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Abstract. Genomic information is increasingly being used for medical research, 
giving rise to the need for efficient analysis methodology able to cope with 

thousands of individuals and millions of variants. Catering for this need, we 
developed VariantSpark, a framework for applying machine learning algorithms in 

MLlib to genomic variant data using the efficient in-memory Spark compute 

engine. We demonstrate a speedup compared to our earlier Hadoop-based 
implementation as well as a published Spark-based approach using the ADAM 

framework. Adapting emerging methodologies for fast efficient analysis of large 

diverse data volumes to process genomic information, will be the cornerstone for 
precision genome medicine, which promises tailored healthcare for diagnosis and 

treatment.   
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Introduction 

We apply Apache Spark to publicly available genomic data. We demonstrate the 

potential Spark has to process huge amounts of data, as well as its scalability and 

flexibility. We also compare it to our previous implementation of similar techniques in 

Apache Hadoop, in regards to speed and performance.  

1. Background 

With the decreasing costs of DNA sequencing [1], coupled with large cohorts, the 

amount of data available for processing can quickly become overwhelming. The 1000 

Genomes Project [2], for example, has made publicly available 100s of gigabytes of 

VCF (Variant Call Format) files containing the genomic variants of over 1000 

individuals. To cope with these huge amounts of data, challenges such as memory 

requirements need to be taken into consideration, which are not addressed by other 

parallelisation strategies like OpenMPI or hardware accelerators (GPGPU). Projects 

such as ‘Apache Hadoop MapReduce’ [3] can transform data into ‘key-value pairs’ that 

can then be distributed between multiple nodes across a compute-cluster, effectively 

allowing the abstraction of one large job into many smaller, independent jobs. 

Unfortunately, the MapReduce paradigm that Hadoop is based on is not always the 



optimal solution, and can prove to be an obstacle when designing jobs. In addition, 

Hadoop is disk IO intensive, and this can prove to be a bottleneck in processing-speed. 

‘Apache Spark’ [4] is a more recent compute engine, which overcomes many of 

Hadoop’s limitations. One of the main benefits is that it allows programs to cache data 

in memory; potentially eliminating, or at least reducing, the bottleneck of disk IO. 

When utilising caching, Apache claim Spark to be 100x faster than Hadoop. Although 

Spark allows MapReduce-like programs, it does not require programs to exactly model 

the MapReduce paradigm, which in turn allows more flexibility when designing 

programs. Coupled with MLlib (Spark’s machine-learning library), the possibilities to 

apply Spark to genomic data are endless. 

Recognising this, the Big Data Genomics (BDG) group has recently demonstrated 

the strength of Spark in a genomic clustering application using ADAM, a set of formats 

and APIs as well as processing stage implementations for genomic data [5]. While the 

speedup over traditional methods was impressive, being limited by constraints within 

this general genomics framework hampered performance. We hence developed a more 

focused purpose-built application in Spark to perform k-means clustering of individuals. 

Using this we are able to compare various processing, software and clustering 

techniques; i.e., a similar implementation in Hadoop and Mahout. 

2. Methods 

We obtain the genomic data from the 1000 genome project as VCF file from 

http://www.1000genomes.org/data. It represents a 1092 (individuals) x 11,815,007 

(variants) dimensional dataset of individual genotypes. Furthermore, we also download 

the metadata containing the population association for each individual. 

We implemented VariantSpark in Scala, leveraging Apache Spark and MLLib. The aim 

of the first step is to read in VCF files and effectively transpose them to vectors of each 

individual’s variants. Using tuples to store the data in key-value pairs allows us to 

achieve this task in a distributed fashion that should scale to allow for an input of 

hundreds of gigabytes. Effectively, we split each line from the VCF file(s) into an array. 

We then zip each item in each array with its heading from the VCF file, resulting in an 

array of tuples (See Figure 1 Spark “Zip with header”). Each of these arrays now stores 

a single variant for every individual in the dataset and can be evenly distributed across 

the cluster in Spark’s Resilient Distributed Dataset (RDD) format [6]. However, further 

processing is required, as we need arrays of individuals, not arrays of variants.  

We therefore zip each array with a unique index representing a variant (See Figure 

1 Spark “Zip with index”). We now have a tuple containing an integer paired with an 

array of yet more tuples. We can now use the FLATMAP function to effectively flatten 

the data structure and get closer to the structure we require. The FLATMAP, with a 

custom inner function, results in a tuple for every variant across every individual. This 

tuple contains the individual’s ID as the ‘key’, and as the ‘value’, a secondary tuple of 

the variant index and the variant (See Figure 1 Spark “Flatmap”). 

