
Comparison of Thread Execution Methods for
GPU-oriented OpenCL Programs on Multicore Processors

Naohisa Hojo Ittetsu Taniguchi Hiroyuki Tomiyama

Graduate School of Science and Engineering, Ritsumeikan University
1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan

ABSTRACT

With the broad deployment of multicore processors, there are

increasing demands to port OpenCL programs written for GPUs

onto the multicore processors. However, OpenCL programs writ-

ten for GPUs cannot run efficiently on multicore processors since

GPU-oriented OpenCL programs generally consist of a huge

number of threads. This paper presents experimental comparisons

of three thread execution methods for GPU-oriented OpenCL

programs on multicore processors using a set of industry-oriented

OpenCL benchmark programs.

1. INTRODUCTION
OpenCL is one of the most popular frameworks for parallel

programming due to its open standardization and hardware plat-

form independence. Traditionally, OpenCL was primarily used for

GPUs, and there exist huge amounts of software IPs written in

OpenCL for GPUs. Recently, with the broad deployment of mul-

ticore processors in general-purpose and embedded computing

systems, there are increasing demands to port the GPU-oriented

OpenCL software IPs onto multicore processors. Although

OpenCL programs are portable from a hardware platform to an-

other, their performance is hardly portable [1]. Specifically,

OpenCL programs written for GPUs cannot be executed efficient-

ly on multicore processors. One of the reasons is the granularity of

parallelism. GPU-oriented OpenCL programs generally consist of

a huge number of tiny threads. GPUs can handle a huge number

of threads efficiently because GPUs have a large number of cores

and hardware supports for fast context switching. On the other

hand, multicore processors have a fewer number of cores than

GPUs and context switching on multicore processors totally relies

on software.

There exist several research efforts on OpenCL program op-

timization for multicore processors. In [1], the authors studied

how to port GPU-oriented OpenCL programs for multicore pro-

cessors. One of their conclusions is that programmers have to

systematically find the optimal parallelism granularity (thread

size), and the authors left the problem as one of future research

topics. In [2], the authors presented a runtime library for efficient

execution of OpenCL threads on multicore processors without

changing the size and number of the threads.

This paper presents a refined method for OpenCL thread exe-

cution on multicore processors. The method merges multiple

OpenCL threads into one in such a way that the new thread pro-

cesses multiple data items (i.e., work-items). In fact, this idea

itself is not new, and we employ the idea in the context of

OpenCL. The key contribution of this paper is quantitative com-

parison of three thread execution methods using industry-oriented

OpenCL benchmark programs.

2. DATA-PARALLEL EXECUTION IN OPENCL
OpenCL is based on a server-client model, and a server is

called a host while a client is a device. A device is composed of

one or more compute units (CU), and a CU in turn is of one or

more processing elements (PEs). A program executed on a device

is called a kernel. Data is partitioned into pieces called work-items,

and a kernel is executed on multiple PEs with different work-

items. Individual instances of the kernel are called threads. When

the number of the work-items is N, the kernel consists of N

threads. The number of work-items (threads) can be larger than

the number of physical PEs. In this case, multiple threads are exe-

cuted on a PE by context switching.

3. THREAD EXECUTION METHODS
This section presents three methods for execution of OpenCL

data-parallel threads, where N denotes the number of work-items.

3.1 All-at-a-Time Execution
A simple method for thread execution is that we create N

threads and execute all of them at a time. We call this method all-

at-a-time execution, and the method is illustrated in Figure 1 (a).

Examples of OpenCL frameworks using the all-at-a-time execu-

tion method include the RuCL framework [3]. The all-at-a-time

method is simple to implement, and is efficient in case the number

of work-items is very small. However, if N is huge, the all-at-a-

time method is not executable because the maximum number of

threads that operating systems can handle is limited.

3.2 Little-by-Little Execution
The second method, which is illustrated in Figure 1 (b), is

named little-by-little execution [2]. In the little-by-little execution

method, we repeat thread creation and execution L times, where L

is a smaller integer number than N. When a thread finishes its

execution, the thread is destroyed, and then a new thread is creat-

ed and executed. This creation-execution-and-destruction process

is repeated until all of the N threads are completed. In this way,

the little-by-little execution method tries to keep L threads being

active.

3.3 In-the-Loop Execution
In order to reduce the overheads of thread creation and de-

struction, we refine the little-by-little method to derive the in-the-

loop execution as shown in Figure 1 (c). We distinguish OpenCL-

threads from OS-threads. An OpenCL thread is a unit of code

which processes a single work-item, while an OS thread is a unit

of scheduling by the operating system. For example, OS threads

correspond to POSIX threads (pthreads) on a Linux operating

system. At the beginning of program execution, we statically cre-

ate L OS-threads. In each OS-thread, there is a loop. In each itera-

tion of the loop, an OpenCL thread is executed and a single work-

item is processed. In other words, multiple OpenCL threads are

merged into an OS-thread. Similar to the little-by-little execution

method, L threads are active in the in-the-loop execution method.
EWiLi’15, October 8th, 2015, Amsterdam, The Netherlands.

