysis content.
Paradigm (π) is the most basic layer. It lays the the foundation
of the language by providing structure but without semantics.
The domain (∆) layer builds upon the paradigm and assigns
semantics to its abstract structure. The quality (Ω) layer adds
quality properties to the domain concepts. Lastly, the analysis
(Σ) layer provides modules for input-, output- and internal
state and configuration options for analyses. We settled for
these layers, because they provided an intuitive primary de-
composition in our research when inspecting metamodels for
component-based architecture description languages and their
intrusive and external extensions. The concern constellations
of these layers (whereas not as explicit as proposed by our
reference structure) can be found in metamodels like UML
MARTE, the Descartes Metamodel and the PCM.

IV. APPLYING THE REFERENCE STRUCTURE

In the following subsections, we will explain the layers
of the reference structure and gradually construct a modular

metamodel of our example (PCM extended by maintainability)
according to these layers. Please keep in mind, that this
is a simplification and a reconstruction of the PCM. Thus,
modeling of concepts and dependency directions partly do not
adhere to the current PCM.

A. Paradigm

The most basic layer is the paradigm layer (π). It defines
foundational structure but without semantics. Thus, it is not
directly usable. Not even for purposes which do not need
dynamic semantics (e.g., documentation and communication).
The minimal configuration of the metamodel which is mean-
ingfully instantiable is π and the domain layer put together.
First class entities in π should be abstract and no top level
container (root) should be provided to avoid instantiation.
Modules which cannot be instantiated directly, will be consid-
ered abstract modules. In our case π constitutes components,
interfaces and their composition. However, any π is possible.
It is dependent on the subject matter which is to be captured.
E.g., object oriented design and behavioral formalisms.

In our example, π encompasses the modules CoreEntities
and Composition. This is illustrated in Figure 4. Please keep
in mind that for the sake of presentation this is an extremely
simplified depiction. Wherein Composition is dependent on
CoreEntities. CoreEntities contains the abstract metaclasses
Component and Interface. Like in the standard UML notation,
abstract classes and abstract modules are indicated by a name
in italic letters. A Component may reference various Interfaces
in two ways: provide and require. The Composition module
defines ComposedStructures which contain AssemblyContexts
and Connectors. Connectors link Interfaces of two Assem-
blyContexts. An AssemblyContext represents an instance of a
Component.

Com-
ponent

Inter-
face * Composed

Structure

Composition
CoreEntities

Assembly
Context

Connector

*

*

21π

*

Fig. 4. The π (Paradigm) Layer

The ComposedStructure extends Component. In the illus-
tration, the UML notation for stereotype application (a filled
arrow) is used. However, the implementation of this relation
does not necessarily have to be stereotyping. A wide range
of different extension mechanisms is available with all their
pros and cons. Further ones are annotation, plain inheritance,
and the application of patterns like the decorator pattern or
aspect-oriented extension [20].

The π layer builds the foundation of the remainder of the
metamodel. It is important, that is has no outgoing dependen-
cies into other layers. This way, it can be reused on its own.

B. Domain

The domain layer (∆) extends π and assigns domain
semantics to its abstract first class entities. By doing so, new

information (i.e, attributes and relations) can be added to
the derived classes. New domain concepts may be created
as well. However, if these new domain concepts have an
overlap with classes of other modules in ∆, or even of π it
should be considered to factor that content out into a higher,
more general module or even a higher layer (i.e., in this
case π). In the scope of this paper, ∆ will capture software
systems. In general, any ∆ layer is possible. E.g., embedded
and mechatronic systems or cyber-physical systems. The ∆,
however, has to fit the underlying π layer.

The ∆ layer excerpt of the example scenario is illustrated
in Figure 5. It features the ComponentRepository module,
where the modeler can specify the Components and Interfaces
of an architecture. Please keep in mind that the relation
between Components and Interfaces is already defined in the
π layer. The ComponentRepository module assigns domain
semantics to the abstract CoreEntities module of the π layer
providing concrete subclasses for its abstract classes. This
separates the concerns of the structure of the paradigm (here
component architecture) from its domain semantics, enabling
the reuse of the paradigm structure. The Behavior module
extends SoftwareComponents by a behavior abstraction, which
is similar to a flowchart. The Behavior module is performance
agnostic and is later used as a foundation for performance
and reliability modeling. The Modification module is essential
to the maintainability analysis. It defines Modifications of the
architecture. Each concrete Modification references an element
of the architecture. It further defines Propagations, which
express how Modifications spread through an architecture.