The value of each variant is the distance from the wild-type allele. For example, a 

homozygous variant is 2, a heterozygous variant is 1 and no variant is 0. We calculate 

this value from the variant string during the aforementioned FLATMAP stage. In 

addition, to keep data-sizes to a minimum, we remove any variants with a value of zero. 

Therefore, we can store the data as a sparse vector, rather than a dense vector. The 

http://www.1000genomes.org/data


sparse vectors store non-zero variants with their index, rather than the entire array of 

variants, as a dense-vector would do. 

We need to group the collection of tuples by the individual using Spark’s 

GROUPBYKEY. Following this function, we have an array for each individual, 

containing the variant-tuples for said individual (See Figure 1 Spark “Group by 

individual”). This is essentially the structure of a sparse vector, and we can map each 

array to the sparse vector structure required by MLlib’s machine-learning algorithms. 

We proceed to create an MLlib k-means model and train the model on this data. 

We report the accuracy based on the resulting cluster-set compared to the expected 

result, according to each individual’s population and super population. We run a 

maximum of ten k-means iterations and use the Manhattan distance measure.  

3. Results and discussion 

3.1. Comparison to Hadoop 

We previously implemented a similar program in Hadoop using the Apache Mahout 

machine-learning library. Although falling shy of Apache’s claim, we observe a 

speedup of more than 50% with our Spark implementation. In Hadoop, clustering 

under 1 million variants took close to 16 minutes. Processing and clustering over 1 

million variants using Spark, on the other hand, took less than 7 minutes. One 

contributing factor to the speedup is in-memory caching. Unlike Hadoop, which writes 

the output of its data transformations to disk, Spark can cache intermediate data-

structures in memory. This minimises disk IO and removes a huge bottleneck. Another 

reason for the better performance is the different programming model. Hadoop relies 

on the MapReduce paradigm, which, although easy to use with distributed systems [7], 

can be restrictive in job design. A ‘Map’ task must generally precede a ‘Reduce’ task. 

Spark implements Map and Reduce functions, however a Spark job can call these 

functions in any order. This allowed us to implement the VCF transformations in a 

more optimised way (See Figure 1 for a comparison between the Spark and Hadoop 

implementation). 

3.2. Comparison to Big Data Genomics 

Unlike the Big Data Genomics (BDG) implementation, we perform transformations on 

the variant data directly from VCF files. Although the ADAM columnar data-structure 

may have benefits for certain operations, for k-means clustering, we observed better 

performance forgoing the ADAM format (Table 2). 

We processed and clustered the human chromosome 22, which includes close to 

500,000 variants, using the same options as BDG. The process took approximately 1.3 

minutes to complete. This includes training and predicting, and is faster than the 2 

minutes runtime reported by BDG. Our method also eliminates the time required for 

converting VCF files to the ADAM format. However, a trade-off for our faster 

approach is disk-space. Because the ADAM format uses compressed files, as opposed 

to uncompressed VCF files, their file-sizes would be smaller.  



3.3.  Scalability 

We demonstrate the potential of Spark to scale from a subset of chromosome 1 

containing less than one hundred thousand variants, to multiple chromosomes 

containing millions of variants. The time required scales in a linear-fashion, based on 

the number of variants present in the data. However, the overhead of Spark becomes 

apparent with relatively small datasets, as can be seen in Table 2, where the times 

required for completing the two smallest jobs only differ by one second.  

For the smaller jobs, Spark requires only 1GB memory per executor (or core). 

Increasing the number of variants beyond 2 million requires a greater memory 

allocation for each executor. Although this is not a problem with high-memory clusters, 

on smaller clusters, such as our four-node Azure cluster, increasing the memory 

allocation beyond 1GB will limit the number of executors that can run simultaneously, 

due to memory-constraints. Although of no advantage to clustering quality, as we 

explain in the next section, we further demonstrate the scalability by increasing the 

dataset to include multiple chromosomes. These jobs complete successfully, albeit after 

more time and with higher memory requirements (Table 1).  

Spark not only scales well with data size, but also with cluster size. To 

demonstrate this we run identical jobs on our in-house cluster. Clustering every 

chromosome 1 variant from VCF files takes only six minutes when using 80 executers. 

