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Abstract. The sequencing of the human genome has brought about many 
opportunities and challenges for the realisation of personalised health. Whilst 

researchers are able to analyse and derive results that can be published in journals, 

the rigor required in moving from a research setting to a clinical setting increases 
dramatically. Workflows represent one way in which analysis can be defined 

reflecting the many steps involved in analysing genomics data that in principle can 

be repeated by others. The Cloud also provides ways to re-establish the software 
environment for enactment of workflows required for data-intensive genomic 

analysis. However the challenge of what is the best analytical workflow remains. 

This paper explores this issue through systematic exploration of a range of 
biomedical workflows on the NeCTAR Research Cloud and the resultant evidence 

in diversity of possible workflows and their results. The challenges for the future 

acceptance of genomics workflows in the clinical domain are discussed. 
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1. Introduction 

Since the completion of the Human Genome Project, genomics has emerged as a key 

focus for the biomedical and clinical community to help realise the vision of 

personalised health and establish the basic biological understanding of a multitude of 

diseases [1]. Improvements in DNA sequencing technologies [2] regarding cost, 

accuracy and speed, have aided in the identification a range of differences (variants) in 

the genetic makeup of individuals and populations. Through efforts such as the 1000 

Genomes project [3] and approaches for analysis of NGS data [4], a progression of 

approaches for variant discovery are now being used by researchers. Nekrutenko and 

Taylor [5] discuss important issues such as accessibility, interpretation and 

reproducibility for the analysis of next generation sequence (NGS) data including 

whole genomes and exomes, and propose solutions for future developments. A large 

number of computational tools and workflow platforms have been developed to support 

analysis of NGS data e.g. Galaxy [6], Taverna [7], Omics Pipe [8] and Mercury [9]. 

However adapting and extending already built pipelines requires considerable 

computational knowledge and expertise. 



The major challenge that lies ahead is the many ways in which increasingly large 

and diverse biological sequence datasets can be analysed and interpreted [10]. As the 

amount of data from these technologies piles up, considerable informatics expertise and 

tools are needed to store, analyse and interpret these data to attain accurate knowledge 

that can be translated into clinical practices. It is very important to understand the 

critical aspects that ensure workflow implementations that are consistent enough to be 

reproduced by others and ultimately be translated into clinical settings. The 

sustainability of clinical genomics research requires the plausibility of reproducibility 

of results to be as easy as data production. We need to fill this gap by proposing and 

implementing practices that can ensure repeatability, reproducibility, confirmation and 

ultimately extension of others work. This research aims to answer these questions by 

demonstrating end-to-end reproducible clinical genomics analysis workflows on the 

National eResearch Collaboration Tools and Resources (NeCTAR – 

www.nectar.org.au) Research Cloud. A workflow is generally defined as a reproducible 

process composed of a set of coordinated tasks executed using software. Workflows 

have different purposes including collecting data from various data sources, 

processing/transforming data to compute results and enabling interoperability between 

different tasks. We identify that the different workflows can indeed be re-established 

and re-enacted on the Cloud, however the choices in the workflows that are selected 

impacts directly upon the repeatability of scientific evidence. We provide illustrations 

of this diversity. 

 
2. Experimental Case studies 

The experimental case studies conducted can be divided into two main categories: 

workflows created as part of the NeCTAR funded endocrine genomics virtual 

laboratory (endoVL – www.endovl.org.au) [11] using the Galaxy workflow 

environment and workflows [12] developed through the Melbourne Genomics Health 

Alliance (MGHA- www.melbournegenomics.org.au)  project using the Bpipe 

environment [13]. 

 

2.1. EndoVL Project 

The endoVL project was an initiative to establish an Australia-wide endocrine 

genomics virtual laboratory [11]. A major motivator and use case for developing 

endoVL was to identify, store and search for genetic variants in patients with 

endocrine-based disorders. A range of case studies was conducted as part of endoVL 

focused on analysis of exome data from patients with a rare disorder: disorder of sex 

development (DSD). Sequencing was undertaken at the Australian Genome Research 

Facility (AGRF) sequencing facility following the Illumina TruSeq exome capture 

using the Illumina HiSeq2000 platform to generate 100bp paired-end reads. Three well 

established bioinformatics groups in Australia (Group A, Group B and Group C) 

participated in this study. The identity of these groups is anonymised here deliberately 

due to the differences of the results found and the potential for misinterpretation of the 

results (e.g. which group was better than another). It was essential to note that all of 

these groups independently undertook their own analysis of the data. 

