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Abstract. Risk stratification for diffuse large B-cell lymphoma (DLBCL) is 

required as patients with disease may not be cured despite initial R-CHOP 
treatment. We investigated gene ratio tests to predict survival outcome of DLBCL 

patients based on the relationship between immune-effector and inhibitory 

(checkpoint) genes from nanoString™ nCounter in 158 paraffin-embedded 
DLBCL tissues. We assessed the predictive value of several possible gene ratios 

using a tree-based survival statistical model, and investigated the predictive value 

of those gene ratios in an independent R-CHOP treated cohorts of 233 patients. 
We showed that an immune ratio composed of CD4*CD8*:(CD163/CD68)*PD-

L1 was able to stratify overall survival better than single or combination of 

immune markers, distinguishing groups with disparate 4-year survivals (92% 
versus 47%). The immune ratio was independent of and added to the revised 

international prognostic index (R-IPI) and cell-of-origin (COO) and has potential 

implications for selection of patients for checkpoint-blockade within clinical trials. 
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Introduction 

Diffuse large B-cell lymphoma (DLBCL) is an aggressive B-cell lymphoma that has 

~30% mortality despite R-CHOP chemotherapy treatment. Prognosticators such as the 

cell-of-origin (COO) and international prognostic index (IPI) and/or revised-

international prognostic index (R-IPI) [1] were established to identify poor outcome 

patients. However, these established prognosticators are not sufficient to accurately 

predict outcome [2]. There is therefore a pressing need to develop tools that add to the 

predictive power of conventional prognosticators to more accurately predict response to 

initial therapy.  

Some factors are known to have a great influence on the behavior of multiple 

tumor types. The role of infiltrating immune cells within tumor micro-environment 

(TME) in particular, are capable of influencing tumor progression. Other involved 

immunological cell types are macrophages, which are known to have a dual role in 
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cancer depending on their phenotype. Specifically, tumor associated macrophages 

(TAM) possess anti-tumoral capacities (M1) and pro-tumoral capacities (M2). This 

explains why the percentage of M2 macrophages of the total macrophage count (i.e. the 

CD163/CD68 ratio) and the M1/M2 ratio have been found to be good prognosticators 

to predict survival and metastatic ability of various types of tumors, such as melanoma, 

non-small cell lung carcinoma and angioimmunoblastic T-cell lymphoma (AITL). For 

example [3] and [4] reported a significantly better survival for patients based on their 

CD163/CD68 ratio in glioma and AITL tumors respectively. The question on how to 

define the optimal cutoff on such ratio to segregate good and poor outcomes remains 

however unanswered. A naïve median cut-off stratifying patients into two subgroups of 

equal sizes does not correspond to the actual survival rates for a given disease. 

Therefore, while cancer researchers have investigated gene expression ratios to predict 

good prognosis after cancer therapy, the challenge in need to be addressed is the 

identification of 1/ a robust gene expression ratio combined to the determination of 2/ 

an optimal cutoff value in the ratio to best segregate outcomes.  

In our study, we quantified gene expression in 158 paraffin-embedded tissues 

from R-CHOP treated DLBCL patients from 2 Australian centers using the 

Nanostring™ digital multiplex platform. We investigated ratios of immune-effector 

genes  with immune-checkpoints (PD1, 

PDL1, PDL2, LAG3, TIM3, CCL3, CD163, CD68, M2) with the rationale that a ratio 

of the antagonistic forces of immune-effectors to immune-checkpoints might best 

reflect net anti-intratumoral immunity, with low ratios indicating reduced immunity. 

We used tree-based survival statistical models as an innovative analytical tool to test all 

combinations of gene ratios and to determine optimal cut-offs to stratify overall 

survival independently from R-IPI and COO. The results were further tested in an 

external international R-CHOP treated DLBCL cohort drawn from a publically 

available database performed on a gene expression Affymetrix platform. 

1. Data and methods 

1.1. Nanostring™ digital multiplex gene expression study 

The study was approved by responsible Ethics Committees at participating sites. 

The initial tissue cohort comprised 252 patients with histologically confirmed DLBCL. 

All patients received R-CHOP, and were otherwise selected solely on the basis of 

Formalin Fixed Paraffin Embedded (FFPE) tissue availability. Only de-novo cases of 

DLBCL were included, and grade IIIB follicular lymphoma, transformed follicular 

lymphoma, HIV-positive and post-transplant patients were excluded, resulting in 158 

samples with survival data available. The data were normalised against positive and 

negative controls in the assay. In addition, four housekeeping genes were employed to 

normalise the data to account for potential differences in RNA quality. Approximately 

10% of samples did not pass QC and were discarded from the analysis. The data 

including the expression of 48 genes were further log2 transformed. 