As is expected, this is much faster than the small cluster which took over 17 minutes 

for the same job. Although these two clusters are different in OS, size and hardware 

configuration, a Spark jobs, being implemented in Scala (or Java), can run on any 

cluster. The only change we make is to the launch script where we specify how many 

executors to use. 

3.4. Clustering quality 

When we cluster the entire group of 1092 individuals, the majority are clustered with 

individuals from the same super-population. This is portrayed in the Adjusted Rand 

Index (ARI) [8], which is 0.8 (where a value of ‘1.0’ would represent a result where all 

like-individuals are grouped together).  Note, we chose ARI as it is frequently used to 

compare the accuracy of two clusterings (here: our prediction compared to the true 

population associations). 

We can substantially improve the accuracy to a perfect classification (ARI=1.0) by 

removing the fourth super-population, AMR (American). Including AMR individuals, 

we observe that the majority of these individuals are placed in the same group as 

Europeans, likely accurately reflecting their migrational backgrounds. Only a minority 

of AMR individuals form an independent group, likely comprising of genetic 

information otherwise not captured by the 26 sub-populations of the 1000 genomes 

project.  

Interestingly, we achieved these results with as few as one million variants, i.e. less 

than half the variants available in chromosome 1, and increasing the size of the dataset 

further saw no improvement on clustering the the AMR individuals.  



4. Conclusion 

We demonstrate the potential applications of processing VCF files using Apache Spark. 

We successfully apply k-means clustering to over 1 thousand individuals with millions 

of variants. We explore performance on different architectures starting with a relatively 

small 24-node cluster and subsequently scale up to a cluster with hundreds of nodes. 

We demonstrate our method of transforming and clustering individuals from VCF files 

to be faster than clustering individuals stored in the ADAM format, albeit at the cost of 

disk space. 

In future work we aim to improve the disk space footprint by using compressed VCF 

files. The 1000 genomes consortium distributes their VCF files with gzip compression, 

which is unsuitable for use in Spark as it is not possible to split gzip files.  We therefore 

plan to investigate other compression methods, such as bz2, which Spark can read line 

by line. We expect this to not only minimise storage requirements of the actual data, 

but also further reduce runtime, making the approach attractive for applying the more 

complicated machine learning approaches to genomic data.  

 

Figure 1. Schematic visualizing VCF processing using Hadoop and Spark respectively.  

 

Figure 2. Time scaling with increasing number of clustered variants.  



 

Table 1. Benchmarks from VCF clustering jobs from different variants and configurations. The ‘small’ 
cluster has three nodes, with a total of 24 CPU cores and 36GB memory, running on Microsoft Azure. The 

‘large’ cluster has fourteen nodes, with a total of 448 CPU cores and 1.31TB memory, running on an in-

house Hadoop setup. 

Cluster Chr(s) Size (Kbase) Variants Executers 

(memory) 

Time 

Small 1 5,000 65,572 24 (1GB) 3m 57s 

 1 10,000 138,840 24 (1GB) 3m 58s 

 1 20,000 272,364 24 (1GB) 4m 40s 
 1 40,000 531,230 24 (1GB) 5m 43s 

 1 80,000 1,058,736 24 (1GB) 6m 43s 

 1 120,000 1,598,000 24 (1GB) 8m 14s 
 1 240,000 2,869,355 12 (2GB) 17m 8s 

Large 1 40,000 531,230 80 (1GB) 1m 55s 

 1 240,000 2,869,355 80 (2GB) 5m 25s 
 1 248,956 3,007,196 80 (2GB) 6m 02s 

 1 248,956 3,007,196 400 (2GB) 4m 30s 

 1-2 491,149 6,314,788 80 (3GB) 14m 35s 
 1-4 879,658 11,815,007 80 (4GB) 48m 24s 

 

Table 2. Benchmark from clustering individuals from VCF files and ADAM files. The time for ADAM 

clustering is reported by BDG. For both methods, the data was filtered to only include the populations listed. 

The time does not include the one-off task of extracting the compressed VCF file (required by both clustering 
methods) or the conversion of the VCF file to the ADAM format (only required for clustering the ADAM 

file). 

Cluster Populations Chr Variants Executers Time 

ADAM GBR, ASW, CHB 22 494,328 80 2m 01s 

VCF GBR, ASW, CHB 22 494,328 80 1m 20s 
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