 

2.1.1. Workflows created by the three groups 

The endoVL project explored the different approaches taken for the bioinformatics 

analysis of NGS data by the different groups. The three groups initially used their own 

in-house bioinformatics data processing pipelines. This resulted in a diversity of the 

http://www.melbournegenomics.org.au/


independent approaches and radically different interpretation of the data – specifically 

the numbers of variants found. The diversity of results was presented in [14]. The three 

groups were subsequently requested to use a common bioinformatics analysis 

environment to analyse single exome data on six patients with DSD. The analysis 

environment was made accessible through the Genomics Virtual Laboratory 

(www.genome.edu.au) running on the NeCTAR Research Cloud. For the second case 

study all groups had to use this resource, which was based around the Galaxy workflow 

environment [15]. Galaxy allows saving analysis histories as documentable entities that 

can be used as data objects to run on the same Galaxy instance or even on different 

machines. The groups came up with three different workflows and results despite using 

this common analysis platform as discussed in the next section. 

 

2.1.2. Results 

To identify and interpret variants in a specific set of genes known to be involved in 

DSD, the groups were given a defined list of genes used to identify variants in these 

specific genes (Table 1). The results of this analysis had differences with >50% 

concordance for single nucleotide variants (SNVs) among the three groups (Table 1). 

Also, the transition/transversion (Ti/Tv) ratio was quite accurate for the variants called 

by the three groups (~2.0). In this case, however, every detail about the workflow was 

recorded and the results were different but far more overlapping than the original 

independent “in-house” approaches that were taken [14]. 

 
Table 1. Total number of variants called/Variants called based on subset genes list 

 

Sample 

Total Variants/Variants in subset gene region Common (%age 

concordance) - Ti/Tv 

ratio of SNVs only 
Group-A Group-B Group-C 

BELS1 44306/705 64766/778 80748/1035 524 (68%) – 2.03 

BELS2 51800/657 53298/609 81144/1005 483 (75%) – 1.91 

BELS3 57556/755 54915/662 83263/1074 536 (76%) – 2.08 

NLDS1 51993/653 50164/587 75079/917 484 (78%) – 2.18 

NLDS2 55929/738 53682/648 79756/1037 550 (79%) – 2.11 

NLDS3 54980/692 53108/604 80827/1018 499 (75%) – 2.02 

 

As there was no truth set available for the DSD patient data under analysis, it was 

not possible to determine which workflow identified the “correct” variants. This also 

shows the current heterogeneity of computational genomics analysis with the absence 

of agreed and acceptable approaches for data analysis and discovery. Systematic 

approaches for workflow definition, evaluation and re-use are essential when moving 

into the area of clinical diagnostics and treatment. 

 

2.2. Cpipe Project 

The heterogeneity in the previous analysis process motivated us to work towards an 

enhanced workflow, which is now used by clinicians at the MGHA. The MGHA aims 

to integrate clinical research and genomic medicine for the betterment of patients. 

Currently MGHA are using a targeted bioinformatics pipeline: Cpipe. Cpipe is the 

clinical version of Bpipe [13] and is used to carry out exome sequence analysis of 

human samples on the Victorian Life Sciences Computational Initiative (VLSCI) HPC 

cluster (https://www.vlsci.org.au). Cpipe is an automated and flexible pipeline that can 

help produce reproducible and precise results at individual or population-wide scale. 

 

http://www.genome.edu.au/
https://www.vlsci.org.au/


2.2.1. Cpipe on the Cloud 

The setting up of Cpipe on a HPC Cluster is a complex process that can only be 

performed with the help of people involved in developing and running the pipeline or 

by an experienced bioinformatician that is aware of the set-up of the VLSCI cluster. 

However, it is also essential that the results of a genomic analysis and also the steps 

involved in an analysis can be independently repeated by others, especially when 

moving into clinical settings. This is a challenge with Cpipe on a HPC system. 

To tackle this, Cpipe was provisioned on the NeCTAR Research Cloud using 

snapshot technology to make this pipeline easily accessible and usable for other 

researchers. New users can use this snapshot to launch new GVL instances that can 

communicate with the Object Store to download the Cpipe tar file and reproduce (also, 

if desired, extend) the environment used.  

This complexity of installation and configuration of complex workflows will 

always be required when dealing with complex genomics datasets that comprise 

multiple tools that need to be coupled together. However the Cloud provides the 

capability to easily repeat the exact environment and have others use this immediately 

through the Software as a Service (SaaS) paradigm. 