1.2. Affymetrix gene expression for validation 

For validation of the generated model’s findings we used a publicly available gene 

expression data set using Affymetrix HG-U133 Plus 2.0 GeneChips platform [5] on 



fresh-frozen samples. The normalised data include the expression levels of 54,676 

transcripts for 233 patients treated with R-CHOP (GSE10846). Probes mapping to our 

genes of interest were identified through the jetset score [6]. . 

1.3. Ratios of markers 

Our study specifically investigates ratios of the antagonistic forces of immune-effectors 

to immune-checkpoints to reflect net anti-intratumoral immunity. We therefore 

considered the immune effectors genes CD4, CD8, CD56 and CD137 as part of 

‘numerators’ in the ratios, and immune-checkpoints CD163, CD68, M2 (CD163/CD68), 

PD1 and PDL1 as part of ‘denominators’. We tested each gene marker individually (10 

genes), simple ratios of one numerator gene divided by one denominator gene (12 

ratios), and finally all possible combinations of these genes (44 ratios).  

1.4. Tree-based survival models 

A survival analysis based on a tree-structured statistical model [7] was applied to 

stratify patients into two survival subgroups (termed ‘high or low-risk’). Tree-

structured regression models perform recursive binary partitioning to model the 

association between response and covariates. In our study, the response is the survival 

time of each patient, and a single covariate, the expression levels of a marker ratio from 

the Nanostring data is considered in the regression model. Therefore, for each ratio a 

survival tree with a single node split was modelled. The main aim of the approach is to 

determine the optimal cutoff value on the marker ratio (i.e. the ‘best split’) so that 

patients are stratified into two survival subgroups with the best possible segregation 

(see example in Fig 1A). The best split is optimally determined based on the entropy 

criterion, a criterion that is commonly used in tree-based partitioning approaches, as 

fully described in [8]. 

In summary, for each marker ratio from the Nanostring data, the patients were 

stratified according to the following rule: if the ratio value is less than or equal to the 

tree cutoff, then the patient is assigned to the ‘high-risk’ group; if the ratio value  is 

strictly greater than the tree cutoff, then the patient is assigned to the ‘low-risk’ group. 

To assess the prognostic value of each marker ratio given the determined cutoff, a log 

rank test was applied to test the difference between the survival curves from both 

groups. A total of 66 survival trees were fitted on single gene markers (10), simple 

marker ratios (12) and all combinations of marker ratios (44) expression levels. The p-

values from the log-rank tests along with the cutoff value and the proportion of 4-year 

survival were recorded. 

We used the Affymetrix cohort to evaluate the ability of the survival trees to 

stratify patients into poor and good- risk groups. Marker ratios were calculated as in the 

Nanostring data. Using the rules described above, we stratified the Affymetrix patients 

into two subgroups and compared those subgroups with their actual survivals using a 

log rank test. P-values were adjusted using the Bonferroni multiple correction 

procedure. We used the R statistical software [9] and the R packages party and 

partykit for the tree-structure survival models [10]. 



2. Results 

2.1. Comparison between single markers and ratios 

As highlighted by previous studies, we found that the M2 ratio was prognostic 

(P=0.0056) whereas CD163 and CD68 alone were not (P=1). 

The tree-structured survival models identified a number of prognostic immune 

molecule combinations. Within the top ten combinations (based on the tree-based 

survival curve tests), CD4, CD8, CD137, CD56 as numerators, and M2, PD-1 and PD-

L1 as denominators were all present, with all except CD56 occurring frequently (≥ 

seven times). The highest ranked combination with respect to significantly different 

survival curves between two identified subgroups was the product of the immune-

effectors CD4 and CD8, in a ratio with the products of M2 and PD-L1 (the 

CD4*CD8/M2*PD-L1 immune-ratio). This was selected for further analysis below. 

The optimal cut-off identified with the tree-structured model was of -0.279. Patients 

with an immune-ratio ≤ -0.279 were stratified into the poor-risk group, and those with 

an immune-ratio > -0.279 were stratified into the good-risk group (Fig 1A). Using 

Kaplan–Meier and the log-rank test, the CD4*CD8/M2*PD-L1 ratio separated patients 

into disparate high and low-ratio 4 year survivals that differed by 45% (P<0.0001). The 

proportions of patients in high and low-ratio groups were 59% and 41%. 

2.2. Immune-effectors: checkpoint ratios add to conventional prognosticators. 

Both R-IPI and COO separated patients into prognostic groupings (P=0.002 and 

P=0.018 and 4-year survivals of 83% versus 61%, and 82% versus 60% respectively). 