∙ ∙ ∙

π

Δ

Com-
ponent

Behavior

Abstract
Action

Behavior

Internal
Action

External
Call

*

Start
Action

∙ ∙ ∙

Modification

Modification

Mod
Interface

ModComp

Mod
Connector

∙ ∙ ∙

Repository

Software
Component

Component
Repository

Business
Component

Infrastructure
Component

*

∙ ∙ ∙

Operation
Interface

Inter-
face

IntraComp
Propagation

Propagation

∙ ∙ ∙

0...1

Fig. 5. Excerpt of the ∆ (Domain) Layer

C. Quality

The quality layer (Ω) defines the inherent quality properties
of ∆ concepts. It contains primarily second class entities,
which enrich first class entities of ∆. In the scope of this
paper, the Ω layer constitutes performance and reliability
characteristics. Possible other Ω modules which fit the π and
∆ are: security and availability. Not in every circumstance a
Ω layer is needed. E.g., when the metamodel is only needed

for specification of software design or for static analysis. This
is the case for the KAMP maintainability analysis, which does
not require information in the Ω layer.

The quality properties have to be inherent and not de-
rived. Inherent with respect to the analyses which can be
performed on the model. E.g., when considering the PCM
and performance, the response time of an operation depends
on many things, like resource demands within the operation,
response time of external calls and so on. Thus, the response
time of an operation in this consideration is not an intrinsic
value, but a derived one. Therefore, the response time of
operations should be moved to a lower layer. There may be
quality concepts which are needed to model derived properties.
These should be specified in the Ω layer. However, their
instances should be contained in the Σ layer. On the other
side, the resource demand (not in terms of time but in load) is
independent. It may be derived from an estimate or a real
word software artifact, but with regards to the analyses it
cannot be derived. Therefore, it belongs in Ω and should be
contained and specified there. If a model is used for solving,
analysis or simulation, the model content from Ω should
remain static during execution. If that is not the case, the
information belongs to the analysis layer, as it is derived or
state information.

Figure 6 shows an excerpt of the exemplary Ω layer. It
contains the modules for Performance and Reliability. They
extend InternalAction, and therefore the internal behavior of
a Component, by ResourceDemand and FailureOccurence. A
FailureOccurence has a probability, as well as a type. Here,
an important advantage of the modularization shows. The
behavior metamodule is free of performance and reliability
data. As required, it can be extended by one of the two, or
even both. Tools and developers are not bothered by irrelevant
content. Potential future extensions can be created without the
need for prearrangement.

Δ

Ω

Internal
Action

Resource
Demand

Performance

Failure
Type

Reliability

FailureTypes

Hardware
Failure

Software
Failure ∙ ∙ ∙

Failure
Occurence

Failure
Probability

Fig. 6. Excerpt of the Ω (Quality) Layer

D. Analysis

The analysis layer (Σ) is only relevant, if models are used
as a basis for analysis, solving or simulation (hereafter only
referred to as analysis). Σ provides new views to specify
input state, configuration, run-time state and output of an
analysis. These are all possible views, but only a subset may
be required by an analysis. It is possible for multiple analyses
to be founded on the upper layers. Several analyses may share
modules, but also posses their own ones. In the focus of
this paper, the Σ layer is concerned with the performance
simulation and the change impact analysis KAMP.

In Figure 7 an excerpt of the Σ layer is shown. As a really
simplified version of the performance result, here, a set of
OperationResponseTimes is modeled. An OperationRespon-
seTime has a unit, which is specified in the Ω layer (the
corresponding module was not shown in Figure 6). It further
references the AssemblyContext and the Interface where the
response time was recorded.