Copyright retained by the authors.

However, unlike the little-by-little method which creates N OS-

threads in total, the in-the-loop method creates only L OS-threads.

4. EXPERIMENTAL COMPARISONS
In this section, we compare the three thread execution meth-

ods. The all-at-a-time and little-by-little methods were already

implemented in the RuCL framework [2][3], and we used the

implementations in this work. We have newly implemented the

in-the-loop execution method in the RuCL framework as well. We

have selected three benchmark programs from BEMAP [4]. The

BEMAP is a suite of OpenCL programs developed in industry.

The programs used in our experiments are Montecarlo (128 work-

items), Blacksholes (10,485,760 work-items), and Linearsearch

(67,108,864 work-items). We used dual Xeon processors (12

physical cores, 24 logical cores in total) in our experiments.

Figure 2 shows the execution times of the Montecarlo pro-

gram with the three thread execution methods. For the little-by-

little and in-the-loop methods, we varied the value of parameter L.

When L is smaller than the number of cores of the target processor,

the all-at-a-time method shows the best performance. This is a

very reasonable because the little-by-little and in-the-loop meth-

ods with smaller L cannot fully exploit the potential parallelism of

the processor. When L exceeds the number of cores, we see little

difference between the three methods. This is also reasonable

because 128 threads are small enough for the operating system

and the overheads for thread manipulation are trivial.

Figures 3 and 4 show the execution times of Blacksholes and

Linearsearch, respectively. Both programs have more than 10

million work-items. For the two programs, the all-at-a-time meth-

od caused an error since the operating systems cannot handle such

a huge number of threads. For both programs, the in-the-loop

execution method with L=32 or 64 yields the best performance.

The little-by-little method is not efficient due to the overheads of

thread creation and destruction. Actually, the execution time of

the little-by-little method is up to 2,300 times longer than that of

the in-the-loop method. Because of the huge gap, it is not possible

to show the results of the two methods in Figures 3 and 4. There-

fore, the execution times of the little-by-little method are written

on top of the graphs.

5. CONCLUSIONS
This paper presented an experimental study on thread execu-

tion for GPU-oriented OpenCL programs. Using a set of industry-

oriented OpenCL benchmark programs, we compared three thread

execution methods, i.e., all-at-a-time execution, little-by-little

execution and in-the-loop execution. Among the three methods,

our experimental results show the effectiveness of the in-the-loop

execution method. With the in-the-loop method, the best perfor-

mance is achieved when the number of threads is slightly larger

than the number of cores.

ACKNOWLEDGEMENT
This work is in part supported by JSPS KAKENHI 15H02680.

REFERENCES

[1] J. Shen, J. Fang, H. J. Sips, and A. L. Varbanescu, “An Application-
centric Evaluation of OpenCL on Multi-core CPUs,” Parallel Com-
puting, vol. 39, pp. 834-850, 2013.

[2] N. Hojo, I. Taniguchi, and H. Tomiyama, “Efficient Execution of
OpenCL-based GPU Programs on Multicore Processors,” ITC-CSCC,
2015.

[3] S. Takai, N. Nishiyama, I. Taniguchi, and H. Tomiyama, “A Light-
weight OpenCL Framework for Embedded Multicore Processors,”
ITC-CSCC, 2015.

[4] Y. Ardila, N. Kawai, T. Nakamura, and Y. Tamura, “Support Tools
for Porting Legacy Applications to Multicore,” ASP-DAC, 2013.

(a) All-at-a-time execution

(b) Little-by-little execution

(c) In-the-loop execution

Figure 1. Thread execution methods

Work-item 0

Work-item 1

Work-item 2

Work-item N-1
Time

Work-item 0

Work-item 1

Work-item L-1

Time

Work-item L

Work-item L+1

Work-item 2L-1

Work-item N-L

Work-item N-L+1

Work-item N-1

Time

Work-item 0 Work-item L Work-item N-L

Work-item 1 Work-item L+1 Work-item N-L+1

Work-item L-1 Work-item 2L-1 Work-item N-1

Figure 2. Results for Montecarlo

Figure 3. Results for Blacksholes

Figure 4. Results for Linearsearch

0

10

20

30

40

50

1 2 4 8 16 32 64 128

Ex
ec

u
ti

o
n

 t
im

e
(s

)

Active threads (L)

All-at-a-Time

Little-by-Little

In-the-Loop

0
1
2
3
4
5
6
7
8
9

10

1 2 4 8 16 32 64 128 256 512 1024

Ex
ec

u
ti

o
n

 t
im

e
(s

)

Active threads (L)

Little-by-Little

In-the-Loop

427 307 269 350 678 643 522 458 434 430 449

0

5

10

15

20

25

30

1 2 4 8 16 32 64 128 256 512 1024

Ex
ec

u
ti

o
n

 t
im

e
(s

)

Active threads (L)

Little-by-Little

In-the-Loop

2457 1097 1722 6274 6091 3978 3280 2855 2681 2626 2881