 

2.2.2. Comparison of analysis using Cpipe (Group D) and the three pipelines (based 

on galaxy) from endoVL project 

To compare and contrast between the four pipelines (three from endoVL project – 

section 2.1.1 and fourth from Cpipe project –section 2.2), the Genome in a Bottle 

dataset NA12878 [16] was used to analyse and validate pipelines on Cloud because it 

has been extensively studied and analysed to establish a validated truthset. The truthset 

contains the variants that are known to be present within NA12878 dataset. Hence 

workflows should ideally identify these variants that are known to occur. The NA12878 

dataset was used with the four workflows on Cloud and the results were compared with 

the truthset for NA12878. The Venn diagram of tools used by the four groups is shown 

in Figure 1. The diagram demonstrates the differences in the preference for tools 

between the four pipelines. Group-D used most of the analysis steps recommended by 

GATK [17], whereas the other three pipelines used an edited version of the same 

recommendation based on their personal experience and choices. For example Group-A 

and Group-C used BWA as an alignment tool whereas Group-B used Bowtie2. This 

difference in the preference for tools resulted in variable results (explained in the next 

section). This experiment actually helped to systematically explore a range of 

biomedical workflows on the NeCTAR Research Cloud and the resultant evidence in 

diversity of possible workflows and their results 

3. Results 

The highest percentage (95%) of overlap with truthset was detected for Group-A, 

followed by Group-D (94%) as shown in the Table 2. Table 3 summarises the 

sensitivity, specificity and false discovery rate for variants produced by the four 

groups. The sensitivity value signifies the percentage of correctly identified variants 

(actual positives); the specificity value signifies the percentage of correctly rejected 

variants (negatives) and the false discovery rate signifies the incorrectly identified 

variants. The highest values for sensitivity and specificity (95% and 66% respectively) 

are observed for Group-A. The sensitivity value for variants predicted by Group- C and 

Group-D is same (95%), whereas specificity value for Group-D (59%) is better than 

Group-C (50%). The preference of workflow with the high sensitivity or specificity 



value will depend on the clinicians and final use of workflow. However, the systematic 

evaluation of workflows to gain an insight into these values (i.e. sensitivity, specificity 

and false discovery rate) is important to be considered if these workflows are being 

finally deployed to analyse patient’s data 

.  

 
Figure 1. Comparison of tools used for alignment, variant calling and quality control by the three groups 

 
Table 2. The total number of variants found by each group and the percentage overlap with the truth set 

Group 
Total number of 

variants 
Overlap with truthset Percentage 

A 26124 24937 95 

B 22949 21261 93 

C 26615 24874 93 

D 26256 24807 94 

E (truthset) 26159   

 

Table 3. The sensitivity, specificity and false discovery rate for variants from each group 

 

Group 

 

TP 

 

TN 

 

FP 

 

FN 

 

Sensitivity 

(%age) 

 

Specificity 

(%age) 

False 

Discovery 

Rate (FDR) 

(%age) 

A 24937 2312 1187 1222 95 66 5 

B 21261 1821 1688 4898 81 52 7 

C 24873 1757 1742 1286 95 50 7 

D 24807 2050 1449 1352 95 59 6 

 

4. Conclusion 

The literature on studies involving use of NGS and other technologies such as 

microarrays shows that there is absence of over-all agreement on how data should be 

analysed and presented. This research demonstrates that as there is (and continues to 

be!) an enormous number of tools and data processing workflow systems being 

developed, however there is a little detailed assessment of the application of these to 

establish best practice and specifically, recommendations and practices that ensure that 

they meet the rigorous requirements demanded when applied (translated) into clinical 



settings. Moreover, this research also shows that the results vary across different 

workflows and these need to be verified either by wet labs or clinicians in order to be 

successfully translated into clinical settings. Can Cloud help tackle significant issues 

imposed by the ever increasing genomics datasets? Virtualisation and Cloud 

technologies can certainly help with many of the issues of data-intensive experiments, 

without imposing significant overheads.  

As a next step, our research aims at designing strategies to explore the workflows 

with other disease datasets e.g. diabetes and then analysing the results. The quality 

assurance and importantly the use and translation into clinical settings have major 

implications for personalised health more generally. The systematic analysis needed to 

aid evaluation and comparison of workflows is an essential activity to validate any 

conclusions and this is especially so in the clinical (as opposed to the research) domain 

since the application of results in clinical/hospital settings will require clinical 

validation (and have consequences for the patients). 
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