Σ

Δ Ω
Evolution
Scenario

KAMP Input KAMP Result

Impact
Propagation

Modification

Propa-
gation

Development
Artifact

Staff
Specification

PerformanceResults

Performance
Results

Operation
ResponseTime

*

Unit

Operation
Interface

Assembly
Context

Fig. 7. Excerpt of the Σ (Analysis) Layer

The in- and output for the KAMP maintainability prediction
is on the left side of Figure 7. In this circumstance, the
quality layer is not needed. Both modules merely hold a
root container and reference directly into the ∆ layer. The
EvolutionScenario of KAMP Input contains everything the
analysis requires: seed Modifications, StaffSpecifications and
DevelopmentArtifacts that belong to the architecture’s ele-
ments. The ImpactPropagation contains the predicted extend
of the architecture change in the form of Propagations. The
ImpactPropagation further references the input of the scenario
to enable inference of affected artifacts and staff.

E. Overall Module Structure

For an overview of all the modules of the scenario and
their dependencies, see Figure 8. The modules which convey
specific concerns are indicated by different levels of gray
(maintainability is dark, performance is medium, reliability
is light). The remaining modules cover more fundamental
concerns: component-based architecture and behavior. They
are the intersecting set of the metamodel elements of these
analyzes. The illustration may seem much more complex,
than the initial illustration in Figure 3. This is because in
the initial figure, all the concerns of performance, reliability,
behavior, and component architecture are contained in the big
PCM module. The original structure cannot be subdivided into
modules. At least not into modules according to the definition
in this paper, as the subpackages of the PCM have cyclic
dependencies (see [2]).

This modular structure brings many benefits. External ex-
tensions now have a clean base to build on. E.g., a security
extension can now be developed without having to deal with
performance and reliability. In the modular structure, extension
developers have to only understand the modules they extend
and to some degree modules from which they are indirectly
dependent. This increases the potential of reuse of the more
basic (higher) modules. When evolving the metamodel, change
impact can be traced down the graph, following the depen-

Σ

Core

Entitiesπ
Δ

Ω

Compo-

sition

Software

Components

Static

Dependencies

Development

Artifacts
Behavior

Staff

Specification

Perfor-

mance

Performance

Results

Performance

Configuration

KAMP

Input

KAMP

Result

Modifi-

cations

Relia-

bility

Failure

Types

Performance

Metrics

Fig. 8. The Scenario Metamodel Restructured In Concordance to the
Reference Structure

dency relations. This way changes can be assessed much faster
and more accurately.

V. RELATED WORK

There are approaches, which deal with the modularization,
categorization or structuring of related concepts. Coad’s UML
archetypes [7] for object-oriented design are used to classify
classes into things, temporal concepts, roles and descriptions.
Atkinson et al. propose a view-based approach for software en-
gineering. The underlying model captures every concern into
orthogonal dimensions, which are assessed through views [5].
Further, with deep modeling [21] they propose to enable in-
stance relations within models. These deep models are layered
with regards to instance levels. JetBrains MPS [8] features
capabilities for the extension of DSLs. Siedersleben [6] pro-
posed a reference structure for software architectures, where
components are categorized into so-called blood types (tech-
nical, domain and library). Yet these approaches cannot be
transferred to work on metamodels or they do do not offer
support for metamodel extension and reuse.

There is also related work, which aims at modularizing
concepts which are in direct interplay with metamodels.
Jung [10] proposes a composition approach for generators.
Rentschler [9] developed an approach for modular transforma-
tions. Föhrdes [11] presents a modularization into components
of a performance simulator which operates on the PCM
(metamodel). These approaches are especially interesting, as
they deal with artifacts which are used in conjunction with
metamodels. However, theses approaches cannot be directly
transferred onto metamodels.

VI. CONCLUSION

In this paper, we proposed a reference structure for modu-
lar metamodels for component-based architecture description
languages. It proposes a layering of the information into
paradigm (π), domain (∆), quality (Ω) and analysis (Σ)
content. The reference structure is applied to the PCM [1] and
the KAMP [4] maintainability extension. However, a remake
of the PCM is not the contribution of this paper. These models

were chosen to demonstrate the applicability of the reference
structure. Our approach aims to be applicable to component-
based architecture description languages which also express
quality properties.