We showed that our immune-ratio into low and high-ratio groupings sub-stratified R-

IPI and COO (not shown). For R-IPI, 37% of patients were in the best survival 

groupings (R-IPI and high-ratio immune score), with ~20% in each of the other 

categories. Similarly for COO, 43% of patients were in the best survival grouping 

(GCB and high-immune score), with ~20% in each of the other categories. Combining 

the immune-ratio with R-IPI and COO created two clearly separate groupings (P< 

0.001): a poor-risk group with R-IPI-low-ratio and/or non-GCB-low-ratio (4-year 

OS=40%) versus a good-risk group (4-year OS=89%). Thirty percent of patients had a 

poor-risk combined R-IPI-COO-immune-score. Importantly, in a Cox multivariate 

regression analysis the significance remained, with the immune-ratio independent of 

COO and R-IPI (immune ratio P<0.0001, COO P=0.048 and R-IPI P=0.014). 

2.3. External validation of immune-ratios using the Affymetrix platform on frozen 

tissue. 

The immune-ratio was then applied to the independent cohort of R-CHOP-like treated 

patients in which gene expression was quantified on fresh-frozen samples using an 

Affymetrix platform. The immune-ratio segregated patients into groupings with 

significantly different survivals. In particular, the ratio CD4*CD8/M2*PD-L1 led to 

high-ratio 76% versus low-ratio 63% (P=0.0065, Fig 1B. 60% of patients had a high-

ratio, almost identical to that seen for the Australian-tissue cohort. With a multivariate 

Cox regression analysis the ratio was independent of COO and R-IPI (immune-ratio 

P<0.017, COO P=0.011 and R-IPI P<0.0001).  



 

Figure 1. A) Nanostring cohort: Tree-structured survival model representation for the 

immune ratio CD4*CD8/M2*PD-L1 with optimal cut-off stratifying patients into poor 

and good risk groups, as displayed by the Kaplan Meier survival curves. Log rank test 

p-value is indicated in the split node. B) Affymetrix validation cohort: patients were 

stratified into the poor and good risk groups based on the same immune-ratio and cut-

off determined in A (-0.279).  

3. Discussion and future work 

In this study, we have addressed some technical barriers that impede the translation of 

prospected clinical tests from discovery to clinical implementation.  

Firstly, the study needed to address the problem of platform variability (digital 

count Nanostring and gene expression Affymetrix platforms), which is a systematic 

source of variation that is commonly observed when attempting to integrate or combine 

data generated from multiple platforms. Some batch-correction statistical approaches 

have been proposed but so far they have only been developed for microarray platforms 

[11, 12]. To our knowledge, it is the first time that ratio of several markers have been 

used to help reduce variability amongst platforms that largely differ in scale but also in 

the techniques that are used. It is also possible that the use of such ratio could enhance 

reproducibility of prognosticator for survival between different types of specimen 

(FFPE in our Nanostring cohort vs. fresh frozen tissues in the validation cohort). We 

acknowledge that our immune ratio would need to be further evaluated on an external 

cohort with FFPE tissues. 

Secondly, in order to determine an optimal cutoff in our immune ratio, we used a 

tree-structure survival statistical model, which despite its sophistication is easy to 

visualise and understand. To our knowledge, this is the first time that such approach is 

used to stratify survival in patients. The advantage of the tree-based approach is that the 

stratification cutoff value is driven by survival data, instead of arbitrary cutoffs, or 

cutoffs driven by other information than survival as were previously proposed in the 

literature. For example in their glioma and angioimmunoblastic T-cell lymphoma 

studies, [3, 4] set up a 0.3 cutoff based on the CD163/CD68 ratio with no justification 

on such arbitrary choice. Other studies as those from [13] demonstrated the relevance 

of using gene expression ratios in lung and other thoracic malignancies. The cutoffs 

were determined based on a student t-test with pathological distinction (malignant 



pleural mesothelioma vs adenocarcinoma) as outcome of interest. Such approach 

cannot be applied in our study as we do not have such information. For comparison we 

applied the naïve cutoff based on the median to segregate the patients cohort in two 

equal parts, bearing in mind that such partition does not reflect the mortality rate with 

R-CHOP chemotherapy treatment. In our Nanostring cohort, 21 out of the 66 marker 

ratios led to subgroups with significant differences between survival curves (P ≤ 0.05). 

However, none of these markers were validated in the Affymetrix cohort. Using the 

survival trees, we obtained 54 marker ratios whose cutoffs led to significant differences 

between survival curves, amongst which four promising ratios were validated in the 

Affymetrix cohort. Such results could be improved by estimating a confidence interval 

or range around those cutoffs in order to fully assess the predictive value of our 

immune-ratio. These future directions will enable to translate expression profiling data 

into simple clinical tests. 

Our ratio analysis solely included specific immune effectors and checkpoint gene 

markers as targeted by our Nanostring experiment, but our findings and statistical 

analyses could be generalised to a broader set of genes from high-throughput 

experiments and could also be applied to other marker ratios in other cancer studies. 
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