Our reference structure propose modularization into layers
and further into modules as well as making the dependencies
explicit. Dependencies are constrained to avoid dependency
cycles and improve modularization. Guidance for the modu-
larization with regards to concerns is given. The reward is
a more modular metamodel which allows for better compo-
sitionality of extensions. The improved modularity leads to a
reduced complexity and all its benefits: better understandabil-
ity, maintainability and reusability.

Future work include an in-detail examination of the possible
extension mechanisms which can be used for the extension
relation. Also, we plan to develop decision support for the
grouping of classes and modules into the layers. Further, an
extensive metamodel will be remade according to the reference
structure and its correctness and completeness proven (e.g.,
by finding an isomorphism). An interesting question worth
investigating is if different types of extension with regards to
the interplay of abstract and concrete module have implication
onto potential roots elements of view types.

REFERENCES

[1] S. Becker et al. “The palladio component model for model-driven
performance prediction,” JSS, Elsevier, 82(1):3–22, 2009.

[2] M. Strittmatter et al. “Identifying semantically cohesive modules within
the palladio meta-model,” SSP, 160–176, 2014.

[3] R. Heinrich et al. “Integrating business process simulation and
information system simulation for performance prediction,” DOI
10.1007/s10270-015-0457-1, SoSyM, Springer, 1–21, 2015.

[4] K. Rostami et al. “Architecture-based assessment and planning of change
requests,” QoSA, ACM, 21–30, 2015.

[5] C. Atkinson et al. “Orthographic software modeling: a practical approach
to view-based development,” ENASE, Springer, 69:206–219, 2010.

[6] J. Siedersleben Moderne Software-Architektur: Umsichtig planen, robust
bauen mit Quasar, dpunkt, 2004.

[7] P. Coad Java modeling in color with UML, Prentice Hall, 1999.
[8] M. Voelter et al. “Language modularity with the mps language work-

bench,” ICSE, IEEE, 1449–1450, 2012.
[9] A. Rentschler “Model Transformation Languages with Modular Infor-

mation Hiding,” Ph.D. thesis, Karlsruhe Institute of Technology, 2015.
[10] R. Jung “Geco: Generator composition for aspect-oriented generators,”

Doctoral Symposium - MODELS, 2014.
[11] C. Föhrdes “Simulation components for software quality simulation in

eclipse,” Master’s thesis, Karlsruhe Institute of Technology, 2014.
[12] OMG “UML Infrastructure Specification 2.4.1,” 2011.
[13] OMG “MOF Core Specification 2.4.2,” 2014.
[14] M. Strittmatter et al. “Towards a modular palladio component model,”

SSP, CEUR, 49–58, 2013.
[15] F. Brosch “Integrated software architecture-based reliability prediction

for it systems,” Ph.D. thesis, Karlsruhe Institute of Technology, 2012.
[16] C. Rathfelder “Modelling Event-Based Interactions in Component-

Based Architectures for Quantitative System Evaluation,” Ph.D. thesis,
Karlsruhe Institute of Technology, 2013.

[17] M. Hauck “Extending Performance-Oriented Resource Modelling in
the PCM,” Diploma thesis, University of Karlsruhe, 2009.

[18] R. Reussner et al. “The Palladio Component Model,” Tech. Rep.,
Karlsruhe Institute of Technology, 2011.

[19] M. Becker et al. “Performance analysis of self-adaptive systems for
requirements validation at design-time,” QoSA, ACM, 2013.

[20] R. Jung et al. “A method for aspect-oriented meta-model evolution,”
VAO, ACM, 19–22, 2014.

[21] C. Atkinson et al. “Melanie: Multi-level modeling and ontology
engineering environment,” MW, ACM, 7:1–7:2, 2012.

	Introduction
	Problem Scenario
	Reference Structure Overview
	Applying the Reference Structure
	Paradigm
	Domain
	Quality
	Analysis
	Overall Module Structure

	Related Work
	Conclusion
	References

